1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
|
\documentclass[fleqn,a4paper]{article}
\usepackage[utf8]{inputenc} % why not type "Bézout" with unicode?
\usepackage[T1]{fontenc} % vector fonts plz
\usepackage{fullpage,amsmath,amssymb,latexsym,graphicx}
\usepackage{newtxtext,newtxmath} % Times for PR
\usepackage{appendix}
\usepackage[dvipsnames]{xcolor}
\usepackage[
colorlinks=true,
urlcolor=MidnightBlue,
citecolor=MidnightBlue,
filecolor=MidnightBlue,
linkcolor=MidnightBlue
]{hyperref} % ref and cite links with pretty colors
\usepackage[
style=phys,
eprint=true,
maxnames = 100
]{biblatex}
\usepackage{anyfontsize,authblk}
\begin{document}
\title{
When is the annealed complexity correct?
}
\author{Jaron Kent-Dobias}
\affil{\textsc{DynSysMath}, Istituto Nazionale di Fisica Nucleare, Sezione di Roma}
\maketitle
\begin{abstract}
The difference between quenched and annealed averages is crucial for
disordered systems. In isotropic mean-field systems, they differ when replica
symmetry is broken. When computing the average free energy in equilibrium,
there are robust conditions to understand when {\oldstylenums1}\textsc{rsb}
is sufficient. When computing the average complexity, or the number of
stationary points of the energy, there is only robust reasoning at the ground
state, where a {\oldstylenums1}\textsc{rsb} equilibrium implies that the
annealed complexity \emph{at the ground state} is correct. Here, we
demonstrate that in the mixed spherical models, the annealed complexity can
be wrong away from the ground state even when the equilibrium free energy is
guaranteed to be at most {\oldstylenums1}\textsc{rsb} everywhere. Therefore,
simple equilibrium order cannot be used to assume a simple landscape
geometry.
\end{abstract}
Parisi construction, $f''(q)^{-1/2}$ is concave
\end{document}
|