summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorJaron Kent-Dobias <jaron@kent-dobias.com>2024-10-25 15:41:22 +0200
committerJaron Kent-Dobias <jaron@kent-dobias.com>2024-10-25 15:41:22 +0200
commit3fdbfe8a8b79f810c173b7eaf657f6fd834d6c0b (patch)
tree8efcf4f02604c9f335f0d31fc3be2dccd01e13c6
parentce8ff3c8932af48b43a3aacdf6b4f34f100c6d8e (diff)
downloadmarginal-3fdbfe8a8b79f810c173b7eaf657f6fd834d6c0b.tar.gz
marginal-3fdbfe8a8b79f810c173b7eaf657f6fd834d6c0b.tar.bz2
marginal-3fdbfe8a8b79f810c173b7eaf657f6fd834d6c0b.zip
Clarified that eigenvalue integral relies on symmetry of matrix.
-rw-r--r--marginal.tex2
1 files changed, 1 insertions, 1 deletions
diff --git a/marginal.tex b/marginal.tex
index 8efa79f..ddd31da 100644
--- a/marginal.tex
+++ b/marginal.tex
@@ -141,7 +141,7 @@ at the bottom on the spectrum.
\subsection{The general method}
-Consider an $N\times N$ real matrix $A$. An arbitrary function $g$ of the
+Consider an $N\times N$ real symmetric matrix $A$. An arbitrary function $g$ of the
minimum eigenvalue of $A$ can be expressed using integrals over $\mathbf
s\in\mathbb R^N$ as
\begin{equation} \label{eq:λmin}