summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
-rw-r--r--2-point.tex115
1 files changed, 67 insertions, 48 deletions
diff --git a/2-point.tex b/2-point.tex
index 5c40278..e20792e 100644
--- a/2-point.tex
+++ b/2-point.tex
@@ -21,7 +21,7 @@
\usepackage{anyfontsize,authblk}
\usepackage{tikz}
-\usetikzlibrary{calc,fadings,decorations.pathreplacing,perspective,3d}
+\usetikzlibrary{calc,fadings,decorations.pathreplacing,calligraphy}
\addbibresource{2-point.bib}
@@ -62,11 +62,12 @@
\tikzset{#1/.style={cm={\cost,0,0,\cost*\sinEl,(0,\yshift)}}} %
}
\newcommand\TangentPlane[5][current plane]{%
- \pgfmathsinandcos\sinEl\cosEl{#3} % elevation
- \pgfmathsinandcos\sint\cost{#4} % latitude
- \pgfmathsinandcos\sinu\cosu{#5} % azimuth
- \pgfmathsetmacro\yshift{#2*\cosEl*\sint}
- \tikzset{#1/.style={cm={\cost*\cosu,\cost*\sinu*\sinEl,0,\cost*\sinEl*\cosEl,(0,0)}}} %
+ \pgfmathsinandcos\sint\cost{#3} % elevation
+ \pgfmathsinandcos\sinb\cosb{-#4} % latitude
+ \pgfmathsinandcos\sina\cosa{#5+90} % azimuth
+ \pgfmathsetmacro\xshift{\cosb*\sina}
+ \pgfmathsetmacro\yshift{-\cost*\sinb-\cosa*\cosb*\sint}
+ \tikzset{#1/.style={cm={-\sina*\sinb,\cosa*\sinb*\sint-\cost*\cosb,\cosa,\sina*\sint,(#2*\xshift,#2*\yshift)}}} %
}
\newcommand\DrawLongitudeCircle[2][1]{
\LongitudePlane{\angEl}{#2}
@@ -91,50 +92,9 @@
\tikzset{%
>=latex, % option for nice arrows
inner sep=0pt,%
- outer sep=2pt,%
- mark coordinate/.style={inner sep=0pt,outer sep=0pt,minimum size=3pt,
- fill=black,circle}%
+ outer sep=2pt%
}
-\begin{tikzpicture} % "THE GLOBE" showcase
- \def\R{4 } % sphere radius
- \def\angEl{20} % elevation angle
- \def\angAz{-20} % azimuth angle
- \filldraw[ball color=white] (0,0) circle (\R);
- \filldraw[fill=white] (0,0) circle (\R);
-
- \foreach \t in {0,45} { \DrawLatitudeCircle[\R]{\t} }
- \foreach \t in {-120} { \DrawLongitudeCircle[\R]{\t} }
-
- \pgfmathsetmacro\H{\R*cos(\angEl)} % distance to north pole
- \coordinate (O) at (0,0);
- \node[circle,draw,black,scale=0.3] at (0,0) {};
- \coordinate (N) at (0,\H);
- \draw[left] node at (0,\H){$\pmb\sigma_1$};
- \draw[thick, ->](O)--(N);
-
- \NewLatitudePlane[planeP]{\R}{\angEl}{45};
- \path[planeP] (-120:\R) coordinate (P);
- \draw[left] node at (P){$\mathbf s_1$};
-
- \NewLatitudePlane[equator]{\R}{\angEl}{00};
- \path[equator] (-30:\R) coordinate (Pprime);
- \draw[right] node at (Pprime){$\pmb\sigma_b$};
-
- \NewLatitudePlane[sbplane]{\R}{\angEl}{45};
- \path[sbplane] (20:\R) coordinate (sb);
- \draw[right] node at (sb){$\mathbf s_b$};
-
- \TangentPlane[tplane]{\R}{\angEl}{45}{-120};
- \draw[tplane,fill=gray,fill opacity=0.3] circle (1);
- \draw[shift={(P)},rotate around y=45,canvas is xy plane at z=0,->,thick] (0,0) -> ({sin(10)},{cos(10)});
-
- \draw[thick, ->] (O)->(P);
- \draw[thick, ->] (O)->(Pprime);
- \draw[thick, ->] (O)->(sb);
-
-
-\end{tikzpicture}
\cite{Ros_2020_Distribution, Ros_2019_Complex, Ros_2019_Complexity}
@@ -613,6 +573,65 @@ $\sigma$ replicas constrained to lie at fixed overlap with \emph{all} the
$\mathbf s$ replicas, and the second is the only of the $\mathbf s$ replicas at
which the Hessian is evaluated.
+\begin{figure}
+ \centering
+ \begin{tikzpicture}
+ \def\R{4 } % sphere radius
+ \def\Rt{2 } % tangent plane radius
+ \def\angEl{15} % elevation angle
+ \def\angsa{-160} % azimuth of s_1
+ \def\angq{40} % elevation of constraint circle
+ \filldraw[ball color=white] (0,0) circle (\R);
+ % \filldraw[fill=white] (0,0) circle (\R);
+
+ \foreach \t in {0,\angq} { \DrawLatitudeCircle[\R]{\t} }
+ %\foreach \t in {\angsa} { \DrawLongitudeCircle[\R]{\t} }
+
+ \pgfmathsetmacro\H{\R*cos(\angEl)} % distance to north pole
+ \coordinate (O) at (0,0);
+ \node[circle,draw,black,scale=0.3] at (0,0) {};
+ \coordinate (N) at (0,\H);
+ \draw node[right=10,below] at (0,\H){$\pmb\sigma_1$};
+ \draw[thick, ->](O)--(N);
+
+ \NewLatitudePlane[planeP]{\R}{\angEl}{\angq};
+ \path[planeP] (\angsa:\R) coordinate (P);
+ \path[planeP] (0:1.5*\R) coordinate (Q);
+ \path[planeP] (0:\R) coordinate (Q2);
+ \draw[left] node at (P){$\mathbf s_1$};
+
+ \NewLatitudePlane[equator]{\R}{\angEl}{00};
+ \path[equator] (-30:\R) coordinate (Pprime);
+ \path[equator] (0:{1.5*cos(\angq)*\R}) coordinate (Qe);
+ \path[equator] (0:\R) coordinate (Qe2);
+ \draw node[right=5,below] at (Pprime){$\pmb\sigma_c$};
+
+ \NewLatitudePlane[sbplane]{\R}{\angEl}{\angq};
+ \path[sbplane] (20:\R) coordinate (sb);
+ \draw node[right=3,above=1] at (sb){$\mathbf s_b$};
+
+ \TangentPlane[tplane]{\R}{\angEl}{\angq}{\angsa};
+ \draw[tplane,fill=gray,fill opacity=0.3] circle (\Rt);
+ \draw[tplane,->,thick] (0,0) -> ({\Rt*cos(160)},{\Rt*sin(160)}) node[above=1.5,right] {$\mathbf x_a$};
+
+ \draw[thick, ->] (O)->(P);
+ \draw[thick, ->] (O)->(Pprime);
+ \draw[thick, ->] (O)->(sb);
+
+ \draw[dotted] (Qe) -- (Qe2);
+ \draw[dotted] (Q2) -- (Q);
+ \draw[decorate, decoration = {brace,raise=3}] (Q) -- (Qe) node[pos=0.5,right=7]{$q$};
+ \end{tikzpicture}
+ \caption{
+ A sketch of the vectors involved in the calculation of the isolated
+ eigenvalue. All replicas $\mathbf x$ sit in an $N-2$ sphere corresponding
+ with the tangent plane of the first $\mathbf s$ replica (not to scale). All of the
+ $\mathbf s$ replicas lie on the sphere, constrained to be at fixed overlap
+ $q$ with the first of the $\pmb\sigma$ replicas, the reference
+ configuration. All of the $\pmb\sigma$ replicas lie on the sphere.
+ }
+\end{figure}
+
Using the same methodology as above, the disorder-dependant terms are captured in the linear operator
\begin{equation}
\mathcal O(\mathbf t)=