diff options
author | Jaron Kent-Dobias <jaron@kent-dobias.com> | 2022-07-13 11:01:35 +0200 |
---|---|---|
committer | Jaron Kent-Dobias <jaron@kent-dobias.com> | 2022-07-13 11:01:35 +0200 |
commit | 3044c7edc3d3f8f52c594bd7f6b3488e1e5dd5d7 (patch) | |
tree | 02c63749cbe101530a9e3af08ba1367cc21eca13 | |
parent | 7d5fcfacf30df93837bb70c96f8c453dacdd1126 (diff) | |
download | PRE_107_064111-3044c7edc3d3f8f52c594bd7f6b3488e1e5dd5d7.tar.gz PRE_107_064111-3044c7edc3d3f8f52c594bd7f6b3488e1e5dd5d7.tar.bz2 PRE_107_064111-3044c7edc3d3f8f52c594bd7f6b3488e1e5dd5d7.zip |
Removed bad notation.
-rw-r--r-- | frsb_kac-rice.tex | 2 |
1 files changed, 1 insertions, 1 deletions
diff --git a/frsb_kac-rice.tex b/frsb_kac-rice.tex index 7c09dca..2d2e003 100644 --- a/frsb_kac-rice.tex +++ b/frsb_kac-rice.tex @@ -1471,7 +1471,7 @@ saddles at this transition point. \end{equation} where $x_0=0$ and $x_{k+1}=1$. The sum of two hierarchical matrices results in the sum of each of their elements: $(a+b)_d=a_d+b_d$ and - $(a+b)_i=a_i+b_i$. The product $A\ast B$ of two hierarchical matrices $A$ + $(a+b)_i=a_i+b_i$. The product $AB$ of two hierarchical matrices $A$ and $B$ is given by \begin{align} \label{eq:replica.prod} (a\ast b)_d&=a_db_d-\sum_{j=0}^k(x_{j+1}-x_j)a_jb_j \\ |