summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorJaron Kent-Dobias <jaron@kent-dobias.com>2022-06-05 08:46:02 +0200
committerJaron Kent-Dobias <jaron@kent-dobias.com>2022-06-05 08:46:02 +0200
commitcf33eb863768470e498374eb325f648192c50ac1 (patch)
treec0d64810991ae952efbcbfa02abaa5414f3c7865
parent5a63feda3ce29737c288652f8979cdf3ecb7be39 (diff)
downloadPRE_107_064111-cf33eb863768470e498374eb325f648192c50ac1.tar.gz
PRE_107_064111-cf33eb863768470e498374eb325f648192c50ac1.tar.bz2
PRE_107_064111-cf33eb863768470e498374eb325f648192c50ac1.zip
New convention needed a minus sign in the energy.
-rw-r--r--frsb_kac-rice.tex13
1 files changed, 9 insertions, 4 deletions
diff --git a/frsb_kac-rice.tex b/frsb_kac-rice.tex
index 3c6276d..6013f2f 100644
--- a/frsb_kac-rice.tex
+++ b/frsb_kac-rice.tex
@@ -119,7 +119,7 @@ when $\mu=\mu_m$, the critical points are marginal minima.
=\mathcal D(\mu)
+\operatorname*{extremum}_{\substack{R_d,D_d,\hat\epsilon\in\mathbb R\\\chi\in\Lambda}}
\left\{
- \hat\epsilon\epsilon-\mu R_d
+ -\hat\epsilon\epsilon-\mu R_d
+\frac12(2\hat\epsilon R_d-D_d)f'(1)+\frac12R_d^2f''(1)
+\log R_d \right.\\\left.
+\frac12\int_0^1dq\,\left(
@@ -148,9 +148,14 @@ result is that, if the equilibrium state in the vicinity of zero temperature is
given by a $k$-RSB ansatz, then the complexity is given by a $(k-1)$-RSB
ansatz. Moreover, there is an exact correspondence between the parameters of
the equilibrium saddle point in the limit of zero temperature and those of the
-complexity saddle saddle at the ground state. If the equilibrium is given by $x_1,\ldots,x_k$ and $q_1,\ldots,q_k$, then the parameters $\tilde x_1,\ldots,\tilde x_{k-1}$ and $\tilde q_1,\ldots,\tilde q_{k-1}$ for the complexity in the ground state are
+complexity saddle at the ground state. If the equilibrium is given by
+$x_1,\ldots,x_k$ and $q_1,\ldots,q_k$, then the parameters $\tilde
+x_1,\ldots,\tilde x_{k-1}$ and $\tilde q_1,\ldots,\tilde q_{k-1}$ for the
+complexity in the ground state are
\begin{align}
- \tilde x_i=\frac1{\hat\epsilon}\lim_{\beta\to\infty}\beta x_i
+ \hat\epsilon=\lim_{\beta\to\infty}\beta x_k
+ &&
+ \tilde x_i=\lim_{\beta\to\infty}\frac{x_i}{x_k}
&&
\tilde q_i=\lim_{\beta\to\infty}q_i
&&
@@ -366,7 +371,7 @@ The parameters:
\begin{equation}
S
- =\mathcal D(\mu)+\hat\epsilon\epsilon+\lim_{n\to0}\frac1n\left(
+ =\mathcal D(\mu)-\hat\epsilon\epsilon+\lim_{n\to0}\frac1n\left(
-\mu\sum_a^nR_{aa}
+\frac12\sum_{ab}\left[
\hat\epsilon^2f(Q_{ab})+2\hat\epsilon R_{ab}f'(Q_{ab})