summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorJaron Kent-Dobias <jaron@kent-dobias.com>2024-06-28 17:21:48 +0200
committerJaron Kent-Dobias <jaron@kent-dobias.com>2024-06-28 17:21:48 +0200
commit1ff97060e45ba44d503a95995986b682a605b38d (patch)
treebc9106ce18be2e45cfe76bf8b29aa724bc9f9310
parent9fb7efbfafa6351f1af6cf5c46ccc104d6dcdf59 (diff)
downloadmarginal-1ff97060e45ba44d503a95995986b682a605b38d.tar.gz
marginal-1ff97060e45ba44d503a95995986b682a605b38d.tar.bz2
marginal-1ff97060e45ba44d503a95995986b682a605b38d.zip
Fixed some minus signs due to an old convention.
-rw-r--r--marginal.tex14
1 files changed, 7 insertions, 7 deletions
diff --git a/marginal.tex b/marginal.tex
index bb4a96d..b3896db 100644
--- a/marginal.tex
+++ b/marginal.tex
@@ -893,7 +893,7 @@ the contributions from the marginal pieces of the calculation, and is given by
&\mathcal U_\mathrm{SSG}(\hat\lambda,Q,X,\hat X\mid\beta,\lambda^*,\mu,C)
=\hat\lambda\lambda^*
+\lim_{n\to0}\lim_{m_1\cdots m_n\to0}\frac1n\Bigg\{
- \frac12\log\det Q+
+ \frac12\log\det Q-
\sum_{a=1}^n\bigg(
\sum_{\alpha=1}^{m_a}\beta\mu Q_{aa}^{\alpha\alpha}
+\hat\lambda\mu Q_{aa}^{11}
@@ -1124,7 +1124,7 @@ the complexity is likewise given by
\begin{align}
&\mathcal U_\mathrm{MSG}(\hat q,\hat\lambda,Q^{11},Q^{22},Q^{12}\mid\beta,\lambda^*,\omega_1,\omega_2) \notag \\
&\quad=\lim_{m\to0}\bigg\{\sum_{\alpha=1}^m\left[\hat q^\alpha(Q^{11,\alpha\alpha}+Q^{22,\alpha\alpha}-1)-\beta(\omega_1Q^{11,\alpha\alpha}+\omega_2Q^{22,\alpha\alpha}-2\epsilon Q^{12,\alpha\alpha})\right]
- +\hat\lambda(\omega_1Q^{11,11}+\omega_2Q^{22,11}-2\epsilon Q^{12,11}) \notag \\
+ -\hat\lambda(\omega_1Q^{11,11}+\omega_2Q^{22,11}-2\epsilon Q^{12,11}) \notag \\
&\qquad\qquad+\sum_{i=1,2}f_i''(1)\left[\beta^2\sum_{\alpha\gamma}^m(Q^{ii,\alpha\gamma})^2+2\beta\hat\lambda\sum_\alpha^m(Q^{ii,1\alpha})^2+\hat\lambda^2(Q^{ii,11})^2\right]
+\frac12\log\det\begin{bmatrix}
Q^{11}&Q^{12}\\
@@ -1162,12 +1162,12 @@ limit of $m\to0$ is taken, we find
+2(q^{ii}_0)^2
-2(\tilde q^{ii}_0)^2
\right)
- -2\beta\hat\lambda\left(
+ +2\beta\hat\lambda\left(
(\tilde q^{ii}_d)^2-(\tilde q^{ii}_0))^2
\right)
+\hat\lambda^2(\tilde q^{ii}_d)^2
\right]
- +\hat\lambda\tilde q^{ii}_d\omega_i
+ -\hat\lambda\tilde q^{ii}_d\omega_i
-\beta(\tilde q^{ii}_d-q^{ii}_d)\omega_i
\right\} \notag \\
&+\frac12\log\bigg[
@@ -1191,9 +1191,9 @@ limit of $m\to0$ is taken, we find
\bigg]
\notag \\
&-\log\left[(q^{11}_d-q^{11}_0)(q^{22}_d-q^{22}_0)-(q^{12}_d-q^{12}_0)^2\right]
- -2\epsilon\big[\hat\lambda\tilde q^{12}_d
- -\beta(\tilde q^{12}_d-q^{12}_d)\big]
- +\hat q(q^{11}_d+q^{22}_d-1)+\hat{\tilde q}(\tilde q^{11}_d+\tilde q^{22}_d-1)
+ +2\epsilon\big[\hat\lambda\tilde q^{12}_d
+ +\beta(\tilde q^{12}_d-q^{12}_d)\big]
+ -\hat q(q^{11}_d+q^{22}_d-1)+\hat{\tilde q}(\tilde q^{11}_d+\tilde q^{22}_d-1)
\label{eq:multispherical.ansatz}
\end{align}
\end{widetext}