summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorJaron Kent-Dobias <jaron@kent-dobias.com>2022-06-03 19:20:51 +0200
committerJaron Kent-Dobias <jaron@kent-dobias.com>2022-06-03 19:20:51 +0200
commit7f588b8c0da38c82786442e0cdc8243edb41c1d4 (patch)
tree547907679f0e1487bace99d04cc9451592636129
parent919c8556bf2c4a8bfbd46774590d398461d556d0 (diff)
downloadPRE_107_064111-7f588b8c0da38c82786442e0cdc8243edb41c1d4.tar.gz
PRE_107_064111-7f588b8c0da38c82786442e0cdc8243edb41c1d4.tar.bz2
PRE_107_064111-7f588b8c0da38c82786442e0cdc8243edb41c1d4.zip
Writing on saddle for FRSB case.
-rw-r--r--frsb_kac-rice.tex17
1 files changed, 16 insertions, 1 deletions
diff --git a/frsb_kac-rice.tex b/frsb_kac-rice.tex
index 02724ed..04fa307 100644
--- a/frsb_kac-rice.tex
+++ b/frsb_kac-rice.tex
@@ -223,7 +223,7 @@ Integrating by parts,
+\frac1{\lambda(q)+R_d/\hat\epsilon}
\right]
\end{align*}
-for $\lambda$ concave, monotonic, and $\lambda(1)=0$
+for $\lambda$ concave, monotonic, $\lambda(1)=0$, and $\lambda'(1)=-1$
\[
0=\frac{\partial\Sigma}{\partial R_d}
=\frac12\hat\epsilon f'(1)-\frac12\frac1{\hat\epsilon}\int_0^1dq\,\frac{\lambda(q)}{[\lambda(q)+R_d/\hat\epsilon]^2}
@@ -239,4 +239,19 @@ for $\lambda$ concave, monotonic, and $\lambda(1)=0$
\lambda^*(q)=\frac1{\hat\epsilon}\left[f''(q)^{-1/2}-R_d\right]
\]
+We suppose that solutions are given by
+\begin{equation}
+ \lambda(q)=\begin{cases}
+ \lambda^*(q) & q<q^* \\
+ 1-q & q\geq q^*
+ \end{cases}
+\end{equation}
+where $1-q$ guarantees the boundary conditions at $q=1$, and corresponds to the 0RSB or annealed solutions (annealed Kac-Rice is recovered by substituting in $1-q$ for $\lambda$). We will need to require that $1-q^*=\lambda^*(q^*)$, i.e., continuity.
+
+The two saddle points equations for $R_d$ and $\hat\epsilon$ give
+\[
+ 0=\frac12\hat\epsilon f'(1)-\frac12\int_0^{q_*}dq\,\left[f''(q)^{1/2}-R_df''(q)\right]
+ -\frac12\frac1{\hat\epsilon}\int_{q^*}^1dq\,\frac{1-q}{(1-q+R_d/\hat\epsilon)^2}
+\]
+
\end{document}