summaryrefslogtreecommitdiff
path: root/marginal.tex
diff options
context:
space:
mode:
authorJaron Kent-Dobias <jaron@kent-dobias.com>2024-06-27 10:09:01 +0200
committerJaron Kent-Dobias <jaron@kent-dobias.com>2024-06-27 10:09:01 +0200
commitabab4928e793343d8d7fc917648cbeb43610b93f (patch)
tree72b1bfe2d59c97904e4d160c34e562ddd6ecd532 /marginal.tex
parentfb04cd8066570e9dee724c2419786ea173c96ca0 (diff)
downloadmarginal-abab4928e793343d8d7fc917648cbeb43610b93f.tar.gz
marginal-abab4928e793343d8d7fc917648cbeb43610b93f.tar.bz2
marginal-abab4928e793343d8d7fc917648cbeb43610b93f.zip
More writing in the sum-of-squares section.
Diffstat (limited to 'marginal.tex')
-rw-r--r--marginal.tex18
1 files changed, 16 insertions, 2 deletions
diff --git a/marginal.tex b/marginal.tex
index 21fec76..099f603 100644
--- a/marginal.tex
+++ b/marginal.tex
@@ -552,7 +552,7 @@ In the cases studied here with zero signal-to-noise, a simpler approach is
possible. The marginal stability $\mu=\mu_\text{m}$ can be identified by
requiring that the complexity is stationary with respect to changes in the
value of the minimum eigenvalue $\lambda^*$, or
-\begin{equation}
+\begin{equation} \label{eq:marginal.stability}
0=\frac\partial{\partial\lambda^*}\Sigma_{\lambda^*}(E,\mu_\text{m}(E))\bigg|_{\lambda^*=0}
\end{equation}
The marginal complexity follows by evaluating the complexity conditioned on
@@ -1517,9 +1517,23 @@ significantly higher than the threshold.
The stability, or shift of the trace, for dominant and marginal optima in
the nonlinear sum of squares problem for $\alpha=\frac32$ and
$f(q)=q^2+q^3$.
- } \label{fig:ls.complexity}
+ } \label{fig:ls.stability}
\end{figure}
+Fig.~\ref{fig:ls.stability} shows the associated marginal stability
+$\mu_\mathrm m(E)$ for the same model. Recall that the definition of the
+marginal stability in \eqref{eq:marginal.stability} is that which eliminates
+the variation of $\Sigma_{\lambda^*}(E,\mu)$ with respect to $\lambda^*$ at the
+point $\lambda^*=0$. Unlike the Gaussian spherical spin glass, this varies with
+energy in a nontrivial way. That figure also shows the dominant stability,
+which is the stability associated with the dominant complexity, which coincides
+with the marginal stability only at the threshold energy.
+
+In our companion paper, we explore the relationship between the marginal
+complexity and the performance of two generic algorithms on this model:
+gradient descent and approximate message passing
+\cite{Kent-Dobias_2024_Algorithm-independent}.
+
\cite{Urbani_2023_A, Kamali_2023_Dynamical, Kamali_2023_Stochastic, Urbani_2024_Statistical}
\cite{Montanari_2023_Solving, Montanari_2024_On}