diff options
| -rw-r--r-- | 2-point.tex | 67 | 
1 files changed, 22 insertions, 45 deletions
| diff --git a/2-point.tex b/2-point.tex index e8a7a57..f0fec59 100644 --- a/2-point.tex +++ b/2-point.tex @@ -529,17 +529,17 @@ Because the matrices $C^{00}$, $R^{00}$, and $D^{00}$ are diagonal in this case,  \begin{align}    &\log\det      \begin{bmatrix} -      C^{00}&iR^{00}&C^{01}&iR^{01}&X_1\\ -      iR^{00}&D^{00}&iR^{10}&D^{01}&\hat X_1\\ -      C^{01})^T&iR^{10})^T&C^{11}&iR^{11}&X_2\\ -      iR^{01})^T&D^{10})^T&iR^{11}&D^{11}&\hat X_2\\ -      X_1)^T&\hat X_1)^T&X_2)^T&\hat X_2)^T&A +      C^{00}&iR^{00}&C^{01}&iR^{01}&X_0\\ +      iR^{00}&D^{00}&iR^{10}&D^{01}&\hat X_0\\ +      (C^{01})^T&(iR^{10})^T&C^{11}&iR^{11}&X_1\\ +      (iR^{01})^T&(D^{10})^T&iR^{11}&D^{11}&\hat X_1\\ +      X_0^T&\hat X_0^T&X_1^T&\hat X_1^T&A      \end{bmatrix}\\    &=\log\det\left(      A-      \begin{bmatrix} -      X_1\\\hat X_1\\X_2\\\hat X_2 -    \end{bmatrix})^T +      X_0\\\hat X_0\\X_1\\\hat X_1 +    \end{bmatrix}^T      \begin{bmatrix}        C^{00}&iR^{00}&C^{01}&iR^{01}\\        iR^{00}&D^{00}&iR^{10}&D^{01}\\ @@ -547,11 +547,18 @@ Because the matrices $C^{00}$, $R^{00}$, and $D^{00}$ are diagonal in this case,        (iR^{01})^T&(D^{10})^T&iR^{11}&D^{11}\\      \end{bmatrix}^{-1}      \begin{bmatrix} -      X_1\\\hat X_1\\X_2\\\hat X_2 +      X_0\\\hat X_0\\X_1\\\hat X_1      \end{bmatrix}    \right)  \end{align}  \begin{equation} +    \begin{bmatrix} +      C^{00}&iR^{00}&C^{01}&iR^{01}\\ +      iR^{00}&D^{00}&iR^{10}&D^{01}\\ +      (C^{01})^T&(iR^{10})^T&C^{11}&iR^{11}\\ +      (iR^{01})^T&(D^{10})^T&iR^{11}&D^{11}\\ +    \end{bmatrix}^{-1} +    =    \begin{bmatrix}      A & B \\      C & D @@ -745,7 +752,7 @@ which is \emph{not} a hierarchical matrix! But, all these new hat variables are    &&    \hat X_1    =\begin{bmatrix} -    0&\cdots&0\\ +    \hat x_1^0&\cdots&\hat x_1^0\\      \hat x_1^1&\cdots&\hat x_1^1\\      \vdots&\ddots&\vdots\\      \hat x_1^1&\cdots&\hat x_1^1 @@ -753,51 +760,21 @@ which is \emph{not} a hierarchical matrix! But, all these new hat variables are  \end{align}  \[ -  x_0^2\tilde d^{00}_\mathrm d-\hat x_0^2\tilde c^{00}_\mathrm d+2x\hat x\tilde r^{00}_\mathrm d -  -2 -      \begin{bmatrix} -        x_0q\tilde d^{00}_\mathrm d+\hat x_0q\tilde r^{00}_\mathrm d+x_0r_{10}\tilde r^{00}_\mathrm d-\hat x_0r_{10}\tilde c^{00}_\mathrm d -        \\ -        i(x_0(r_{01}\tilde d^{00}_\mathrm d-d_{01}\tilde d^{00}_\mathrm d) -        +\hat x_0(d_{01}\tilde c^{00}_\mathrm d+r_{01}\tilde r^{00}_\mathrm d)) -      \end{bmatrix}^T -      \begin{bmatrix} -        C^{11}&iR^{11}\\iR^{11}&D^{11} -      \end{bmatrix}^{-1} -    \begin{bmatrix} -      X_1\\i\hat X_1 -    \end{bmatrix} -\] -\begin{align} -  \hat c^{11}=\sum_{i}^n\sum_{j=2}^n[(C^{11}D^{11}+R^{11}R^{11})^{-1}D^{11}]_{ij}\\ -  \hat r^{11}=\sum_{i}^n\sum_{j=2}^n[(C^{11}D^{11}+R^{11}R^{11})^{-1}R^{11}]_{ij}\\ -  \hat d^{11}=\sum_{i}^n\sum_{j=2}^n[(C^{11}D^{11}+R^{11}R^{11})^{-1}D^{11}]_{ij} -\end{align} -\[ -  \begin{aligned} -    &(\tilde d^{00}_\mathrm d\hat d^{11}q+\tilde r^{00}_\mathrm d\hat d^{11}r_{10}-\tilde r^{00}_\mathrm d\hat r^{11}d_{01}+\tilde d^{00}_\mathrm d\hat r^{11}r_{01})x_0x_1 -    +(\tilde r^{00}_\mathrm d\hat d^{11}q-\tilde c^{00}_\mathrm d\hat d^{11}r_{10}+\tilde c^{00}_\mathrm d\hat r^{11}d_{01}+\tilde r^{00}_\mathrm d\hat r^{11}r_{01})\hat x_0x_1 \\ -    &+(\tilde r^{00}_\mathrm d\hat c^{11}d_{01}-\tilde d^{00}_\mathrm d\hat c^{11}r_{01}+\tilde d^{00}_\mathrm d\hat r^{11}q+\tilde r^{00}_\mathrm d\hat r^{11}r_{10})x_0\hat x_1 -    -(\tilde c^{00}_\mathrm d\hat c^{11}d_{01}+\tilde r^{00}_\mathrm d\hat c^{11}r_{01}-\tilde r^{00}_\mathrm d\hat c^{11}q+\tilde c^{00}_\mathrm d\hat r^{11}r_{10})\hat x_0\hat x_1 -  \end{aligned} -\] -all a constant $\ell\times\ell$ matrix. - -\[    \log\det(A-c)=\log\det A-\frac{c}{\sum_{i=0}^k(a_{i+1}-a_i)x_{i+1}}  \]  where $a_{k+1}=1$ and $x_{k+1}=1$.  So the basic form of the action is (for replica symmetric $A$)  \[ -  \frac14\beta^2f''(1)(1-a_0^2)+\frac12\log(1-a_0)+\frac12\frac{a_0}{1-a_0}+\frac12\beta\begin{bmatrix}x_0\\\hat x_0\\x_1\\\hat x_1\end{bmatrix}^TB\begin{bmatrix}x_0\\\hat x_0\\x_1\\\hat x_1\end{bmatrix}-\frac1{1-a_0}\frac12\begin{bmatrix}x_0\\\hat x_0\\x_1\\\hat x_1\end{bmatrix}^TC\begin{bmatrix}x_0\\\hat x_0\\x_1\\\hat x_1\end{bmatrix} +  \frac14\beta^2f''(1)(1-a_0^2)+\frac12\log(1-a_0)+\frac12\frac{a_0}{1-a_0}+\frac12\begin{bmatrix}x_0\\\hat x_0\\x_1\\\hat x_1^1\\\hat x_1^0\end{bmatrix}^T\left(\beta B-\frac1{1-a_0}C\right)\begin{bmatrix}x_0\\\hat x_0\\x_1\\\hat x_1^1\\\hat x_1^0\end{bmatrix}  \]  for  \[    B=\begin{bmatrix} -    \hat\beta_0f''(q)+r_{10}f'''(q)&f''(q)&0&0\\ -    f''(q)&0&0&0\\ -    0&0&-\hat\beta_1f''(q^{11}_0)-r^{11}_0f'''(q^{11}_0)&-f''(q_0^{11})\\ -    0&0&-f''(q_0^{11})&0 +    \hat\beta_0f''(q)+r_{10}f'''(q)&f''(q)&0&0&0\\ +    f''(q)&0&0&0&0\\ +    0&0&-\hat\beta_1f''(q^{11}_0)-r^{11}_0f'''(q^{11}_0)&-f''(q_0^{11})&0\\ +    0&0&-f''(q_0^{11})&0&0\\ +    0&0&0&0&0    \end{bmatrix}  \]  Use $X$ for the big vector. Then | 
