summaryrefslogtreecommitdiff
path: root/frsb_kac-rice.tex
diff options
context:
space:
mode:
Diffstat (limited to 'frsb_kac-rice.tex')
-rw-r--r--frsb_kac-rice.tex328
1 files changed, 126 insertions, 202 deletions
diff --git a/frsb_kac-rice.tex b/frsb_kac-rice.tex
index cd295e9..2015feb 100644
--- a/frsb_kac-rice.tex
+++ b/frsb_kac-rice.tex
@@ -1,7 +1,14 @@
\documentclass[fleqn]{article}
\usepackage{fullpage,amsmath,amssymb,latexsym,graphicx}
-\usepackage{appendix}
+\usepackage{appendix,xcolor}
+\usepackage[
+ colorlinks=true,
+ urlcolor=purple,
+ citecolor=purple,
+ filecolor=purple,
+ linkcolor=purple
+]{hyperref} % ref and cite links with pretty colors
\begin{document}
\title{Full solution of the Kac--Rice problem for mean-field models.\\
@@ -303,268 +310,159 @@ role of an inverse temperature for the metastable states. The average over disor
We introduce new fields
\begin{align}
- Q_{ab}=\frac1Ns_a\cdot s_b &&
+ C_{ab}=\frac1Ns_a\cdot s_b &&
R_{ab}=-i\frac1N\hat s_a\cdot s_b &&
D_{ab}=\frac1N\hat s_a\cdot\hat s_b
\end{align}
-$Q_{ab}$ is the overlap between spins belonging to different replicas. The
-meaning of $R_{ab}$ is that of a response of replica $a$ to a linear field in
-replica $b$:
-\begin{equation}
- R_{ab} = \frac 1 N \sum_i \overline{\frac{\delta s_i^a}{\delta h_i^b}}
-\end{equation}
-The $D$ may similarly be seen as the variation of the complexity with respect to a random field.
+$C_{ab}$ is the overlap between spins belonging to different replicas.
-By substituting these parameters into the expressions above and then making a change of variables in the integration from $s_a$ and $\hat s_a$ to these three matrices, we arrive at the form for the complexity
+By substituting these parameters into the expressions above and then making a
+change of variables in the integration from $s_a$ and $\hat s_a$ to these three
+matrices, we arrive at the form for the complexity
\begin{equation}
\begin{aligned}
&\Sigma(\epsilon,\mu)
=\mathcal D(\mu)+\hat\beta\epsilon+\\
&\lim_{n\to0}\frac1n\left(
- -\mu\sum_a^nR_{aa}
+ -\mu\operatorname{Tr}R
+\frac12\sum_{ab}\left[
- \hat\beta^2f(Q_{ab})+(2\hat\beta R_{ab}-D_{ab})f'(Q_{ab})
- +R_{ab}^2f''(Q_{ab})
+ \hat\beta^2f(C_{ab})+(2\hat\beta R_{ab}-D_{ab})f'(C_{ab})
+ +R_{ab}^2f''(C_{ab})
\right]
- +\frac12\log\det\begin{bmatrix}Q&iR\\iR&D\end{bmatrix}
+ +\frac12\log\det\begin{bmatrix}C&iR\\iR&D\end{bmatrix}
\right)
\end{aligned}
\end{equation}
-where $\hat\beta$, $Q$, $R$ and $D$ must be evaluated at extrema of this
-expression. With $Q$, $R$, and $D$ distinct replica matrices, this is
-potentially quite challenging.
-
-\begin{equation}
- \begin{aligned}
- &\Sigma(\epsilon,\mu)
- =-\frac12+\mathcal D(\mu)+\hat\beta\epsilon+\\
- &\lim_{n\to0}\frac1n\left(
- -\mu\sum_a^nR_{aa}
- +\frac12\sum_{ab}\left[
- \hat\beta^2f(Q_{ab})+R_{ac}(2\hat\beta\delta_{cb}+Q^{-1}_{cd}R_{db})f'(Q_{ab})
- +R_{ab}^2f''(Q_{ab})
- \right]
- +\frac12\log\det Q - \frac12\log\det f'(Q)
- \right)
- \end{aligned}
-\end{equation}
-
-{\bf Inserting the expression for $D$ in the action, and writing $R=R_d+\tilde R$ ($\tilde R$ is zero in the diagonal) , the linear term in $\tilde R$ is
-$Tr \left[\tilde R (\hat \beta -R_d Q^{-1} f')\right]$ }
+where $\hat\beta$, $C$, $R$ and $D$ must be evaluated at extrema of this
+expression.
\section{Replica ansatz}
-We shall make the following ansatz for the saddle point:
-\begin{align}\label{ansatz}
- Q_{ab}= \text{a Parisi matrix} &&
- R_{ab}=R_d \delta_{ab} &&
- D_{ab}= D_d \delta_{ab}
+Based on previous work on the SK model and the equilibrium solution of the
+spherical model, we expect $C$, and $R$ and $D$ to be hierarchical matrices,
+i.e., to follow Parisi's scheme. This assumption immediately simplifies the
+extremal conditions, since hierarchical matrices commute and are closed under
+matrix products and Hadamard products. The extremal conditions are
+\begin{align}
+ 0&=\frac{\partial\Sigma}{\partial\hat\beta}
+ =\epsilon+\sum_{ab}\left[\hat\beta f(C_{ab})+R_{ab}f'(C_{ab})\right] \label{eq:cond.b} \\
+ \frac{\tilde c}2I&=\frac{\partial\Sigma}{\partial C}
+ =\frac12\left[
+ \hat\beta^2f'(C)+(2\hat\beta R-D)\odot f''(C)+R\odot R\odot f'''(C)
+ +(CD+R^2)^{-1}D
+ \right] \label{eq:cond.q} \\
+ 0&=\frac{\partial\Sigma}{\partial R}
+ =-\mu I+\hat\beta f'(C)+R\odot f''(C)
+ +(CD+R^2)^{-1}R \label{eq:cond.r} \\
+ 0&=\frac{\partial\Sigma}{\partial D}
+ =-\frac12f'(C)
+ +\frac12(CD+R^2)^{-1}C \label{eq:cond.d}
\end{align}
-From what we have seen above, this means that replica $a$ is insensitive to
-a small field applied to replica $b$ if $a \neq b$, a property related to ultrametricity. A similar situation happens in quantum replicated systems,
-with time appearing only on the diagonal terms: see Appendix C for details.
+where $\odot$ denotes the Hadamard product, or the componentwise product. The
+equation for \eqref{eq:cond.q} would not be true on the diagonal save for the
+arbitrary factor $\tilde c$. Equation \eqref{eq:cond.d} implies that
+\begin{equation} \label{eq:D.solution}
+ D=f'(C)^{-1}-RC^{-1}R
+\end{equation}
-From its very definition, it is easy to see just perturbing the equations
-with a field that $R_d$ is the trace of the inverse Hessian, as one expect indeed of a response.
-\begin{equation}
- R_d = \mathcal D'(\mu)
+In addition to these equations, one is also often interested in maximizing the complexity as a function of $\mu$, to find the dominant or most common type of stationary points. These are given by the condition
+\begin{equation} \label{eq:cond.mu}
+ 0=\frac{\partial\Sigma}{\partial\mu}
+ =\mathcal D'(\mu)-r_d
\end{equation}
-Similarly, .... one shows that
-\begin{equation}
-D_d = \hat \beta R_d
+Since $\mathcal D(\mu)$ is effectively a piecewise function, with different forms for $\mu$ greater or less than $\mu_m$, there are two regimes. When $\mu>\mu_m$, the critical points are minima, and \eqref{eq:cond.mu} implies
+\begin{equation} \label{eq:mu.minima}
+ \mu=\frac1{r_d}+r_df''(1)
+\end{equation}
+When $\mu<\mu_m$, they are saddles, and
+\begin{equation} \label{eq:mu.saddles}
+ \mu=2f''(1)r_d
\end{equation}
+\section{Supersymmetric solution}
-Is it a saddle?
+The Kac--Rice problem has an approximate supersymmetry, which is found when the
+absolute value of the determinant is neglected. When this is done, the
+determinant can be represented by an integral over Grassmann variables, which
+yields a complexity depending on `bosons' and `fermions' that share the
+supersymmetry. The Ward identities associated with the supersymmetry imply
+that $D=\hat\beta R$ \cite{Annibale_2003_The}. Under which conditions can this relationship be expected to hold?
+Any result of supersymmetry can only be valid when the symmetry itself is
+valid, which means the determinant must be positive. This is only guaranteed
+for minima, which have $\mu>\mu_m$. Moreover, this identity heavily constrains
+the form that the rest of the solution can take. Assuming the supersymmetry holds, \eqref{eq:cond.q} implies
\begin{equation}
- 0=\frac{\partial\Sigma}{\partial R}
- =\lim_{n\to0}\frac1n\left(-\mu I+\hat\beta f'(Q)+R\odot f''(Q)
- +(QD+R^2)^{-1}R
- \right)
+ \tilde cI=\hat\beta^2f'(C)+\hat\beta R\odot f''(C)+R\odot R\odot f'''(C)+\hat\beta(CD+R^2)^{-1}R
\end{equation}
-\begin{equation}
- 0=\frac{\partial\Sigma}{\partial D}
- =\lim_{n\to0}\frac1n\left(-\frac12f'(Q)
- +\frac12(QD+R^2)^{-1}Q
- \right)
-\end{equation}
-\begin{equation}
- D=f'(Q)^{-1}-RQ^{-1}R
-\end{equation}
-Diagonal anstaz requires that $f'(Q_{ab})^{-1}=R_d^2Q_{ab}^{-1}$ for $a\neq b$.
-\begin{equation}
- 0
- =\lim_{n\to0}\frac1n\left(-\mu I+\hat\beta f'(Q)+R\odot f''(Q)
- +Q^{-1}Rf'(Q)
- \right)
-\end{equation}
-Diagonal ansatz requires that
-\begin{equation}
- 0=-\mu I+\hat\beta f'(Q)+R_df''(1)I+R_dQ^{-1}f'(Q)
-\end{equation}
-or $\hat\beta f'(Q_{ab})=-R_d[Q^{-1}f'(Q)]_{ab}$ for $a\neq b$.
-We also have from the first (before the diagonal ansatz) $Df'(Q)=I-RQ^{-1}Rf'(Q)$. Inserting the diagonal, we get $Q^{-1}f'(Q)=\frac1{R_d^2}(I-D_df'(Q))$, and
-\begin{equation}
- 0=-\mu I+\hat\beta f'(Q)+R_df''(1)I+\frac1{R_d}(I-D_df'(Q))
- =(R_df''(1)+R_d^{-1}-\mu)I+(\hat\beta-D_d/R_d)f'(Q)
+Substituting \eqref{eq:cond.r} for the factor $(CD+R^2)^{-1}R$, we find substantial cancellation, and finally
+\begin{equation} \label{eq:R.diagonal}
+ (\tilde c-\mu)I=R\odot R\odot f'''(C)
\end{equation}
+If $C$ has a nontrivial off-diagonal structure and supersymmetry holds, then
+the off-diagonal of $R$ must vanish, and therefore $R=r_dI$. Therefore, a
+supersymmetric ansatz is equivalent to a \emph{diagonal} ansatz.
-Always true:
-\begin{equation}
- 0=-\mu R+\hat\beta Rf'(Q)+R(R\odot f''(Q))+I-Df'(Q)
-\end{equation}
-Insert $D=D_dI+\delta D$, $R=R_dI+\delta R$, and $D_d=\hat\beta R_d$
+Supersymmetry has further implications.
+Equations \eqref{eq:cond.r} and \eqref{eq:cond.d} can be combined to find
\begin{equation}
- 0=-\hat\beta \mu R_d I +\hat\beta R_df'(Q)+R_d^2f''(1)I+I-\hat\beta R_df'(Q)
- -\mu\delta R
+ I=R\left[\mu I-R\odot f''(C)\right]+(D-\hat\beta R)f'(C)
\end{equation}
-
+Assuming the supersymmetry holds implies that
\begin{equation}
- 0=(\hat\beta Q+R) f'(Q)+(R\odot f''(Q)-\mu I)Q
+ I=R\left[\mu I-R\odot f''(C)\right]
\end{equation}
-
+Understanding that $R$ is diagonal, this implies
\begin{equation}
- \begin{aligned}
- &\Sigma(\epsilon,\mu)
- =\frac12+\mathcal D(\mu)+\hat\beta\epsilon+\\
- &\lim_{n\to0}\frac1n\left(
- -\frac12\mu\sum_a^nR_{aa}
- +\frac12\sum_{ab}\left[
- \hat\beta^2f(Q_{ab})+\hat\beta R_{ab}f'(Q_{ab})
- \right]
- +\frac12\log\det(f'(Q)^{-1}Q)
- \right)
- \end{aligned}
+ \mu=\frac1{r_d}+r_df''(1)
\end{equation}
+which is precisely the condition \eqref{eq:mu.minima}. Therefore, \emph{the
+supersymmetric solution only counts dominant minima.}
-
-\subsection{Solution}
-
-
-Inserting the diagonal ansatz \eqref{ansatz} one gets
+Inserting the supersymmetric ansatz $D=\hat\beta R$ and $R=r_dI$, one gets
\begin{equation} \label{eq:diagonal.action}
\begin{aligned}
\Sigma(\epsilon,\mu)
=\mathcal D(\mu)
+
- \hat\beta\epsilon-\mu R_d
- +\frac12(2\hat\beta R_d-D_d)f'(1)+\frac12R_d^2f''(1)+\frac12\log R_d^2
- \\
- +\frac12\lim_{n\to0}\frac1n\left(\hat\beta^2\sum_{ab}f(Q_{ab})+\log\det((D_d/R_d^2)Q+I)\right)
- \end{aligned}
-\end{equation}
-Using standard manipulations (Appendix B), one finds also a continuous version
-\begin{equation} \label{eq:functional.action}
- \begin{aligned}
- \Sigma(\epsilon,\mu)
- =\mathcal D(\mu)
- +
- \hat\beta\epsilon-\mu R_d
- +\frac12(2\hat\beta R_d-D_d)f'(1)+\frac12R_d^2f''(1)+\frac12\log R_d^2
+ \hat\beta\epsilon-\mu r_d
+ +\frac12\hat\beta r_df'(1)+\frac12r_d^2f''(1)+\frac12\log r_d^2
\\
- +\frac12\int_0^1dq\,\left(
- \hat\beta^2f''(q)\chi(q)+\frac1{\chi(q)+R_d^2/D_d}
- \right)
+ +\frac12\lim_{n\to0}\frac1n\left(\hat\beta^2\sum_{ab}f(C_{ab})+\log\det((\hat\beta/r_d)C+I)\right)
\end{aligned}
\end{equation}
-where $\chi(q)$ is defined with respect to $Q$ exactly as in the equilibrium case.
-Note the close similarity of this action to the equilibrium replica one, at finite temperature.
-\begin{equation}
- \beta F=-\frac12\lim_{n\to0}\frac1n\left(\beta^2\sum_{ab}f(Q_{ab})+\log\det Q\right)-1-\log2\pi
-\end{equation}
-
-
-\subsubsection{Saddles}
-\label{sec:counting.saddles}
-
-The dominant stationary points are given by maximizing the action with respect
-to $\mu$. This gives
-\begin{equation} \label{eq:mu.saddle}
- 0=\frac{\partial\Sigma}{\partial\mu}=\mathcal D'(\mu)-R_d
-\end{equation}
-as expected.
-To take the derivative, we must resolve the real part inside the definition of
-$\mathcal D$. When saddles dominate, $\mu<\mu_m$, and
-\begin{equation}
- \mathcal D(\mu)=\frac12+\frac12\log f''(1)+\frac{\mu^2}{4f''(1)}
-\end{equation}
-It follows that the dominant saddles have $\mu=2f''(1)R_d$. Their index
-is thus $\mathcal I=\frac12N(1-R_d\sqrt{f''(1)})$. If
-$R_d\sqrt{f''(1)}>1$ then we were wrong to assume that saddles dominate, and
-the most numerous saddles will be found just above $\mu=\mu_m$.
-
-\subsubsection{Minima}
-\label{sec:counting.minima}
-
-When minima dominate, $\mu>\mu_m$ and all the roots inside $\mathcal D(\mu)$ are real. Therefore $\mathcal D(\mu)$ is given by its former expression with the real part dropped, and
-\begin{equation}
- \mathcal D'(\mu)=\frac{2}{\mu+\sqrt{\mu^2-4f''(1)}}
-\end{equation}
-\begin{equation}
- \mu=\frac1{R_d}+R_df''(1)
-\end{equation}
-
-\subsubsection{Recovering the equilibrium ground state}
-
-The ground state energy corresponds to that where the complexity of dominant
-stationary points becomes zero. If the most common stationary points vanish,
-then there cannot be any stationary points. In this section, we will show that
-it reproduces the ground state produced by taking the zero-temperature limit in
-the equilibrium case.
-
-Consider the extremum problem of \eqref{eq:diagonal.action} with respect to $R_d$ and $D_d$. This gives the equations
-\begin{align}
- 0
- &=\frac{\partial\Sigma}{\partial D_d}
- =-\frac12f'(1)+\frac12\frac1{R_d^2}\lim_{n\to0}\frac1n\operatorname{Tr}((D_d/R_d^2)Q+I)^{-1}Q \label{eq:saddle.d}\\
- 0
- &=\frac{\partial\Sigma}{\partial R_d}
- =-\mu+\hat\beta f'(1)+R_df''(1)+\frac1{R_d}-\frac{D_d}{R_d^3}\lim_{n\to0}\frac1n\operatorname{Tr}((D_d/R_d^2)Q+I)^{-1}Q \label{eq:saddle.r}
-\end{align}
-Adding $2(D_d/R_d)$ times \eqref{eq:saddle.d} to \eqref{eq:saddle.r} and multiplying by $R_d$ gives
-\begin{equation}
- 0=-R_d\mu+1+R_d^2f''(1)+f'(1)(R_d\hat\beta-D_d)
-\end{equation}
-At the ground state, minima will always dominate (even if marginal). We can
-therefore use the optimal $\mu$ from \S\ref{sec:counting.minima}, which gives
-\begin{equation}
- 0=f'(1)(R_d\hat\beta-D_d)
-\end{equation}
-In order to satisfy this equation we must have
-$D_d=R_d\hat\beta$. This relationship holds for the most common minima whenever
-they dominante, including in the ground state.
-
-Substituting this into the action, and also substituting the optimal $\mu$ for
-minima, and taking $\Sigma(\epsilon_0,\mu^*)=0$, gives
+From here, it is straightforward to see that the complexity vanishes at the
+ground state energy. First, in the ground state minima will dominate (even if
+they are marginal), so we may assume \eqref{eq:mu.minima}. Then, taking
+$\Sigma(\epsilon_0,\mu^*)=0$, gives
\begin{equation}
\hat\beta\epsilon_0
- =-\frac12R_d\hat\beta f'(1)-\frac12\lim_{n\to0}\frac1n\left(
- \hat\beta^2\sum_{ab}^nf(Q_{ab})
- +\log\det(\hat\beta R_d^{-1} Q+I)
+ =-\frac12r_d\hat\beta f'(1)-\frac12\lim_{n\to0}\frac1n\left(
+ \hat\beta^2\sum_{ab}^nf(C_{ab})
+ +\log\det(\hat\beta r_d^{-1} C+I)
\right)
\end{equation}
-which is precisely \eqref{eq:ground.state.free.energy} with $R_d=z$,
-$\hat\beta=\tilde\beta$, and $Q=\tilde Q$.
+which is precisely \eqref{eq:ground.state.free.energy} with $r_d=z$,
+$\hat\beta=\tilde\beta$, and $C=\tilde Q$.
{\em We arrive at one of the main results of our paper: a $(k-1)$-RSB ansatz in
Kac--Rice will predict the correct ground state energy for a model whose
equilibrium state at small temperatures is $k$-RSB } Moreover, there is an
exact correspondance between the saddle parameters of each. If the equilibrium
is given by a Parisi matrix with parameters $x_1,\ldots,x_k$ and
-$q_1,\ldots,q_k$, then the parameters $\hat\beta$, $R_d$, $D_d$, $\tilde
-x_1,\ldots,\tilde x_{k-1}$, and $\tilde q_1,\ldots,\tilde q_{k-1}$ for the
+$q_1,\ldots,q_k$, then the parameters $\hat\beta$, $r_d$, $d_d$, $\tilde
+x_1,\ldots,\tilde x_{k-1}$, and $\tilde c_1,\ldots,\tilde c_{k-1}$ for the
complexity in the ground state are
\begin{align}
\hat\beta=\lim_{\beta\to\infty}\beta x_k
&&
\tilde x_i=\lim_{\beta\to\infty}\frac{x_i}{x_k}
&&
- \tilde q_i=\lim_{\beta\to\infty}q_i
+ \tilde c_i=\lim_{\beta\to\infty}q_i
&&
- R_d=\lim_{\beta\to\infty}\beta(1-q_k)
+ r_d=\lim_{\beta\to\infty}\beta(1-q_k)
&&
- D_d=\hat\beta R_d
+ d_d=\hat\beta r_d
\end{align}
\section{Examples}
@@ -634,6 +532,21 @@ E\rangle_2$.
\end{figure}
\subsection{Full RSB complexity}
+Using standard manipulations (Appendix B), one finds also a continuous version
+\begin{equation} \label{eq:functional.action}
+ \begin{aligned}
+ \Sigma(\epsilon,\mu)
+ =\mathcal D(\mu)
+ +
+ \hat\beta\epsilon-\mu R_d
+ +\frac12(2\hat\beta R_d-D_d)f'(1)+\frac12R_d^2f''(1)+\frac12\log R_d^2
+ \\
+ +\frac12\int_0^1dq\,\left(
+ \hat\beta^2f''(q)\chi(q)+\frac1{\chi(q)+R_d^2/D_d}
+ \right)
+ \end{aligned}
+\end{equation}
+where $\chi(q)$ is defined with respect to $Q$ exactly as in the equilibrium case.
\begin{figure}
\centering
@@ -714,6 +627,17 @@ Continuity requires that $1-q_\textrm{max}=\lambda^*(q_\textrm{max})$.
Here a picture of $\chi$ vs $C$ or $X$ vs $C$ showing limits $q_{max}$, $x_{max}$
for different energies and typical vs minima.
+\section{Interpretation}
+
+ The
+meaning of $R_{ab}$ is that of a response of replica $a$ to a linear field in
+replica $b$:
+\begin{equation}
+ R_{ab} = \frac 1 N \sum_i \overline{\frac{\delta s_i^a}{\delta h_i^b}}
+\end{equation}
+The $D$ may similarly be seen as the variation of the complexity with respect to a random field.
+
+
\section{Ultrametricity rediscovered}
TENTATIVE BUT INTERESTING