summaryrefslogtreecommitdiff
path: root/frsb_kac-rice.tex
diff options
context:
space:
mode:
Diffstat (limited to 'frsb_kac-rice.tex')
-rw-r--r--frsb_kac-rice.tex105
1 files changed, 92 insertions, 13 deletions
diff --git a/frsb_kac-rice.tex b/frsb_kac-rice.tex
index eb940fa..3e06370 100644
--- a/frsb_kac-rice.tex
+++ b/frsb_kac-rice.tex
@@ -28,8 +28,6 @@ Although the Bray-Moore computation for the SK model was the first application o
some replica symmetry breaking scheme, it turned out that the problem has been open
ever since.
-
-
to this date the program has been only complete for a subset of models
here we present what we believe is the general scheme
@@ -86,7 +84,7 @@ Here we consider, for definiteness, the `toy' model introduced by M\'ezard and P
\section{Equilibrium}
-Here we review the equilibrium solution.
+Here we review the equilibrium solution. \cite{Crisanti_1992_The, Crisanti_1993_The, Crisanti_2004_Spherical, Crisanti_2006_Spherical}
\begin{equation}
\beta F=\frac12\lim_{n\to0}\frac1n\left(\beta^2\sum_{ab}f(Q_{ab})+\log\det Q\right)-\frac12\log S_\infty
@@ -199,28 +197,109 @@ $F$ is a $k-1$ RSB ansatz with all eigenvalues scaled by $y$ and shifted by $z$.
\section{Kac-Rice}
+\cite{Auffinger_2012_Random, BenArous_2019_Geometry}
+
+\begin{equation}
+ \mathcal N(\epsilon, \mu)
+ =\int ds\,\delta(N\epsilon-H(s))\delta(\partial H(s)-\mu s)|\det(\partial\partial H(s)-\mu I)|
+\end{equation}
+\begin{equation}
+ \Sigma(\epsilon,\mu)=\frac1N\log\mathcal N(\epsilon, \mu)
+\end{equation}
+
\subsection{The replicated problem}
-\begin{eqnarray}
-&=& \Pi_a \delta(Eq_a) \; \Pi_a \left| \det_a( )\right| \delta(E_a-E(s_a))\nonumber\\
-&\rightarrow& \overline{\Pi_a \delta(Eq_a)} \; \overline{ \Pi_a \left| \det_a( )\right|\delta(E_a-E(s_a))}\nonumber\\
-\end{eqnarray}
+\cite{Ros_2019_Complex}
+\cite{Folena_2020_Rethinking}
+
+\begin{equation}
+ \begin{aligned}
+ \Sigma(\epsilon, \mu)
+ &=\frac1N\lim_{n\to0}\frac\partial{\partial n}\mathcal N^n(\epsilon) \\
+ &=\frac1N\lim_{n\to0}\frac\partial{\partial n}\int\prod_a^n ds_a\,\delta(N\epsilon-H(s_a))\delta(\partial H(s_a)-\mu s_a)|\det(\partial\partial H(s_a)-\mu I)|
+ \end{aligned}
+\end{equation}
-the question of independence
+the question of independence \cite{Bray_2007_Statistics}
+
+\begin{equation}
+ \begin{aligned}
+ \overline{\Sigma(\epsilon, \mu)}
+ &=\frac1N\lim_{n\to0}\frac\partial{\partial n}\int\left(\prod_a^nds_a\right)\,\overline{\prod_a^n \delta(N\epsilon-H(s_a))\delta(\partial H(s_a)-\mu s_a)}
+ \times
+ \overline{\prod_a^n |\det(\partial\partial H(s_a)-\mu I)|}
+ \end{aligned}
+\end{equation}
+
+\begin{equation}
+ \begin{aligned}
+ \mathcal D(\mu)
+ &=\frac1N\overline{\log|\det(\partial\partial H(s_a)-\mu I)|}
+ =\int d\lambda\,\rho(\lambda-\mu)\log|\lambda| \\
+ &=\operatorname{Re}\left\{\frac12\left(1+\frac\mu{2f''(1)}\left(\mu\pm\sqrt{\mu^2-4f''(1)}\right)\right)-\log\left(\frac1{2f''(1)}\left(\mu\pm\sqrt{\mu^2-4f''(1)}\right)\right)\right\}
+ \end{aligned}
+\end{equation}
+for $\rho$ a semicircle distribution with radius $\sqrt{4f''(1)}$.
+
+\begin{equation}
+ \begin{aligned}
+ \overline{\Sigma(\epsilon, \mu)}
+ &=\frac1N\lim_{n\to0}\frac\partial{\partial n}
+ e^{nN\mathcal D(\mu)}
+ \int\left(\prod_a^nds_a\,d\hat s_a\right)\,d\hat\epsilon\,e^{nN\hat\epsilon\epsilon-\mu\sum_a^n\hat s_as_a}\overline{
+ \exp\left[
+ \sum_a^n
+ (\hat s_a\partial_a-\hat\epsilon)H(s_a)
+ \right]
+ }
+ \\
+ &=\frac1N\lim_{n\to0}\frac\partial{\partial n}
+ e^{nN\mathcal D(\mu)}
+ \int\left(\prod_a^nds_a\,d\hat s_a\right)\,d\hat\epsilon\,e^{nN\hat\epsilon\epsilon-\mu\sum_a^n\hat s_as_a}
+ \exp\left[
+ \sum_{ab}^n
+ (\hat s_a\partial_a-\hat\epsilon)(\hat s_b\partial_b-\hat\epsilon)f(s_as_b/N)
+ \right] \\
+ &=\frac1N\lim_{n\to0}\frac\partial{\partial n}
+ e^{nN\mathcal D(\mu)}
+ \int\left(\prod_a^nds_a\,d\hat s_a\right)\,d\hat\epsilon\,e^{nN\hat\epsilon\epsilon-\mu\sum_a^n\hat s_as_a}
+ \exp\left[
+ \sum_{ab}^n
+ (
+ \hat\epsilon^2f(s_as_b/N)-2\hat\epsilon\hat s_as_bf'(s_as_b/N)+\hat s_a\hat s_bf'(s_as_b/N)
+ +(\hat s_as_b)^2f''(s_as_b/N)
+ )
+ \right]
+ \end{aligned}
+\end{equation}
all saddles versus only minima
The parameters:
-\begin{eqnarray}
-Q_{ab}&=&\nonumber\\
-R_{ab}&=&\nonumber\\
-D_{ab}&=&
-\end{eqnarray}
+\begin{equation}
+ \begin{aligned}
+ Q_{ab}=\frac1Ns_a\cdot s_b \\
+ R_{ab}=\frac1N\hat s_a\cdot s_b \\
+ D_{ab}=\frac1N\hat s_a\cdot\hat s_b
+ \end{aligned}
+\end{equation}
+\begin{equation}
+ S
+ =\mathcal D(\mu)+\hat\epsilon\epsilon+\lim_{n\to0}\frac1n\left(
+ \mu\sum_a^nR_{aa}
+ +\frac12\sum_{ab}\left[
+ \hat\epsilon^2f(Q_{ab})-2\hat\epsilon R_{ab}f'(Q_{ab})
+ +D_{ab}f'(Q_{ab})+R_{ab}^2f''(Q_{ab})
+ \right]
+ +\frac12\log\det\begin{bmatrix}Q&R\\R&D\end{bmatrix}
+ \right)
+\end{equation}
\section{Replicated action}
+
\begin{align*}
\Sigma
=-\epsilon\hat\epsilon+\lim_{n\to0}\frac1n\left(