summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorJaron Kent-Dobias <jaron@kent-dobias.com>2022-06-05 10:01:38 +0200
committerJaron Kent-Dobias <jaron@kent-dobias.com>2022-06-05 10:01:38 +0200
commitd389ec5117d64f4f1edc4a2ca6d381af7b0b4636 (patch)
treeec08b7ddabb54c9e32bb6af0dae47577c77d0621
parentcf33eb863768470e498374eb325f648192c50ac1 (diff)
downloadPRE_107_064111-d389ec5117d64f4f1edc4a2ca6d381af7b0b4636.tar.gz
PRE_107_064111-d389ec5117d64f4f1edc4a2ca6d381af7b0b4636.tar.bz2
PRE_107_064111-d389ec5117d64f4f1edc4a2ca6d381af7b0b4636.zip
Finally settled on a convention that gets me the signs I want.
-rw-r--r--frsb_kac-rice.tex38
1 files changed, 19 insertions, 19 deletions
diff --git a/frsb_kac-rice.tex b/frsb_kac-rice.tex
index 6013f2f..df30c38 100644
--- a/frsb_kac-rice.tex
+++ b/frsb_kac-rice.tex
@@ -119,9 +119,9 @@ when $\mu=\mu_m$, the critical points are marginal minima.
=\mathcal D(\mu)
+\operatorname*{extremum}_{\substack{R_d,D_d,\hat\epsilon\in\mathbb R\\\chi\in\Lambda}}
\left\{
- -\hat\epsilon\epsilon-\mu R_d
+ \hat\epsilon\epsilon+\mu R_d
+\frac12(2\hat\epsilon R_d-D_d)f'(1)+\frac12R_d^2f''(1)
- +\log R_d \right.\\\left.
+ +\frac12\log R_d^2 \right.\\\left.
+\frac12\int_0^1dq\,\left(
\hat\epsilon^2f''(q)\chi(q)+\frac1{\chi(q)+R_d^2/D_d}
\right)
@@ -283,7 +283,7 @@ $F$ is a $k-1$ RSB ansatz with all eigenvalues scaled by $y$ and shifted by $z$.
\begin{equation}
\mathcal N(\epsilon, \mu)
- =\int ds\,\delta(H(s)-N\epsilon)\delta(\partial H(s)-\mu s)|\det(\partial\partial H(s)-\mu I)|
+ =\int ds\,\delta(N\epsilon-H(s))\delta(\partial H(s)-\mu s)|\det(\partial\partial H(s)-\mu I)|
\end{equation}
\begin{equation}
\Sigma(\epsilon,\mu)=\frac1N\log\mathcal N(\epsilon, \mu)
@@ -298,7 +298,7 @@ $F$ is a $k-1$ RSB ansatz with all eigenvalues scaled by $y$ and shifted by $z$.
\begin{aligned}
\Sigma(\epsilon, \mu)
&=\frac1N\lim_{n\to0}\frac\partial{\partial n}\mathcal N^n(\epsilon) \\
- &=\frac1N\lim_{n\to0}\frac\partial{\partial n}\int\prod_a^n ds_a\,\delta(H(s_a)-N\epsilon)\delta(\partial H(s_a)-\mu s_a)|\det(\partial\partial H(s_a)-\mu I)|
+ &=\frac1N\lim_{n\to0}\frac\partial{\partial n}\int\prod_a^n ds_a\,\delta(N\epsilon-H(s_a))\delta(\partial H(s_a)-\mu s_a)|\det(\partial\partial H(s_a)-\mu I)|
\end{aligned}
\end{equation}
@@ -307,7 +307,7 @@ the question of independence \cite{Bray_2007_Statistics}
\begin{equation}
\begin{aligned}
\overline{\Sigma(\epsilon, \mu)}
- &=\frac1N\lim_{n\to0}\frac\partial{\partial n}\int\left(\prod_a^nds_a\right)\,\overline{\prod_a^n \delta(H(s_a)-N\epsilon)\delta(\partial H(s_a)-\mu s_a)}
+ &=\frac1N\lim_{n\to0}\frac\partial{\partial n}\int\left(\prod_a^nds_a\right)\,\overline{\prod_a^n \delta(N\epsilon-H(s_a))\delta(\partial H(s_a)-\mu s_a)}
\times
\overline{\prod_a^n |\det(\partial\partial H(s_a)-\mu I)|}
\end{aligned}
@@ -326,37 +326,37 @@ for $\rho$ a semicircle distribution with radius $\sqrt{4f''(1)}$.
all saddles versus only minima
\begin{equation}
- \prod_a^n\delta(H(s_a)-N\epsilon)\delta(\partial H(s_a)-\mu s_a)
- =\int \frac{\hat\epsilon}{2\pi}\prod_a^n\frac{d\hat s_a}{2\pi}
- e^{\hat\epsilon(H(s_a)-N\epsilon)+i\hat s_a\cdot(\partial H(s_a)-\mu s_a)}
+ \prod_a^n\delta(N\epsilon-H(s_a))\delta(\partial H(s_a)-\mu s_a)
+ =\int \frac{d\hat\epsilon}{2\pi}\prod_a^n\frac{d\hat s_a}{2\pi}
+ e^{\hat\epsilon(N\epsilon-H(s_a))+i\hat s_a\cdot(\partial H(s_a)-\mu s_a)}
\end{equation}
\begin{equation}
\begin{aligned}
\overline{
\exp\left\{
- \sum_a^n(i\hat s_a\cdot\partial_a+\hat\epsilon)H(s_a)
+ \sum_a^n(i\hat s_a\cdot\partial_a-\hat\epsilon)H(s_a)
\right\}
}
&=\exp\left\{
\frac12\sum_{ab}^n
- (i\hat s_a\cdot\partial_a+\hat\epsilon)
- (i\hat s_b\cdot\partial_b+\hat\epsilon)
+ (i\hat s_a\cdot\partial_a-\hat\epsilon)
+ (i\hat s_b\cdot\partial_b-\hat\epsilon)
\overline{H(s_a)H(s_b)}
\right\} \\
&=\exp\left\{
\frac N2\sum_{ab}^n
- (i\hat s_a\cdot\partial_a+\hat\epsilon)
- (i\hat s_b\cdot\partial_b+\hat\epsilon)
+ (i\hat s_a\cdot\partial_a-\hat\epsilon)
+ (i\hat s_b\cdot\partial_b-\hat\epsilon)
f\left(\frac{s_a\cdot s_b}N\right)
\right\} \\
&\hspace{-13em}\exp\left\{
\frac N2\sum_{ab}^n
\left[
\hat\epsilon^2f\left(\frac{s_a\cdot s_b}N\right)
- +2i\hat\epsilon\frac{\hat s_a\cdot s_b}Nf'\left(\frac{s_a\cdot s_b}N\right)
+ -2i\hat\epsilon\frac{\hat s_a\cdot s_b}Nf'\left(\frac{s_a\cdot s_b}N\right)
-\frac{\hat s_a\cdot \hat s_b}Nf'\left(\frac{s_a\cdot s_b}N\right)
- -\left(\frac{\hat s_a\cdot s_b}N\right)^2f''\left(\frac{s_a\cdot s_b}N\right)
+ +\left(i\frac{\hat s_a\cdot s_b}N\right)^2f''\left(\frac{s_a\cdot s_b}N\right)
\right]
\right\}
\end{aligned}
@@ -365,19 +365,19 @@ all saddles versus only minima
The parameters:
\begin{align}
Q_{ab}=\frac1Ns_a\cdot s_b &&
- R_{ab}=i\frac1N\hat s_a\cdot s_b &&
+ R_{ab}=-i\frac1N\hat s_a\cdot s_b &&
D_{ab}=\frac1N\hat s_a\cdot\hat s_b
\end{align}
\begin{equation}
S
- =\mathcal D(\mu)-\hat\epsilon\epsilon+\lim_{n\to0}\frac1n\left(
- -\mu\sum_a^nR_{aa}
+ =\mathcal D(\mu)+\hat\epsilon\epsilon+\lim_{n\to0}\frac1n\left(
+ \mu\sum_a^nR_{aa}
+\frac12\sum_{ab}\left[
\hat\epsilon^2f(Q_{ab})+2\hat\epsilon R_{ab}f'(Q_{ab})
-D_{ab}f'(Q_{ab})+R_{ab}^2f''(Q_{ab})
\right]
- +\frac12\log\det\begin{bmatrix}Q&-iR\\-iR&D\end{bmatrix}
+ +\frac12\log\det\begin{bmatrix}Q&iR\\iR&D\end{bmatrix}
\right)
\end{equation}