summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
-rw-r--r--frsb_kac-rice.tex25
1 files changed, 20 insertions, 5 deletions
diff --git a/frsb_kac-rice.tex b/frsb_kac-rice.tex
index 099b332..ace1b28 100644
--- a/frsb_kac-rice.tex
+++ b/frsb_kac-rice.tex
@@ -241,6 +241,16 @@ the question of independence \cite{Bray_2007_Statistics}
\end{equation}
for $\rho$ a semicircle distribution with radius $\sqrt{4f''(1)}$.
+all saddles versus only minima
+
+The parameter $\mu$ fixes the spectrum of the hessian. By manipulating it, one
+can decide to find the complexity of saddles of a certain macroscopic index, or
+of minima with a certain harmonic stiffness. When $\mu$ is taken to be within
+the range $\pm2\sqrt{f''(1)}=\pm\mu_m$, the critical points are constrained to have
+index $\frac12N(1-\mu/\mu_m)$. When $\mu<-\mu_m$, the critical
+points are minima whose sloppiest eigenvalue is $\mu-\mu_m$. Finally,
+when $\mu=\mu_m$, the critical points are marginal minima.
+
\begin{equation}
\begin{aligned}
\overline{\Sigma(\epsilon, \mu)}
@@ -258,23 +268,28 @@ for $\rho$ a semicircle distribution with radius $\sqrt{4f''(1)}$.
\int\left(\prod_a^nds_a\,d\hat s_a\right)\,d\hat\epsilon\,e^{nN\hat\epsilon\epsilon-\mu\sum_a^n\hat s_as_a}
\exp\left[
\sum_{ab}^n
+ (\hat s_a\partial_a-\hat\epsilon)(\hat s_b\partial_b-\hat\epsilon)\overline{H(s_a)H(s_b)}
+ \right] \\
+ &=\frac1N\lim_{n\to0}\frac\partial{\partial n}
+ e^{nN\mathcal D(\mu)}
+ \int\left(\prod_a^nds_a\,d\hat s_a\right)\,d\hat\epsilon\,e^{nN\hat\epsilon\epsilon-\mu\sum_a^n\hat s_as_a}
+ \exp\left[
+ N\sum_{ab}^n
(\hat s_a\partial_a-\hat\epsilon)(\hat s_b\partial_b-\hat\epsilon)f(s_as_b/N)
\right] \\
&=\frac1N\lim_{n\to0}\frac\partial{\partial n}
e^{nN\mathcal D(\mu)}
\int\left(\prod_a^nds_a\,d\hat s_a\right)\,d\hat\epsilon\,e^{nN\hat\epsilon\epsilon-\mu\sum_a^n\hat s_as_a}
\exp\left[
- \sum_{ab}^n
+ N\sum_{ab}^n
(
- \hat\epsilon^2f(s_as_b/N)-2\hat\epsilon\hat s_as_bf'(s_as_b/N)+\hat s_a\hat s_bf'(s_as_b/N)
- +(\hat s_as_b)^2f''(s_as_b/N)
+ \hat\epsilon^2f(s_as_b/N)-2\hat\epsilon\frac{\hat s_as_b}Nf'(s_as_b/N)+\frac{\hat s_a\hat s_b}Nf'(s_as_b/N)
+ +\left(\frac{\hat s_as_b}N\right)^2f''(s_as_b/N)
)
\right]
\end{aligned}
\end{equation}
-all saddles versus only minima
-
The parameters:
\begin{equation}
\begin{aligned}