summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
-rw-r--r--frsb_kac-rice.tex23
1 files changed, 18 insertions, 5 deletions
diff --git a/frsb_kac-rice.tex b/frsb_kac-rice.tex
index cbb33c3..5dff8b0 100644
--- a/frsb_kac-rice.tex
+++ b/frsb_kac-rice.tex
@@ -1055,12 +1055,25 @@ points.
\subsection{A concrete example}
-Consider two independent pure $p$ spin models $H_{p_1}({\mathbf s})$ and $H_{p_2}({\mathbf \sigma})$ of sizes $N$, and couple them weakly with $\varepsilon \;
-{\mathbf \sigma} \cdot {\mathbf s}$.
-The complexities are
+One can construct a schematic 2RSB model from two 1RSB models.
+Consider two independent pure $p$ spin models $H_{p_1}({\mathbf s})$ and
+$H_{p_2}({\mathbf \sigma})$ of sizes $N$, and couple them weakly with
+$\varepsilon \;
+{\mathbf \sigma} \cdot {\mathbf s}$. The landscape of the pure models is much
+simpler than that of the mixed because, in these models, fixing the stability
+$\mu$ is equivalent to fixing the energy: $\mu=pE$. This implies that at each
+energy level there is only one type of stationary point. Therefore, for the
+pure models our formulas for the complexity and its Legendre transforms are
+functions of one variable only, $E$, and each instance of $\mu^*$ inside mus be
+replaced with $pE$.
+
+In the joint model, we wish to fix the total energy, not the energies of the
+individual two models. Therefore, we insert a $\delta$-function containing
+$(E_1+E_2)-E$ and integrate over $E_1$ and $E_2$. This results in a joint
+complexity (and Legendre transform)
\begin{eqnarray}
- e^{N\Sigma(e)}&=&\int de_1 de_2 d\lambda \; e^{N[ \Sigma_1(e_1) + \Sigma_2(e_2) + O(\varepsilon) -\lambda N [(e_1+e_2)-e]}\nonumber \\
- e^{-G(\hat \beta)}&=&\int de de_1 de_2 d\lambda\; e^{N[-\hat \beta e+ \Sigma_1(e_1) + \Sigma_2(e_2) + O(\varepsilon) -\lambda N [(e_1+e_2)-e]}
+ e^{N\Sigma(E)}&=&\int dE_1\, dE_2\, d\lambda \, e^{N[ \Sigma_1(E_1) + \Sigma_2(E_2) + O(\varepsilon) -\lambda N [(E_1+E_2)-E]}\nonumber \\
+ e^{NG(\hat \beta)}&=&\int dE\, dE_1\, dE_2\, d\lambda\, e^{N[-\hat \beta E+ \Sigma_1(E_1) + \Sigma_2(E_2) + O(\varepsilon) -\lambda N [(E_1+E_2)-E]}
\end{eqnarray}
The maximum is given by $\Sigma_1'=\Sigma_2'=\hat \beta$, provided it occurs in the phase
in which both $\Sigma_1$ and $\Sigma_2$ are non-zero. The two systems are `thermalized',