diff options
author | Jaron Kent-Dobias <jaron@kent-dobias.com> | 2024-06-12 18:15:51 +0200 |
---|---|---|
committer | Jaron Kent-Dobias <jaron@kent-dobias.com> | 2024-06-12 18:15:51 +0200 |
commit | 1a2dc62a5e75c94e3cfc7da8334061743ba70d05 (patch) | |
tree | 7c8ea9d873f18a07198623e3e2372a14c87be8f1 | |
parent | bddf631115ea509dc0b68d88ef7114c1ad4a2b28 (diff) | |
download | marginal-1a2dc62a5e75c94e3cfc7da8334061743ba70d05.tar.gz marginal-1a2dc62a5e75c94e3cfc7da8334061743ba70d05.tar.bz2 marginal-1a2dc62a5e75c94e3cfc7da8334061743ba70d05.zip |
More writing.
-rw-r--r-- | figs/large_deviation.pdf | bin | 11785 -> 11785 bytes | |||
-rw-r--r-- | figs/spectrum_eq.pdf | bin | 7907 -> 6593 bytes | |||
-rw-r--r-- | figs/spectrum_less.pdf | bin | 11112 -> 8355 bytes | |||
-rw-r--r-- | figs/spectrum_more.pdf | bin | 8089 -> 6789 bytes | |||
-rw-r--r-- | figures.nb | 549 | ||||
-rw-r--r-- | marginal.tex | 169 |
6 files changed, 390 insertions, 328 deletions
diff --git a/figs/large_deviation.pdf b/figs/large_deviation.pdf Binary files differindex a46b83f..73e0aeb 100644 --- a/figs/large_deviation.pdf +++ b/figs/large_deviation.pdf diff --git a/figs/spectrum_eq.pdf b/figs/spectrum_eq.pdf Binary files differindex 69db15c..03f5572 100644 --- a/figs/spectrum_eq.pdf +++ b/figs/spectrum_eq.pdf diff --git a/figs/spectrum_less.pdf b/figs/spectrum_less.pdf Binary files differindex 439d485..8d2944e 100644 --- a/figs/spectrum_less.pdf +++ b/figs/spectrum_less.pdf diff --git a/figs/spectrum_more.pdf b/figs/spectrum_more.pdf Binary files differindex 8db227a..f1555a9 100644 --- a/figs/spectrum_more.pdf +++ b/figs/spectrum_more.pdf @@ -10,10 +10,10 @@ NotebookFileLineBreakTest NotebookFileLineBreakTest NotebookDataPosition[ 158, 7] -NotebookDataLength[ 1194152, 24077] -NotebookOptionsPosition[ 1174526, 23766] -NotebookOutlinePosition[ 1174925, 23782] -CellTagsIndexPosition[ 1174882, 23779] +NotebookDataLength[ 1194592, 24070] +NotebookOptionsPosition[ 1174966, 23759] +NotebookOutlinePosition[ 1175365, 23775] +CellTagsIndexPosition[ 1175322, 23772] WindowFrame->Normal*) (* Beginning of Notebook Content *) @@ -29,7 +29,7 @@ Cell[BoxData[ RowBox[{ RowBox[{"fontSize", "=", "11"}], ";"}]], "Input", CellChangeTimes->{{3.9267606761876593`*^9, 3.926760678954088*^9}}, - CellLabel->"In[13]:=",ExpressionUUID->"ee12c51c-6b29-47d4-ae25-f1f7fff92040"], + CellLabel->"In[1]:=",ExpressionUUID->"ee12c51c-6b29-47d4-ae25-f1f7fff92040"], Cell[BoxData[ RowBox[{ @@ -43,7 +43,7 @@ Cell[BoxData[ 3.9155307742942944`*^9, 3.915530775499718*^9}, {3.91553085987768*^9, 3.915530886189825*^9}, {3.924161179907159*^9, 3.924161182353354*^9}, { 3.926760681810741*^9, 3.9267606859704237`*^9}}, - CellLabel->"In[14]:=",ExpressionUUID->"a4718025-6526-4aa1-b1d9-23f283157609"], + CellLabel->"In[2]:=",ExpressionUUID->"a4718025-6526-4aa1-b1d9-23f283157609"], Cell[BoxData[{ RowBox[{ @@ -63,7 +63,7 @@ Cell[BoxData[{ RowBox[{"LineLegend", ",", "labelStyle"}], "]"}], ";"}]}], "Input", CellChangeTimes->{{3.915530863366059*^9, 3.915530917598553*^9}, { 3.9155330354943447`*^9, 3.915533038598446*^9}}, - CellLabel->"In[15]:=",ExpressionUUID->"6297bd5f-9997-4788-b876-fdf7032919da"] + CellLabel->"In[3]:=",ExpressionUUID->"6297bd5f-9997-4788-b876-fdf7032919da"] }, Open ]], Cell[CellGroupData[{ @@ -102,7 +102,7 @@ Cell[BoxData[ RowBox[{"2", "\[Sigma]"}], ")"}], "2"]], "-", "1"}]]}], "]"}]}]}]], "Input", CellChangeTimes->{{3.915530599745296*^9, 3.915530671233981*^9}}, - CellLabel->"In[18]:=",ExpressionUUID->"50c08a66-4e65-4112-8ad7-d5d45f281a8c"], + CellLabel->"In[6]:=",ExpressionUUID->"50c08a66-4e65-4112-8ad7-d5d45f281a8c"], Cell[CellGroupData[{ @@ -154,10 +154,9 @@ Cell[BoxData[ 3.915530780148059*^9}, {3.915530891127125*^9, 3.915530922455567*^9}, { 3.9241609780538807`*^9, 3.924160982965692*^9}, {3.924162186828877*^9, 3.9241621901083317`*^9}, {3.924162311335291*^9, 3.924162320022914*^9}, { - 3.9267607225073347`*^9, 3.926760768524247*^9}, {3.9267620978944073`*^9, + 3.9267607225073357`*^9, 3.926760768524247*^9}, {3.9267620978944073`*^9, 3.9267621072226877`*^9}, {3.926762329962654*^9, 3.9267623500744543`*^9}}, - CellLabel-> - "In[250]:=",ExpressionUUID->"6c00d5eb-8ba7-405a-9bf1-5d71e992492f"], + CellLabel->"In[7]:=",ExpressionUUID->"6c00d5eb-8ba7-405a-9bf1-5d71e992492f"], Cell[BoxData[ GraphicsBox[ @@ -741,9 +740,8 @@ bjB/r4OXJvt0ej38B+c4z40= 3.924161184537413*^9, 3.924162190364997*^9, {3.924162312284491*^9, 3.9241623202322807`*^9}, {3.926760723533168*^9, 3.926760740655086*^9}, 3.926760772978333*^9, {3.926762098244166*^9, 3.926762107827166*^9}, { - 3.92676233110467*^9, 3.926762350345076*^9}}, - CellLabel-> - "Out[250]=",ExpressionUUID->"91d0dd3d-b26c-45d4-b0c1-2273c50e7d81"] + 3.92676233110467*^9, 3.926762350345076*^9}, 3.9271760125323677`*^9}, + CellLabel->"Out[7]=",ExpressionUUID->"96d8c022-71f7-4175-ad56-0b948701a2c3"] }, Open ]], Cell[CellGroupData[{ @@ -753,19 +751,18 @@ Cell[BoxData[ RowBox[{ "\"\<~/doc/research/frsb_kac-rice/papers/marginal/figs/large_deviation.pdf\>\ \"", ",", "pG"}], "]"}]], "Input", - CellChangeTimes->{{3.92416107227991*^9, 3.9241611012234797`*^9}, { + CellChangeTimes->{{3.92416107227991*^9, 3.92416110122348*^9}, { 3.926760703598503*^9, 3.926760712779284*^9}}, - CellLabel-> - "In[251]:=",ExpressionUUID->"0c67dbb9-49b6-4edb-9219-e0a5cdf9b31d"], + CellLabel->"In[8]:=",ExpressionUUID->"0c67dbb9-49b6-4edb-9219-e0a5cdf9b31d"], Cell[BoxData["\<\"~/doc/research/frsb_kac-rice/papers/marginal/figs/large_\ deviation.pdf\"\>"], "Output", CellChangeTimes->{{3.924161094512546*^9, 3.924161102039678*^9}, - 3.9241611864665627`*^9, 3.924162191599287*^9, 3.924162320711782*^9, { + 3.924161186466563*^9, 3.924162191599287*^9, 3.924162320711782*^9, { 3.926760725505782*^9, 3.926760742789874*^9}, 3.926760774237672*^9, { - 3.926762102041052*^9, 3.926762108382854*^9}, 3.926762353553878*^9}, - CellLabel-> - "Out[251]=",ExpressionUUID->"bb552b18-713a-411e-b9bb-b974b3ab87fd"] + 3.926762102041052*^9, 3.926762108382854*^9}, 3.926762353553878*^9, + 3.9271760149471283`*^9}, + CellLabel->"Out[8]=",ExpressionUUID->"85074921-98fb-4fbd-91ef-b733df3a8845"] }, Open ]], Cell[BoxData[ @@ -780,7 +777,7 @@ Cell[BoxData[ SuperscriptBox["q", "3"], "+", SuperscriptBox["q", "4"]}], ")"}]}]}], "]"}]}], ";"}]], "Input", CellChangeTimes->{{3.924161369901463*^9, 3.924161381181401*^9}}, - CellLabel->"In[21]:=",ExpressionUUID->"06818f5b-ee0e-4634-b547-e05e415c12a6"], + CellLabel->"In[9]:=",ExpressionUUID->"06818f5b-ee0e-4634-b547-e05e415c12a6"], Cell[BoxData[ RowBox[{ @@ -790,7 +787,7 @@ Cell[BoxData[ RowBox[{ RowBox[{"f", "''"}], "[", "1", "]"}]}]]}]], "Input", CellChangeTimes->{{3.893505745813592*^9, 3.893505753575885*^9}}, - CellLabel->"In[22]:=",ExpressionUUID->"ab28ae26-b52f-4a56-978d-e7ee3f806eda"], + CellLabel->"In[10]:=",ExpressionUUID->"ab28ae26-b52f-4a56-978d-e7ee3f806eda"], Cell[BoxData[ RowBox[{ @@ -811,20 +808,19 @@ Cell[BoxData[ RowBox[{"\[Mu]m", "[", "f", "]"}], "2"]]}]]}]}]], "Input", CellChangeTimes->{{3.895206238820385*^9, 3.895206269434855*^9}, { 3.895206301235565*^9, 3.895206327707943*^9}}, - CellLabel->"In[23]:=",ExpressionUUID->"eec97d73-ae34-443d-825f-cbb8adebe02f"], + CellLabel->"In[11]:=",ExpressionUUID->"eec97d73-ae34-443d-825f-cbb8adebe02f"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"340", "/", "3."}]], "Input", CellChangeTimes->{{3.92676122589403*^9, 3.926761230869504*^9}}, - CellLabel-> - "In[107]:=",ExpressionUUID->"83c0ad8f-8d45-4089-b5a6-d03efc9cdfbe"], + CellLabel->"In[12]:=",ExpressionUUID->"83c0ad8f-8d45-4089-b5a6-d03efc9cdfbe"], Cell[BoxData["113.33333333333333`"], "Output", - CellChangeTimes->{{3.926761228984556*^9, 3.926761231318728*^9}}, - CellLabel-> - "Out[107]=",ExpressionUUID->"28c77ad6-9821-4980-bae1-816090bc8085"] + CellChangeTimes->{{3.926761228984556*^9, 3.926761231318728*^9}, + 3.927176015496025*^9}, + CellLabel->"Out[12]=",ExpressionUUID->"8a53c8d7-c295-47d2-aa7f-189bb8a2f899"] }, Open ]], Cell[BoxData[ @@ -872,7 +868,7 @@ Cell[BoxData[ RowBox[{"{", RowBox[{"Automatic", ",", "Automatic"}], "}"}], ",", RowBox[{"{", - RowBox[{"2", ",", "Automatic"}], "}"}]}], "}"}]}]}], "]"}]}]], "Input",\ + RowBox[{"4", ",", "Automatic"}], "}"}]}], "}"}]}]}], "]"}]}]], "Input",\ CellChangeTimes->{{3.895206335716663*^9, 3.895206991361381*^9}, { 3.895207039378053*^9, 3.895207059810026*^9}, {3.895207141811533*^9, @@ -882,12 +878,12 @@ Cell[BoxData[ 3.926760792780966*^9, 3.926760811804823*^9}, {3.926760862262025*^9, 3.926760865550117*^9}, {3.9267609191675*^9, 3.926761098970653*^9}, { 3.926761143347569*^9, 3.9267611774925413`*^9}, {3.926761234053639*^9, - 3.9267612615498877`*^9}, {3.926761382752357*^9, 3.926761382912137*^9}, { - 3.926761546923317*^9, 3.9267615499875097`*^9}, {3.9267615927161493`*^9, + 3.926761261549888*^9}, {3.926761382752357*^9, 3.926761382912137*^9}, { + 3.926761546923317*^9, 3.92676154998751*^9}, {3.9267615927161493`*^9, 3.926761666941782*^9}, {3.926761736607151*^9, 3.9267617376231403`*^9}, { - 3.926761851425713*^9, 3.926761878833948*^9}}, - CellLabel-> - "In[215]:=",ExpressionUUID->"def223fd-aeee-4091-9e76-97462b62b6cc"], + 3.926761851425713*^9, 3.926761878833948*^9}, {3.9271760310236397`*^9, + 3.9271760311464663`*^9}}, + CellLabel->"In[22]:=",ExpressionUUID->"def223fd-aeee-4091-9e76-97462b62b6cc"], Cell[BoxData[ RowBox[{ @@ -938,9 +934,10 @@ Cell[BoxData[ RowBox[{"SingleLetterItalics", "->", "False"}], ",", RowBox[{"Directive", "[", RowBox[{ - RowBox[{"FontFamily", "->", "\"\<Helvetica\>\""}], ",", - "Black", ",", - RowBox[{"FontSize", "->", "10"}]}], "]"}]}], "]"}], ",", + RowBox[{"FontFamily", "->", "\"\<Times\>\""}], ",", "Black", + ",", + RowBox[{"FontSize", "->", "fontSize"}]}], "]"}]}], "]"}], ",", + RowBox[{"{", RowBox[{ RowBox[{"\[Mu]", "/", "2"}], ",", @@ -981,9 +978,8 @@ Cell[BoxData[ RowBox[{"SingleLetterItalics", "->", "False"}], ",", RowBox[{"Directive", "[", RowBox[{ - RowBox[{"FontFamily", "->", "\"\<Helvetica\>\""}], ",", "Black", - ",", - RowBox[{"FontSize", "->", "10"}]}], "]"}]}], "]"}], ",", + RowBox[{"FontFamily", "->", "\"\<Times\>\""}], ",", "Black", ",", + RowBox[{"FontSize", "->", "fontSize"}]}], "]"}]}], "]"}], ",", RowBox[{"{", RowBox[{ RowBox[{"\[Mu]", "+", @@ -1025,10 +1021,10 @@ Cell[BoxData[ 3.92416160537091*^9, {3.924161669195086*^9, 3.924161677339909*^9}, { 3.924161885591449*^9, 3.924161886295874*^9}, {3.924163229224842*^9, 3.924163238832789*^9}, {3.926760887735845*^9, 3.926760895487254*^9}, { - 3.926761390288784*^9, 3.926761432385374*^9}, {3.9267618276411123`*^9, - 3.9267618299854116`*^9}, {3.926761917490697*^9, 3.926761920730276*^9}}, - CellLabel-> - "In[224]:=",ExpressionUUID->"f1078ecd-48ad-4003-b086-93bd8c2242bb"], + 3.926761390288784*^9, 3.926761432385374*^9}, {3.926761827641113*^9, + 3.9267618299854116`*^9}, {3.926761917490697*^9, 3.926761920730276*^9}, { + 3.927175932778327*^9, 3.927175942497558*^9}}, + CellLabel->"In[23]:=",ExpressionUUID->"f1078ecd-48ad-4003-b086-93bd8c2242bb"], Cell[BoxData[ RowBox[{ @@ -1117,9 +1113,10 @@ Cell[BoxData[ RowBox[{"SingleLetterItalics", "->", "False"}], ",", RowBox[{"Directive", "[", RowBox[{ - RowBox[{"FontFamily", "->", "\"\<Helvetica\>\""}], ",", - "Black", ",", - RowBox[{"FontSize", "->", "10"}]}], "]"}]}], "]"}], ",", + RowBox[{"FontFamily", "->", "\"\<Times\>\""}], ",", "Black", + ",", + RowBox[{"FontSize", "->", "fontSize"}]}], "]"}]}], "]"}], ",", + RowBox[{"{", RowBox[{ RowBox[{"\[Mu]", "/", "2"}], ",", @@ -1160,9 +1157,8 @@ Cell[BoxData[ RowBox[{"SingleLetterItalics", "->", "False"}], ",", RowBox[{"Directive", "[", RowBox[{ - RowBox[{"FontFamily", "->", "\"\<Helvetica\>\""}], ",", "Black", - ",", - RowBox[{"FontSize", "->", "10"}]}], "]"}]}], "]"}], ",", + RowBox[{"FontFamily", "->", "\"\<Times\>\""}], ",", "Black", ",", + RowBox[{"FontSize", "->", "fontSize"}]}], "]"}]}], "]"}], ",", RowBox[{"{", RowBox[{ RowBox[{"\[Mu]", "+", @@ -1180,7 +1176,7 @@ Cell[BoxData[ RowBox[{ RowBox[{ RowBox[{"ColorData", "[", "97", "]"}], "[", "1", "]"}], ",", - RowBox[{"PointSize", "[", "0.035", "]"}], ",", + RowBox[{"PointSize", "[", "0.05", "]"}], ",", RowBox[{"Point", "[", RowBox[{"{", RowBox[{"\[Lambda]i", ",", "0"}], "}"}], "]"}]}], "}"}], @@ -1219,10 +1215,10 @@ Cell[BoxData[ 3.924161706499589*^9}, {3.924161755060856*^9, 3.924161863463529*^9}, { 3.92416326394566*^9, 3.924163267761709*^9}, {3.926761195167242*^9, 3.926761202022335*^9}, {3.926761477210664*^9, 3.9267614847470922`*^9}, { - 3.9267618341854877`*^9, 3.926761834514394*^9}, {3.9267619242107487`*^9, - 3.926761945522861*^9}}, - CellLabel-> - "In[234]:=",ExpressionUUID->"244eac76-0bbb-4e5a-9b06-0f294e654a3f"], + 3.9267618341854877`*^9, 3.926761834514394*^9}, {3.926761924210748*^9, + 3.926761945522861*^9}, {3.927175946998015*^9, 3.927175962055725*^9}, { + 3.927176043113257*^9, 3.927176043208865*^9}}, + CellLabel->"In[31]:=",ExpressionUUID->"244eac76-0bbb-4e5a-9b06-0f294e654a3f"], Cell[CellGroupData[{ @@ -1236,9 +1232,8 @@ Cell[BoxData[ 3.895207930386267*^9}, {3.895208671944873*^9, 3.89520867356842*^9}, { 3.924161638762431*^9, 3.9241616551542883`*^9}, {3.924161914919391*^9, 3.924161915904595*^9}, 3.924163199007743*^9, 3.926760876790394*^9, - 3.9267612092132807`*^9, {3.92676142139275*^9, 3.926761424824665*^9}}, - CellLabel-> - "In[235]:=",ExpressionUUID->"28a195c1-e132-4911-80e7-05e2e1470f78"], + 3.92676120921328*^9, {3.92676142139275*^9, 3.926761424824665*^9}}, + CellLabel->"In[32]:=",ExpressionUUID->"28a195c1-e132-4911-80e7-05e2e1470f78"], Cell[BoxData[ GraphicsBox[ @@ -1751,7 +1746,7 @@ uheZ2Bv9d32MjQ38H2V+zho= GridLines->{None, None}, GridLinesStyle->Directive[ GrayLevel[0.5, 0.4]], - ImagePadding->{{Automatic, Automatic}, {2, Automatic}}, + ImagePadding->{{Automatic, Automatic}, {4, Automatic}}, ImageSize->118, LabelStyle->{FontFamily -> "Times", GrayLevel[0], FontSize -> 11}, @@ -1788,8 +1783,8 @@ uheZ2Bv9d32MjQ38H2V+zho= InsetBox[ FormBox[ StyleBox["\"\[Mu]\"", SingleLetterItalics -> False, - Directive[FontFamily -> "Helvetica", - GrayLevel[0], FontSize -> 10], StripOnInput -> False], + Directive[FontFamily -> "Times", + GrayLevel[0], FontSize -> 11], StripOnInput -> False], TraditionalForm], NCache[{2, Rational[5, 48]/Pi}, {2, 0.033157279810811534`}]]}, { Arrowheads[{-Automatic, Automatic}], @@ -1799,14 +1794,14 @@ uheZ2Bv9d32MjQ38H2V+zho= InsetBox[ FormBox[ StyleBox["\"2\[Sigma]\"", SingleLetterItalics -> False, - Directive[FontFamily -> "Helvetica", - GrayLevel[0], FontSize -> 10], StripOnInput -> False], + Directive[FontFamily -> "Times", + GrayLevel[0], FontSize -> 11], StripOnInput -> False], TraditionalForm], NCache[{7, Rational[5, 48]/Pi}, {7, 0.033157279810811534`}]]}, RotateLabel->False, Ticks->{Automatic, Automatic}]], "Output", CellChangeTimes->{ - 3.8952066993691463`*^9, 3.89520674386379*^9, {3.895206800311884*^9, + 3.895206699369146*^9, 3.89520674386379*^9, {3.895206800311884*^9, 3.8952068894420347`*^9}, {3.895206959308638*^9, 3.895206992894684*^9}, { 3.8952070620060863`*^9, 3.895207067724165*^9}, {3.895207143255886*^9, 3.895207260626754*^9}, {3.895207406363961*^9, 3.895207444229038*^9}, @@ -1818,15 +1813,15 @@ uheZ2Bv9d32MjQ38H2V+zho= 3.924161707916535*^9}, 3.924161917425612*^9, {3.924163199195035*^9, 3.9241632684587812`*^9}, 3.926760829972809*^9, {3.9267608635048943`*^9, 3.926760947218087*^9}, {3.926760983716619*^9, 3.9267609989132347`*^9}, { - 3.926761038325932*^9, 3.926761077719367*^9}, 3.9267611570845547`*^9, { + 3.926761038325932*^9, 3.926761077719367*^9}, 3.926761157084555*^9, { 3.926761202690482*^9, 3.926761262528049*^9}, 3.926761385096426*^9, { 3.926761425364373*^9, 3.92676143349012*^9}, 3.926761485486828*^9, 3.926761551172861*^9, {3.926761617471798*^9, 3.926761626745406*^9}, { 3.926761661177988*^9, 3.926761668201248*^9}, 3.926761738520466*^9, { 3.926761836696477*^9, 3.926761880005011*^9}, {3.926761921727672*^9, - 3.926761946295723*^9}}, - CellLabel-> - "Out[235]=",ExpressionUUID->"d05fb8f0-b7b9-47a5-a984-00b2a18f0f10"] + 3.926761946295723*^9}, {3.9271759563276386`*^9, 3.9271759631334057`*^9}, { + 3.927176015783972*^9, 3.927176044384246*^9}}, + CellLabel->"Out[32]=",ExpressionUUID->"577d2755-a6c5-47a3-9e67-78c4a4c9e8b1"] }, Open ]], Cell[CellGroupData[{ @@ -1844,8 +1839,7 @@ Cell[BoxData[ 3.8952079709309177`*^9}, {3.895208773410845*^9, 3.895208774210402*^9}, 3.924163254848674*^9, 3.926761180572352*^9, {3.926761451041807*^9, 3.926761459473476*^9}}, - CellLabel-> - "In[236]:=",ExpressionUUID->"e68d9ce5-814e-4498-aeeb-52ccf1b87537"], + CellLabel->"In[33]:=",ExpressionUUID->"e68d9ce5-814e-4498-aeeb-52ccf1b87537"], Cell[BoxData[ GraphicsBox[ @@ -2354,7 +2348,7 @@ AVhmp4Y= GridLines->{None, None}, GridLinesStyle->Directive[ GrayLevel[0.5, 0.4]], - ImagePadding->{{Automatic, Automatic}, {2, Automatic}}, + ImagePadding->{{Automatic, Automatic}, {4, Automatic}}, ImageSize->118, LabelStyle->{FontFamily -> "Times", GrayLevel[0], FontSize -> 11}, @@ -2391,8 +2385,8 @@ AVhmp4Y= InsetBox[ FormBox[ StyleBox["\"\[Mu]\"", SingleLetterItalics -> False, - Directive[FontFamily -> "Helvetica", - GrayLevel[0], FontSize -> 10], StripOnInput -> False], + Directive[FontFamily -> "Times", + GrayLevel[0], FontSize -> 11], StripOnInput -> False], TraditionalForm], NCache[{3, Rational[5, 48]/Pi}, {3, 0.033157279810811534`}]]}, { Arrowheads[{-Automatic, Automatic}], @@ -2402,8 +2396,8 @@ AVhmp4Y= InsetBox[ FormBox[ StyleBox["\"2\[Sigma]\"", SingleLetterItalics -> False, - Directive[FontFamily -> "Helvetica", - GrayLevel[0], FontSize -> 10], StripOnInput -> False], + Directive[FontFamily -> "Times", + GrayLevel[0], FontSize -> 11], StripOnInput -> False], TraditionalForm], NCache[{9, Rational[5, 48]/Pi}, {9, 0.033157279810811534`}]]}, RotateLabel->False, @@ -2416,13 +2410,14 @@ AVhmp4Y= 3.895207672440133*^9, 3.89520776704414*^9}, 3.895207869061739*^9, 3.895207971302621*^9, 3.895208774788427*^9, 3.895208856296947*^9, 3.895208911233605*^9, 3.924161607806319*^9, 3.924161708547617*^9, - 3.924161888307276*^9, {3.9241632469636397`*^9, 3.924163268743547*^9}, + 3.924161888307276*^9, {3.92416324696364*^9, 3.924163268743547*^9}, 3.9267609838904743`*^9, {3.9267611808104887`*^9, 3.926761262911172*^9}, { - 3.926761436461685*^9, 3.926761485701083*^9}, 3.9267615513295307`*^9, + 3.926761436461685*^9, 3.926761485701083*^9}, 3.926761551329531*^9, 3.926761627535708*^9, 3.9267616683618813`*^9, 3.926761738675971*^9, { - 3.9267618371538763`*^9, 3.9267618801693287`*^9}, 3.9267619465042458`*^9}, - CellLabel-> - "Out[236]=",ExpressionUUID->"4fdf1572-8b7c-4352-8f24-df96a72089dd"] + 3.9267618371538763`*^9, 3.9267618801693287`*^9}, 3.9267619465042458`*^9, { + 3.927175957106708*^9, 3.9271759633798437`*^9}, {3.927176016114229*^9, + 3.927176044606139*^9}}, + CellLabel->"Out[33]=",ExpressionUUID->"9496b18b-d8fb-4070-8783-a932a49d22f3"] }, Open ]], Cell[CellGroupData[{ @@ -2438,10 +2433,9 @@ Cell[BoxData[ CellChangeTimes->{{3.89520778997552*^9, 3.8952077901675262`*^9}, { 3.895207839433116*^9, 3.8952078422645893`*^9}, {3.895208024284871*^9, 3.895208026220129*^9}, {3.895208867468687*^9, 3.8952088688522387`*^9}, { - 3.924161720316*^9, 3.9241617206431518`*^9}, 3.924163261168485*^9, - 3.926761190108756*^9, {3.926761464570071*^9, 3.9267614648664703`*^9}}, - CellLabel-> - "In[237]:=",ExpressionUUID->"9df7247c-bae3-4562-95d7-d5d547f8369d"], + 3.924161720316*^9, 3.924161720643152*^9}, 3.924163261168485*^9, + 3.926761190108756*^9, {3.926761464570071*^9, 3.926761464866471*^9}}, + CellLabel->"In[34]:=",ExpressionUUID->"9df7247c-bae3-4562-95d7-d5d547f8369d"], Cell[BoxData[ GraphicsBox[ @@ -2943,7 +2937,7 @@ a0Tpd86A6YzNkbw/bMx7GC1ewuMJQ4f97McXyPYtbRMrL+2E/wCiOZhr DisplayFunction->Identity, Epilog->{{ RGBColor[0.368417, 0.506779, 0.709798], - PointSize[0.035], + PointSize[0.05], PointBox[{0, 0}]}}, Frame->{{True, True}, {True, True}}, FrameLabel->{None, @@ -2957,7 +2951,7 @@ a0Tpd86A6YzNkbw/bMx7GC1ewuMJQ4f97McXyPYtbRMrL+2E/wCiOZhr GridLines->{None, None}, GridLinesStyle->Directive[ GrayLevel[0.5, 0.4]], - ImagePadding->{{Automatic, Automatic}, {2, Automatic}}, + ImagePadding->{{Automatic, Automatic}, {4, Automatic}}, ImageSize->118, LabelStyle->{FontFamily -> "Times", GrayLevel[0], FontSize -> 11}, @@ -2994,8 +2988,8 @@ a0Tpd86A6YzNkbw/bMx7GC1ewuMJQ4f97McXyPYtbRMrL+2E/wCiOZhr InsetBox[ FormBox[ StyleBox["\"\[Mu]\"", SingleLetterItalics -> False, - Directive[FontFamily -> "Helvetica", - GrayLevel[0], FontSize -> 10], StripOnInput -> False], + Directive[FontFamily -> "Times", + GrayLevel[0], FontSize -> 11], StripOnInput -> False], TraditionalForm], NCache[{4, Rational[5, 48]/Pi}, {4, 0.033157279810811534`}]]}, { Arrowheads[{-Automatic, Automatic}], @@ -3005,8 +2999,8 @@ a0Tpd86A6YzNkbw/bMx7GC1ewuMJQ4f97McXyPYtbRMrL+2E/wCiOZhr InsetBox[ FormBox[ StyleBox["\"2\[Sigma]\"", SingleLetterItalics -> False, - Directive[FontFamily -> "Helvetica", - GrayLevel[0], FontSize -> 10], StripOnInput -> False], + Directive[FontFamily -> "Times", + GrayLevel[0], FontSize -> 11], StripOnInput -> False], TraditionalForm], NCache[{11, Rational[5, 48]/Pi}, {11, 0.033157279810811534`}]]}, RotateLabel->False, @@ -3014,15 +3008,15 @@ a0Tpd86A6YzNkbw/bMx7GC1ewuMJQ4f97McXyPYtbRMrL+2E/wCiOZhr CellChangeTimes->{ 3.895207790740121*^9, {3.895207839744895*^9, 3.895207870243621*^9}, 3.895208026480008*^9, 3.895208869333159*^9, 3.895208913648329*^9, - 3.924161611725056*^9, {3.9241617105380588`*^9, 3.924161720851728*^9}, - 3.924161760789225*^9, {3.924161828428911*^9, 3.9241618666389933`*^9}, { - 3.924163256019329*^9, 3.9241632689619217`*^9}, {3.926761187709559*^9, + 3.924161611725056*^9, {3.924161710538059*^9, 3.924161720851728*^9}, + 3.924161760789225*^9, {3.924161828428911*^9, 3.924161866638994*^9}, { + 3.924163256019329*^9, 3.9241632689619226`*^9}, {3.926761187709559*^9, 3.926761263193915*^9}, {3.9267614370306377`*^9, 3.9267614865111933`*^9}, 3.926761551544959*^9, 3.926761627762596*^9, 3.926761670173362*^9, 3.926761738825984*^9, {3.926761837375955*^9, 3.926761880360046*^9}, - 3.926761946675086*^9}, - CellLabel-> - "Out[237]=",ExpressionUUID->"085d89e1-1412-44e2-9992-5f811f7e8263"] + 3.926761946675086*^9, {3.927175957860818*^9, 3.927175963570401*^9}, { + 3.927176016405114*^9, 3.927176044825283*^9}}, + CellLabel->"Out[34]=",ExpressionUUID->"9cd54024-e29b-456b-a509-0492f8827637"] }, Open ]], Cell[BoxData[{ @@ -3043,9 +3037,8 @@ Cell[BoxData[{ \"", ",", "ps6"}], "]"}], ";"}]}], "Input", CellChangeTimes->{{3.924161919335609*^9, 3.924161984768268*^9}, { 3.924162080650302*^9, 3.924162081777878*^9}, {3.92676129203915*^9, - 3.9267613047263823`*^9}}, - CellLabel-> - "In[238]:=",ExpressionUUID->"9c8fbe7e-534f-4567-b9e1-d7a5c3ce1086"] + 3.9267613047263827`*^9}}, + CellLabel->"In[35]:=",ExpressionUUID->"9c8fbe7e-534f-4567-b9e1-d7a5c3ce1086"] }, Open ]], Cell[CellGroupData[{ @@ -6662,7 +6655,7 @@ M8mtd2mT5w2wnqXn2WOfNnneAF72ntCBB7Vt/w9HjB69 Ticks->{Automatic, Automatic}]], "Output", CellChangeTimes->{3.909043955430275*^9, 3.909046701012884*^9, 3.915533054748672*^9, 3.915772001814284*^9, 3.916380445982705*^9, - 3.9163872507924776`*^9}, + 3.916387250792478*^9}, CellLabel-> "Out[241]=",ExpressionUUID->"471fcd6b-1223-49d9-962f-85e668fab430"] }, Open ]], @@ -7188,7 +7181,7 @@ decrease in the merit function. You may need more than \ \\!\\(\\*RowBox[{\\\"20.`\\\"}]\\) digits of working precision to meet these \ tolerances.\"", 2, 242, 34, 23804047810745838865, "Local"}, "MessageTemplate"]], "Message", "MSG", - CellChangeTimes->{3.916386517291394*^9, 3.9163872747219143`*^9}, + CellChangeTimes->{3.916386517291394*^9, 3.916387274721915*^9}, CellLabel-> "During evaluation of \ In[242]:=",ExpressionUUID->"2a251b03-af55-4ee8-b6ee-dc27429eff8a"], @@ -7202,7 +7195,7 @@ decrease in the merit function. You may need more than \ \\!\\(\\*RowBox[{\\\"20.`\\\"}]\\) digits of working precision to meet these \ tolerances.\"", 2, 242, 35, 23804047810745838865, "Local"}, "MessageTemplate"]], "Message", "MSG", - CellChangeTimes->{3.916386517291394*^9, 3.9163872750673237`*^9}, + CellChangeTimes->{3.916386517291394*^9, 3.916387275067324*^9}, CellLabel-> "During evaluation of \ In[242]:=",ExpressionUUID->"466d17bf-ce0f-47a2-8764-46320b67ac6e"], @@ -23783,300 +23776,300 @@ CellTagsIndex->{} Notebook[{ Cell[CellGroupData[{ Cell[580, 22, 153, 3, 50, "Section",ExpressionUUID->"926df485-ea0b-4c71-a1d6-03ba4988e06d"], -Cell[736, 27, 222, 4, 22, "Input",ExpressionUUID->"ee12c51c-6b29-47d4-ae25-f1f7fff92040"], -Cell[961, 33, 606, 12, 22, "Input",ExpressionUUID->"a4718025-6526-4aa1-b1d9-23f283157609"], -Cell[1570, 47, 751, 18, 53, "Input",ExpressionUUID->"6297bd5f-9997-4788-b876-fdf7032919da"] +Cell[736, 27, 221, 4, 22, "Input",ExpressionUUID->"ee12c51c-6b29-47d4-ae25-f1f7fff92040"], +Cell[960, 33, 605, 12, 22, "Input",ExpressionUUID->"a4718025-6526-4aa1-b1d9-23f283157609"], +Cell[1568, 47, 750, 18, 53, "Input",ExpressionUUID->"6297bd5f-9997-4788-b876-fdf7032919da"] }, Open ]], Cell[CellGroupData[{ -Cell[2358, 70, 171, 3, 50, "Section",ExpressionUUID->"e26a72a6-0937-45b0-a625-f1bdf166fa4e"], -Cell[2532, 75, 900, 29, 48, "Input",ExpressionUUID->"50c08a66-4e65-4112-8ad7-d5d45f281a8c"], +Cell[2355, 70, 171, 3, 50, "Section",ExpressionUUID->"e26a72a6-0937-45b0-a625-f1bdf166fa4e"], +Cell[2529, 75, 899, 29, 48, "Input",ExpressionUUID->"50c08a66-4e65-4112-8ad7-d5d45f281a8c"], Cell[CellGroupData[{ -Cell[3457, 108, 2089, 51, 24, "Input",ExpressionUUID->"6c00d5eb-8ba7-405a-9bf1-5d71e992492f"], -Cell[5549, 161, 29581, 584, 187, "Output",ExpressionUUID->"91d0dd3d-b26c-45d4-b0c1-2273c50e7d81"] +Cell[3453, 108, 2084, 50, 24, "Input",ExpressionUUID->"6c00d5eb-8ba7-405a-9bf1-5d71e992492f"], +Cell[5540, 160, 29600, 583, 177, "Output",ExpressionUUID->"96d8c022-71f7-4175-ad56-0b948701a2c3"] }, Open ]], Cell[CellGroupData[{ -Cell[35167, 750, 363, 8, 22, "Input",ExpressionUUID->"0c67dbb9-49b6-4edb-9219-e0a5cdf9b31d"], -Cell[35533, 760, 471, 7, 35, "Output",ExpressionUUID->"bb552b18-713a-411e-b9bb-b974b3ab87fd"] +Cell[35177, 748, 355, 7, 22, "Input",ExpressionUUID->"0c67dbb9-49b6-4edb-9219-e0a5cdf9b31d"], +Cell[35535, 757, 492, 7, 25, "Output",ExpressionUUID->"85074921-98fb-4fbd-91ef-b733df3a8845"] }, Open ]], -Cell[36019, 770, 436, 12, 35, "Input",ExpressionUUID->"06818f5b-ee0e-4634-b547-e05e415c12a6"], -Cell[36458, 784, 312, 8, 27, "Input",ExpressionUUID->"ab28ae26-b52f-4a56-978d-e7ee3f806eda"], -Cell[36773, 794, 676, 19, 44, "Input",ExpressionUUID->"eec97d73-ae34-443d-825f-cbb8adebe02f"], +Cell[36042, 767, 435, 12, 35, "Input",ExpressionUUID->"06818f5b-ee0e-4634-b547-e05e415c12a6"], +Cell[36480, 781, 312, 8, 27, "Input",ExpressionUUID->"ab28ae26-b52f-4a56-978d-e7ee3f806eda"], +Cell[36795, 791, 676, 19, 44, "Input",ExpressionUUID->"eec97d73-ae34-443d-825f-cbb8adebe02f"], Cell[CellGroupData[{ -Cell[37474, 817, 200, 4, 22, "Input",ExpressionUUID->"83c0ad8f-8d45-4089-b5a6-d03efc9cdfbe"], -Cell[37677, 823, 195, 3, 35, "Output",ExpressionUUID->"28c77ad6-9821-4980-bae1-816090bc8085"] +Cell[37496, 814, 196, 3, 22, "Input",ExpressionUUID->"83c0ad8f-8d45-4089-b5a6-d03efc9cdfbe"], +Cell[37695, 819, 217, 3, 25, "Output",ExpressionUUID->"8a53c8d7-c295-47d2-aa7f-189bb8a2f899"] }, Open ]], -Cell[37887, 829, 2461, 60, 39, "Input",ExpressionUUID->"def223fd-aeee-4091-9e76-97462b62b6cc"], -Cell[40351, 891, 5558, 139, 116, "Input",ExpressionUUID->"f1078ecd-48ad-4003-b086-93bd8c2242bb"], -Cell[45912, 1032, 7561, 192, 193, "Input",ExpressionUUID->"244eac76-0bbb-4e5a-9b06-0f294e654a3f"], +Cell[37927, 825, 2505, 60, 39, "Input",ExpressionUUID->"def223fd-aeee-4091-9e76-97462b62b6cc"], +Cell[40435, 887, 5604, 139, 116, "Input",ExpressionUUID->"f1078ecd-48ad-4003-b086-93bd8c2242bb"], +Cell[46042, 1028, 7652, 192, 193, "Input",ExpressionUUID->"244eac76-0bbb-4e5a-9b06-0f294e654a3f"], Cell[CellGroupData[{ -Cell[53498, 1228, 701, 12, 22, "Input",ExpressionUUID->"28a195c1-e132-4911-80e7-05e2e1470f78"], -Cell[54202, 1242, 32223, 586, 83, "Output",ExpressionUUID->"d05fb8f0-b7b9-47a5-a984-00b2a18f0f10"] +Cell[53719, 1224, 694, 11, 22, "Input",ExpressionUUID->"28a195c1-e132-4911-80e7-05e2e1470f78"], +Cell[54416, 1237, 32307, 586, 74, "Output",ExpressionUUID->"577d2755-a6c5-47a3-9e67-78c4a4c9e8b1"] }, Open ]], Cell[CellGroupData[{ -Cell[86462, 1833, 680, 14, 22, "Input",ExpressionUUID->"e68d9ce5-814e-4498-aeeb-52ccf1b87537"], -Cell[87145, 1849, 31407, 575, 83, "Output",ExpressionUUID->"4fdf1572-8b7c-4352-8f24-df96a72089dd"] +Cell[86760, 1828, 676, 13, 22, "Input",ExpressionUUID->"e68d9ce5-814e-4498-aeeb-52ccf1b87537"], +Cell[87439, 1843, 31492, 576, 74, "Output",ExpressionUUID->"9496b18b-d8fb-4070-8783-a932a49d22f3"] }, Open ]], Cell[CellGroupData[{ -Cell[118589, 2429, 733, 14, 22, "Input",ExpressionUUID->"9df7247c-bae3-4562-95d7-d5d547f8369d"], -Cell[119325, 2445, 31577, 579, 83, "Output",ExpressionUUID->"085d89e1-1412-44e2-9992-5f811f7e8263"] +Cell[118968, 2424, 725, 13, 22, "Input",ExpressionUUID->"9df7247c-bae3-4562-95d7-d5d547f8369d"], +Cell[119696, 2439, 31656, 579, 74, "Output",ExpressionUUID->"9cd54024-e29b-456b-a509-0492f8827637"] }, Open ]], -Cell[150917, 3027, 799, 20, 53, "Input",ExpressionUUID->"9c8fbe7e-534f-4567-b9e1-d7a5c3ce1086"] +Cell[151367, 3021, 795, 19, 53, "Input",ExpressionUUID->"9c8fbe7e-534f-4567-b9e1-d7a5c3ce1086"] }, Open ]], Cell[CellGroupData[{ -Cell[151753, 3052, 157, 3, 50, "Section",ExpressionUUID->"8475cc42-326a-4ebf-b66b-7d80366a5280"], -Cell[151913, 3057, 6536, 183, 341, "Input",ExpressionUUID->"830d12ec-ccc1-4fbc-9de0-2282430f4840"], -Cell[158452, 3242, 1571, 48, 22, "Input",ExpressionUUID->"bcf9e08b-5bc8-4156-8987-ae991b3777be"], -Cell[160026, 3292, 706, 19, 38, "Input",ExpressionUUID->"90676af5-535d-4801-950c-574cc68db098"], +Cell[152199, 3045, 157, 3, 50, "Section",ExpressionUUID->"8475cc42-326a-4ebf-b66b-7d80366a5280"], +Cell[152359, 3050, 6536, 183, 341, "Input",ExpressionUUID->"830d12ec-ccc1-4fbc-9de0-2282430f4840"], +Cell[158898, 3235, 1571, 48, 22, "Input",ExpressionUUID->"bcf9e08b-5bc8-4156-8987-ae991b3777be"], +Cell[160472, 3285, 706, 19, 38, "Input",ExpressionUUID->"90676af5-535d-4801-950c-574cc68db098"], Cell[CellGroupData[{ -Cell[160757, 3315, 241, 5, 22, "Input",ExpressionUUID->"3e4fb69d-9599-4326-945e-414023395a5f"], -Cell[161001, 3322, 1351, 30, 111, "Output",ExpressionUUID->"31ed0430-b8ee-4e74-8482-c51b4ee8b6d3"] +Cell[161203, 3308, 241, 5, 22, "Input",ExpressionUUID->"3e4fb69d-9599-4326-945e-414023395a5f"], +Cell[161447, 3315, 1351, 30, 111, "Output",ExpressionUUID->"31ed0430-b8ee-4e74-8482-c51b4ee8b6d3"] }, Open ]], Cell[CellGroupData[{ -Cell[162389, 3357, 472, 13, 22, "Input",ExpressionUUID->"692c829b-e066-4a5e-bd71-7d2bb33fb03d"], -Cell[162864, 3372, 1358, 31, 111, "Output",ExpressionUUID->"5c44de21-95e3-40ea-8171-bdba9bd0ca88"] +Cell[162835, 3350, 472, 13, 22, "Input",ExpressionUUID->"692c829b-e066-4a5e-bd71-7d2bb33fb03d"], +Cell[163310, 3365, 1358, 31, 111, "Output",ExpressionUUID->"5c44de21-95e3-40ea-8171-bdba9bd0ca88"] }, Open ]], Cell[CellGroupData[{ -Cell[164259, 3408, 714, 21, 22, "Input",ExpressionUUID->"9dee447a-c909-40cb-8546-4295c33c7ecb"], -Cell[164976, 3431, 579, 9, 25, "Output",ExpressionUUID->"a4b05569-f206-413a-a53c-79ed31b50a77"] +Cell[164705, 3401, 714, 21, 22, "Input",ExpressionUUID->"9dee447a-c909-40cb-8546-4295c33c7ecb"], +Cell[165422, 3424, 579, 9, 25, "Output",ExpressionUUID->"a4b05569-f206-413a-a53c-79ed31b50a77"] }, Open ]], -Cell[165570, 3443, 3810, 99, 78, "Input",ExpressionUUID->"ae225317-c8f2-42eb-a092-5a3d6696fcf1"], +Cell[166016, 3436, 3810, 99, 78, "Input",ExpressionUUID->"ae225317-c8f2-42eb-a092-5a3d6696fcf1"], Cell[CellGroupData[{ -Cell[169405, 3546, 998, 25, 22, "Input",ExpressionUUID->"27f3f5fd-a103-416e-9e22-49288939ab46"], -Cell[170406, 3573, 6479, 175, 73, "Output",ExpressionUUID->"7c116b5c-7bb6-4259-98ab-703694af8842"] +Cell[169851, 3539, 998, 25, 22, "Input",ExpressionUUID->"27f3f5fd-a103-416e-9e22-49288939ab46"], +Cell[170852, 3566, 6479, 175, 73, "Output",ExpressionUUID->"7c116b5c-7bb6-4259-98ab-703694af8842"] }, Open ]], Cell[CellGroupData[{ -Cell[176922, 3753, 910, 26, 24, "Input",ExpressionUUID->"ad63e4bc-666e-46ed-8c23-6d418adb2b5d"], -Cell[177835, 3781, 3851, 116, 55, "Output",ExpressionUUID->"2f3c957d-28b6-4286-a434-e11d516208bf"] +Cell[177368, 3746, 910, 26, 24, "Input",ExpressionUUID->"ad63e4bc-666e-46ed-8c23-6d418adb2b5d"], +Cell[178281, 3774, 3851, 116, 55, "Output",ExpressionUUID->"2f3c957d-28b6-4286-a434-e11d516208bf"] }, Open ]], -Cell[181701, 3900, 988, 21, 22, "Input",ExpressionUUID->"c88cdbf9-9e5d-49a2-927e-12c0fc1e998e"], -Cell[182692, 3923, 2608, 55, 24, "Input",ExpressionUUID->"13c828e2-dc96-418a-98b1-bcedb602773f"], +Cell[182147, 3893, 988, 21, 22, "Input",ExpressionUUID->"c88cdbf9-9e5d-49a2-927e-12c0fc1e998e"], +Cell[183138, 3916, 2608, 55, 24, "Input",ExpressionUUID->"13c828e2-dc96-418a-98b1-bcedb602773f"], Cell[CellGroupData[{ -Cell[185325, 3982, 423, 11, 22, "Input",ExpressionUUID->"5547b70f-6ccc-4c3c-b7a2-430267adff70"], -Cell[185751, 3995, 5699, 145, 160, "Output",ExpressionUUID->"36211747-6213-49d3-af64-0c1c0cf9c4be"] +Cell[185771, 3975, 423, 11, 22, "Input",ExpressionUUID->"5547b70f-6ccc-4c3c-b7a2-430267adff70"], +Cell[186197, 3988, 5699, 145, 160, "Output",ExpressionUUID->"36211747-6213-49d3-af64-0c1c0cf9c4be"] }, Open ]], Cell[CellGroupData[{ -Cell[191487, 4145, 435, 11, 22, "Input",ExpressionUUID->"87393889-0e58-4140-85b8-c09bdfb83fa6"], -Cell[191925, 4158, 11216, 318, 177, "Output",ExpressionUUID->"45c1ecc4-6c35-4af1-a8c6-4c6db7168bb2"] +Cell[191933, 4138, 435, 11, 22, "Input",ExpressionUUID->"87393889-0e58-4140-85b8-c09bdfb83fa6"], +Cell[192371, 4151, 11216, 318, 177, "Output",ExpressionUUID->"45c1ecc4-6c35-4af1-a8c6-4c6db7168bb2"] }, Open ]], Cell[CellGroupData[{ -Cell[203178, 4481, 476, 13, 22, "Input",ExpressionUUID->"4d2d8f62-3f6d-45b3-9a63-780219e0e7e8"], -Cell[203657, 4496, 1353, 37, 27, "Output",ExpressionUUID->"76297447-9a1b-4498-9d3f-c2078f821920"] +Cell[203624, 4474, 476, 13, 22, "Input",ExpressionUUID->"4d2d8f62-3f6d-45b3-9a63-780219e0e7e8"], +Cell[204103, 4489, 1353, 37, 27, "Output",ExpressionUUID->"76297447-9a1b-4498-9d3f-c2078f821920"] }, Open ]], Cell[CellGroupData[{ -Cell[205047, 4538, 951, 21, 22, "Input",ExpressionUUID->"83eebe5d-3503-4b31-b14f-639ea14a0248"], -Cell[206001, 4561, 800, 15, 22, "Message",ExpressionUUID->"8caaea4c-f1d2-4f89-97f5-7e5b71ca8e2a"] +Cell[205493, 4531, 951, 21, 22, "Input",ExpressionUUID->"83eebe5d-3503-4b31-b14f-639ea14a0248"], +Cell[206447, 4554, 800, 15, 22, "Message",ExpressionUUID->"8caaea4c-f1d2-4f89-97f5-7e5b71ca8e2a"] }, Open ]], -Cell[206816, 4579, 1110, 23, 22, "Input",ExpressionUUID->"4c448220-e031-41d2-9096-b9e341dcd981"], -Cell[207929, 4604, 3839, 84, 41, "Input",ExpressionUUID->"63ea8c17-6059-4955-9b14-1b9deb692962"], +Cell[207262, 4572, 1110, 23, 22, "Input",ExpressionUUID->"4c448220-e031-41d2-9096-b9e341dcd981"], +Cell[208375, 4597, 3839, 84, 41, "Input",ExpressionUUID->"63ea8c17-6059-4955-9b14-1b9deb692962"], Cell[CellGroupData[{ -Cell[211793, 4692, 1255, 27, 24, "Input",ExpressionUUID->"7fe546c9-0af1-4973-85bb-971e16ca3307"], -Cell[213051, 4721, 1678, 39, 38, "Output",ExpressionUUID->"fafa3e14-532d-4f8f-a8ed-c5504aa4836f"] +Cell[212239, 4685, 1255, 27, 24, "Input",ExpressionUUID->"7fe546c9-0af1-4973-85bb-971e16ca3307"], +Cell[213497, 4714, 1678, 39, 38, "Output",ExpressionUUID->"fafa3e14-532d-4f8f-a8ed-c5504aa4836f"] }, Open ]], -Cell[214744, 4763, 968, 26, 24, "Input",ExpressionUUID->"84934d64-fc27-4a55-a1de-6f9f09494033"], -Cell[215715, 4791, 362, 10, 22, "Input",ExpressionUUID->"83f76904-20b3-4c92-8479-9704a86e9bc3"], -Cell[216080, 4803, 890, 19, 22, "Input",ExpressionUUID->"82f4b3f0-5071-4e29-8e26-febf3110e5e0"], +Cell[215190, 4756, 968, 26, 24, "Input",ExpressionUUID->"84934d64-fc27-4a55-a1de-6f9f09494033"], +Cell[216161, 4784, 362, 10, 22, "Input",ExpressionUUID->"83f76904-20b3-4c92-8479-9704a86e9bc3"], +Cell[216526, 4796, 890, 19, 22, "Input",ExpressionUUID->"82f4b3f0-5071-4e29-8e26-febf3110e5e0"], Cell[CellGroupData[{ -Cell[216995, 4826, 3664, 87, 107, "Input",ExpressionUUID->"acfb6249-e04b-4f94-810b-05af73aac0bc"], -Cell[220662, 4915, 3554, 69, 59, "Output",ExpressionUUID->"22fa23af-56ac-41f0-bad7-75e203e68dfd"] +Cell[217441, 4819, 3664, 87, 107, "Input",ExpressionUUID->"acfb6249-e04b-4f94-810b-05af73aac0bc"], +Cell[221108, 4908, 3554, 69, 59, "Output",ExpressionUUID->"22fa23af-56ac-41f0-bad7-75e203e68dfd"] }, Open ]], Cell[CellGroupData[{ -Cell[224253, 4989, 2813, 63, 24, "Input",ExpressionUUID->"2a2f7dd9-b465-4d3a-81cf-abf195bcfc21"], -Cell[227069, 5054, 680, 13, 22, "Message",ExpressionUUID->"fd049e2d-b962-42ba-8dca-46fc9644cce9"], -Cell[227752, 5069, 505, 11, 22, "Message",ExpressionUUID->"5cb44bf7-173f-499b-851b-adf000d36880"], -Cell[228260, 5082, 505, 11, 22, "Message",ExpressionUUID->"3413d04c-3008-4bee-a8ec-f365f773087f"], -Cell[228768, 5095, 505, 11, 22, "Message",ExpressionUUID->"982a2288-fc78-4c1e-8b15-7a87bdc87b9b"], -Cell[229276, 5108, 549, 11, 22, "Message",ExpressionUUID->"a6869e09-be0b-47fc-9d8f-a7b647e3ebf2"], -Cell[229828, 5121, 680, 13, 22, "Message",ExpressionUUID->"3e572292-7317-4d82-b804-f7ec1744c5da"], -Cell[230511, 5136, 680, 13, 22, "Message",ExpressionUUID->"d651ce85-ec36-45c7-9151-74cc477901a5"], -Cell[231194, 5151, 549, 11, 22, "Message",ExpressionUUID->"9996e476-8dd5-4dff-abe4-3dc38d2bcc7b"] +Cell[224699, 4982, 2813, 63, 24, "Input",ExpressionUUID->"2a2f7dd9-b465-4d3a-81cf-abf195bcfc21"], +Cell[227515, 5047, 680, 13, 22, "Message",ExpressionUUID->"fd049e2d-b962-42ba-8dca-46fc9644cce9"], +Cell[228198, 5062, 505, 11, 22, "Message",ExpressionUUID->"5cb44bf7-173f-499b-851b-adf000d36880"], +Cell[228706, 5075, 505, 11, 22, "Message",ExpressionUUID->"3413d04c-3008-4bee-a8ec-f365f773087f"], +Cell[229214, 5088, 505, 11, 22, "Message",ExpressionUUID->"982a2288-fc78-4c1e-8b15-7a87bdc87b9b"], +Cell[229722, 5101, 549, 11, 22, "Message",ExpressionUUID->"a6869e09-be0b-47fc-9d8f-a7b647e3ebf2"], +Cell[230274, 5114, 680, 13, 22, "Message",ExpressionUUID->"3e572292-7317-4d82-b804-f7ec1744c5da"], +Cell[230957, 5129, 680, 13, 22, "Message",ExpressionUUID->"d651ce85-ec36-45c7-9151-74cc477901a5"], +Cell[231640, 5144, 549, 11, 22, "Message",ExpressionUUID->"9996e476-8dd5-4dff-abe4-3dc38d2bcc7b"] }, Open ]], Cell[CellGroupData[{ -Cell[231780, 5167, 1907, 53, 39, "Input",ExpressionUUID->"f6acd6ad-220b-4828-a7d3-5558b5c91e4c"], -Cell[233690, 5222, 3373, 87, 75, "Output",ExpressionUUID->"9b8635de-045e-4f3a-b8b3-4a1dc739d03e"] +Cell[232226, 5160, 1907, 53, 39, "Input",ExpressionUUID->"f6acd6ad-220b-4828-a7d3-5558b5c91e4c"], +Cell[234136, 5215, 3373, 87, 75, "Output",ExpressionUUID->"9b8635de-045e-4f3a-b8b3-4a1dc739d03e"] }, Open ]], -Cell[237078, 5312, 1583, 41, 24, "Input",ExpressionUUID->"b04acde6-1c4d-4632-b34e-b05a8c3158f7"], +Cell[237524, 5305, 1583, 41, 24, "Input",ExpressionUUID->"b04acde6-1c4d-4632-b34e-b05a8c3158f7"], Cell[CellGroupData[{ -Cell[238686, 5357, 310, 8, 22, "Input",ExpressionUUID->"bb7ea87c-a295-4530-bdcd-103371a64b77"], -Cell[238999, 5367, 75439, 1299, 183, "Output",ExpressionUUID->"471fcd6b-1223-49d9-962f-85e668fab430"] +Cell[239132, 5350, 310, 8, 22, "Input",ExpressionUUID->"bb7ea87c-a295-4530-bdcd-103371a64b77"], +Cell[239445, 5360, 75437, 1299, 183, "Output",ExpressionUUID->"471fcd6b-1223-49d9-962f-85e668fab430"] }, Open ]], -Cell[314453, 6669, 23716, 405, 174, "Input",ExpressionUUID->"c8acd08e-419d-47df-95d8-cd474e7cf4f4"], +Cell[314897, 6662, 23716, 405, 174, "Input",ExpressionUUID->"c8acd08e-419d-47df-95d8-cd474e7cf4f4"], Cell[CellGroupData[{ -Cell[338194, 7078, 3692, 87, 56, "Input",ExpressionUUID->"0012cb53-2118-4c32-9687-3900486d9017"], -Cell[341889, 7167, 609, 12, 22, "Message",ExpressionUUID->"a407657b-19ae-486f-b6cf-16ca559b3fb6"], -Cell[342501, 7181, 611, 12, 22, "Message",ExpressionUUID->"2a251b03-af55-4ee8-b6ee-dc27429eff8a"], -Cell[343115, 7195, 611, 12, 22, "Message",ExpressionUUID->"466d17bf-ce0f-47a2-8764-46320b67ac6e"], -Cell[343729, 7209, 478, 10, 22, "Message",ExpressionUUID->"841bbca7-6ddd-4432-bc00-7d704794b41e"] +Cell[338638, 7071, 3692, 87, 56, "Input",ExpressionUUID->"0012cb53-2118-4c32-9687-3900486d9017"], +Cell[342333, 7160, 609, 12, 22, "Message",ExpressionUUID->"a407657b-19ae-486f-b6cf-16ca559b3fb6"], +Cell[342945, 7174, 609, 12, 22, "Message",ExpressionUUID->"2a251b03-af55-4ee8-b6ee-dc27429eff8a"], +Cell[343557, 7188, 609, 12, 22, "Message",ExpressionUUID->"466d17bf-ce0f-47a2-8764-46320b67ac6e"], +Cell[344169, 7202, 478, 10, 22, "Message",ExpressionUUID->"841bbca7-6ddd-4432-bc00-7d704794b41e"] }, Open ]], Cell[CellGroupData[{ -Cell[344244, 7224, 2254, 58, 22, "Input",ExpressionUUID->"abdd1227-571e-42c2-ba14-b0236a50da8f"], -Cell[346501, 7284, 258497, 4393, 294, "Output",ExpressionUUID->"ccc0c10d-374b-4561-9b69-130306acddb0"] +Cell[344684, 7217, 2254, 58, 22, "Input",ExpressionUUID->"abdd1227-571e-42c2-ba14-b0236a50da8f"], +Cell[346941, 7277, 258497, 4393, 283, "Output",ExpressionUUID->"ccc0c10d-374b-4561-9b69-130306acddb0"] }, Open ]] }, Open ]], Cell[CellGroupData[{ -Cell[605047, 11683, 157, 3, 50, "Section",ExpressionUUID->"3e089f73-01c1-4198-8f45-28504d7853b6"], -Cell[605207, 11688, 8352, 226, 562, "Input",ExpressionUUID->"32615cc9-ab89-4fec-9507-d4081e5ab9af"], -Cell[613562, 11916, 665, 21, 24, "Input",ExpressionUUID->"b5146e99-78bb-48d4-9374-7b833d3a6574"], -Cell[614230, 11939, 1566, 47, 22, "Input",ExpressionUUID->"ae37dedd-da6c-42ec-ae9b-796780482b37"], -Cell[615799, 11988, 701, 18, 38, "Input",ExpressionUUID->"3d84f495-773b-4ce0-a779-44c19e0915c3"], -Cell[616503, 12008, 371, 9, 22, "Input",ExpressionUUID->"618a42f8-b051-4cdf-8473-21e9de937b82"], -Cell[616877, 12019, 373, 9, 22, "Input",ExpressionUUID->"9a83e28a-4231-4cff-9a04-fac75f5e1b4d"], -Cell[617253, 12030, 427, 11, 22, "Input",ExpressionUUID->"43300cae-9f4f-47cf-9813-49db8b5d69a9"], -Cell[617683, 12043, 379, 10, 22, "Input",ExpressionUUID->"e7afa4f7-6f52-45c9-9d8a-53932a27bcf7"], +Cell[605487, 11676, 157, 3, 50, "Section",ExpressionUUID->"3e089f73-01c1-4198-8f45-28504d7853b6"], +Cell[605647, 11681, 8352, 226, 562, "Input",ExpressionUUID->"32615cc9-ab89-4fec-9507-d4081e5ab9af"], +Cell[614002, 11909, 665, 21, 24, "Input",ExpressionUUID->"b5146e99-78bb-48d4-9374-7b833d3a6574"], +Cell[614670, 11932, 1566, 47, 22, "Input",ExpressionUUID->"ae37dedd-da6c-42ec-ae9b-796780482b37"], +Cell[616239, 11981, 701, 18, 38, "Input",ExpressionUUID->"3d84f495-773b-4ce0-a779-44c19e0915c3"], +Cell[616943, 12001, 371, 9, 22, "Input",ExpressionUUID->"618a42f8-b051-4cdf-8473-21e9de937b82"], +Cell[617317, 12012, 373, 9, 22, "Input",ExpressionUUID->"9a83e28a-4231-4cff-9a04-fac75f5e1b4d"], +Cell[617693, 12023, 427, 11, 22, "Input",ExpressionUUID->"43300cae-9f4f-47cf-9813-49db8b5d69a9"], +Cell[618123, 12036, 379, 10, 22, "Input",ExpressionUUID->"e7afa4f7-6f52-45c9-9d8a-53932a27bcf7"], Cell[CellGroupData[{ -Cell[618087, 12057, 384, 7, 22, "Input",ExpressionUUID->"c1a6934f-6252-4ba2-8a31-abb6a974a91c"], -Cell[618474, 12066, 617, 15, 35, "Output",ExpressionUUID->"bafdc24d-ce74-44fa-81b1-b5eed3c1c110"] +Cell[618527, 12050, 384, 7, 22, "Input",ExpressionUUID->"c1a6934f-6252-4ba2-8a31-abb6a974a91c"], +Cell[618914, 12059, 617, 15, 35, "Output",ExpressionUUID->"bafdc24d-ce74-44fa-81b1-b5eed3c1c110"] }, Open ]], -Cell[619106, 12084, 146, 3, 22, "Input",ExpressionUUID->"c7e4db28-e1d9-4e45-8d64-b45ae3f3b02a"], +Cell[619546, 12077, 146, 3, 22, "Input",ExpressionUUID->"c7e4db28-e1d9-4e45-8d64-b45ae3f3b02a"], Cell[CellGroupData[{ -Cell[619277, 12091, 237, 4, 22, "Input",ExpressionUUID->"90f8e6cf-a2cb-4fc4-af6b-a2643f1c18bc"], -Cell[619517, 12097, 1350, 30, 111, "Output",ExpressionUUID->"761ce714-4f2f-4e7a-9a77-4aeb97c7b9e3"] +Cell[619717, 12084, 237, 4, 22, "Input",ExpressionUUID->"90f8e6cf-a2cb-4fc4-af6b-a2643f1c18bc"], +Cell[619957, 12090, 1350, 30, 111, "Output",ExpressionUUID->"761ce714-4f2f-4e7a-9a77-4aeb97c7b9e3"] }, Open ]], Cell[CellGroupData[{ -Cell[620904, 12132, 468, 12, 22, "Input",ExpressionUUID->"8fc542b7-ffb8-43ab-82fe-a6e3bc6c4dc1"], -Cell[621375, 12146, 1356, 31, 111, "Output",ExpressionUUID->"ba200cb0-9e0e-423b-9f5f-963ad56ef299"] +Cell[621344, 12125, 468, 12, 22, "Input",ExpressionUUID->"8fc542b7-ffb8-43ab-82fe-a6e3bc6c4dc1"], +Cell[621815, 12139, 1356, 31, 111, "Output",ExpressionUUID->"ba200cb0-9e0e-423b-9f5f-963ad56ef299"] }, Open ]], Cell[CellGroupData[{ -Cell[622768, 12182, 710, 20, 22, "Input",ExpressionUUID->"d97a16cb-8f13-463e-9235-10cf798e882c"], -Cell[623481, 12204, 575, 8, 25, "Output",ExpressionUUID->"ab9cfbb0-fc67-419d-ba7f-6c7524f65677"] +Cell[623208, 12175, 710, 20, 22, "Input",ExpressionUUID->"d97a16cb-8f13-463e-9235-10cf798e882c"], +Cell[623921, 12197, 575, 8, 25, "Output",ExpressionUUID->"ab9cfbb0-fc67-419d-ba7f-6c7524f65677"] }, Open ]], -Cell[624071, 12215, 4382, 113, 78, "Input",ExpressionUUID->"1be6ad59-07a8-4e68-a148-615473405a94"], +Cell[624511, 12208, 4382, 113, 78, "Input",ExpressionUUID->"1be6ad59-07a8-4e68-a148-615473405a94"], Cell[CellGroupData[{ -Cell[628478, 12332, 244, 5, 22, "Input",ExpressionUUID->"31ecc6b1-3013-4df7-a379-762ad87db2ba"], -Cell[628725, 12339, 4838, 148, 66, "Output",ExpressionUUID->"c29d260e-8842-437a-a5aa-1328cb436e45"] +Cell[628918, 12325, 244, 5, 22, "Input",ExpressionUUID->"31ecc6b1-3013-4df7-a379-762ad87db2ba"], +Cell[629165, 12332, 4838, 148, 66, "Output",ExpressionUUID->"c29d260e-8842-437a-a5aa-1328cb436e45"] }, Open ]], -Cell[633578, 12490, 5182, 145, 95, "Input",ExpressionUUID->"95097ec5-8784-4805-b556-6daf94695fcf"], +Cell[634018, 12483, 5182, 145, 95, "Input",ExpressionUUID->"95097ec5-8784-4805-b556-6daf94695fcf"], Cell[CellGroupData[{ -Cell[638785, 12639, 197, 3, 22, "Input",ExpressionUUID->"54fb42a2-4e37-42ef-bcb5-a2ee989bb8c3"], -Cell[638985, 12644, 9842, 287, 152, "Output",ExpressionUUID->"75df506e-ff6a-4923-b1da-38da451a259d"] +Cell[639225, 12632, 197, 3, 22, "Input",ExpressionUUID->"54fb42a2-4e37-42ef-bcb5-a2ee989bb8c3"], +Cell[639425, 12637, 9842, 287, 152, "Output",ExpressionUUID->"75df506e-ff6a-4923-b1da-38da451a259d"] }, Open ]], Cell[CellGroupData[{ -Cell[648864, 12936, 5332, 137, 148, "Input",ExpressionUUID->"f0db1c0b-165f-4f87-9592-b5d10a026867"], -Cell[654199, 13075, 13259, 326, 176, "Output",ExpressionUUID->"94abb570-dead-4d27-9ab4-47b0a6832b02"] +Cell[649304, 12929, 5332, 137, 148, "Input",ExpressionUUID->"f0db1c0b-165f-4f87-9592-b5d10a026867"], +Cell[654639, 13068, 13259, 326, 176, "Output",ExpressionUUID->"94abb570-dead-4d27-9ab4-47b0a6832b02"] }, Open ]], Cell[CellGroupData[{ -Cell[667495, 13406, 458, 12, 22, "Input",ExpressionUUID->"dca0231b-2ccb-4ad8-ba7d-c5644fabf4cd"], -Cell[667956, 13420, 10619, 274, 154, "Output",ExpressionUUID->"93fcca29-6cfb-44b9-a537-5fa298b15766"] +Cell[667935, 13399, 458, 12, 22, "Input",ExpressionUUID->"dca0231b-2ccb-4ad8-ba7d-c5644fabf4cd"], +Cell[668396, 13413, 10619, 274, 154, "Output",ExpressionUUID->"93fcca29-6cfb-44b9-a537-5fa298b15766"] }, Open ]], Cell[CellGroupData[{ -Cell[678612, 13699, 192, 2, 22, "Input",ExpressionUUID->"b5c3d02d-a185-4dd1-b953-b06af4d48aed"], -Cell[678807, 13703, 10234, 310, 107, "Output",ExpressionUUID->"a298f61a-4c39-4526-8144-4a1ce684b3a3"] +Cell[679052, 13692, 192, 2, 22, "Input",ExpressionUUID->"b5c3d02d-a185-4dd1-b953-b06af4d48aed"], +Cell[679247, 13696, 10234, 310, 107, "Output",ExpressionUUID->"a298f61a-4c39-4526-8144-4a1ce684b3a3"] }, Open ]], Cell[CellGroupData[{ -Cell[689078, 14018, 1098, 27, 22, "Input",ExpressionUUID->"85b738a2-9ed8-4758-a6c3-13831de84fcb"], -Cell[690179, 14047, 5347, 154, 66, "Output",ExpressionUUID->"7780f5a5-3b9f-4878-bca1-49d638b2ede5"] +Cell[689518, 14011, 1098, 27, 22, "Input",ExpressionUUID->"85b738a2-9ed8-4758-a6c3-13831de84fcb"], +Cell[690619, 14040, 5347, 154, 66, "Output",ExpressionUUID->"7780f5a5-3b9f-4878-bca1-49d638b2ede5"] }, Open ]], Cell[CellGroupData[{ -Cell[695563, 14206, 910, 26, 24, "Input",ExpressionUUID->"54f4b878-a43b-49d6-b99e-acf114036072"], -Cell[696476, 14234, 4849, 146, 66, "Output",ExpressionUUID->"8ab0a219-d516-4630-ab17-d2c9ecd07701"] +Cell[696003, 14199, 910, 26, 24, "Input",ExpressionUUID->"54f4b878-a43b-49d6-b99e-acf114036072"], +Cell[696916, 14227, 4849, 146, 66, "Output",ExpressionUUID->"8ab0a219-d516-4630-ab17-d2c9ecd07701"] }, Open ]], -Cell[701340, 14383, 3835, 83, 41, "Input",ExpressionUUID->"19946ab1-9943-42ba-8c04-694cc1f0098d"], +Cell[701780, 14376, 3835, 83, 41, "Input",ExpressionUUID->"19946ab1-9943-42ba-8c04-694cc1f0098d"], Cell[CellGroupData[{ -Cell[705200, 14470, 1251, 26, 24, "Input",ExpressionUUID->"623df1f0-acb4-43e6-b11b-11cede6c62f1"], -Cell[706454, 14498, 1648, 37, 38, "Output",ExpressionUUID->"f98a2dfe-f238-4006-aca1-8b523c40cf8d"] +Cell[705640, 14463, 1251, 26, 24, "Input",ExpressionUUID->"623df1f0-acb4-43e6-b11b-11cede6c62f1"], +Cell[706894, 14491, 1648, 37, 38, "Output",ExpressionUUID->"f98a2dfe-f238-4006-aca1-8b523c40cf8d"] }, Open ]], Cell[CellGroupData[{ -Cell[708139, 14540, 490, 11, 22, "Input",ExpressionUUID->"2dd75e13-4f61-4be7-b65b-acbf57a3d45b"], -Cell[708632, 14553, 8242, 189, 117, "Output",ExpressionUUID->"c4f58aa5-4d98-4810-9646-4e8d42c22b4d"] +Cell[708579, 14533, 490, 11, 22, "Input",ExpressionUUID->"2dd75e13-4f61-4be7-b65b-acbf57a3d45b"], +Cell[709072, 14546, 8242, 189, 117, "Output",ExpressionUUID->"c4f58aa5-4d98-4810-9646-4e8d42c22b4d"] }, Open ]], Cell[CellGroupData[{ -Cell[716911, 14747, 1216, 36, 24, "Input",ExpressionUUID->"785da43f-dcbf-49db-b834-5c4280942ceb"], -Cell[718130, 14785, 7508, 186, 122, "Output",ExpressionUUID->"ef9ef3d0-78d5-4ee8-9f3f-0ea8bcf8e2ee"] +Cell[717351, 14740, 1216, 36, 24, "Input",ExpressionUUID->"785da43f-dcbf-49db-b834-5c4280942ceb"], +Cell[718570, 14778, 7508, 186, 122, "Output",ExpressionUUID->"ef9ef3d0-78d5-4ee8-9f3f-0ea8bcf8e2ee"] }, Open ]], Cell[CellGroupData[{ -Cell[725675, 14976, 1044, 24, 22, "Input",ExpressionUUID->"aff1542a-e458-46e1-bc4e-b34eedfeafcd"], -Cell[726722, 15002, 207, 3, 25, "Output",ExpressionUUID->"540af864-3347-4186-9e31-aa1340e04ef2"] +Cell[726115, 14969, 1044, 24, 22, "Input",ExpressionUUID->"aff1542a-e458-46e1-bc4e-b34eedfeafcd"], +Cell[727162, 14995, 207, 3, 25, "Output",ExpressionUUID->"540af864-3347-4186-9e31-aa1340e04ef2"] }, Open ]], -Cell[726944, 15008, 2604, 54, 24, "Input",ExpressionUUID->"b1a9bc1c-abed-43f0-a0e6-669043a8612a"], +Cell[727384, 15001, 2604, 54, 24, "Input",ExpressionUUID->"b1a9bc1c-abed-43f0-a0e6-669043a8612a"], Cell[CellGroupData[{ -Cell[729573, 15066, 919, 22, 22, "Input",ExpressionUUID->"d0e2a3ad-c754-4c6f-892c-e1eb7382819e"], -Cell[730495, 15090, 9406, 209, 75, "Output",ExpressionUUID->"2ab0480a-d3ff-4a97-b7ed-5c8b82ae738f"] +Cell[730013, 15059, 919, 22, 22, "Input",ExpressionUUID->"d0e2a3ad-c754-4c6f-892c-e1eb7382819e"], +Cell[730935, 15083, 9406, 209, 75, "Output",ExpressionUUID->"2ab0480a-d3ff-4a97-b7ed-5c8b82ae738f"] }, Open ]], Cell[CellGroupData[{ -Cell[739938, 15304, 1564, 47, 24, "Input",ExpressionUUID->"bb7b14e3-b7dc-4aab-b889-d2be5f9e5ca1"], -Cell[741505, 15353, 3570, 109, 76, "Output",ExpressionUUID->"dc4be792-83a9-4fbe-af25-cb419d9bd7f5"] +Cell[740378, 15297, 1564, 47, 24, "Input",ExpressionUUID->"bb7b14e3-b7dc-4aab-b889-d2be5f9e5ca1"], +Cell[741945, 15346, 3570, 109, 76, "Output",ExpressionUUID->"dc4be792-83a9-4fbe-af25-cb419d9bd7f5"] }, Open ]], Cell[CellGroupData[{ -Cell[745112, 15467, 711, 18, 22, "Input",ExpressionUUID->"e749859b-f1bb-4500-b28b-6db621a38217"], -Cell[745826, 15487, 4407, 112, 76, "Output",ExpressionUUID->"d7d109d7-3932-47b3-bf98-64b81ad6ca17"] +Cell[745552, 15460, 711, 18, 22, "Input",ExpressionUUID->"e749859b-f1bb-4500-b28b-6db621a38217"], +Cell[746266, 15480, 4407, 112, 76, "Output",ExpressionUUID->"d7d109d7-3932-47b3-bf98-64b81ad6ca17"] }, Open ]], Cell[CellGroupData[{ -Cell[750270, 15604, 635, 15, 23, "Input",ExpressionUUID->"1e958760-e7cd-4052-b9b9-908474376dba"], -Cell[750908, 15621, 489, 10, 35, "Output",ExpressionUUID->"2ad54e2e-1894-4c5a-b49c-69dc3d8f2778"] +Cell[750710, 15597, 635, 15, 23, "Input",ExpressionUUID->"1e958760-e7cd-4052-b9b9-908474376dba"], +Cell[751348, 15614, 489, 10, 35, "Output",ExpressionUUID->"2ad54e2e-1894-4c5a-b49c-69dc3d8f2778"] }, Open ]], Cell[CellGroupData[{ -Cell[751434, 15636, 718, 14, 22, "Input",ExpressionUUID->"e3e9458f-95e8-4772-8a74-726345ff1051"], -Cell[752155, 15652, 12022, 346, 180, "Output",ExpressionUUID->"365b5ad7-7989-4846-bb39-0e6808cb0ccd"] +Cell[751874, 15629, 718, 14, 22, "Input",ExpressionUUID->"e3e9458f-95e8-4772-8a74-726345ff1051"], +Cell[752595, 15645, 12022, 346, 180, "Output",ExpressionUUID->"365b5ad7-7989-4846-bb39-0e6808cb0ccd"] }, Open ]], Cell[CellGroupData[{ -Cell[764214, 16003, 698, 14, 22, "Input",ExpressionUUID->"13c24c5e-bb61-4d7d-b2bf-3c3997d9edaa"], -Cell[764915, 16019, 205, 4, 35, "Output",ExpressionUUID->"98447f30-3d37-4177-8919-efee0d8245af"] +Cell[764654, 15996, 698, 14, 22, "Input",ExpressionUUID->"13c24c5e-bb61-4d7d-b2bf-3c3997d9edaa"], +Cell[765355, 16012, 205, 4, 35, "Output",ExpressionUUID->"98447f30-3d37-4177-8919-efee0d8245af"] }, Open ]], Cell[CellGroupData[{ -Cell[765157, 16028, 177, 3, 22, "Input",ExpressionUUID->"af6aac65-5a4e-453d-b4b6-17d282a20e18"], -Cell[765337, 16033, 11800, 322, 196, "Output",ExpressionUUID->"3e4a980e-1533-48dd-9ff1-621494d5b9c2"] +Cell[765597, 16021, 177, 3, 22, "Input",ExpressionUUID->"af6aac65-5a4e-453d-b4b6-17d282a20e18"], +Cell[765777, 16026, 11800, 322, 196, "Output",ExpressionUUID->"3e4a980e-1533-48dd-9ff1-621494d5b9c2"] }, Open ]], Cell[CellGroupData[{ -Cell[777174, 16360, 234, 5, 22, "Input",ExpressionUUID->"f42329fb-b20f-4aaa-a8d2-db55af9748ac"], -Cell[777411, 16367, 225, 4, 35, "Output",ExpressionUUID->"05e474ca-1e55-4d23-afd9-d0f3a09207a6"] +Cell[777614, 16353, 234, 5, 22, "Input",ExpressionUUID->"f42329fb-b20f-4aaa-a8d2-db55af9748ac"], +Cell[777851, 16360, 225, 4, 35, "Output",ExpressionUUID->"05e474ca-1e55-4d23-afd9-d0f3a09207a6"] }, Open ]], Cell[CellGroupData[{ -Cell[777673, 16376, 179, 3, 22, "Input",ExpressionUUID->"d10961b8-b152-4e5e-9c29-4145a2972d3d"], -Cell[777855, 16381, 22623, 476, 264, "Output",ExpressionUUID->"c36222bd-4f89-4cc7-a993-0cf35af05bc7"] +Cell[778113, 16369, 179, 3, 22, "Input",ExpressionUUID->"d10961b8-b152-4e5e-9c29-4145a2972d3d"], +Cell[778295, 16374, 22623, 476, 264, "Output",ExpressionUUID->"c36222bd-4f89-4cc7-a993-0cf35af05bc7"] }, Open ]], Cell[CellGroupData[{ -Cell[800515, 16862, 419, 10, 22, "Input",ExpressionUUID->"58abea83-2416-4b80-aea1-49c6f03cd553"], -Cell[800937, 16874, 5669, 143, 160, "Output",ExpressionUUID->"e15a4a61-3508-49a6-873c-f26ddee17deb"] +Cell[800955, 16855, 419, 10, 22, "Input",ExpressionUUID->"58abea83-2416-4b80-aea1-49c6f03cd553"], +Cell[801377, 16867, 5669, 143, 160, "Output",ExpressionUUID->"e15a4a61-3508-49a6-873c-f26ddee17deb"] }, Open ]], Cell[CellGroupData[{ -Cell[806643, 17022, 431, 10, 22, "Input",ExpressionUUID->"4538f42b-62c4-4651-9986-8bec11748d70"], -Cell[807077, 17034, 11191, 317, 177, "Output",ExpressionUUID->"7c39a957-cd36-48d3-a034-eee66c14231d"] +Cell[807083, 17015, 431, 10, 22, "Input",ExpressionUUID->"4538f42b-62c4-4651-9986-8bec11748d70"], +Cell[807517, 17027, 11191, 317, 177, "Output",ExpressionUUID->"7c39a957-cd36-48d3-a034-eee66c14231d"] }, Open ]], Cell[CellGroupData[{ -Cell[818305, 17356, 472, 12, 22, "Input",ExpressionUUID->"b2530e76-38c3-48b8-85fb-23b713cd8c3c"], -Cell[818780, 17370, 1322, 35, 27, "Output",ExpressionUUID->"abded75c-64eb-402a-9a69-78d296d1035c"] +Cell[818745, 17349, 472, 12, 22, "Input",ExpressionUUID->"b2530e76-38c3-48b8-85fb-23b713cd8c3c"], +Cell[819220, 17363, 1322, 35, 27, "Output",ExpressionUUID->"abded75c-64eb-402a-9a69-78d296d1035c"] }, Open ]], Cell[CellGroupData[{ -Cell[820139, 17410, 947, 20, 22, "Input",ExpressionUUID->"583ab52e-3647-429c-9c33-fd12ede259b8"], -Cell[821089, 17432, 775, 15, 22, "Message",ExpressionUUID->"2f4c2728-fd8d-46d6-a68a-371b7c8a7ba9"] +Cell[820579, 17403, 947, 20, 22, "Input",ExpressionUUID->"583ab52e-3647-429c-9c33-fd12ede259b8"], +Cell[821529, 17425, 775, 15, 22, "Message",ExpressionUUID->"2f4c2728-fd8d-46d6-a68a-371b7c8a7ba9"] }, Open ]], -Cell[821879, 17450, 1004, 20, 22, "Input",ExpressionUUID->"e570420b-e9e0-4c23-ae5b-1941f99cb727"], -Cell[822886, 17472, 3835, 83, 41, "Input",ExpressionUUID->"83b8cb66-7a5d-443e-8848-d633f7da5d42"], +Cell[822319, 17443, 1004, 20, 22, "Input",ExpressionUUID->"e570420b-e9e0-4c23-ae5b-1941f99cb727"], +Cell[823326, 17465, 3835, 83, 41, "Input",ExpressionUUID->"83b8cb66-7a5d-443e-8848-d633f7da5d42"], Cell[CellGroupData[{ -Cell[826746, 17559, 1251, 26, 24, "Input",ExpressionUUID->"408b9498-9f18-42c3-a258-3358b138cc65"], -Cell[828000, 17587, 1626, 37, 38, "Output",ExpressionUUID->"e46e4e60-dba7-4188-9de8-05742c779360"] +Cell[827186, 17552, 1251, 26, 24, "Input",ExpressionUUID->"408b9498-9f18-42c3-a258-3358b138cc65"], +Cell[828440, 17580, 1626, 37, 38, "Output",ExpressionUUID->"e46e4e60-dba7-4188-9de8-05742c779360"] }, Open ]], -Cell[829641, 17627, 964, 25, 24, "Input",ExpressionUUID->"59c41cae-4e24-4a51-a7a3-7d500a289340"], -Cell[830608, 17654, 358, 9, 22, "Input",ExpressionUUID->"10d3cd49-4d16-4520-bb58-ea59fc8d7b92"], -Cell[830969, 17665, 886, 18, 22, "Input",ExpressionUUID->"93de0c72-ab3d-4e0e-91df-edd506da949b"], +Cell[830081, 17620, 964, 25, 24, "Input",ExpressionUUID->"59c41cae-4e24-4a51-a7a3-7d500a289340"], +Cell[831048, 17647, 358, 9, 22, "Input",ExpressionUUID->"10d3cd49-4d16-4520-bb58-ea59fc8d7b92"], +Cell[831409, 17658, 886, 18, 22, "Input",ExpressionUUID->"93de0c72-ab3d-4e0e-91df-edd506da949b"], Cell[CellGroupData[{ -Cell[831880, 17687, 3660, 86, 107, "Input",ExpressionUUID->"9e5141ea-32bd-48b0-8277-cb026f090ea9"], -Cell[835543, 17775, 3546, 66, 59, "Output",ExpressionUUID->"0ec956b2-4200-4dbd-bf3a-8e1ba4f9fb29"] +Cell[832320, 17680, 3660, 86, 107, "Input",ExpressionUUID->"9e5141ea-32bd-48b0-8277-cb026f090ea9"], +Cell[835983, 17768, 3546, 66, 59, "Output",ExpressionUUID->"0ec956b2-4200-4dbd-bf3a-8e1ba4f9fb29"] }, Open ]], Cell[CellGroupData[{ -Cell[839126, 17846, 2809, 62, 24, "Input",ExpressionUUID->"15a4bc43-3d38-4bf8-ab87-9fe6c3c52fd5"], -Cell[841938, 17910, 633, 13, 22, "Message",ExpressionUUID->"021c4989-876c-4967-bcac-1f978a0f6419"], -Cell[842574, 17925, 633, 13, 22, "Message",ExpressionUUID->"4c8cb9d5-8149-4cd8-9ae8-7fb98ffaf525"], -Cell[843210, 17940, 633, 13, 22, "Message",ExpressionUUID->"9bc6aaf1-acad-42a4-8e8c-3d1bc23999cc"], -Cell[843846, 17955, 502, 11, 22, "Message",ExpressionUUID->"f629becb-1a0a-41c4-982d-075455cd242a"] +Cell[839566, 17839, 2809, 62, 24, "Input",ExpressionUUID->"15a4bc43-3d38-4bf8-ab87-9fe6c3c52fd5"], +Cell[842378, 17903, 633, 13, 22, "Message",ExpressionUUID->"021c4989-876c-4967-bcac-1f978a0f6419"], +Cell[843014, 17918, 633, 13, 22, "Message",ExpressionUUID->"4c8cb9d5-8149-4cd8-9ae8-7fb98ffaf525"], +Cell[843650, 17933, 633, 13, 22, "Message",ExpressionUUID->"9bc6aaf1-acad-42a4-8e8c-3d1bc23999cc"], +Cell[844286, 17948, 502, 11, 22, "Message",ExpressionUUID->"f629becb-1a0a-41c4-982d-075455cd242a"] }, Open ]], Cell[CellGroupData[{ -Cell[844385, 17971, 1903, 52, 39, "Input",ExpressionUUID->"a6ab04f8-b182-4e06-87d3-44cf4d55f296"], -Cell[846291, 18025, 3335, 87, 75, "Output",ExpressionUUID->"e43b3e00-885a-43e1-b26b-8b1a2615d3fc"] +Cell[844825, 17964, 1903, 52, 39, "Input",ExpressionUUID->"a6ab04f8-b182-4e06-87d3-44cf4d55f296"], +Cell[846731, 18018, 3335, 87, 75, "Output",ExpressionUUID->"e43b3e00-885a-43e1-b26b-8b1a2615d3fc"] }, Open ]], -Cell[849641, 18115, 1579, 40, 24, "Input",ExpressionUUID->"cc4f2eca-a54d-413e-8b18-94ba1c2bbbc2"], +Cell[850081, 18108, 1579, 40, 24, "Input",ExpressionUUID->"cc4f2eca-a54d-413e-8b18-94ba1c2bbbc2"], Cell[CellGroupData[{ -Cell[851245, 18159, 306, 7, 22, "Input",ExpressionUUID->"971b5a9c-8ceb-429f-9eab-88056cb74ad9"], -Cell[851554, 18168, 75499, 1300, 183, "Output",ExpressionUUID->"e2ba4c38-edde-4b75-bc95-88dc47d04160"] +Cell[851685, 18152, 306, 7, 22, "Input",ExpressionUUID->"971b5a9c-8ceb-429f-9eab-88056cb74ad9"], +Cell[851994, 18161, 75499, 1300, 183, "Output",ExpressionUUID->"e2ba4c38-edde-4b75-bc95-88dc47d04160"] }, Open ]], -Cell[927068, 19471, 23714, 405, 174, "Input",ExpressionUUID->"596a8ce7-fc36-4ac8-af24-031757805468"], +Cell[927508, 19464, 23714, 405, 174, "Input",ExpressionUUID->"596a8ce7-fc36-4ac8-af24-031757805468"], Cell[CellGroupData[{ -Cell[950807, 19880, 3572, 83, 39, "Input",ExpressionUUID->"22832d0e-448c-47f2-8f0e-e89d73befd40"], -Cell[954382, 19965, 702, 14, 22, "Message",ExpressionUUID->"0e26f2eb-9d86-492c-91a9-5ea47d8e976a"], -Cell[955087, 19981, 702, 14, 22, "Message",ExpressionUUID->"d7d2d2b6-5759-4cc8-9a15-621a513b57c6"] +Cell[951247, 19873, 3572, 83, 39, "Input",ExpressionUUID->"22832d0e-448c-47f2-8f0e-e89d73befd40"], +Cell[954822, 19958, 702, 14, 22, "Message",ExpressionUUID->"0e26f2eb-9d86-492c-91a9-5ea47d8e976a"], +Cell[955527, 19974, 702, 14, 22, "Message",ExpressionUUID->"d7d2d2b6-5759-4cc8-9a15-621a513b57c6"] }, Open ]], Cell[CellGroupData[{ -Cell[955826, 20000, 2196, 57, 22, "Input",ExpressionUUID->"e61533c0-9653-4007-9f77-db9184a97720"], -Cell[958025, 20059, 216473, 3703, 282, "Output",ExpressionUUID->"0062a0bc-735d-4365-b826-64b7fedf2201"] +Cell[956266, 19993, 2196, 57, 22, "Input",ExpressionUUID->"e61533c0-9653-4007-9f77-db9184a97720"], +Cell[958465, 20052, 216473, 3703, 282, "Output",ExpressionUUID->"0062a0bc-735d-4365-b826-64b7fedf2201"] }, Open ]] }, Closed]] } diff --git a/marginal.tex b/marginal.tex index 39adc40..0eb6e5b 100644 --- a/marginal.tex +++ b/marginal.tex @@ -103,24 +103,24 @@ expressed as \begin{equation} \label{eq:λmin} g(\lambda_\textrm{min}(A)) =\lim_{\beta\to\infty}\int - \frac{d\mathbf s\,\delta(N-\mathbf s^T\mathbf s)e^{-\beta\mathbf s^TA\mathbf s}} - {\int d\mathbf s'\,\delta(N-\mathbf s'^T\mathbf s')e^{-\beta\mathbf s'^TA\mathbf s'}} + \frac{d\mathbf s\,\delta(N-\|\mathbf s\|^2)e^{-\beta\mathbf s^TA\mathbf s}} + {\int d\mathbf s'\,\delta(N-\|\mathbf s'\|^2)e^{-\beta\mathbf s'^TA\mathbf s'}} g\left(\frac{\mathbf s^TA\mathbf s}N\right) \end{equation} Assuming \begin{equation} \begin{aligned} &\lim_{\beta\to\infty}\int\frac{ - d\mathbf s\,\delta(N-\mathbf s^T\mathbf s)e^{-\beta\mathbf s^TA\mathbf s} + d\mathbf s\,\delta(N-\|\mathbf s\|^2)e^{-\beta\mathbf s^TA\mathbf s} }{ - \int d\mathbf s'\,\delta(N-\mathbf s'^T\mathbf s')e^{-\beta\mathbf s'^TA\mathbf s'} + \int d\mathbf s'\,\delta(N-\|\mathbf s'\|^2)e^{-\beta\mathbf s'^TA\mathbf s'} }g\left(\frac{\mathbf s^TA\mathbf s}N\right) \\ &=\int\frac{ - d\mathbf s\,\delta(N-\mathbf s^T\mathbf s)\mathbb 1_{\operatorname{ker}(A-\lambda_\mathrm{min}(A)I)}(\mathbf s) + d\mathbf s\,\delta(N-\|\mathbf s\|^2)\mathbb 1_{\operatorname{ker}(A-\lambda_\mathrm{min}(A)I)}(\mathbf s) }{ - \int d\mathbf s'\,\delta(N-\mathbf s'^T\mathbf s')\mathbb 1_{\operatorname{ker}(A-\lambda_\mathrm{min}(A)I)}(\mathbf s')}g\left(\frac{\mathbf s^TA\mathbf s}N\right) \\ + \int d\mathbf s'\,\delta(N-\|\mathbf s'\|^2)\mathbb 1_{\operatorname{ker}(A-\lambda_\mathrm{min}(A)I)}(\mathbf s')}g\left(\frac{\mathbf s^TA\mathbf s}N\right) \\ &=g(\lambda_\mathrm{min}(A)) - \frac{\int d\mathbf s\,\delta(N-\mathbf s^T\mathbf s)\mathbb 1_{\operatorname{ker}(A-\lambda_\mathrm{min}(A)I)}(\mathbf s)}{\int d\mathbf s'\,\delta(N-\mathbf s'^T\mathbf s')\mathbb 1_{\operatorname{ker}(A-\lambda_\mathrm{min}(A)I)}(\mathbf s')} \\ + \frac{\int d\mathbf s\,\delta(N-\|\mathbf s\|^2)\mathbb 1_{\operatorname{ker}(A-\lambda_\mathrm{min}(A)I)}(\mathbf s)}{\int d\mathbf s'\,\delta(N-\|\mathbf s'\|^2)\mathbb 1_{\operatorname{ker}(A-\lambda_\mathrm{min}(A)I)}(\mathbf s')} \\ &=g(\lambda_\mathrm{min}(A)) \end{aligned} \end{equation} @@ -174,17 +174,17 @@ Using the representation of $\lambda_\mathrm{min}$ defined in \eqref{eq:λmin}, \begin{equation} e^{NG_{\lambda^*}(\mu)} =\overline{ - \lim_{\beta\to\infty}\int\frac{d\mathbf s\,\delta(N-\mathbf s^T\mathbf s)e^{-\beta\mathbf s^T(B+\mu I)\mathbf s}} - {\int d\mathbf s'\,\delta(N-\mathbf s'^T\mathbf s')e^{-\beta\mathbf s'^T(B+\mu I)\mathbf s'}}\,\delta\big(N\lambda^*-\mathbf s^T(B+\mu I)\mathbf s\big) + \lim_{\beta\to\infty}\int\frac{d\mathbf s\,\delta(N-\|\mathbf s\|^2)e^{-\beta\mathbf s^T(B+\mu I)\mathbf s}} + {\int d\mathbf s'\,\delta(N-\|\mathbf s'\|^2)e^{-\beta\mathbf s'^T(B+\mu I)\mathbf s'}}\,\delta\big(N\lambda^*-\mathbf s^T(B+\mu I)\mathbf s\big) } \end{equation} -Using replicas to treat the denominator ($x^{-1}=\lim_{n\to0}x^{n-1}$) +Using replicas to treat the denominator ($x^{-1}=\lim_{m\to0}x^{m-1}$) and transforming the $\delta$-function to its Fourier representation, we have \begin{equation} e^{NG_{\lambda^*}(\mu)} - =\overline{\lim_{\beta\to\infty}\lim_{n\to0}\int d\hat\lambda\prod_{a=1}^n\left[d\mathbf s_a\,\delta(N-\mathbf s_a^T\mathbf s_a)\right] - \exp\left\{-\beta\sum_{a=1}^n\mathbf s_a^T(B+\mu I)\mathbf s_a+\hat\lambda\left[N\lambda^*-\mathbf s_1^T(B+\mu I)\mathbf s_1\right]\right\}} + =\overline{\lim_{\beta\to\infty}\lim_{m\to0}\int d\hat\lambda\prod_{\alpha=1}^m\left[d\mathbf s^\alpha\,\delta(N-\|\mathbf s^\alpha\|^2)\right] + \exp\left\{-\beta\sum_{\alpha=1}^m(\mathbf s^\alpha)^T(B+\mu I)\mathbf s^\alpha+\hat\lambda\left[N\lambda^*-(\mathbf s^1)^T(B+\mu I)\mathbf s^1\right]\right\}} \end{equation} having introduced the parameter $\hat\lambda$ in the Fourier representation of the $\delta$-function. The whole expression, so transformed, is a simple @@ -193,9 +193,9 @@ have \begin{equation} \begin{aligned} &e^{NG_{\lambda^*}(\mu)} - =\lim_{\beta\to\infty}\lim_{n\to0}\int d\hat\lambda\prod_{a=1}^n\left[d\mathbf s_a\,\delta(N-\mathbf s_a^T\mathbf s_a)\right] \\ - &\hspace{10em}\exp\left\{N\left[\hat\lambda(\lambda^*-\mu)-n\beta\mu\right]+\frac{\sigma^2}{N}\left[\beta^2\sum_{ab}^n(\mathbf s_a^T\mathbf s_b)^2 - +2\beta\hat\lambda\sum_a^n(\mathbf s_a^T\mathbf s_1)^2 + =\lim_{\beta\to\infty}\lim_{m\to0}\int d\hat\lambda\prod_{\alpha=1}^m\left[d\mathbf s^\alpha\,\delta(N-\|\mathbf s^\alpha\|^2)\right] \\ + &\hspace{10em}\exp\left\{N\left[\hat\lambda(\lambda^*-\mu)-m\beta\mu\right]+\frac{\sigma^2}{N}\left[\beta^2\sum_{\alpha\gamma}^m(\mathbf s^\alpha\cdot\mathbf s^\gamma)^2 + +2\beta\hat\lambda\sum_\alpha^m(\mathbf s^\alpha\cdot\mathbf s^1)^2 +\hat\lambda^2N^2 \right]\right\} \end{aligned} @@ -231,12 +231,14 @@ and \end{equation} Inserting these expressions and taking the limit of $n$ to zero, we find \begin{equation} - e^{NG_{\lambda^*}(\mu)}=\lim_{\beta\to\infty}\int d\hat\lambda\,dq_0\,d\tilde q_0\,e^{N\mathcal S_\beta(q_0,\tilde q_0,\hat\lambda)} + e^{NG_{\lambda^*}(\mu)} + =\lim_{\beta\to\infty}\int d\hat\lambda\,dq_0\,d\tilde q_0\, + e^{N\mathcal U_\textrm{GOE}(q_0,\tilde q_0,\hat\lambda\mid\beta)} \end{equation} with the effective action \begin{equation} \begin{aligned} - &\mathcal S_\beta(q_0,\tilde q_0,\hat\lambda) \\ + &\mathcal U_\mathrm{GOE}(q_0,\tilde q_0,\hat\lambda\mid\beta) \\ &\quad=\hat\lambda(\lambda^*-\mu)+\sigma^2\left[ 2\beta^2(q_0^2-\tilde q_0^2)+2\beta\hat\lambda(1-\tilde q_0^2)+\hat\lambda^2 \right] \\ @@ -256,7 +258,7 @@ However, taking the limit with $y\neq\tilde y$ results in an expression for the action that diverges with $\beta$. To cure this, we must take $\tilde y=y$. The result is \begin{equation} \begin{aligned} - \mathcal S_\infty(y,\Delta z,\hat\lambda) + \mathcal U_\textrm{GOE}(y,\Delta z,\hat\lambda\mid\infty) &=\hat\lambda(\lambda^*-\mu) +\sigma^2\big[ \hat\lambda^2-4(y+\Delta z) @@ -276,7 +278,8 @@ Inserting this solution into $\mathcal S_\infty$ we find \begin{equation} \label{eq:goe.large.dev} \begin{aligned} &G_{\lambda^*}(\mu) - =\mathop{\textrm{extremum}}_{y,\Delta z,\hat\lambda}\mathcal S_\infty(y,\Delta z,\hat\lambda) \\ + =\mathop{\textrm{extremum}}_{y,\Delta z,\hat\lambda} + \mathcal U_\mathrm{GOE}(y,\Delta z,\hat\lambda\mid\infty) \\ &=-\tfrac{\mu+\lambda^*}{2\sigma}\sqrt{\Big(\tfrac{\mu+\lambda^*}{2\sigma}\Big)^2-1} +\log\left( \tfrac{\mu+\lambda^*}{2\sigma}+\sqrt{\Big(\tfrac{\mu+\lambda^*}{2\sigma}\Big)^2-1} @@ -411,8 +414,8 @@ We further want to control the value of the minimum eigenvalue of the Hessian at &\mathcal N_H(E,\mu,\lambda^*) =\int d\nu_H(\mathbf x,\pmb\omega\mid E,\mu)\,\delta\big(N\lambda^*-\lambda_\mathrm{min}(\operatorname{Hess}H(\mathbf x,\pmb\omega))\big) \\ &=\lim_{\beta\to\infty}\int d\nu_H(\mathbf x,\pmb\omega\mid E,\mu) - \frac{d\mathbf s\,\delta(N-\mathbf s^T\mathbf s)\delta(\mathbf s^T\partial\mathbf g(\mathbf x))e^{-\beta\mathbf s^T\operatorname{Hess}H(\mathbf x,\pmb\omega)\mathbf s}} - {\int d\mathbf s'\,\delta(N-\mathbf s'^T\mathbf s')\delta(\mathbf s'^T\partial\mathbf g(\mathbf x))e^{-\beta\mathbf s'^T\operatorname{Hess}H(\mathbf x,\pmb\omega)\mathbf s'}} + \frac{d\mathbf s\,\delta(N-\|\mathbf s\|^2)\delta(\mathbf s^T\partial\mathbf g(\mathbf x))e^{-\beta\mathbf s^T\operatorname{Hess}H(\mathbf x,\pmb\omega)\mathbf s}} + {\int d\mathbf s'\,\delta(N-\|\mathbf s'\|^2)\delta(\mathbf s'^T\partial\mathbf g(\mathbf x))e^{-\beta\mathbf s'^T\operatorname{Hess}H(\mathbf x,\pmb\omega)\mathbf s'}} \delta\big(N\lambda^*-\mathbf s^T\operatorname{Hess}H(\mathbf x,\pmb\omega)\mathbf s\big) \end{aligned} \end{equation} @@ -437,7 +440,7 @@ again to treat each of the normalizations in the numerator. This leads to the ex &=\lim_{\beta\to\infty}\lim_{n\to0}\frac1N\frac\partial{\partial n}\int\prod_{a=1}^n\Bigg[d\nu_H(\mathbf x_a,\pmb\omega_a\mid E,\mu)\,\delta\big(N\lambda^*-(\mathbf s_a^1)^T\operatorname{Hess}H(\mathbf x_a,\pmb\omega_a)\mathbf s_a^1\big)\\ &\hspace{12em}\times\lim_{m_a\to0} \left(\prod_{\alpha=1}^{m_a} d\mathbf s_a^\alpha - \,\delta\big(N-(\mathbf s_a^\alpha)^T\mathbf s_a^\alpha\big) + \,\delta\big(N-\|\mathbf s_a^\alpha\|^2\big) \,\delta\big((\mathbf s_a^\alpha)^T\partial\mathbf g(\mathbf x_a)\big) \,e^{-\beta(\mathbf s_a^\alpha)^T\operatorname{Hess}H(\mathbf x_a,\pmb\omega_a)\mathbf s_a^\alpha}\right) \Bigg] @@ -651,7 +654,7 @@ have introduced through their scalar products with each other. We therefore make &D_{ab}=\frac1N\hat{\mathbf x}_a\cdot\hat{\mathbf x}_b &G_{ab}=\frac1N\bar{\pmb\eta}_a^T\pmb\eta_b& \\ - &A_{ab}^{\alpha\gamma}=\frac1N\mathbf s_a^\alpha\cdot\mathbf s_b^\gamma + &Q_{ab}^{\alpha\gamma}=\frac1N\mathbf s_a^\alpha\cdot\mathbf s_b^\gamma &X^\alpha_{ab}=\frac1N\mathbf x_a\cdot\mathbf s_b^\alpha& \\ &\hat X^\alpha_{ab}=-i\frac1N\hat{\mathbf x}_a\cdot\mathbf s_b^\alpha&& @@ -663,34 +666,57 @@ This transformation changes the measure of the integral, with \begin{equation} \begin{aligned} &\prod_{a=1}^nd\mathbf x_a\,\frac{d\hat{\mathbf x}_a}{(2\pi)^N}\,d\bar{\pmb\eta}_a\,d\pmb\eta\,\prod_{\alpha=1}^{m_a}d\mathbf s_a^\alpha \\ - &\quad=dC\,dR\,dD\,dG\,dA\,dX\,d\hat X\,(\det J)^{N/2}(\det G)^{-N/2} + &\quad=dC\,dR\,dD\,dG\,dQ\,dX\,d\hat X\,(\det J)^{N/2}(\det G)^{-N} \end{aligned} \end{equation} where $J$ is the Jacobian of the transformation and takes the form \begin{equation} \label{eq:coordinate.jacobian} J=\begin{bmatrix} - C&iR&X^1&\cdots&X^n \\ - iR&D&i\hat X^1&\cdots&i\hat X^m\\ - (X^1)^T&i(\hat X^1)^T&A^{11}&\cdots&A^{1n}\\ + C&iR&X_1&\cdots&X_n \\ + iR&D&i\hat X_1&\cdots&i\hat X_n\\ + X_1^T&i\hat X_1^T&Q_{11}&\cdots&Q_{1n}\\ \vdots&\vdots&\vdots&\ddots&\vdots\\ - (X^n)^T&i(\hat X^n)^T&A^{n1}&\cdots&A^{nn} + X_n^T&i\hat X_n^T&Q_{n1}&\cdots&Q_{nn} \end{bmatrix} \end{equation} and the contribution of the Grassmann integrals produces its own inverted -Jacobian. +Jacobian. The block matrices indicated above are such that $A_{ab}$ is an +$m_a\times m_b$ matrix indexed by the upper indices, while $X_a$ is an $n\times +m_a$ matrix with one lower and one upper index. After these steps, which follow identically to those more carefully outlined in the cited papers \cite{Folena_2020_Rethinking, Kent-Dobias_2023_How}, we arrive at a form of the integral as over an effective action +\begin{widetext} \begin{equation} \begin{aligned} &\Sigma_{\lambda^*}(E,\mu) - =\lim_{\beta\to\infty}\lim_{n\to0}\frac1N\frac\partial{\partial n} - \int dC\,dR\,dD\,dG \\ - &dA\,dX\,d\hat X\, - d\hat\beta\,d\hat\lambda\,e^{N - n\mathcal S_\mathrm{KR}(\hat\beta,\omega,C,R,D,G) - +N\mathcal S_\beta(\omega,\hat\lambda,A,X,\hat X) - } + =\lim_{\beta\to\infty}\lim_{n\to0}\lim_{m_1\cdots m_n\to0} + \frac1N\frac\partial{\partial n} + \int dC\,dR\,dD\,dG\,dQ\,dX\,d\hat X\,d\hat\beta\,d\hat\lambda\, + \exp\Bigg\{ + nN\mathcal S_\mathrm{SSG}(\hat\beta,C,R,D,G\mid E,\mu) \\ + &\qquad + +nN\mathcal U_\mathrm{SSG}(\hat\lambda,C,Q,X,\hat X\mid\beta) + +\frac N2\log\det\left[ + I+\begin{bmatrix} + Q_{11}&\cdots&Q_{1n}\\ + \vdots&\ddots&\vdots\\ + Q_{n1}&\cdots&Q_{nn} + \end{bmatrix}^{-1} + \begin{bmatrix} + X_1^T&i\hat X_1^T\\ + \vdots&\vdots\\ + X_n^T&i\hat X_n^T + \end{bmatrix} + \begin{bmatrix} + C&iR\\iR&D + \end{bmatrix}^{-1} + \begin{bmatrix} + X_1\cdots X_n\\ + i\hat X_1\cdots i\hat X_n + \end{bmatrix} + \right] + \Bigg\} \end{aligned} \end{equation} where the matrix $J$ is the Jacobian associated with the change of variables @@ -700,20 +726,52 @@ terms which only share a dependence on the Lagrange multiplier $\omega$ that enforces the constraint, is generic to Gaussian problems. This is the appearance in practice of the fact mentioned before that conditions on the Hessian do not mostly effect the rest of the complexity problem. -\begin{widetext} - \begin{equation} - \mathcal S_\mathrm{KR} - =\frac12\sum_{ab}\left( - \hat\beta_a\hat\beta_bf(C_{ab}) - +\big(2\hat\beta_a(R_{ab}-F_{ab})-D_{ab}\big)f'(C_{ab}) - +(R_{ab}^2-F_{ab}^2)f''(C_{ab}) + +The effective action $\mathcal S_\mathrm{SSG}$ is precisely that for the +ordinary complexity of stationary points, or +\begin{equation} + \begin{aligned} + &\mathcal S_\mathrm{SSG}(\hat\beta,C,R,D,G\mid E,\mu) + =\hat\beta E-(r_d+g_d)\mu \\ + &+\frac1n\left\{\frac12\sum_{ab}\left( + \hat\beta^2f(C_{ab}) + +\big(2\hat\beta R_{ab}-D_{ab}\big)f'(C_{ab}) + +(R_{ab}^2-G_{ab}^2)f''(C_{ab}) \right) - -\log\det F - \end{equation} - \begin{equation} - \mathcal S_\beta - =\sum_{ab}^n\left[\beta\omega A_{aa}^{bb}+\hat x\omega A_{aa}^{11}+\beta^2f''(1)\sum_{cd}^m(A_{ab}^{cd})^2+\hat x^2f''(1)(A_{ab}^{11})^2+\beta\hat xf''(1)\sum_c^m A_{ab}^{1c}\right] - \end{equation} + +\frac12\log\det\begin{bmatrix}C&iR\\iR^T&D\end{bmatrix} + -\log\det G\right\} + \end{aligned} +\end{equation} +where $r_d$ and $g_d$ are the diagonal elements of $R$ and $G$, respectively. +\begin{equation} + \begin{aligned} + &\mathcal U_\mathrm{SSG}(\hat\lambda,Q,X,\hat X\mid\lambda^*,\mu,C) + =\hat\lambda\lambda^* + +\frac1n\Bigg\{ + \frac12\log\det Q+ + \sum_{a=1}^n\bigg( + \sum_{\alpha=1}^{m_a}\beta\mu Q_{aa}^{\alpha\alpha} + +\hat\lambda\mu Q_{aa}^{11} + \bigg) + +2\sum_{ab}^nf''(C_{ab}) + \\ + &\qquad\times\Bigg[\beta\sum_\alpha^{m_a}\left( + \sum_\gamma^{m_b}(Q_{ab}^{\alpha\gamma})^2 + -\hat\beta(X_{ab}^\alpha)^2 + -2X_{ab}^\alpha\hat X_{ab}^\alpha + \right) + +\hat\lambda\left( + \hat\lambda(Q_{ab}^{11})^2 + -\hat\beta(X_{ab}^1)^2 + -2X_{ab}^1\hat X_{ab}^1 + \right) + +\beta\hat\lambda\left( + \sum_\alpha^{m_a} Q_{ab}^{\alpha1} + +\sum_\alpha^{m_b} Q_{ab}^{1\alpha} + \right)\Bigg] + \Bigg\} + \end{aligned} +\end{equation} \end{widetext} There are some dramatic simplifications that emerge from the structure of this particular problem. First, notice that (outside of the `volume' term due to @@ -730,7 +788,18 @@ external field, the preferred direction can polarize both the direction of typical stationary points \emph{and} their soft eigenvectors. Therefore, in these instances one must account for solutions with nonzero $X$ and $\hat X$. -When the $X$ and $\hat X$ order parameters are zero, as they are here, the term associated with the Jacobian separates into two terms, one dependent only on the order parameters of the traditional complexity problem $C$, $R$, and $D$, and one dependent only on the overlap of the minimum eigenvector, $A$. Now we see that, outside of the Lagrange multiplier $\omega$, the Kac--Rice complexity problem and the problem of fixing the smallest eigenvalue completely decouple. + + +When we take $X=\hat X=0$, $Q^{\alpha\beta}_{ab}=\delta_{ab}Q^{\alpha\beta}$ +independent, and $Q$ to have the planted replica symmetric form of +\eqref{eq:Q.structure}, we find that +\begin{equation} + \mathcal U_\mathrm{SSG}(\hat\lambda,Q,0,0\mid\beta,\lambda^*,\mu,C) + =\mathcal U_\mathrm{GOE}(\hat\lambda,q_0,\tilde q_0\mid\beta) +\end{equation} +with $\sigma=f''(1)$. That is, the effective action for the terms related to +fixing the eigenvalue in the spherical Kac--Rice problem is exactly the same as +that for the \textrm{GOE} problem. \begin{equation} \Sigma_{\lambda^*}(E,\mu) |