summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorJaron Kent-Dobias <jaron@kent-dobias.com>2023-10-07 15:29:08 +0200
committerJaron Kent-Dobias <jaron@kent-dobias.com>2023-10-07 15:29:08 +0200
commitac27d79183ce80993bc332d6e09e0e12cb967fc3 (patch)
tree308bea4755ee0d536335f270a26121e4d97c6e44
parentf9a34f391dbae4e41d13b4ddde4bde6a8af8d93e (diff)
downloadmarginal-ac27d79183ce80993bc332d6e09e0e12cb967fc3.tar.gz
marginal-ac27d79183ce80993bc332d6e09e0e12cb967fc3.tar.bz2
marginal-ac27d79183ce80993bc332d6e09e0e12cb967fc3.zip
Some work.
-rw-r--r--marginal.tex2
1 files changed, 1 insertions, 1 deletions
diff --git a/marginal.tex b/marginal.tex
index 96c2a99..b840699 100644
--- a/marginal.tex
+++ b/marginal.tex
@@ -141,7 +141,7 @@ we expect no $b$-dependence of this matrix. $A^{aa}$ is the usual
replica-symmetric overlap matrix of the spherical two-spin problem. $A^{ab}$
describes overlaps between eigenvectors at different stationary points and should be a constant $m_a\times m_b$ matrix.
-We will discuss at the end of this paper when these order parameters can be expected to be nonzero, but in this problem all of the $X$s, $\hat X$s, and $A^{ab}$ for $a\neq b$ are zero.
+We will discuss at the end of this paper when these order parameters can be expected to be nonzero, but in this and most isotropic problems all of the $X$s, $\hat X$s, and $A^{ab}$ for $a\neq b$ are zero.
\begin{equation}
\begin{aligned}