summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
-rw-r--r--frsb_kac-rice.tex242
1 files changed, 242 insertions, 0 deletions
diff --git a/frsb_kac-rice.tex b/frsb_kac-rice.tex
new file mode 100644
index 0000000..02724ed
--- /dev/null
+++ b/frsb_kac-rice.tex
@@ -0,0 +1,242 @@
+\documentclass[fleqn]{article}
+
+\usepackage{fullpage,amsmath,amssymb,latexsym}
+
+\begin{document}
+
+\section{Equilibrium}
+
+\begin{equation}
+ \beta F=\frac12\lim_{n\to0}\frac1n\left(\beta^2\sum_{ab}f(Q_{ab})+\log\det Q\right)-\frac12\log S_\infty
+\end{equation}
+$\log S_\infty=1+\log2\pi$.
+\begin{align*}
+ \beta F=
+ -\frac12\log S_\infty+
+ \frac12\lim_{n\to0}\frac1n\left(\beta^2nf(1)+\beta^2\sum_{i=0}^kn(x_i-x_{i+1})f(q_i)
+ +\log\left[
+ \frac{
+ 1+\sum_{i=0}^k(x_i-x_{i+1})q_i
+ }{
+ 1+\sum_{i=1}^k(x_i-x_{i+1})q_i-x_1q_0
+ }
+ \right]\right.\\
+ +\frac n{x_1}\log\left[
+ 1+\sum_{i=1}^k(x_i-x_{i+1})q_i-x_1q_0
+ \right]\\
+ \left.+\sum_{j=1}^kn(x_{j+1}^{-1}-x_j^{-1})\log\left[
+ 1+\sum_{i=j+1}^k(x_i-x_{i+1})q_i-x_{j+1}q_j
+ \right]
+\right)
+\end{align*}
+
+\begin{align*}
+ \lim_{n\to0}\frac1n
+ \log\left[
+ \frac{
+ 1+\sum_{i=0}^k(x_i-x_{i+1})q_i
+ }{
+ 1+\sum_{i=1}^k(x_i-x_{i+1})q_i-x_1q_0
+ }
+ \right]
+ &=
+ \lim_{n\to0}\frac1n
+ \log\left[
+ \frac{
+ 1+\sum_{i=0}^k(x_i-x_{i+1})q_i
+ }{
+ 1+\sum_{i=0}^k(x_i-x_{i+1})q_i-nq_0
+ }
+ \right] \\
+ &=q_0\left(1+\sum_{i=0}^k(x_i-x_{i+1})q_i\right)^{-1}
+\end{align*}
+
+
+\begin{align*}
+ \beta F=
+ -\frac12\log S_\infty+
+ \frac12\left(\beta^2f(1)+\beta^2\sum_{i=0}^k(x_i-x_{i+1})f(q_i)
+ +q_0\left(1+\sum_{i=0}^k(x_i-x_{i+1})q_i\right)^{-1}\right. \\
+ +\frac1{x_1}\log\left[
+ 1+\sum_{i=1}^{k}(x_i-x_{i+1})q_i-x_1q_0
+ \right]\\
+ \left.+\sum_{j=1}^k(x_{j+1}^{-1}-x_j^{-1})\log\left[
+ 1+\sum_{i=j+1}^{k}(x_i-x_{i+1})q_i-x_{j+1}q_j
+ \right]
+\right)
+\end{align*}
+$q_0=0$
+\begin{align*}
+ \beta F=
+ -\frac12\log S_\infty+
+ \frac12\left(\beta^2f(1)+\beta^2\sum_{i=0}^k(x_i-x_{i+1})f(q_i)
+ +\frac1{x_1}\log\left[
+ 1+\sum_{i=1}^{k}(x_i-x_{i+1})q_i
+ \right]\right.\\
+ \left.+\sum_{j=1}^k(x_{j+1}^{-1}-x_j^{-1})\log\left[
+ 1+\sum_{i=j+1}^{k}(x_i-x_{i+1})q_i-x_{j+1}q_j
+ \right]
+\right)
+\end{align*}
+$x_i=\tilde x_ix_k$, $x_k=y/\beta$, $q_k=1-z/\beta$
+\begin{align*}
+ \beta F=
+ -\frac12\log S_\infty+
+ \frac12\left(\beta^2f(1)+\beta^2(y\beta^{-1}-1)f(1-z\beta^{-1})+y\beta\sum_{i=0}^{k-1}(\tilde x_i-\tilde x_{i+1})f(q_i)\right. \\
+ +\frac\beta{\tilde x_1 y}\log\left[
+ y\sum_{i=1}^{k-1}(\tilde x_i-\tilde x_{i+1})q_i+y+z-yz/\beta
+ \right]\\
+ +\sum_{j=1}^{k-1}\frac\beta y(\tilde x_{j+1}^{-1}-\tilde x_j^{-1})\log\left[
+ y\sum_{i=j+1}^{k-1}(\tilde x_i-\tilde x_{i+1})q_i+y+z-yz/\beta-y\tilde x_{j+1}q_j
+\right]\\
+ \left.-\frac\beta{\tilde x_1 y}\log\beta-\sum_{j=1}^{k-1}\frac\beta y(\tilde x_{j+1}^{-1}-\tilde x_j^{-1})\log\beta+(1-\beta y^{-1})\log\left[
+ z/\beta
+ \right]
+\right)
+\end{align*}
+\begin{align*}
+ \lim_{\beta\to\infty}F=
+ \frac12\left(yf(1)+zf'(1)+y\sum_{i=0}^{k-1}(\tilde x_i-\tilde x_{i+1})f(q_i)
+ +\frac1{\tilde x_1 y}\log\left[
+ y\sum_{i=1}^{k-1}(\tilde x_i-\tilde x_{i+1})q_i+y+z
+ \right]\right.\\
+ \left.+\sum_{j=1}^{k-1}\frac1 y(\tilde x_{j+1}^{-1}-\tilde x_j^{-1})\log\left[
+ y\sum_{i=j+1}^{k-1}(\tilde x_i-\tilde x_{i+1})q_i+y+z-y\tilde x_{j+1}q_j
+ \right]
+ -\frac1y\log z
+\right)
+\end{align*}
+$F$ is a $k-1$ RSB ansatz with all eigenvalues scaled by $y$ and shifted by $z$. $\tilde x_0=0$ and $\tilde x_k=1$.
+\begin{equation} \label{eq:ground.state.free.energy}
+ \lim_{\beta\to\infty}F=\lim_{n\to0}\frac1n\frac12\left(nzf'(1)+y\sum_{ab}f(\tilde Q_{ab})+\frac1y\log\det(yz^{-1}\tilde Q+I)
+ \right)
+\end{equation}
+
+\section{Kac-Rice}
+
+\begin{align*}
+ \Sigma
+ =-\epsilon\hat\epsilon+\lim_{n\to0}\frac1n\left(
+ \sum_a\mu(F_{aa}-R_{aa})
+ +\frac12\sum_{ab}\left[
+ \hat\epsilon^2f(Q_{ab})+2\hat\epsilon R_{ab}f'(Q_{ab})
+ +D_{ab}f'(Q_{ab})+R_{ab}^2f''(Q_{ab})-F_{ab}^2f''(Q_{ab})
+ \right]\right.\\\left.
+ +\frac12\log\det\begin{bmatrix}Q&-iR\\-iR&-D\end{bmatrix}
+ -\log\det F
+ \right)
+\end{align*}
+\[
+ 0=\frac{\partial\Sigma}{\partial R_{ab}}
+ =-\mu\delta_{ab}+\hat\epsilon f'(Q_{ab})+R_{ab}f''(Q_{ab})+\sum_c(R^2-DQ)^{-1}_{ac}R_{cb}
+\]
+\[
+ 0=\frac{\partial\Sigma}{\partial D_{ab}}
+ =\frac12 f'(Q_{ab})-\frac12\sum_c(R^2-DQ)^{-1}_{ac}Q_{cb}
+\]
+The second equation implies
+\[
+ (R^2-DQ)^{-1}=Q^{-1}f'(Q)
+\]
+Insert the diagonal ansatz $R=R_dI$, $D=D_dI$. Then
+\[
+ 0=(R_df''(1)-\mu)I+\hat\epsilon f'(Q)+R_d(R_d^2I-D_dQ)^{-1}
+ =(R_df''(1)-\mu)I+\hat\epsilon f'(Q)+R_dQ^{-1}f'(Q)
+\]
+and
+\[
+ Q^{-1}f'(Q)=(I+D_df'(Q))/R_d^2
+\]
+Substituting the second into the first, we have
+\[
+ 0=(R_df''(1)-\mu)I+\hat\epsilon f'(Q)+\frac1{R_d}(I+D_df'(Q))
+\]
+\[
+ 0=(R_df''(1)-\mu+R_d^{-1})I+(\hat\epsilon+D_d/R_d)f'(Q)
+\]
+The only way for this equation to be satisfied off the diagonal for nontrivial $Q$ is for $D_d=-R_d\hat\epsilon$. We therefore have
+\begin{align*}
+ \Sigma
+ =-\epsilon\hat\epsilon+\lim_{n\to0}\frac1n\left(
+ n\mu(F_d-R_d)+\frac12n\left[
+ \hat\epsilon R_df'(1)+R_d^2f''(1)-F_d^2f''(1)
+ \right]
+ +\frac12\sum_{ab}
+ \hat\epsilon^2f(Q_{ab})
+ ]\right.\\\left.
+ +\frac12\log\det(\hat\epsilon R_d^{-1} Q+I)
+ +n\log R_d
+ -n\log F_d
+ \right)
+\end{align*}
+Taking the saddle with respect to $\mu$ and $F_d$ yields
+\[
+ F_d=R_d
+\]
+\[
+ \mu=R_d^{-1}(1+R_d^2f''(1))
+\]
+and gives
+\begin{align*}
+ \Sigma
+ =-\epsilon\hat\epsilon+\lim_{n\to0}\frac1n\frac12\left(
+ n
+ \hat\epsilon R_df'(1)
+ +\hat\epsilon^2\sum_{ab}
+ f(Q_{ab})
+ +\log\det(\hat\epsilon R_d^{-1} Q+I)
+ \right)
+\end{align*}
+Finally, setting $0=\Sigma$ gives
+\[
+ \epsilon
+ =\lim_{n\to0}\frac1n\frac12\left(nR_df'(1)+\hat\epsilon\sum_{ab}
+ f(Q_{ab})
+ +\frac1{\hat\epsilon}\log\det(\hat\epsilon R_d^{-1} Q+I)
+ \right)
+\]
+which is precisely \eqref{eq:ground.state.free.energy} with $R_d=z$ and $\hat\epsilon=y$. Therefore, a $(k-1)$-RSB ansatz in Kac-Rice will predict the correct ground state energy for a model whose equilibrium state at small temperatures is $k$-RSB.
+
+\section{Full}
+
+\begin{align*}
+ \lim_{n\to0}\frac1n\log\det(\hat\epsilon R_d^{-1} Q+I)
+ =x_1^{-1}\log\left(\hat\epsilon R_d^{-1}(1-\bar q_k)+1\right)+\int_{q_0^+}^{q_{k-1}}dq\,\mu(q)\log\left[\hat\epsilon R_d^{-1}\lambda(q)+1\right]
+\end{align*}
+where
+\[
+ \mu(q)=\frac{\partial x^{-1}(q)}{\partial q}
+\]
+Integrating by parts,
+\begin{align*}
+ \lim_{n\to0}\frac1n\log\det(\hat\epsilon R_d^{-1} Q+I)
+ &=x_1^{-1}\log\left(\hat\epsilon R_d^{-1}(1-\bar q_k)+1\right)+\left[x^{-1}(q)\log[\hat\epsilon R_d^{-1}\lambda(q)+1]\right]_{q=q_0^+}^{q=q_{k-1}}-\frac{\hat\epsilon}{R_d}\int_{q_0^+}^{q_{k-1}}dq\,\frac{\lambda'(q)}{x(q)}\frac1{\hat\epsilon R_d^{-1}\lambda(q)+1}\\
+ &=\log[\hat\epsilon R_d^{-1}\lambda(q_{k-1})+1]+\frac{\hat\epsilon}{R_d}\int_{q_0^+}^{q_{k-1}}dq\,\frac1{\hat\epsilon R_d^{-1}\lambda(q)+1}
+\end{align*}
+
+\begin{align*}
+ \Sigma
+ =-\epsilon\hat\epsilon+
+ \frac12\hat\epsilon R_df'(1)
+ +\frac12\int_0^1dq\,\left[
+ \hat\epsilon^2\lambda(q)f''(q)
+ +\frac1{\lambda(q)+R_d/\hat\epsilon}
+ \right]
+\end{align*}
+for $\lambda$ concave, monotonic, and $\lambda(1)=0$
+\[
+ 0=\frac{\partial\Sigma}{\partial R_d}
+ =\frac12\hat\epsilon f'(1)-\frac12\frac1{\hat\epsilon}\int_0^1dq\,\frac{\lambda(q)}{[\lambda(q)+R_d/\hat\epsilon]^2}
+\]
+\[
+ 0=\frac{\partial\Sigma}{\partial\hat\epsilon}
+ =-\epsilon+\frac12R_d f'(1)+\hat\epsilon\int_0^1dq\,\lambda(q)f''(q)+\frac12\frac{R_d}{\hat\epsilon^2}\int_0^1dq\,\frac{\lambda(q)}{[\lambda(q)+R_d/\hat\epsilon]^2}
+\]
+\[
+ 0=\frac{\delta\Sigma}{\delta\lambda(q)}=\frac12\hat\epsilon^2f''(q)-\frac12\frac1{(\lambda(q)+R_d/\hat\epsilon)^2}
+\]
+\[
+ \lambda^*(q)=\frac1{\hat\epsilon}\left[f''(q)^{-1/2}-R_d\right]
+\]
+
+\end{document}