summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorJaron Kent-Dobias <jaron@kent-dobias.com>2024-07-24 15:49:08 +0200
committerJaron Kent-Dobias <jaron@kent-dobias.com>2024-07-24 15:49:08 +0200
commit375a5d19d82ebf40ed6d3dcf11aae94ad70f1a03 (patch)
tree32216bfc805b90fd5904dea3040d94b63efef273
parent1f32126c4b9ad5852b9cd529647a74c7e1f8f65f (diff)
downloadmarginal-375a5d19d82ebf40ed6d3dcf11aae94ad70f1a03.tar.gz
marginal-375a5d19d82ebf40ed6d3dcf11aae94ad70f1a03.tar.bz2
marginal-375a5d19d82ebf40ed6d3dcf11aae94ad70f1a03.zip
Added one citation and amended spacing slightly.
-rw-r--r--marginal.bib14
-rw-r--r--marginal.tex21
2 files changed, 26 insertions, 9 deletions
diff --git a/marginal.bib b/marginal.bib
index cbe6587..007c6ff 100644
--- a/marginal.bib
+++ b/marginal.bib
@@ -333,6 +333,20 @@
doi = {10.1088/1742-5468/abe29f}
}
+@article{Folena_2022_Marginal,
+ author = {Folena, Giampaolo and Urbani, Pierfrancesco},
+ title = {Marginal stability of soft anharmonic mean field spin glasses},
+ journal = {Journal of Statistical Mechanics: Theory and Experiment},
+ publisher = {IOP Publishing},
+ year = {2022},
+ month = {5},
+ number = {5},
+ volume = {2022},
+ pages = {053301},
+ url = {https://doi.org/10.1088%2F1742-5468%2Fac6253},
+ doi = {10.1088/1742-5468/ac6253}
+}
+
@article{Folena_2023_On,
author = {Folena, Giampaolo and Zamponi, Francesco},
title = {On weak ergodicity breaking in mean-field spin glasses},
diff --git a/marginal.tex b/marginal.tex
index f167ec7..8414310 100644
--- a/marginal.tex
+++ b/marginal.tex
@@ -75,13 +75,18 @@ compared to stiff minima or saddle points. This ubiquity of behavior suggests
that the distribution of marginal minima can be used to bound out-of-equilibrium dynamical
behavior.
-Despite their importance in a wide variety of in and out of equilibrium settings \cite{Muller_2015_Marginal, Anderson_1984_Lectures, Sommers_1984_Distribution, Parisi_1995-01_On, Horner_2007_Time, Pankov_2006_Low-temperature, Erba_2024_Quenches, Efros_1985_Coulomb, Shklovskii_2024_Half}, it is not straightforward to condition on the marginality of minima using the
-traditional methods for analyzing the distribution of minima in rugged
-landscapes. Using the method of a Legendre transformation of the Parisi
-parameter corresponding to a set of real replicas, one can force the result to
-correspond with marginal minima by tuning the value of that parameter \cite{Monasson_1995_Structural}. However, this
-results in only a characterization of the threshold energy and cannot characterize marginal minima at
-other energies where they are a minority.
+Despite their importance in a wide variety of in and out of equilibrium
+settings \cite{Muller_2015_Marginal, Anderson_1984_Lectures,
+Sommers_1984_Distribution, Parisi_1995-01_On, Horner_2007_Time,
+Pankov_2006_Low-temperature, Erba_2024_Quenches, Efros_1985_Coulomb,
+Shklovskii_2024_Half, Folena_2022_Marginal}, it is not straightforward to condition on the
+marginality of minima using the traditional methods for analyzing the
+distribution of minima in rugged landscapes. Using the method of a Legendre
+transformation of the Parisi parameter corresponding to a set of real replicas,
+one can force the result to correspond with marginal minima by tuning the value
+of that parameter \cite{Monasson_1995_Structural}. However, this results in
+only a characterization of the threshold energy and cannot characterize
+marginal minima at other energies where they are a minority.
The alternative approach, used to great success in the spherical spin glasses, is to
start by making a detailed understanding of the Hessian matrix at stationary
@@ -517,7 +522,6 @@ $E$, Hessian trace $\mu$, and smallest eigenvalue $\lambda^*$ as
\delta\big(N\lambda^*-\mathbf s^T\operatorname{Hess}H(\mathbf x,\pmb\omega)\mathbf s\big)
\end{aligned}
\end{equation}
-\end{widetext}
where the additional $\delta$-functions
\begin{equation}
\delta(\mathbf s^T\partial\mathbf g(\mathbf x))
@@ -538,7 +542,6 @@ In practice, this can be computed by introducing replicas to treat the
logarithm ($\log x=\lim_{n\to0}\frac\partial{\partial n}x^n$) and introducing another set of replicas
to treat each of the normalizations in the numerator
($x^{-1}=\lim_{m\to-1}x^m$). This leads to the expression
-\begin{widetext}
\begin{equation} \label{eq:min.complexity.expanded}
\begin{aligned}
\Sigma_{\lambda^*}(E,\mu)