summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
-rw-r--r--figures.nb23960
-rw-r--r--marginal.bib58
-rw-r--r--marginal.tex236
3 files changed, 24196 insertions, 58 deletions
diff --git a/figures.nb b/figures.nb
new file mode 100644
index 0000000..411cf9a
--- /dev/null
+++ b/figures.nb
@@ -0,0 +1,23960 @@
+(* Content-type: application/vnd.wolfram.mathematica *)
+
+(*** Wolfram Notebook File ***)
+(* http://www.wolfram.com/nb *)
+
+(* CreatedBy='Mathematica 14.0' *)
+
+(*CacheID: 234*)
+(* Internal cache information:
+NotebookFileLineBreakTest
+NotebookFileLineBreakTest
+NotebookDataPosition[ 158, 7]
+NotebookDataLength[ 1187648, 23952]
+NotebookOptionsPosition[ 1168333, 23646]
+NotebookOutlinePosition[ 1168732, 23662]
+CellTagsIndexPosition[ 1168689, 23659]
+WindowFrame->Normal*)
+
+(* Beginning of Notebook Content *)
+Notebook[{
+
+Cell[CellGroupData[{
+Cell["Settings", "Section",
+ CellChangeTimes->{{3.915530723154801*^9,
+ 3.915530723762684*^9}},ExpressionUUID->"926df485-ea0b-4c71-a1d6-\
+03ba4988e06d"],
+
+Cell[BoxData[
+ RowBox[{
+ RowBox[{"labelStyle", "=",
+ RowBox[{"LabelStyle", "->",
+ RowBox[{"{",
+ RowBox[{
+ RowBox[{"FontFamily", "->", "\"\<Helvetica\>\""}], ",", "Black", ",",
+ RowBox[{"FontSize", "->", "12"}]}], "}"}]}]}], ";"}]], "Input",
+ CellChangeTimes->{{3.91553073185975*^9, 3.915530734154885*^9}, {
+ 3.9155307742942944`*^9, 3.915530775499718*^9}, {3.91553085987768*^9,
+ 3.915530886189825*^9}, {3.924161179907159*^9, 3.924161182353354*^9}},
+ CellLabel->"In[10]:=",ExpressionUUID->"a4718025-6526-4aa1-b1d9-23f283157609"],
+
+Cell[BoxData[{
+ RowBox[{
+ RowBox[{"SetOptions", "[",
+ RowBox[{"Plot", ",", "labelStyle", ",",
+ RowBox[{"Frame", "->", "True"}], ",",
+ RowBox[{"FrameStyle", "->", "Black"}]}], "]"}],
+ ";"}], "\[IndentingNewLine]",
+ RowBox[{
+ RowBox[{"SetOptions", "[",
+ RowBox[{"ListPlot", ",", "labelStyle", ",",
+ RowBox[{"Frame", "->", "True"}], ",",
+ RowBox[{"FrameStyle", "->", "Black"}]}], "]"}],
+ ";"}], "\[IndentingNewLine]",
+ RowBox[{
+ RowBox[{"SetOptions", "[",
+ RowBox[{"LineLegend", ",", "labelStyle"}], "]"}], ";"}]}], "Input",
+ CellChangeTimes->{{3.915530863366059*^9, 3.915530917598553*^9}, {
+ 3.9155330354943447`*^9, 3.915533038598446*^9}},
+ CellLabel->"In[11]:=",ExpressionUUID->"6297bd5f-9997-4788-b876-fdf7032919da"]
+}, Open ]],
+
+Cell[CellGroupData[{
+
+Cell["Large deviation function", "Section",
+ CellChangeTimes->{{3.915530936792725*^9,
+ 3.9155309437666197`*^9}},ExpressionUUID->"e26a72a6-0937-45b0-a625-\
+f1bdf166fa4e"],
+
+Cell[BoxData[
+ RowBox[{
+ RowBox[{
+ RowBox[{"G", "[", "\[Sigma]_", "]"}], "[", "\[Omega]_", "]"}], ":=",
+ RowBox[{
+ RowBox[{
+ RowBox[{"-",
+ FractionBox["\[Omega]",
+ RowBox[{"2", "\[Sigma]"}]]}],
+ SqrtBox[
+ RowBox[{
+ FractionBox[
+ SuperscriptBox["\[Omega]", "2"],
+ SuperscriptBox[
+ RowBox[{"(",
+ RowBox[{"2", "\[Sigma]"}], ")"}], "2"]], "-", "1"}]]}], "+",
+ RowBox[{"Log", "[",
+ RowBox[{
+ FractionBox["\[Omega]",
+ RowBox[{"2", "\[Sigma]"}]], "+",
+ SqrtBox[
+ RowBox[{
+ FractionBox[
+ SuperscriptBox["\[Omega]", "2"],
+ SuperscriptBox[
+ RowBox[{"(",
+ RowBox[{"2", "\[Sigma]"}], ")"}], "2"]], "-", "1"}]]}],
+ "]"}]}]}]], "Input",
+ CellChangeTimes->{{3.915530599745296*^9, 3.915530671233981*^9}},
+ CellLabel->"In[14]:=",ExpressionUUID->"50c08a66-4e65-4112-8ad7-d5d45f281a8c"],
+
+Cell[CellGroupData[{
+
+Cell[BoxData[
+ RowBox[{"pG", "=",
+ RowBox[{"Plot", "[",
+ RowBox[{
+ RowBox[{"Evaluate", "[",
+ RowBox[{"ReIm", "[",
+ RowBox[{
+ RowBox[{"G", "[", "1", "]"}], "[", "\[Omega]", "]"}], "]"}], "]"}],
+ ",",
+ RowBox[{"{",
+ RowBox[{"\[Omega]", ",", "0", ",", "4"}], "}"}], ",",
+ RowBox[{"FrameLabel", "->",
+ RowBox[{"{",
+ RowBox[{"\"\<\[Mu] / \[Sigma]\>\"", ",",
+ RowBox[{
+ SubscriptBox["G", "0"], "[", "\[Mu]", "]"}]}], "}"}]}], ",",
+ RowBox[{"Epilog", "->",
+ RowBox[{"Inset", "[",
+ RowBox[{
+ RowBox[{"LineLegend", "[",
+ RowBox[{
+ RowBox[{
+ RowBox[{"ColorData", "[", "97", "]"}], "/@",
+ RowBox[{"Range", "[", "2", "]"}]}], ",",
+ RowBox[{"{",
+ RowBox[{"\"\<Real part\>\"", ",", "\"\<Imaginary part\>\""}],
+ "}"}]}], "]"}], ",",
+ RowBox[{"Scaled", "[",
+ RowBox[{"{",
+ RowBox[{"0.3", ",", "0.14"}], "}"}], "]"}]}], "]"}]}], ",",
+ RowBox[{"PlotRange", "->",
+ RowBox[{"{",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"0", ",", "4"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{
+ RowBox[{"-", "1.7"}], ",", "1.7"}], "}"}]}], "}"}]}], ",",
+ RowBox[{"ImageSize", "->", "300"}], ",",
+ RowBox[{"AspectRatio", "->", "1"}]}], "]"}]}]], "Input",
+ CellChangeTimes->{{3.914674053452658*^9, 3.914674367442272*^9}, {
+ 3.914674480941107*^9, 3.914674575350315*^9}, {3.914674677944824*^9,
+ 3.914674791554554*^9}, {3.9155306818184958`*^9, 3.915530695322906*^9}, {
+ 3.915530737284401*^9, 3.915530746827622*^9}, {3.915530779484833*^9,
+ 3.915530780148059*^9}, {3.915530891127125*^9, 3.915530922455567*^9}, {
+ 3.9241609780538807`*^9, 3.924160982965692*^9}, {3.924162186828877*^9,
+ 3.9241621901083317`*^9}, {3.924162311335291*^9, 3.924162320022914*^9}},
+ CellLabel->"In[95]:=",ExpressionUUID->"6c00d5eb-8ba7-405a-9bf1-5d71e992492f"],
+
+Cell[BoxData[
+ GraphicsBox[
+ InterpretationBox[{
+ TagBox[{{{}, {},
+ TagBox[
+ {RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[2],
+ Opacity[1.], LineBox[CompressedData["
+1:eJwBYQKe/SFib1JlAgAAACUAAAACAAAASmXo0cDpdT6G0IoA7dCPvARDGnDf
+GVQ/FLWTwF7adzwzn5icsxlkP1I+PAyhuU08S83Xsp0ZdD+C8avcQI52vFdk
+972SGYQ/t3Yts8eijbzdL4dDjRmUP5x22bnXMH68oBVPhooZpD/X7i6r6FuK
+vIEIsyeJGbQ/kCWqagdCUTxYWaGv8PHEPzpAIbCO63Y8C/+BXEcezz/i4OQN
+hS2QvCVR7ujDi9Q/lS0XJaoecLx3zjk/mPTZPwQiNhbS43u8F7QR3gEB3z+C
+1pgtEyOKPLbiQ8zPPOI/YnpOUGevhzzCap0bWezkP2yxUaKwx3O89SY9D61t
+5z+Q+Lh6HsqTvAL5qxAbJeo/MPoAXfT9WLw2/2C2U67sP2TAhqUzNmw8zIQ0
+zsYq7z+YVPnOkdiCvB+Q6/mp7vA/SAmKz/WXZjzr99/e1TDyP3qPa7xL0348
+pOq7yg6O8z8POzE/QoKDvA4dp+/k5PQ/aIVwbwIHWjyMabVmoCT2P076kYY+
+sXm89kCr5Gh/9z9ATwTvnT5RPHQyxLQWw/g/Tn+Sdizwe7zfrsSL0SH6P4IU
+g6sXY3A8+2rUmyl6+z8QNTnj8ytbPCtBB/5mu/w/xp8tZahJVrxHoiFnsRf+
+P2DeQFG/bUC8dx1fIuFc/z/KsuZJrCB/PGJQMFbcYf8/JGzbAqvcd7xOgwGK
+12b/P9hEGojyLHO8Jumj8c1w/z8QxXDZMOJ/PNS06MC6hP8/8FLnfruoc7ww
+THJflKz/Py7X9EnS5Tq8PzTWh8b6/z+ZaSTAUCZqvG+qLmk=
+ "]], LineBox[CompressedData["
+1:eJwd0A0w1GkcB/D/rrfFsmw65+WakEp5K3fCiCeWWJqJ3YxDzlBnkrfYzjnW
+pVgv5aVO6+W8nV6MXJaNrdXqpw6V8xZxct7PSydR8r723HP3zDzzzGd+832e
+7zwGwVHeZ8kEQTDw/u+cmNaSFJMJRPSYnNkY3H7iYTT9lS4F27MqwKTZGJol
+nd35KthyQ3puTpZg7SM6t1MN29eu9L2XNfy6WCr3Ew272pGfKrMHw4y0Eg06
+gS7tuh9A1neCAsPoI9laeH7P/lKR1AXUJb6vVLXx/Hj+21AdJmwsmCgo6ROo
+ubPj5qFkL4hMp5el7CIQ0uCu0KZYMGUgtSEb4PxaziA3yAd62B3hMmPszes0
+hwp/cF2oV0zYjy0vUpo7GwiStJLy9QPY34yfeVsWBJWNka8/WeD7F3vNpgpD
+IGm3pv2cLZ5vR0TUKIbBsnijP9Qe23T0ab34PISxJqOmHbAfByUOX4yAU7wH
+t8adCTTOpM5HpESD6fwp1T9O4H7i05QiJgcesT0h8yQ2rbjwo/9FcG5yinVg
+4fzhqcLlC9+BX7bFn3d8CVS+crOvrvp7yLBUruaE4D6hFpsH2FyY4UiY9Hjs
+nZI2M9EViBkR/tOagP/HMLEwKygFZC5VwvgknDdqd++jpoKWNl934gp2um/c
+VhgPnMVRc4Js3K9Jcdn5aAaUywwzT9zG7x/iDclZ54DptzoOpEo8z4tLeLiV
+Aw+7aEv1VQSyvJztnh6cC11lW1/rCwi024rhwjK7DrJjAybvxASKLs4X8zpu
+gB8v42V6N4FymY3+5pZ82EH7QGnZxH31Yp1tU0qgtykzzV2G8/N1wwfXSuBG
+uLFi9zaBTjLSRA1hpUBv95MbkichdPpB7DVWGdBTW2WL6iRk2erVqcMvBw1p
+0ZKeEQmV6zJZkYkVQJ11GY71IKH926sVfdy7IA8/C4yKSWj9B6+BCFcBDNkz
+3MZKcf7jutUmXwCCxvnxol9I6AX32ETnrAD8REfp9EoSkjTamhu71ELd/TEO
+ISQhjr7fPve/ayGw2Mhu5DkJUZa5bTo2QngUX93C/0RC41015o6L9XD+y8dv
+lD3IaHBsbzQDGqHaPbj8ySoZce71sgdafoOVd7oaM3w5RImrV92X1A4NrONy
+eQx55C3WT810fQU/uqWW1c/Io8Y03VyboH4wGGEO3kpVQAUv66RPhW/A7khK
+ns5hRVQgfE5MiEYhYFf3BqlPEX1uoeHGHpyAlfasyehkJfQi6rV9u3AKCuQD
+Od57KIiRIt3mJc/CjtGGCnILBX1mqc1tC5kDBW4y2/aCMirY4j+LqHoPRFWg
+YJKugkQL7PWS8A8QUyTIoj9TQZ5tk1f/slmCpoPpFM1IVUTlxv++qr4MmswY
+08vqVPRFmA81uX8Fhs16+uIlVHS78JzF3b41qC113DMVqIbmeNfspLABd/Ym
+CGr61ZDV/0sK/wK+Hf98
+ "]]},
+ Annotation[#, "Charting`Private`Tag#1"]& ],
+ TagBox[
+ {RGBColor[0.880722, 0.611041, 0.142051], AbsoluteThickness[2],
+ Opacity[1.], LineBox[CompressedData["
+1:eJwVzns01HkYBvAhXU6dRG6NkpGSlUqxFUuPdmySyw6booTcQtIoJaXcphAm
+aqYmlSaXhAgNRjdTCYlkU7EZIoep3FeG5ra//eN7vudznvc872vgd8QtUJlE
+InkS7/9/Z6CoTfD1+NbtYXu3SgxmoELVpfeQd2Ed/XDX5LIZmN/i3HhADsCA
+KffUiM4MHFs+VtwkR2K4/Et178IZ7AkQP7lEZmBcY59l48w0hOuTqOlkFmi8
+5mPstmlwtf48f4Gch4W/t+RtiJ9G/LwHq1PIPJxOzhRFfRbDw/P2/bHxOlQY
+UYQxjCksUMR72S9vxfK0MnaB7Q+sch0RvUhth17j6LlKlUlEvbEEZ7ITUzkD
+rQ5lE9DhqXcrKfWgrtjmssvxcVT1UZtbrfvwuXd7V4bhGJ6H3lzqOdQPFfoV
+7Vv8YfwwsllUcngQ9RfcuYt9vkN5plht6apv4Ag78iVCETYpfKv+Kh2CM3uI
+6X95AM0Mizf1JqOIXJvd1enbD/2M7zOFI2PgZ4X1r1Ttw3dxT/d7swmoB0jS
+Vg32IO/boyZV5r943Bix0i72E1T1Ckb7+ydh/Lmpt9bjI9JCKoO4K6egTC+d
+3n/nHaZsi/uDY8WwftHYG89rReTGOp72i2lsFyvHeKi9Qk9pXWqbwU/40tlm
+GmHPIQltv/7LKQmkZ1gHtpNrsGvT/sx1sRJo5h4MWz3Gxz2lgfPmDAlURlO5
+eg18eHPEETZMCW7IdAUOx/l49lJ3h2uOBIzW8ricv6uRRDkwebKJyGOl0f6Z
+VdD4MOzUqCtF8DGSGUufhzXb5sqDHknBuZod/evs+ygrKl7dIZBiyaETI3f5
+pbDQpLk61EvhW0yd7RlWCutBTt6aNiniymrm0dtL4JJu4jg2QORUkk5cwT0c
+7XTmRC+WgW/U9trHswg1EayNaSEyJG8jt0uH87H10xYvWTjhLa5fGYX5eG4n
+PBceKQMloijULTAfTTpGnbRYGXbYWSnXCvPQ9aQ6Vostw5IGnYnBtlyQ5n9q
+zhbIUHaC1dfQcBv2OQYHy3XkIL1wshF3XIcFR9WofpkcNCufvjuh10FhSvr/
+MZDDbItAf0CahZ/R7/1UTOXIWP7qkbZhFkpcU7z32Moh8L6b43GCAw2lcXdZ
+sBxvCzfzTS3ZIImFmovD5Shr8m/b1s7C0FDTO6NjclAWjmX/OMJCfUeeK+2M
+HPSzmx7aFF5GdJmHc24m0a95reOI4SX0+AjsHB7KYZs3+loYzkSze8ks71ri
+Xqajv7wmHXzHrOdH64g+ZoTxuTnpuLQ50vbGGzl8nXfGteWm4o9FxtajfXLE
+GdCSakeTUfz0ojl7gQIU55KEBW8TweHFTBSqKUBfEaRmap4IRlFI+VMtBdR2
+lRwauZoA7yvU9SJ9BUh3RlMOBcVDPVxs8puFAr5RhuNF688iSs9nRa+XAtzq
+xx3SnOPwo5nt7jqggEDtNOdBQSRcEpUufAxS4LNbwrRz2TEYfc0db6ET+7n7
+MuktEWjniQQPGQrERbioio6GQTBYM1mZQuzjzA9gPQ1FsW6qcTmTyAcor+w1
+QpAQtzajgEPYK6eG1REIM6ejPqx7xLyooopX4YNlsdTLF8sJM433MQa9MLdC
+s+FCFTFf7/iNvXEvunWq18ULFLD1c7C4quqOpp3JfjEvCQdn8nbedkPlGc8r
+UU3E/dX012+daUj7IpEdbif6gvI1UybscVK7ZUNIJ+G7z9huU1T4O2QHBnQT
+/TolVl2WtnCJOXLN5wuRs2dtSEq0hNV925a9IsK7ZwxzVpvDqE9dafcw4RGV
+aWq3CdS1vli4ThA2mWPWL6RAas8LdhITDnhMly5VByw+JNX/JEzhkkM/Krb+
+B6Id0V8=
+ "]], LineBox[CompressedData["
+1:eJxFznlI03EABfC5w1053VpEopVTQU2bRM7M6LAwmy5yrpTKJbOgTMxjfzQ6
+Fy4P0vnHUMvNVh4do2akIfYzJSQoErUZKq1VK6VDrahlCnMVxPc9eDw+/70w
+zQnlETqNRtv2t//23aSYMtNpW2n/kx4+mRDMgfupwaEGHizb9+DYsgBYUlVh
+CRLBjZLixFoxLKByRvjL4fnZaBY7BB5WPS/0RsKps53+p6JgqsJi/R0D3+gp
+Gv0hhc+uFm76nATHTu/ljyngblVGX/UeeHtvStnmLHh/rfRVWw5cFc+1afPh
+KS0lF+lgq1dSrWiFlwZ+4wwswMy+Jnu42Y/4+PqHE9x0OrFtl8b66Bfs+RIc
+NFXPIO7K2skw7WASn0szXO2cgsNey8dbDCzijYnlphXr/IkPrhya93PAnmc1
+7mI9m7iRqdYqIzj47+q6Th+AWWf0qqQSLjHtltruFvGIS6/Ya0SP4d41lRxh
+EZ9YKC+NvSBYQuyMG3boKLijeUvEB3UAca5dJgxdhM8brumdtwXEdz6GNgky
+AokrLYY81274sHIm8m4mHEJRHYpsuNp44MklDXxUdvk7TwdLysVp7HZ4ccPp
+gLGb8MTM+xftNrgu+35u6j3YF6MsM1Cwc8TYzHDA3Rfn8h0vYVPyoeiWcTi9
+bW1nigvuOTn4VP8Jro9LMGZOwyVusyrsKxyVUfim/yfM9BttrZuD33YlF+Qt
+wFRBizTeCzes4nt8PvgPfBPSFQ==
+ "]]},
+ Annotation[#, "Charting`Private`Tag#2"]& ], {}}, {}},
+ {"WolframDynamicHighlight", <|
+ "Label" -> {"XYLabel"}, "Ball" -> {"InterpolatedBall"}|>}],
+ StyleBox[
+ DynamicBox[(Charting`HighlightActionBox["DynamicHighlight", {},
+ Slot["HighlightElements"],
+ Slot["LayoutOptions"],
+ Slot["Meta"],
+ Charting`HighlightActionFunction["DynamicHighlight", {{{{}, {},
+ Annotation[{
+ Directive[
+ Opacity[1.],
+ RGBColor[0.368417, 0.506779, 0.709798],
+ AbsoluteThickness[2]],
+ Line[CompressedData["
+1:eJwBYQKe/SFib1JlAgAAACUAAAACAAAASmXo0cDpdT6G0IoA7dCPvARDGnDf
+GVQ/FLWTwF7adzwzn5icsxlkP1I+PAyhuU08S83Xsp0ZdD+C8avcQI52vFdk
+972SGYQ/t3Yts8eijbzdL4dDjRmUP5x22bnXMH68oBVPhooZpD/X7i6r6FuK
+vIEIsyeJGbQ/kCWqagdCUTxYWaGv8PHEPzpAIbCO63Y8C/+BXEcezz/i4OQN
+hS2QvCVR7ujDi9Q/lS0XJaoecLx3zjk/mPTZPwQiNhbS43u8F7QR3gEB3z+C
+1pgtEyOKPLbiQ8zPPOI/YnpOUGevhzzCap0bWezkP2yxUaKwx3O89SY9D61t
+5z+Q+Lh6HsqTvAL5qxAbJeo/MPoAXfT9WLw2/2C2U67sP2TAhqUzNmw8zIQ0
+zsYq7z+YVPnOkdiCvB+Q6/mp7vA/SAmKz/WXZjzr99/e1TDyP3qPa7xL0348
+pOq7yg6O8z8POzE/QoKDvA4dp+/k5PQ/aIVwbwIHWjyMabVmoCT2P076kYY+
+sXm89kCr5Gh/9z9ATwTvnT5RPHQyxLQWw/g/Tn+Sdizwe7zfrsSL0SH6P4IU
+g6sXY3A8+2rUmyl6+z8QNTnj8ytbPCtBB/5mu/w/xp8tZahJVrxHoiFnsRf+
+P2DeQFG/bUC8dx1fIuFc/z/KsuZJrCB/PGJQMFbcYf8/JGzbAqvcd7xOgwGK
+12b/P9hEGojyLHO8Jumj8c1w/z8QxXDZMOJ/PNS06MC6hP8/8FLnfruoc7ww
+THJflKz/Py7X9EnS5Tq8PzTWh8b6/z+ZaSTAUCZqvG+qLmk=
+ "]],
+ Line[CompressedData["
+1:eJwd0A0w1GkcB/D/rrfFsmw65+WakEp5K3fCiCeWWJqJ3YxDzlBnkrfYzjnW
+pVgv5aVO6+W8nV6MXJaNrdXqpw6V8xZxct7PSydR8r723HP3zDzzzGd+832e
+7zwGwVHeZ8kEQTDw/u+cmNaSFJMJRPSYnNkY3H7iYTT9lS4F27MqwKTZGJol
+nd35KthyQ3puTpZg7SM6t1MN29eu9L2XNfy6WCr3Ew272pGfKrMHw4y0Eg06
+gS7tuh9A1neCAsPoI9laeH7P/lKR1AXUJb6vVLXx/Hj+21AdJmwsmCgo6ROo
+ubPj5qFkL4hMp5el7CIQ0uCu0KZYMGUgtSEb4PxaziA3yAd62B3hMmPszes0
+hwp/cF2oV0zYjy0vUpo7GwiStJLy9QPY34yfeVsWBJWNka8/WeD7F3vNpgpD
+IGm3pv2cLZ5vR0TUKIbBsnijP9Qe23T0ab34PISxJqOmHbAfByUOX4yAU7wH
+t8adCTTOpM5HpESD6fwp1T9O4H7i05QiJgcesT0h8yQ2rbjwo/9FcG5yinVg
+4fzhqcLlC9+BX7bFn3d8CVS+crOvrvp7yLBUruaE4D6hFpsH2FyY4UiY9Hjs
+nZI2M9EViBkR/tOagP/HMLEwKygFZC5VwvgknDdqd++jpoKWNl934gp2um/c
+VhgPnMVRc4Js3K9Jcdn5aAaUywwzT9zG7x/iDclZ54DptzoOpEo8z4tLeLiV
+Aw+7aEv1VQSyvJztnh6cC11lW1/rCwi024rhwjK7DrJjAybvxASKLs4X8zpu
+gB8v42V6N4FymY3+5pZ82EH7QGnZxH31Yp1tU0qgtykzzV2G8/N1wwfXSuBG
+uLFi9zaBTjLSRA1hpUBv95MbkichdPpB7DVWGdBTW2WL6iRk2erVqcMvBw1p
+0ZKeEQmV6zJZkYkVQJ11GY71IKH926sVfdy7IA8/C4yKSWj9B6+BCFcBDNkz
+3MZKcf7jutUmXwCCxvnxol9I6AX32ETnrAD8REfp9EoSkjTamhu71ELd/TEO
+ISQhjr7fPve/ayGw2Mhu5DkJUZa5bTo2QngUX93C/0RC41015o6L9XD+y8dv
+lD3IaHBsbzQDGqHaPbj8ySoZce71sgdafoOVd7oaM3w5RImrV92X1A4NrONy
+eQx55C3WT810fQU/uqWW1c/Io8Y03VyboH4wGGEO3kpVQAUv66RPhW/A7khK
+ns5hRVQgfE5MiEYhYFf3BqlPEX1uoeHGHpyAlfasyehkJfQi6rV9u3AKCuQD
+Od57KIiRIt3mJc/CjtGGCnILBX1mqc1tC5kDBW4y2/aCMirY4j+LqHoPRFWg
+YJKugkQL7PWS8A8QUyTIoj9TQZ5tk1f/slmCpoPpFM1IVUTlxv++qr4MmswY
+08vqVPRFmA81uX8Fhs16+uIlVHS78JzF3b41qC113DMVqIbmeNfspLABd/Ym
+CGr61ZDV/0sK/wK+Hf98
+ "]]}, "Charting`Private`Tag#1"],
+ Annotation[{
+ Directive[
+ Opacity[1.],
+ RGBColor[0.880722, 0.611041, 0.142051],
+ AbsoluteThickness[2]],
+ Line[CompressedData["
+1:eJwVzns01HkYBvAhXU6dRG6NkpGSlUqxFUuPdmySyw6booTcQtIoJaXcphAm
+aqYmlSaXhAgNRjdTCYlkU7EZIoep3FeG5ra//eN7vudznvc872vgd8QtUJlE
+InkS7/9/Z6CoTfD1+NbtYXu3SgxmoELVpfeQd2Ed/XDX5LIZmN/i3HhADsCA
+KffUiM4MHFs+VtwkR2K4/Et178IZ7AkQP7lEZmBcY59l48w0hOuTqOlkFmi8
+5mPstmlwtf48f4Gch4W/t+RtiJ9G/LwHq1PIPJxOzhRFfRbDw/P2/bHxOlQY
+UYQxjCksUMR72S9vxfK0MnaB7Q+sch0RvUhth17j6LlKlUlEvbEEZ7ITUzkD
+rQ5lE9DhqXcrKfWgrtjmssvxcVT1UZtbrfvwuXd7V4bhGJ6H3lzqOdQPFfoV
+7Vv8YfwwsllUcngQ9RfcuYt9vkN5plht6apv4Ag78iVCETYpfKv+Kh2CM3uI
+6X95AM0Mizf1JqOIXJvd1enbD/2M7zOFI2PgZ4X1r1Ttw3dxT/d7swmoB0jS
+Vg32IO/boyZV5r943Bix0i72E1T1Ckb7+ydh/Lmpt9bjI9JCKoO4K6egTC+d
+3n/nHaZsi/uDY8WwftHYG89rReTGOp72i2lsFyvHeKi9Qk9pXWqbwU/40tlm
+GmHPIQltv/7LKQmkZ1gHtpNrsGvT/sx1sRJo5h4MWz3Gxz2lgfPmDAlURlO5
+eg18eHPEETZMCW7IdAUOx/l49lJ3h2uOBIzW8ricv6uRRDkwebKJyGOl0f6Z
+VdD4MOzUqCtF8DGSGUufhzXb5sqDHknBuZod/evs+ygrKl7dIZBiyaETI3f5
+pbDQpLk61EvhW0yd7RlWCutBTt6aNiniymrm0dtL4JJu4jg2QORUkk5cwT0c
+7XTmRC+WgW/U9trHswg1EayNaSEyJG8jt0uH87H10xYvWTjhLa5fGYX5eG4n
+PBceKQMloijULTAfTTpGnbRYGXbYWSnXCvPQ9aQ6Vostw5IGnYnBtlyQ5n9q
+zhbIUHaC1dfQcBv2OQYHy3XkIL1wshF3XIcFR9WofpkcNCufvjuh10FhSvr/
+MZDDbItAf0CahZ/R7/1UTOXIWP7qkbZhFkpcU7z32Moh8L6b43GCAw2lcXdZ
+sBxvCzfzTS3ZIImFmovD5Shr8m/b1s7C0FDTO6NjclAWjmX/OMJCfUeeK+2M
+HPSzmx7aFF5GdJmHc24m0a95reOI4SX0+AjsHB7KYZs3+loYzkSze8ks71ri
+Xqajv7wmHXzHrOdH64g+ZoTxuTnpuLQ50vbGGzl8nXfGteWm4o9FxtajfXLE
+GdCSakeTUfz0ojl7gQIU55KEBW8TweHFTBSqKUBfEaRmap4IRlFI+VMtBdR2
+lRwauZoA7yvU9SJ9BUh3RlMOBcVDPVxs8puFAr5RhuNF688iSs9nRa+XAtzq
+xx3SnOPwo5nt7jqggEDtNOdBQSRcEpUufAxS4LNbwrRz2TEYfc0db6ET+7n7
+MuktEWjniQQPGQrERbioio6GQTBYM1mZQuzjzA9gPQ1FsW6qcTmTyAcor+w1
+QpAQtzajgEPYK6eG1REIM6ejPqx7xLyooopX4YNlsdTLF8sJM433MQa9MLdC
+s+FCFTFf7/iNvXEvunWq18ULFLD1c7C4quqOpp3JfjEvCQdn8nbedkPlGc8r
+UU3E/dX012+daUj7IpEdbif6gvI1UybscVK7ZUNIJ+G7z9huU1T4O2QHBnQT
+/TolVl2WtnCJOXLN5wuRs2dtSEq0hNV925a9IsK7ZwxzVpvDqE9dafcw4RGV
+aWq3CdS1vli4ThA2mWPWL6RAas8LdhITDnhMly5VByw+JNX/JEzhkkM/Krb+
+B6Id0V8=
+ "]],
+ Line[CompressedData["
+1:eJxFznlI03EABfC5w1053VpEopVTQU2bRM7M6LAwmy5yrpTKJbOgTMxjfzQ6
+Fy4P0vnHUMvNVh4do2akIfYzJSQoErUZKq1VK6VDrahlCnMVxPc9eDw+/70w
+zQnlETqNRtv2t//23aSYMtNpW2n/kx4+mRDMgfupwaEGHizb9+DYsgBYUlVh
+CRLBjZLixFoxLKByRvjL4fnZaBY7BB5WPS/0RsKps53+p6JgqsJi/R0D3+gp
+Gv0hhc+uFm76nATHTu/ljyngblVGX/UeeHtvStnmLHh/rfRVWw5cFc+1afPh
+KS0lF+lgq1dSrWiFlwZ+4wwswMy+Jnu42Y/4+PqHE9x0OrFtl8b66Bfs+RIc
+NFXPIO7K2skw7WASn0szXO2cgsNey8dbDCzijYnlphXr/IkPrhya93PAnmc1
+7mI9m7iRqdYqIzj47+q6Th+AWWf0qqQSLjHtltruFvGIS6/Ya0SP4d41lRxh
+EZ9YKC+NvSBYQuyMG3boKLijeUvEB3UAca5dJgxdhM8brumdtwXEdz6GNgky
+AokrLYY81274sHIm8m4mHEJRHYpsuNp44MklDXxUdvk7TwdLysVp7HZ4ccPp
+gLGb8MTM+xftNrgu+35u6j3YF6MsM1Cwc8TYzHDA3Rfn8h0vYVPyoeiWcTi9
+bW1nigvuOTn4VP8Jro9LMGZOwyVusyrsKxyVUfim/yfM9BttrZuD33YlF+Qt
+wFRBizTeCzes4nt8PvgPfBPSFQ==
+ "]]}, "Charting`Private`Tag#2"], {}}}, {}}, <|
+ "HighlightElements" -> <|
+ "Label" -> {"XYLabel"}, "Ball" -> {"InterpolatedBall"}|>,
+ "LayoutOptions" -> <|
+ "PanelPlotLayout" -> <||>, "PlotRange" -> {{0., 4.}, {-1.7, 1.7}},
+ "Frame" -> {{True, True}, {True, True}}, "AxesOrigin" -> {0, 0},
+ "ImageSize" -> {300, 300}, "Axes" -> {True, True},
+ "LabelStyle" -> {FontFamily -> "Helvetica",
+ GrayLevel[0], FontSize -> 12}, "AspectRatio" -> 1,
+ "DefaultStyle" -> {
+ Directive[
+ Opacity[1.],
+ RGBColor[0.880722, 0.611041, 0.142051],
+ AbsoluteThickness[2]],
+ Directive[
+ Opacity[1.],
+ RGBColor[0.368417, 0.506779, 0.709798],
+ AbsoluteThickness[2]]},
+ "HighlightLabelingFunctions" -> <|"CoordinatesToolOptions" -> ({
+ Identity[
+ Part[#, 1]],
+ Identity[
+ Part[#, 2]]}& ),
+ "ScalingFunctions" -> {{Identity, Identity}, {
+ Identity, Identity}}|>, "Primitives" -> {}, "GCFlag" ->
+ False|>,
+ "Meta" -> <|
+ "DefaultHighlight" -> {"Dynamic", None}, "Index" -> {}, "Function" ->
+ Plot, "GroupHighlight" -> False|>|>]]& )[<|
+ "HighlightElements" -> <|
+ "Label" -> {"XYLabel"}, "Ball" -> {"InterpolatedBall"}|>,
+ "LayoutOptions" -> <|
+ "PanelPlotLayout" -> <||>, "PlotRange" -> {{0., 4.}, {-1.7, 1.7}},
+ "Frame" -> {{True, True}, {True, True}}, "AxesOrigin" -> {0, 0},
+ "ImageSize" -> {300, 300}, "Axes" -> {True, True},
+ "LabelStyle" -> {FontFamily -> "Helvetica",
+ GrayLevel[0], FontSize -> 12}, "AspectRatio" -> 1, "DefaultStyle" -> {
+ Directive[
+ Opacity[1.],
+ RGBColor[0.880722, 0.611041, 0.142051],
+ AbsoluteThickness[2]],
+ Directive[
+ Opacity[1.],
+ RGBColor[0.368417, 0.506779, 0.709798],
+ AbsoluteThickness[2]]},
+ "HighlightLabelingFunctions" -> <|"CoordinatesToolOptions" -> ({
+ Identity[
+ Part[#, 1]],
+ Identity[
+ Part[#, 2]]}& ),
+ "ScalingFunctions" -> {{Identity, Identity}, {
+ Identity, Identity}}|>, "Primitives" -> {}, "GCFlag" -> False|>,
+ "Meta" -> <|
+ "DefaultHighlight" -> {"Dynamic", None}, "Index" -> {}, "Function" ->
+ Plot, "GroupHighlight" -> False|>|>],
+ ImageSizeCache->{{4.503599627370496*^15, -4.503599627370496*^15}, {
+ 4.503599627370496*^15, -4.503599627370496*^15}}],
+ Selectable->False]},
+ Annotation[{{{{}, {},
+ Annotation[{
+ Directive[
+ Opacity[1.],
+ RGBColor[0.368417, 0.506779, 0.709798],
+ AbsoluteThickness[2]],
+ Line[CompressedData["
+1:eJwBYQKe/SFib1JlAgAAACUAAAACAAAASmXo0cDpdT6G0IoA7dCPvARDGnDf
+GVQ/FLWTwF7adzwzn5icsxlkP1I+PAyhuU08S83Xsp0ZdD+C8avcQI52vFdk
+972SGYQ/t3Yts8eijbzdL4dDjRmUP5x22bnXMH68oBVPhooZpD/X7i6r6FuK
+vIEIsyeJGbQ/kCWqagdCUTxYWaGv8PHEPzpAIbCO63Y8C/+BXEcezz/i4OQN
+hS2QvCVR7ujDi9Q/lS0XJaoecLx3zjk/mPTZPwQiNhbS43u8F7QR3gEB3z+C
+1pgtEyOKPLbiQ8zPPOI/YnpOUGevhzzCap0bWezkP2yxUaKwx3O89SY9D61t
+5z+Q+Lh6HsqTvAL5qxAbJeo/MPoAXfT9WLw2/2C2U67sP2TAhqUzNmw8zIQ0
+zsYq7z+YVPnOkdiCvB+Q6/mp7vA/SAmKz/WXZjzr99/e1TDyP3qPa7xL0348
+pOq7yg6O8z8POzE/QoKDvA4dp+/k5PQ/aIVwbwIHWjyMabVmoCT2P076kYY+
+sXm89kCr5Gh/9z9ATwTvnT5RPHQyxLQWw/g/Tn+Sdizwe7zfrsSL0SH6P4IU
+g6sXY3A8+2rUmyl6+z8QNTnj8ytbPCtBB/5mu/w/xp8tZahJVrxHoiFnsRf+
+P2DeQFG/bUC8dx1fIuFc/z/KsuZJrCB/PGJQMFbcYf8/JGzbAqvcd7xOgwGK
+12b/P9hEGojyLHO8Jumj8c1w/z8QxXDZMOJ/PNS06MC6hP8/8FLnfruoc7ww
+THJflKz/Py7X9EnS5Tq8PzTWh8b6/z+ZaSTAUCZqvG+qLmk=
+ "]],
+ Line[CompressedData["
+1:eJwd0A0w1GkcB/D/rrfFsmw65+WakEp5K3fCiCeWWJqJ3YxDzlBnkrfYzjnW
+pVgv5aVO6+W8nV6MXJaNrdXqpw6V8xZxct7PSydR8r723HP3zDzzzGd+832e
+7zwGwVHeZ8kEQTDw/u+cmNaSFJMJRPSYnNkY3H7iYTT9lS4F27MqwKTZGJol
+nd35KthyQ3puTpZg7SM6t1MN29eu9L2XNfy6WCr3Ew272pGfKrMHw4y0Eg06
+gS7tuh9A1neCAsPoI9laeH7P/lKR1AXUJb6vVLXx/Hj+21AdJmwsmCgo6ROo
+ubPj5qFkL4hMp5el7CIQ0uCu0KZYMGUgtSEb4PxaziA3yAd62B3hMmPszes0
+hwp/cF2oV0zYjy0vUpo7GwiStJLy9QPY34yfeVsWBJWNka8/WeD7F3vNpgpD
+IGm3pv2cLZ5vR0TUKIbBsnijP9Qe23T0ab34PISxJqOmHbAfByUOX4yAU7wH
+t8adCTTOpM5HpESD6fwp1T9O4H7i05QiJgcesT0h8yQ2rbjwo/9FcG5yinVg
+4fzhqcLlC9+BX7bFn3d8CVS+crOvrvp7yLBUruaE4D6hFpsH2FyY4UiY9Hjs
+nZI2M9EViBkR/tOagP/HMLEwKygFZC5VwvgknDdqd++jpoKWNl934gp2um/c
+VhgPnMVRc4Js3K9Jcdn5aAaUywwzT9zG7x/iDclZ54DptzoOpEo8z4tLeLiV
+Aw+7aEv1VQSyvJztnh6cC11lW1/rCwi024rhwjK7DrJjAybvxASKLs4X8zpu
+gB8v42V6N4FymY3+5pZ82EH7QGnZxH31Yp1tU0qgtykzzV2G8/N1wwfXSuBG
+uLFi9zaBTjLSRA1hpUBv95MbkichdPpB7DVWGdBTW2WL6iRk2erVqcMvBw1p
+0ZKeEQmV6zJZkYkVQJ11GY71IKH926sVfdy7IA8/C4yKSWj9B6+BCFcBDNkz
+3MZKcf7jutUmXwCCxvnxol9I6AX32ETnrAD8REfp9EoSkjTamhu71ELd/TEO
+ISQhjr7fPve/ayGw2Mhu5DkJUZa5bTo2QngUX93C/0RC41015o6L9XD+y8dv
+lD3IaHBsbzQDGqHaPbj8ySoZce71sgdafoOVd7oaM3w5RImrV92X1A4NrONy
+eQx55C3WT810fQU/uqWW1c/Io8Y03VyboH4wGGEO3kpVQAUv66RPhW/A7khK
+ns5hRVQgfE5MiEYhYFf3BqlPEX1uoeHGHpyAlfasyehkJfQi6rV9u3AKCuQD
+Od57KIiRIt3mJc/CjtGGCnILBX1mqc1tC5kDBW4y2/aCMirY4j+LqHoPRFWg
+YJKugkQL7PWS8A8QUyTIoj9TQZ5tk1f/slmCpoPpFM1IVUTlxv++qr4MmswY
+08vqVPRFmA81uX8Fhs16+uIlVHS78JzF3b41qC113DMVqIbmeNfspLABd/Ym
+CGr61ZDV/0sK/wK+Hf98
+ "]]}, "Charting`Private`Tag#1"],
+ Annotation[{
+ Directive[
+ Opacity[1.],
+ RGBColor[0.880722, 0.611041, 0.142051],
+ AbsoluteThickness[2]],
+ Line[CompressedData["
+1:eJwVzns01HkYBvAhXU6dRG6NkpGSlUqxFUuPdmySyw6booTcQtIoJaXcphAm
+aqYmlSaXhAgNRjdTCYlkU7EZIoep3FeG5ra//eN7vudznvc872vgd8QtUJlE
+InkS7/9/Z6CoTfD1+NbtYXu3SgxmoELVpfeQd2Ed/XDX5LIZmN/i3HhADsCA
+KffUiM4MHFs+VtwkR2K4/Et178IZ7AkQP7lEZmBcY59l48w0hOuTqOlkFmi8
+5mPstmlwtf48f4Gch4W/t+RtiJ9G/LwHq1PIPJxOzhRFfRbDw/P2/bHxOlQY
+UYQxjCksUMR72S9vxfK0MnaB7Q+sch0RvUhth17j6LlKlUlEvbEEZ7ITUzkD
+rQ5lE9DhqXcrKfWgrtjmssvxcVT1UZtbrfvwuXd7V4bhGJ6H3lzqOdQPFfoV
+7Vv8YfwwsllUcngQ9RfcuYt9vkN5plht6apv4Ag78iVCETYpfKv+Kh2CM3uI
+6X95AM0Mizf1JqOIXJvd1enbD/2M7zOFI2PgZ4X1r1Ttw3dxT/d7swmoB0jS
+Vg32IO/boyZV5r943Bix0i72E1T1Ckb7+ydh/Lmpt9bjI9JCKoO4K6egTC+d
+3n/nHaZsi/uDY8WwftHYG89rReTGOp72i2lsFyvHeKi9Qk9pXWqbwU/40tlm
+GmHPIQltv/7LKQmkZ1gHtpNrsGvT/sx1sRJo5h4MWz3Gxz2lgfPmDAlURlO5
+eg18eHPEETZMCW7IdAUOx/l49lJ3h2uOBIzW8ricv6uRRDkwebKJyGOl0f6Z
+VdD4MOzUqCtF8DGSGUufhzXb5sqDHknBuZod/evs+ygrKl7dIZBiyaETI3f5
+pbDQpLk61EvhW0yd7RlWCutBTt6aNiniymrm0dtL4JJu4jg2QORUkk5cwT0c
+7XTmRC+WgW/U9trHswg1EayNaSEyJG8jt0uH87H10xYvWTjhLa5fGYX5eG4n
+PBceKQMloijULTAfTTpGnbRYGXbYWSnXCvPQ9aQ6Vostw5IGnYnBtlyQ5n9q
+zhbIUHaC1dfQcBv2OQYHy3XkIL1wshF3XIcFR9WofpkcNCufvjuh10FhSvr/
+MZDDbItAf0CahZ/R7/1UTOXIWP7qkbZhFkpcU7z32Moh8L6b43GCAw2lcXdZ
+sBxvCzfzTS3ZIImFmovD5Shr8m/b1s7C0FDTO6NjclAWjmX/OMJCfUeeK+2M
+HPSzmx7aFF5GdJmHc24m0a95reOI4SX0+AjsHB7KYZs3+loYzkSze8ks71ri
+Xqajv7wmHXzHrOdH64g+ZoTxuTnpuLQ50vbGGzl8nXfGteWm4o9FxtajfXLE
+GdCSakeTUfz0ojl7gQIU55KEBW8TweHFTBSqKUBfEaRmap4IRlFI+VMtBdR2
+lRwauZoA7yvU9SJ9BUh3RlMOBcVDPVxs8puFAr5RhuNF688iSs9nRa+XAtzq
+xx3SnOPwo5nt7jqggEDtNOdBQSRcEpUufAxS4LNbwrRz2TEYfc0db6ET+7n7
+MuktEWjniQQPGQrERbioio6GQTBYM1mZQuzjzA9gPQ1FsW6qcTmTyAcor+w1
+QpAQtzajgEPYK6eG1REIM6ejPqx7xLyooopX4YNlsdTLF8sJM433MQa9MLdC
+s+FCFTFf7/iNvXEvunWq18ULFLD1c7C4quqOpp3JfjEvCQdn8nbedkPlGc8r
+UU3E/dX012+daUj7IpEdbif6gvI1UybscVK7ZUNIJ+G7z9huU1T4O2QHBnQT
+/TolVl2WtnCJOXLN5wuRs2dtSEq0hNV925a9IsK7ZwxzVpvDqE9dafcw4RGV
+aWq3CdS1vli4ThA2mWPWL6RAas8LdhITDnhMly5VByw+JNX/JEzhkkM/Krb+
+B6Id0V8=
+ "]],
+ Line[CompressedData["
+1:eJxFznlI03EABfC5w1053VpEopVTQU2bRM7M6LAwmy5yrpTKJbOgTMxjfzQ6
+Fy4P0vnHUMvNVh4do2akIfYzJSQoErUZKq1VK6VDrahlCnMVxPc9eDw+/70w
+zQnlETqNRtv2t//23aSYMtNpW2n/kx4+mRDMgfupwaEGHizb9+DYsgBYUlVh
+CRLBjZLixFoxLKByRvjL4fnZaBY7BB5WPS/0RsKps53+p6JgqsJi/R0D3+gp
+Gv0hhc+uFm76nATHTu/ljyngblVGX/UeeHtvStnmLHh/rfRVWw5cFc+1afPh
+KS0lF+lgq1dSrWiFlwZ+4wwswMy+Jnu42Y/4+PqHE9x0OrFtl8b66Bfs+RIc
+NFXPIO7K2skw7WASn0szXO2cgsNey8dbDCzijYnlphXr/IkPrhya93PAnmc1
+7mI9m7iRqdYqIzj47+q6Th+AWWf0qqQSLjHtltruFvGIS6/Ya0SP4d41lRxh
+EZ9YKC+NvSBYQuyMG3boKLijeUvEB3UAca5dJgxdhM8brumdtwXEdz6GNgky
+AokrLYY81274sHIm8m4mHEJRHYpsuNp44MklDXxUdvk7TwdLysVp7HZ4ccPp
+gLGb8MTM+xftNrgu+35u6j3YF6MsM1Cwc8TYzHDA3Rfn8h0vYVPyoeiWcTi9
+bW1nigvuOTn4VP8Jro9LMGZOwyVusyrsKxyVUfim/yfM9BttrZuD33YlF+Qt
+wFRBizTeCzes4nt8PvgPfBPSFQ==
+ "]]}, "Charting`Private`Tag#2"], {}}}, {}}, <|
+ "HighlightElements" -> <|
+ "Label" -> {"XYLabel"}, "Ball" -> {"InterpolatedBall"}|>,
+ "LayoutOptions" -> <|
+ "PanelPlotLayout" -> <||>, "PlotRange" -> {{0., 4.}, {-1.7, 1.7}},
+ "Frame" -> {{True, True}, {True, True}}, "AxesOrigin" -> {0, 0},
+ "ImageSize" -> {300, 300}, "Axes" -> {True, True},
+ "LabelStyle" -> {FontFamily -> "Helvetica",
+ GrayLevel[0], FontSize -> 12}, "AspectRatio" -> 1, "DefaultStyle" -> {
+ Directive[
+ Opacity[1.],
+ RGBColor[0.880722, 0.611041, 0.142051],
+ AbsoluteThickness[2]],
+ Directive[
+ Opacity[1.],
+ RGBColor[0.368417, 0.506779, 0.709798],
+ AbsoluteThickness[2]]},
+ "HighlightLabelingFunctions" -> <|"CoordinatesToolOptions" -> ({
+ Identity[
+ Part[#, 1]],
+ Identity[
+ Part[#, 2]]}& ),
+ "ScalingFunctions" -> {{Identity, Identity}, {Identity, Identity}}|>,
+ "Primitives" -> {}, "GCFlag" -> False|>,
+ "Meta" -> <|
+ "DefaultHighlight" -> {"Dynamic", None}, "Index" -> {}, "Function" ->
+ Plot, "GroupHighlight" -> False|>|>, "DynamicHighlight"]],
+ AspectRatio->1,
+ Axes->{True, True},
+ AxesLabel->{None, None},
+ AxesOrigin->{0, 0},
+ DisplayFunction->Identity,
+ Epilog->InsetBox[
+ BoxData[
+ FormBox[
+ TemplateBox[{"\"Real part\"", "\"Imaginary part\""}, "LineLegend",
+ DisplayFunction -> (FormBox[
+ StyleBox[
+ StyleBox[
+ PaneBox[
+ TagBox[
+ GridBox[{{
+ TagBox[
+ GridBox[{{
+ GraphicsBox[{{
+ Directive[
+ EdgeForm[
+ Directive[
+ Opacity[0.3],
+ GrayLevel[0]]],
+ PointSize[0.5],
+ AbsoluteThickness[1.6],
+ RGBColor[0.368417, 0.506779, 0.709798]], {
+ LineBox[{{0, 12.5}, {20, 12.5}}]}}, {
+ Directive[
+ EdgeForm[
+ Directive[
+ Opacity[0.3],
+ GrayLevel[0]]],
+ PointSize[0.5],
+ AbsoluteThickness[1.6],
+ RGBColor[0.368417, 0.506779, 0.709798]], {}}},
+ AspectRatio -> Full, ImageSize -> {20, 12.5},
+ PlotRangePadding -> None, ImagePadding -> Automatic,
+ BaselinePosition -> (Scaled[0.116] -> Baseline)], #}, {
+ GraphicsBox[{{
+ Directive[
+ EdgeForm[
+ Directive[
+ Opacity[0.3],
+ GrayLevel[0]]],
+ PointSize[0.5],
+ AbsoluteThickness[1.6],
+ RGBColor[0.880722, 0.611041, 0.142051]], {
+ LineBox[{{0, 12.5}, {20, 12.5}}]}}, {
+ Directive[
+ EdgeForm[
+ Directive[
+ Opacity[0.3],
+ GrayLevel[0]]],
+ PointSize[0.5],
+ AbsoluteThickness[1.6],
+ RGBColor[0.880722, 0.611041, 0.142051]], {}}},
+ AspectRatio -> Full, ImageSize -> {20, 12.5},
+ PlotRangePadding -> None, ImagePadding -> Automatic,
+ BaselinePosition -> (Scaled[0.116] -> Baseline)], #2}},
+ GridBoxAlignment -> {
+ "Columns" -> {Center, Left}, "Rows" -> {{Baseline}}},
+ AutoDelete -> False,
+ GridBoxDividers -> {
+ "Columns" -> {{False}}, "Rows" -> {{False}}},
+ GridBoxItemSize -> {
+ "Columns" -> {{All}}, "Rows" -> {{All}}},
+ GridBoxSpacings -> {
+ "Columns" -> {{0.5}}, "Rows" -> {{0.8}}}], "Grid"]}},
+ GridBoxAlignment -> {"Columns" -> {{Left}}, "Rows" -> {{Top}}},
+ AutoDelete -> False,
+ GridBoxItemSize -> {
+ "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}},
+ GridBoxSpacings -> {"Columns" -> {{1}}, "Rows" -> {{0}}}],
+ "Grid"], Alignment -> Left, AppearanceElements -> None,
+ ImageMargins -> {{5, 5}, {5, 5}}, ImageSizeAction ->
+ "ResizeToFit"], LineIndent -> 0, StripOnInput -> False], {
+ FontFamily -> "Helvetica",
+ GrayLevel[0], FontSize -> 12}, Background -> Automatic,
+ StripOnInput -> False], TraditionalForm]& ),
+ InterpretationFunction :> (RowBox[{"LineLegend", "[",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{
+
+ TemplateBox[<|
+ "color" -> RGBColor[0.368417, 0.506779, 0.709798]|>,
+ "RGBColorSwatchTemplate"], ",",
+
+ TemplateBox[<|
+ "color" -> RGBColor[0.880722, 0.611041, 0.142051]|>,
+ "RGBColorSwatchTemplate"]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{#, ",", #2}], "}"}]}], "]"}]& ), Editable -> True],
+ TraditionalForm]],
+ Scaled[{0.3, 0.14}]],
+ Frame->{{True, True}, {True, True}},
+ FrameLabel->{{
+ FormBox[
+ TagBox[
+ RowBox[{
+ SubscriptBox["G", "0"], "(", "\[Mu]", ")"}], HoldForm],
+ TraditionalForm], None}, {
+ FormBox[
+ TagBox["\"\[Mu] / \[Sigma]\"", HoldForm], TraditionalForm], None}},
+ FrameStyle->GrayLevel[0],
+ FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}},
+ GridLines->{None, None},
+ GridLinesStyle->Directive[
+ GrayLevel[0.5, 0.4]],
+ ImagePadding->All,
+ ImageSize->300,
+ LabelStyle->{FontFamily -> "Helvetica",
+ GrayLevel[0], FontSize -> 12},
+ Method->{
+ "DefaultBoundaryStyle" -> Automatic,
+ "DefaultGraphicsInteraction" -> {
+ "Version" -> 1.2, "TrackMousePosition" -> {True, False},
+ "Effects" -> {
+ "Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2},
+ "Droplines" -> {
+ "freeformCursorMode" -> True,
+ "placement" -> {"x" -> "All", "y" -> "None"}}}}, "DefaultMeshStyle" ->
+ AbsolutePointSize[6], "ScalingFunctions" -> None,
+ "CoordinatesToolOptions" -> {"DisplayFunction" -> ({
+ (Identity[#]& )[
+ Part[#, 1]],
+ (Identity[#]& )[
+ Part[#, 2]]}& ), "CopiedValueFunction" -> ({
+ (Identity[#]& )[
+ Part[#, 1]],
+ (Identity[#]& )[
+ Part[#, 2]]}& )}},
+ PlotRange->{{0., 4.}, {-1.7, 1.7}},
+ PlotRangeClipping->True,
+ PlotRangePadding->{{0, 0}, {0, 0}},
+ Ticks->{Automatic, Automatic}]], "Output",
+ CellChangeTimes->{
+ 3.91467428176404*^9, {3.914674315286446*^9, 3.914674367653089*^9}, {
+ 3.914674511733942*^9, 3.914674575663275*^9}, {3.914674678219386*^9,
+ 3.9146747919968357`*^9}, {3.9155306879078913`*^9, 3.9155306956452303`*^9},
+ 3.915530747157572*^9, 3.915530784019471*^9, {3.9155308952600613`*^9,
+ 3.9155309238035173`*^9}, 3.915532486262419*^9, 3.915771556736268*^9,
+ 3.916292519478231*^9, {3.924160983419207*^9, 3.924160986282316*^9},
+ 3.9241611845374126`*^9, 3.924162190364997*^9, {3.924162312284491*^9,
+ 3.9241623202322807`*^9}},
+ CellLabel->"Out[95]=",ExpressionUUID->"aaad5116-5d58-4d08-9a56-b793fa18fceb"]
+}, Open ]],
+
+Cell[CellGroupData[{
+
+Cell[BoxData[
+ RowBox[{"Export", "[",
+ RowBox[{
+ "\"\<~/doc/research/least_squares/posters/lausanne/figs/large_deviation.pdf\
+\>\"", ",", "pG"}], "]"}]], "Input",
+ CellChangeTimes->{{3.92416107227991*^9, 3.9241611012234793`*^9}},
+ CellLabel->"In[96]:=",ExpressionUUID->"0c67dbb9-49b6-4edb-9219-e0a5cdf9b31d"],
+
+Cell[BoxData["\<\"~/doc/research/least_squares/posters/lausanne/figs/large_\
+deviation.pdf\"\>"], "Output",
+ CellChangeTimes->{{3.924161094512546*^9, 3.924161102039678*^9},
+ 3.9241611864665623`*^9, 3.924162191599287*^9, 3.924162320711782*^9},
+ CellLabel->"Out[96]=",ExpressionUUID->"e38ca9d1-d354-4596-95f2-a529f7487594"]
+}, Open ]],
+
+Cell[BoxData[
+ RowBox[{
+ RowBox[{"f34", "=",
+ RowBox[{"Function", "[",
+ RowBox[{"q", ",",
+ RowBox[{
+ FractionBox["1", "2"],
+ RowBox[{"(",
+ RowBox[{
+ SuperscriptBox["q", "3"], "+",
+ SuperscriptBox["q", "4"]}], ")"}]}]}], "]"}]}], ";"}]], "Input",
+ CellChangeTimes->{{3.924161369901463*^9, 3.9241613811814003`*^9}},
+ CellLabel->"In[20]:=",ExpressionUUID->"06818f5b-ee0e-4634-b547-e05e415c12a6"],
+
+Cell[BoxData[
+ RowBox[{
+ RowBox[{"\[Mu]m", "[", "f_", "]"}], ":=",
+ SqrtBox[
+ RowBox[{"4",
+ RowBox[{
+ RowBox[{"f", "''"}], "[", "1", "]"}]}]]}]], "Input",
+ CellChangeTimes->{{3.893505745813592*^9, 3.893505753575885*^9}},
+ CellLabel->"In[21]:=",ExpressionUUID->"ab28ae26-b52f-4a56-978d-e7ee3f806eda"],
+
+Cell[BoxData[
+ RowBox[{
+ RowBox[{
+ RowBox[{"\[Rho]", "[",
+ RowBox[{"f_", ",", "\[Mu]_"}], "]"}], "[", "\[Lambda]_", "]"}], ":=",
+ RowBox[{
+ FractionBox["2",
+ RowBox[{"\[Pi]", " ",
+ RowBox[{"\[Mu]m", "[", "f", "]"}]}]],
+ SqrtBox[
+ RowBox[{"1", "-",
+ FractionBox[
+ SuperscriptBox[
+ RowBox[{"(",
+ RowBox[{"\[Lambda]", "-", "\[Mu]"}], ")"}], "2"],
+ SuperscriptBox[
+ RowBox[{"\[Mu]m", "[", "f", "]"}], "2"]]}]]}]}]], "Input",
+ CellChangeTimes->{{3.895206238820385*^9, 3.895206269434855*^9}, {
+ 3.895206301235565*^9, 3.895206327707943*^9}},
+ CellLabel->"In[22]:=",ExpressionUUID->"eec97d73-ae34-443d-825f-cbb8adebe02f"],
+
+Cell[BoxData[
+ RowBox[{
+ RowBox[{"plotSpec", "[",
+ RowBox[{"\[Mu]_", ",", "lab_"}], "]"}], ":=",
+ RowBox[{"Plot", "[",
+ RowBox[{
+ RowBox[{
+ RowBox[{"\[Rho]", "[",
+ RowBox[{"f34", ",", "\[Mu]"}], "]"}], "[", "\[Lambda]", "]"}], ",",
+ RowBox[{"{",
+ RowBox[{"\[Lambda]", ",",
+ RowBox[{"-", "15"}], ",", "3"}], "}"}], ",",
+ RowBox[{"AspectRatio", "->",
+ RowBox[{"4", "/", "10"}]}], ",",
+ RowBox[{"PlotRange", "->",
+ RowBox[{"{",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{
+ RowBox[{"-", "15"}], ",", "3"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"0", ",",
+ RowBox[{"3", " ",
+ FractionBox["4", "10"],
+ FractionBox["2",
+ RowBox[{"\[Pi]", " ",
+ RowBox[{"\[Mu]m", "[", "f34", "]"}]}]]}]}], "}"}]}], "}"}]}], ",",
+ RowBox[{"FrameStyle", "->", "Black"}], ",",
+ RowBox[{"AxesLabel", "->",
+ RowBox[{"{",
+ RowBox[{"\[Lambda]", ",",
+ RowBox[{"\[Rho]", "[", "\[Lambda]", "]"}]}], "}"}]}], ",",
+ RowBox[{"ImageSize", "->", "180"}], ",",
+ RowBox[{"Ticks", "->",
+ RowBox[{"{",
+ RowBox[{
+ RowBox[{"{", "0", "}"}], ",",
+ RowBox[{"{", "}"}]}], "}"}]}], ",",
+ RowBox[{"PlotRangeClipping", "->", "False"}], ",",
+ RowBox[{"Frame", "->", "False"}]}], "]"}]}]], "Input",
+ CellChangeTimes->{{3.895206335716663*^9, 3.895206991361381*^9}, {
+ 3.895207039378053*^9, 3.895207059810026*^9}, {3.895207141811533*^9,
+ 3.895207259773934*^9}, {3.895208615831658*^9, 3.895208730425652*^9}, {
+ 3.895208838140219*^9, 3.895208840299837*^9}, {3.924161536072356*^9,
+ 3.924161555080598*^9}, {3.924163189991559*^9, 3.924163211615596*^9}},
+ CellLabel->
+ "In[101]:=",ExpressionUUID->"def223fd-aeee-4091-9e76-97462b62b6cc"],
+
+Cell[BoxData[
+ RowBox[{
+ RowBox[{"plotSpecWith\[Mu]Arrow", "[",
+ RowBox[{"\[Mu]_", ",", "lab_"}], "]"}], ":=",
+ RowBox[{"Show", "[",
+ RowBox[{
+ RowBox[{"plotSpec", "[",
+ RowBox[{"\[Mu]", ",", "lab"}], "]"}], ",",
+ RowBox[{"Prolog", "->",
+ RowBox[{"{",
+ RowBox[{
+ RowBox[{"Arrow", "[",
+ RowBox[{"{",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"0", ",",
+ RowBox[{
+ FractionBox["2",
+ RowBox[{"\[Pi]", " ",
+ RowBox[{"\[Mu]m", "[", "f34", "]"}]}]],
+ FractionBox["1", "8"]}]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"\[Mu]", ",",
+ RowBox[{
+ FractionBox["2",
+ RowBox[{"\[Pi]", " ",
+ RowBox[{"\[Mu]m", "[", "f34", "]"}]}]],
+ FractionBox["1", "8"]}]}], "}"}]}], "}"}], "]"}], ",",
+ RowBox[{"{",
+ RowBox[{"Dashed", ",",
+ RowBox[{"Line", "[",
+ RowBox[{"{",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"\[Mu]", ",", "0"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"\[Mu]", ",",
+ FractionBox["2",
+ RowBox[{"\[Pi]", " ",
+ RowBox[{"\[Mu]m", "[", "f34", "]"}]}]]}], "}"}]}], "}"}],
+ "]"}], ",",
+ RowBox[{"Text", "[",
+ RowBox[{
+ RowBox[{"Style", "[",
+ RowBox[{"\"\<\[Mu]\>\"", ",",
+ RowBox[{"SingleLetterItalics", "->", "False"}], ",",
+ RowBox[{"Directive", "[",
+ RowBox[{
+ RowBox[{"FontFamily", "->", "\"\<Helvetica\>\""}], ",",
+ "Black", ",",
+ RowBox[{"FontSize", "->", "10"}]}], "]"}]}], "]"}], ",",
+ RowBox[{"{",
+ RowBox[{
+ RowBox[{"\[Mu]", "/", "2"}], ",",
+ RowBox[{
+ FractionBox["2",
+ RowBox[{"\[Pi]", " ",
+ RowBox[{"\[Mu]m", "[", "f34", "]"}]}]],
+ FractionBox["2", "8"]}]}], "}"}]}], "]"}]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{
+ RowBox[{"Arrowheads", "[",
+ RowBox[{"{",
+ RowBox[{
+ RowBox[{"-", "Automatic"}], ",", "Automatic"}], "}"}], "]"}], ",",
+ RowBox[{"Arrow", "[",
+ RowBox[{"{",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{
+ RowBox[{"\[Mu]", "-",
+ RowBox[{"\[Mu]m", "[", "f34", "]"}]}], ",",
+ RowBox[{
+ FractionBox["2",
+ RowBox[{"\[Pi]", " ",
+ RowBox[{"\[Mu]m", "[", "f34", "]"}]}]],
+ FractionBox["1", "8"]}]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"\[Mu]", ",",
+ RowBox[{
+ FractionBox["2",
+ RowBox[{"\[Pi]", " ",
+ RowBox[{"\[Mu]m", "[", "f34", "]"}]}]],
+ FractionBox["1", "8"]}]}], "}"}]}], "}"}], "]"}]}], "}"}], ",",
+ RowBox[{"Text", "[",
+ RowBox[{
+ RowBox[{"Style", "[",
+ RowBox[{"\"\<2\[Sigma]\>\"", ",",
+ RowBox[{"SingleLetterItalics", "->", "False"}], ",",
+ RowBox[{"Directive", "[",
+ RowBox[{
+ RowBox[{"FontFamily", "->", "\"\<Helvetica\>\""}], ",", "Black",
+ ",",
+ RowBox[{"FontSize", "->", "10"}]}], "]"}]}], "]"}], ",",
+ RowBox[{"{",
+ RowBox[{
+ RowBox[{"\[Mu]", "-",
+ RowBox[{
+ RowBox[{"\[Mu]m", "[", "f34", "]"}], "/", "2"}]}], ",",
+ RowBox[{
+ FractionBox["2",
+ RowBox[{"\[Pi]", " ",
+ RowBox[{"\[Mu]m", "[", "f34", "]"}]}]],
+ FractionBox["2", "8"]}]}], "}"}]}], "]"}]}], "}"}]}]}],
+ RowBox[{"(*",
+ RowBox[{"Epilog", "->",
+ RowBox[{"Text", "[",
+ RowBox[{
+ RowBox[{"Style", "[",
+ RowBox[{
+ RowBox[{"\"\<(\>\"", "<>", "lab", "<>", "\"\<)\>\""}], ",",
+ RowBox[{"SingleLetterItalics", "->", "False"}], ",",
+ RowBox[{"Directive", "[",
+ RowBox[{"Bold", ",",
+ RowBox[{"FontFamily", "->", "Times"}], ",", "Black", ",",
+ RowBox[{"FontSize", "->", "10"}]}], "]"}]}], "]"}], ",",
+ RowBox[{"{",
+ RowBox[{"15.5", ",",
+ RowBox[{
+ FractionBox["2",
+ RowBox[{"\[Pi]", " ",
+ RowBox[{"\[Mu]m", "[", "f34", "]"}]}]],
+ FractionBox["11.25", "8"]}]}], "}"}]}], "]"}]}], "*)"}],
+ "]"}]}]], "Input",
+ CellChangeTimes->{{3.895207041002092*^9, 3.89520705502596*^9}, {
+ 3.895207323903994*^9, 3.8952073463758693`*^9}, {3.895207386000701*^9,
+ 3.895207478002494*^9}, {3.895208660000988*^9, 3.895208665288981*^9}, {
+ 3.895208845532427*^9, 3.895208847221174*^9}, {3.895208902317669*^9,
+ 3.895208902621669*^9}, {3.924161569803562*^9, 3.92416157199356*^9},
+ 3.9241616053709097`*^9, {3.924161669195086*^9, 3.924161677339909*^9}, {
+ 3.924161885591449*^9, 3.924161886295874*^9}, {3.924163229224842*^9,
+ 3.924163238832789*^9}},
+ CellLabel->
+ "In[109]:=",ExpressionUUID->"f1078ecd-48ad-4003-b086-93bd8c2242bb"],
+
+Cell[BoxData[
+ RowBox[{
+ RowBox[{"plotSpecWithIso", "[",
+ RowBox[{"\[Mu]_", ",", "\[Lambda]i_", ",", "lab_"}], "]"}], ":=",
+ RowBox[{"Show", "[", "\[IndentingNewLine]",
+ RowBox[{
+ RowBox[{"plotSpec", "[",
+ RowBox[{"\[Mu]", ",", "lab"}], "]"}], ",", "\[IndentingNewLine]",
+ RowBox[{"Prolog", "->",
+ RowBox[{"{",
+ RowBox[{"(*",
+ RowBox[{
+ RowBox[{"Line", "[",
+ RowBox[{"{",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"\[Lambda]i", ",",
+ RowBox[{
+ FractionBox["2",
+ RowBox[{"\[Pi]", " ",
+ RowBox[{"\[Mu]m", "[", "f34", "]"}]}]],
+ FractionBox["1", "8"]}]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"\[Lambda]i", ",",
+ RowBox[{
+ FractionBox["2",
+ RowBox[{"\[Pi]", " ",
+ RowBox[{"\[Mu]m", "[", "f34", "]"}]}]],
+ FractionBox["5", "8"]}]}], "}"}]}], "}"}], "]"}], ",",
+ RowBox[{"Text", "[",
+ RowBox[{
+ RowBox[{"Style", "[",
+ RowBox[{
+ "\"\<\!\(\*SubscriptBox[\(\[Lambda]\), \(0\)]\)\>\"", ",",
+ RowBox[{"SingleLetterItalics", "->", "False"}], ",",
+ RowBox[{"Directive", "[",
+ RowBox[{
+ RowBox[{"FontFamily", "->", "\"\<Helvetica\>\""}], ",", "Black",
+ ",",
+ RowBox[{"FontSize", "->", "10"}]}], "]"}]}], "]"}], ",",
+ RowBox[{"{",
+ RowBox[{
+ RowBox[{"\[Lambda]i", "+", "0.1"}], ",",
+ RowBox[{
+ FractionBox["2",
+ RowBox[{"\[Pi]", " ",
+ RowBox[{"\[Mu]m", "[", "f34", "]"}]}]],
+ FractionBox["6.25", "8"]}]}], "}"}]}], "]"}], ","}], "*)"}],
+ RowBox[{
+ RowBox[{"Arrow", "[",
+ RowBox[{"{",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"0", ",",
+ RowBox[{
+ FractionBox["2",
+ RowBox[{"\[Pi]", " ",
+ RowBox[{"\[Mu]m", "[", "f34", "]"}]}]],
+ FractionBox["1", "8"]}]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"\[Mu]", ",",
+ RowBox[{
+ FractionBox["2",
+ RowBox[{"\[Pi]", " ",
+ RowBox[{"\[Mu]m", "[", "f34", "]"}]}]],
+ FractionBox["1", "8"]}]}], "}"}]}], "}"}], "]"}], ",",
+ RowBox[{"{",
+ RowBox[{"Dashed", ",",
+ RowBox[{"Line", "[",
+ RowBox[{"{",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"\[Mu]", ",", "0"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"\[Mu]", ",",
+ FractionBox["2",
+ RowBox[{"\[Pi]", " ",
+ RowBox[{"\[Mu]m", "[", "f34", "]"}]}]]}], "}"}]}], "}"}],
+ "]"}], ",",
+ RowBox[{"Text", "[",
+ RowBox[{
+ RowBox[{"Style", "[",
+ RowBox[{"\"\<\[Mu]\>\"", ",",
+ RowBox[{"SingleLetterItalics", "->", "False"}], ",",
+ RowBox[{"Directive", "[",
+ RowBox[{
+ RowBox[{"FontFamily", "->", "\"\<Helvetica\>\""}], ",",
+ "Black", ",",
+ RowBox[{"FontSize", "->", "10"}]}], "]"}]}], "]"}], ",",
+ RowBox[{"{",
+ RowBox[{
+ RowBox[{"\[Mu]", "/", "2"}], ",",
+ RowBox[{
+ FractionBox["2",
+ RowBox[{"\[Pi]", " ",
+ RowBox[{"\[Mu]m", "[", "f34", "]"}]}]],
+ FractionBox["2", "8"]}]}], "}"}]}], "]"}]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{
+ RowBox[{"Arrowheads", "[",
+ RowBox[{"{",
+ RowBox[{
+ RowBox[{"-", "Automatic"}], ",", "Automatic"}], "}"}], "]"}], ",",
+ RowBox[{"Arrow", "[",
+ RowBox[{"{",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{
+ RowBox[{"\[Mu]", "-",
+ RowBox[{"\[Mu]m", "[", "f34", "]"}]}], ",",
+ RowBox[{
+ FractionBox["2",
+ RowBox[{"\[Pi]", " ",
+ RowBox[{"\[Mu]m", "[", "f34", "]"}]}]],
+ FractionBox["1", "8"]}]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"\[Mu]", ",",
+ RowBox[{
+ FractionBox["2",
+ RowBox[{"\[Pi]", " ",
+ RowBox[{"\[Mu]m", "[", "f34", "]"}]}]],
+ FractionBox["1", "8"]}]}], "}"}]}], "}"}], "]"}]}], "}"}], ",",
+ RowBox[{"Text", "[",
+ RowBox[{
+ RowBox[{"Style", "[",
+ RowBox[{"\"\<2\[Sigma]\>\"", ",",
+ RowBox[{"SingleLetterItalics", "->", "False"}], ",",
+ RowBox[{"Directive", "[",
+ RowBox[{
+ RowBox[{"FontFamily", "->", "\"\<Helvetica\>\""}], ",", "Black",
+ ",",
+ RowBox[{"FontSize", "->", "10"}]}], "]"}]}], "]"}], ",",
+ RowBox[{"{",
+ RowBox[{
+ RowBox[{"\[Mu]", "-",
+ RowBox[{
+ RowBox[{"\[Mu]m", "[", "f34", "]"}], "/", "2"}]}], ",",
+ RowBox[{
+ FractionBox["2",
+ RowBox[{"\[Pi]", " ",
+ RowBox[{"\[Mu]m", "[", "f34", "]"}]}]],
+ FractionBox["2", "8"]}]}], "}"}]}], "]"}]}], "}"}]}], ",",
+ "\[IndentingNewLine]",
+ RowBox[{"Epilog", "->",
+ RowBox[{"{",
+ RowBox[{"{",
+ RowBox[{
+ RowBox[{
+ RowBox[{"ColorData", "[", "97", "]"}], "[", "1", "]"}], ",",
+ RowBox[{"PointSize", "[", "0.035", "]"}], ",",
+ RowBox[{"Point", "[",
+ RowBox[{"{",
+ RowBox[{"\[Lambda]i", ",", "0"}], "}"}], "]"}]}], "}"}],
+ RowBox[{"(*",
+ RowBox[{",",
+ RowBox[{"Text", "[",
+ RowBox[{
+ RowBox[{"Style", "[",
+ RowBox[{
+ RowBox[{"\"\<(\>\"", "<>", "lab", "<>", "\"\<)\>\""}], ",",
+ RowBox[{"SingleLetterItalics", "->", "False"}], ",",
+ RowBox[{"Directive", "[",
+ RowBox[{"Bold", ",",
+ RowBox[{"FontFamily", "->", "\"\<Helvetica\>\""}], ",", "Black",
+ ",",
+ RowBox[{"FontSize", "->", "10"}]}], "]"}]}], "]"}], ",",
+ RowBox[{"{",
+ RowBox[{"15.5", ",",
+ RowBox[{
+ FractionBox["2",
+ RowBox[{"\[Pi]", " ",
+ RowBox[{"\[Mu]m", "[", "f34", "]"}]}]],
+ FractionBox["11.25", "8"]}]}], "}"}]}], "]"}]}], "*)"}], "}"}]}],
+ ",",
+ RowBox[{"PlotRangeClipping", "->", "False"}]}], "\[IndentingNewLine]",
+ "]"}]}]], "Input",
+ CellChangeTimes->{{3.895207524427265*^9, 3.8952077663032837`*^9},
+ 3.895207868345312*^9, {3.895208668664829*^9, 3.895208669984865*^9}, {
+ 3.895208789995199*^9, 3.895208790603132*^9}, {3.895208852260318*^9,
+ 3.895208852893114*^9}, {3.895208907053636*^9, 3.895208909325506*^9}, {
+ 3.924161579145795*^9, 3.924161601233445*^9}, {3.924161683147279*^9,
+ 3.924161706499589*^9}, {3.924161755060856*^9, 3.924161863463529*^9}, {
+ 3.92416326394566*^9, 3.924163267761709*^9}},
+ CellLabel->
+ "In[116]:=",ExpressionUUID->"244eac76-0bbb-4e5a-9b06-0f294e654a3f"],
+
+Cell[CellGroupData[{
+
+Cell[BoxData[
+ RowBox[{"pS1", "=",
+ RowBox[{"plotSpecWith\[Mu]Arrow", "[",
+ RowBox[{
+ RowBox[{"-", "5"}], ",", "\"\<a\>\""}], "]"}]}]], "Input",
+ CellChangeTimes->{{3.895206695763502*^9, 3.895206699170811*^9}, {
+ 3.8952070659141197`*^9, 3.89520706748992*^9}, {3.8952078755934877`*^9,
+ 3.895207930386267*^9}, {3.895208671944873*^9, 3.89520867356842*^9}, {
+ 3.924161638762431*^9, 3.9241616551542883`*^9}, {3.9241619149193907`*^9,
+ 3.924161915904595*^9}, 3.924163199007743*^9},
+ CellLabel->
+ "In[117]:=",ExpressionUUID->"28a195c1-e132-4911-80e7-05e2e1470f78"],
+
+Cell[BoxData[
+ GraphicsBox[
+ InterpretationBox[{
+ TagBox[{{{}, {},
+ TagBox[
+ {RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[2],
+ Opacity[1.], LineBox[CompressedData["
+1:eJwV13k4lG8XB3BrsoRmsy8xQxsKKW0n2ohKpUhKiRChlBZly1LKFtpkiUL2
+ZJl5RuYoREQ/2SprImTJEi3ifd6/5vpczzXXnJn73N9zZom9x35HAT4+Pl9+
+Pr7/v05+N9WemGfhhPfWTRcebQOfRusDG/+xkLv8aUK9+zloOpU4eeIPC18V
+MWvUt18Brb+9MaEzLFxS3PBIQ9UfQiKX6edMsdBjZ3RNf2ogdKl7NDWOs7BB
+YYUw/VMQrGMXnv81ykIFjUPfjT+GgPGQodfKYRY6+oZPfXt6A8wVeWePD7Iw
+4jwvt3x/GNj517hX97JQq1L0n5d9ODgX7Dkz283CrIvW/hl1EXDu6wfXVZ0s
+rNP+75QFNQpCTDqd77exMDDI4L9c62iIunLSqa6ZhcWWRGLIRDQ8zB5w5PvA
+wvM39JgQegdypCftnd+x0G1Z0bBKagw0tYkcXfeKhYSDRYhSbhx0ioUfceOx
+0LuV47Ro2V0Y2EixSS5lYdnxNqPtj+/C32RFq4UlLCwvfRelG3YP1FxW72vL
+YuGq78LvXho9AI/fNtsvxbFwYc9m1pajj+DSiu6t2XdYmD6c/Q6IRxB41NG4
+O5KFTP0XDD5GAtwt9wCTMBaefVnu+6MmAUpvBhnK+rGwcN9F0VxmEojJ52qx
+nVn49f3gSY+WZEhbz8/4tYGFh3g/Ne1kU6Gk12Dt2DoWClNjg+s3pkL1bTfr
+/jXkef6Iezp2PBWGOlsfNumw8I4N9u/OSAWd67kqz9VZ+OFxn16a3hNg1x5Z
+dlqchTtT1uX+3vQU3toWb2z/xMQRvbLCyqXp8Fl4+OiHVia+m3g11Lw9HYZz
+l/i9bWLizZ+7f3Ds00GSP7ycXc/Esxt6x+fj0+HA05M74l4xkd/OMytWIgPa
+R6Qt9mQyMedrtqVtfwaM+rqexMtMdF/dlJXulwlChzP8v3szMcjAK+fW3UxQ
+0OtLYJxn4o0z/3oO5mSCybdjbW7uTGQ/3jWU8CkTUvbu3y13kok2Jh8cBfWz
+4JCq4dpz5ky0bfkuZv0lC16WLxBnqjDRdKVhwH3tHLgtlFIQWqGOTLm0K7kR
+eZB5MHLiQrk6mnts+k8pJQ+q067qOpSpY82hR5o+RXkgZGpVsIWtjtNZHYf4
+2vPAJ1yi4HeWOj7JEFZRpOXDacbF564x6igeVXO69Fg+mCw1z99rr46VGgW1
+8yP5IGQ+nSPDp45NNQ/DVGeeQ+N6dXPaPzWctZp6+HHuOTxeZjEk/UcNH/fG
+vrm9oAA2i2RqiE2pYciy0pgeegFcenU0afabGuqoKFVt1y+AkXWVUT0NavjA
++fq7OY8CaGHFemUlqSGH7/vAid4CeDa/2hBADU+m/6jW5b6A1CnDKsdbS1Dd
+L+C0vUoRXMyym7esVkXj9lEzS+diSE7dt34rRRVVBnM7hs+UwI0vI3RtKVVs
+sFtgIHiuBDyXhI3LSqhi6MfmCoZ3CWxJepUxKqyKW28/u7XGtwTK1zhp60+q
+YP6f3f37IkrAmLlioKdcBbN8fMVEcktgG/+LI5vsVJC2zDbI7XsJmHBfGU89
+UCbvy/udp4+x4cr5K8X9Mcq4pzAtovoEG7K0dJd/DFdGH/h5lunIBsnkx4vL
+ApTx6vPhxc2ubGgK8u8OdVHG9YdiG+Uus+H4ns2+CobK+CJ5p5ZuDBsu9XA4
+xm1KeNC7uexJJRueiTxfFc1QQu+cSY9ydQ70q1189F1aCQX6CzqPanBAbfOm
+hTvElfCJWIDzr6UceHi+puvPvCJuO5naoKnNgbCengiHQUXMlDaf9VjHATcu
+ZWRtqSLaV53cm2bOAW2P8886Tygi/4KPpbleHChsWau2MkcBW57wEWalHJjv
+OvZBIl0Blb+YBT4u48CuweCgkWQFlD3PXPsTOdD990N/bqwCug6UOt+t5IDE
+Es+s1VcVUFVO5S+vngMOrhn6a80U8JqVkFV+NwdofHI7jQflcenDpoeiggTY
+iW75pdYrj3GKsXNKwgRkUpyeCXbI47fjd+xWiRCwhVUkXvleHnfIGSjsFSfA
+bde+9zvZ8ugFDiHnqQRUxN48vDtUHm93ZMfaqRNwYdkfV2uWPD45bVnIMSLg
+bawO/bGKPI5S/e96bCVAlc+xbFBOHongPRXq2wmoa2mQ9pGUx8luDaFQEwLU
+gp4WJczIoaTglJLhXgLed1rMf6mRQ/kueQFzWwKWx6bfOeMuh07D29naFwjw
+n2/fUOwsh47ytlm53gS0nKb0zdnL4aK/A5MrLxEQYHRtbZSVHBpohIYwfQho
+G93fXrCFfL95Cmfen4Bg0znWL4oc5jVcjz11m4DuOUtOYIks+leumZx5TMC9
+p6IqA89lMcqekrAxlYA95mVBu7NlMfTdTKHfEwJKH2hayD6WRfqqch3+dALu
+6//pzwmTxWXbL1uNZxGw73QS7eNRWdyvXp8UUkTAq+ZBDx0hWZwz0g4JeUPA
+5auJzbFzMmgzzD78oJqAVeoHNvz5JYMF7s2PM2sISPQsXVA5IoOD6B9VXUvA
+FfHIBJtWGdx8gTM83kCArpF+bXCmDEoevF79p5WA1GxfjXYLGXTLe72xv58A
+Z6PY/97skkGF3MFFn78RoN3y7OqLbTL4jDJLrR8ggJhvagxbJ4NKs+m83CEC
+Gvev8DNUlUHqIcuHNqMECPxubb07xkB6oW+w7U8CqsNHAgMHGVh11oarP01A
+hJqgtnsvA20Yc0vFZwiQN9cO2t7KwEVlO7ILfhGwOilo1VQZA3XN3KyG/xJw
+fPvqm/siGFg7vuOkmAAXND7t0N90g4GoX7a0ivSwu23X0kAGNotfXuovyIVL
+90PX8HkzUDDUrHVUiAuR3zt6co8ysKBu93SxCBfKosPWS2gx8FP2gNWEBBeC
+NJL7ZjQYuNR45r/oRVzYxS2K6lVl4PEKpxs6klxo+drdT9AY+Ob+YKajFBdG
+1q6NcZmlo3s7p6Z0MRcUO3u/V9XS8Z1jbiiDQdbTJBIpX0VHgVER5WjSL2tX
+6LojHfMwYaWYDBeOcbwu0YvoaCv9vmCGdHKsoLBDIh2D6NccUY4Lnrc0M0ru
+0/HozQGetjwXjALNzMRj6Dg1tzImnvQXj5joglA66pmGPfFU4ALLTF2Z/ywd
+tRVunl+oxIVpo53llq50HFrz/N5p0lXrXB0yHOnopb9Zv5a0s8aLzL02dNzS
+/OZjqDIXMvm3rk3cSsfi5n1toypc0GbbW2xg0FGuQTPfS40Lc7khkxHSdMw0
+f+75knTD08y7X8TomOMYnCWsTtYbM9F+c56GvVWboqJJF7gHurQN0PD+MT2Z
+e0wuBDqmSazspeGmJKusJtIHbN/m+XXQMCBAlZBmcWHKlDKt0UhDvV3VO4NI
+G7BSAi9waUg4XmEe1uDCAsUqVk0RDQt+N0SEkW6lDFUr5tMwsJx6niB9iU9X
+quIJDZtagvPomlwwmTlYIJNEw4QLr4WNSMuNXj7o+oB8PrSo9TRp4nN5PCWC
+9PK+IQ7psMa+zadu0HDpBj+tLtJHakS/cAJpKJWz5bvAUi7MFu9beuIiDY+f
+3de2nfS7nAu1hWdpuGcuS8SRdOKTB+4L3Wj45cS2gkDScKenMO84DSMPGF/m
+kFa+eCrhpg0NGVuaE5tIzx35HnzSkobdlJa/I6Q7tni6b9pDQ6Fa0yjhZVwo
+Zf08JGNCwweL1tgqkH4kdgXGjWjIZj2y0yHtMzanWbuBhteFrj80Im3TdF36
+6RqyfqMRif2k13MW/vbVIc9DtrP4OGn5xPAe62U0FPCwvn+G9O9AyltddRoO
+1x17fol0m9O9AgklGirYT/IHkmabK8b3M2jIEpINu0n63urH11Gahi+1600j
+SXszNNweipHnIShjFEP60N9My/NCNBzfNekRR3pNt86mPXNUDDl3suX/plUW
+spb+omJChNP5WNJTzwwlBSaoGHR43jSa9IeIsunP36n4WG+51W3SBV5bu4r6
+qBig/i0+mPQd6+o3kV1UrGvWl71G+uym3fkuH6lonLC47hxpC7XG+1s/ULHi
+nE/JKdKrRKwClN5R0eynxydr0tLDn11mqqjY4zKsb0p67P3x/f8hFTO5I1Vr
+SdcX9a3PIqjY5uMZxSSd+/C0enAh+bzHM1qKdLjfmLhdLhVPvx2q+UWel5vD
++al1GVR05Hw07Ca9Qtu3cjieint+CuAz0mJUwdyqOCq+DdFtuUV6aCb0bnIk
+Fe+ml6u7kc4oj3ayvE7FSKM+B03SN9IYFtrXqJiu7Wb9/35zuhW/buFFKnbd
+WXv9M9mPGgefipaepmJh9VXfG6QXrF8+EedAxaqN/XtsSfcp533yOEbFRjev
+Q9qknwyws9T3k5/n0CT2jrwfS67W7b5lSNaT/kjkJ3m/+E7sM3DUo+IlZ0oU
+Qbp7e4syaFHxzrXDe31JJ0p1j02oUpHGWXGOj7Ri6mS0zUIqHll2becYeb9n
+Qy9d0RegohtXMTiN9Ge3f/aSsxSsi2b+PkL6oYGI/qsxCo6/Xh1UTuaFzFv5
+lmWtFNQ6HMm8uIQL1kPKPqr/UbBvvDx3Cen7YuqqMrUUTPvr4fdWlexXsxWn
+hXgUfH/j7ySDtHLdhrnONArqzQxqxpN5ZTcMqc3JFDzQRv26lnSyxDaTuocU
+ZDcs728k823JbvM7nAgKrrjWyBUkzay31Yj1pmCQd2umBZmXjqPHa8M8Kdgh
+uCG2i8zTNElHz4DTFMwZ+PbKjbTm3jOE+zEKmlysHAsg83j5+2t7THdQsOov
+JfgemderGhO95+gUVBKevuFBJftxIkXhpxQFVXS+cr9QyP6lpON3UQrqOMTo
+WpLWO5An9vHfYlw+XjW0mpwXBk28xBd9izHf5cz1NnK+bGzprnIuWowxc8Mb
+GkXJ/PqkJvPBcjHOa6kPes8REGu7pnD13sUoxZhI4v0joKtz574o08W4YVPJ
++wWkvXvdbu3evBh936UlRZHz8slw8fwbzcXIPJowFk3O0/m5XQOlf6RReI6+
+wWyCgGJ1L05asjR+bdC4de8rOa/Tgg8Jx0tjRUbl5rxeAnYvvT95Mk4a7xgN
+OFV+IeDrypdaS8KksTBSRn6km4DFBiIp8V7SeDY67feyDnK/M4kPi9ohjRJC
+H/wPNxOw41NIyVSbFEq1eFyJqCDgD3HmalmdFF54Cs9sXxOQF29pdAOl8HvC
+Df5lrwiQPapWq5AhhX5/Q7VKeQQMdb3sNL4ohWMGum51BLkv9E0JR9Ol0Heb
+z67YfHJf+2FvqbVfEmct1qfxHhIQ9p+p3Mx2Sczrmvbf/4AAKFjViYaSGPfG
+6WrvPQIyvOacLJdIoqbYqqb5WHIfmn7g4/NjEc7Aq7klkQQoz75PqYlYhO0y
+T36LXyfASQTGHWsl0NyUvuG8C7lfZRunzfMkkJ8RMNzvRH4fix1HHhRKIF+u
+2KTVKbK+h7sr6xIkUNPeZE7/JPn7atk+0POUQC26tPBncv8UsrxsxE+XQKPY
+B5Et5H6akvwi+tExcYy/0H/ipj4B7YZLdT+Mi+LtK9kDb39xwPng8uNp/aJY
+evHcrk/THPjpuTLi8mdR7JYqmP02xQHJjFVDKpWi+EZHbt/cDw4YMQxT3O6L
+4irFulzGIAfSJkwpC0AUu+bO9v9s44BnluvEutsLcfOXX16uJRwQVMorSNQQ
+wb6Dbz7Le3Agl+bl6isvgnd+uG8LdeOAtcRa5jFJESxW/xY57sKB7L9lcUrT
+C7C2/EUdz4EDhz7VX3pUuQCZu6/UGttwIOPe6OaHDgtwn+lvky/bOGBO0a6N
+SxHGKrcfZwNlORAnktN7W1kIs97MCStz2GD5Ovz2RqoQDvVe0dcrZgPNz33N
+sIgQGiqOndjxgg2x0zqhZuOC2J/eV3wqhw13+gqWi1UI4kmhPv3Ix2yIeM0+
+G+oiiPWGazp8b7Lhhl/FfEChAFb8Co7+YMUGn5nPChd38WOD/3UJ1mgJ3O8Q
+FF3oNcuLa/id93ewGL60PB+Q40zzOg/IeljVFUHE6vidAwrjvFmOSWdqcCHo
+Rz68e1twnKfqOP0v3a8QPg0/6Fv1/QfvlyZVIuNyIWhk3L9+mfjBa47f0hd/
+phDKlO/yxA7/4GnIBLD2HyyEDhk1D5uVY7wdDJ97P9ULIbFu0d6vqsM8q7iw
+W7MvX8ASgz7JX6L9vAqVbMPFXwvgFb/VGf/2Pt4po/pMl44CcHhXXbswr493
+tnIi8mVLAaQ5ZN+Qs+zj1bzuTLGqKYCVMV4CGxK/8gQajE9Y5haAwQ/+6Wu6
+vTypScl3rhcLwDxTuUPwSDdPdFDPZViY/P++Mf+QinUzr01md2Yb5TkoF6W4
+xP5s4lUZz6uuEXsOe7TirorGNPEOi7Vbh/E/h1ylKymT7z7wLlRFdCn/yAf3
+ua2jb7Y28t79ERQbq8uHdr888Z5j9TzGs1jXJcH50Bk853J90Sve2S+Vif2d
+ebDZuzfyjEk5jxqgsT+pNg8ST1UXWV1H3tc/3lo72HnwMoIpaD3xkicVcavt
+aHQelC02131WU8JrbN9o8dw4D/x0DJbc+5HGm5BvZNc8zoUr7HDHLstM8P7W
+pZxtkQOmO2wj2mxyIGjppqgdG3JA4nTcZ+dV+RCoa9f1lpUDn2ZOCtkbvICF
+ka37ov5kgzeV/5ClMQfCk9kzC1OzwfppwlXFnFdgaNIzHzCWBdHtrSr8lfXA
+/STM6jufCUL+4qf9QhqAZ7DNcZdtJpRGq3yaU38Py0favaO3ZsKqNQeY1/re
+g03OhuLXizNB5irBvuzcCNHjazpys59Bn+jNnnPuzXBU/bqJWXsGBLI09Byv
+fIYY1xR/P5V0uNNyuPVJ02dg6NRb7RRKh8eh4T5ftdvhfUMK8W0gDXBw6vXJ
+3na4u9XxW97zNPiX89rS3rwTBFUc3XcbpcHG+FVcnchu8CvecGCl9VOo8NoV
+vre0G1Rq9iStXv8UzMwd7DwGuyFNE5KEFJ+Czb97gnlbeyAjM8NCuusJXLab
+N9P+1QMeApuVn9o/IedBffvKE73w27rDtftYKmye/ZZrHtELIilsVbNNqVDZ
+xB/gxu0FccJo5zmFVGgKXsPKpn8FDKEb/GhJgclvj86sePsVRFvns/x2pZB5
+6Tq3TK8f6C/euNipPQZ2UPB70+P9sKmSua7ybzJsOZqU4hLeDyqVXg3VTcmw
+V/LDjmff+iGdLXYhMTgZ3D3XRy599A2SZi+52FUkQZa+qKqm8CCoRipre4kk
+QOkjhTc0g0FYcHHbzKeUR1AnpO0u4DQIFacUd5ZvfASjTftLO6oHYTVvy1Sl
+azzoXnhkHXt7CIo+Gq+5WfgAtnbkzge8HILkvD30SqMHYLm9PM1jdAhM5R+I
+N9TdB296/9Qui+9w09A9oPbzPSCKdKL5acOg3fwuTepjHNQqGa8b2zYMGd2M
+ybMWcdAebNnVfmEYBEvOfV1ZEQtzBy9rsVuHwVvKy+xsUgxIld1qerpwBKZr
+CBYsiAFVjUSfGMMR+LN8fnbA6Q4YT7+qcY8fAeu/jeNRctFw4Fizp23dCJgv
+7hfSdI4Ch6pvMrv+jUB+/Yiz+9FIuKD9p2yt9ihE5pX1rmwLh5C7EqdYdqPg
+LFsSEL3pNtybU15EjRoFa4/N117eDIOMU6sL+cpHQTq40sCn5AZw6rceGR0f
+hRf/VWZe5YXAW4NDAu1qY/D7U1bC+N0g+Jzo/KzmwBj0SFauvbsyEIYX+FiU
+BI2BeX32PanXvjDrHj7zpGgMWiourbbvuwiLWpMS7/SPgafaj3aPKVdgiC87
+Jzo/BszwObXG19vhfxtewnk=
+ "]]},
+ Annotation[#, "Charting`Private`Tag#1"]& ]}, {}},
+ {"WolframDynamicHighlight", <|
+ "Label" -> {"XYLabel"}, "Ball" -> {"InterpolatedBall"}|>}],
+ StyleBox[
+ DynamicBox[(Charting`HighlightActionBox["DynamicHighlight", {},
+ Slot["HighlightElements"],
+ Slot["LayoutOptions"],
+ Slot["Meta"],
+ Charting`HighlightActionFunction["DynamicHighlight", {{{{}, {},
+ Annotation[{
+ Directive[
+ Opacity[1.],
+ RGBColor[0.368417, 0.506779, 0.709798],
+ AbsoluteThickness[2]],
+ Line[CompressedData["
+1:eJwV13k4lG8XB3BrsoRmsy8xQxsKKW0n2ohKpUhKiRChlBZly1LKFtpkiUL2
+ZJl5RuYoREQ/2SprImTJEi3ifd6/5vpczzXXnJn73N9zZom9x35HAT4+Pl9+
+Pr7/v05+N9WemGfhhPfWTRcebQOfRusDG/+xkLv8aUK9+zloOpU4eeIPC18V
+MWvUt18Brb+9MaEzLFxS3PBIQ9UfQiKX6edMsdBjZ3RNf2ogdKl7NDWOs7BB
+YYUw/VMQrGMXnv81ykIFjUPfjT+GgPGQodfKYRY6+oZPfXt6A8wVeWePD7Iw
+4jwvt3x/GNj517hX97JQq1L0n5d9ODgX7Dkz283CrIvW/hl1EXDu6wfXVZ0s
+rNP+75QFNQpCTDqd77exMDDI4L9c62iIunLSqa6ZhcWWRGLIRDQ8zB5w5PvA
+wvM39JgQegdypCftnd+x0G1Z0bBKagw0tYkcXfeKhYSDRYhSbhx0ioUfceOx
+0LuV47Ro2V0Y2EixSS5lYdnxNqPtj+/C32RFq4UlLCwvfRelG3YP1FxW72vL
+YuGq78LvXho9AI/fNtsvxbFwYc9m1pajj+DSiu6t2XdYmD6c/Q6IRxB41NG4
+O5KFTP0XDD5GAtwt9wCTMBaefVnu+6MmAUpvBhnK+rGwcN9F0VxmEojJ52qx
+nVn49f3gSY+WZEhbz8/4tYGFh3g/Ne1kU6Gk12Dt2DoWClNjg+s3pkL1bTfr
+/jXkef6Iezp2PBWGOlsfNumw8I4N9u/OSAWd67kqz9VZ+OFxn16a3hNg1x5Z
+dlqchTtT1uX+3vQU3toWb2z/xMQRvbLCyqXp8Fl4+OiHVia+m3g11Lw9HYZz
+l/i9bWLizZ+7f3Ds00GSP7ycXc/Esxt6x+fj0+HA05M74l4xkd/OMytWIgPa
+R6Qt9mQyMedrtqVtfwaM+rqexMtMdF/dlJXulwlChzP8v3szMcjAK+fW3UxQ
+0OtLYJxn4o0z/3oO5mSCybdjbW7uTGQ/3jWU8CkTUvbu3y13kok2Jh8cBfWz
+4JCq4dpz5ky0bfkuZv0lC16WLxBnqjDRdKVhwH3tHLgtlFIQWqGOTLm0K7kR
+eZB5MHLiQrk6mnts+k8pJQ+q067qOpSpY82hR5o+RXkgZGpVsIWtjtNZHYf4
+2vPAJ1yi4HeWOj7JEFZRpOXDacbF564x6igeVXO69Fg+mCw1z99rr46VGgW1
+8yP5IGQ+nSPDp45NNQ/DVGeeQ+N6dXPaPzWctZp6+HHuOTxeZjEk/UcNH/fG
+vrm9oAA2i2RqiE2pYciy0pgeegFcenU0afabGuqoKFVt1y+AkXWVUT0NavjA
++fq7OY8CaGHFemUlqSGH7/vAid4CeDa/2hBADU+m/6jW5b6A1CnDKsdbS1Dd
+L+C0vUoRXMyym7esVkXj9lEzS+diSE7dt34rRRVVBnM7hs+UwI0vI3RtKVVs
+sFtgIHiuBDyXhI3LSqhi6MfmCoZ3CWxJepUxKqyKW28/u7XGtwTK1zhp60+q
+YP6f3f37IkrAmLlioKdcBbN8fMVEcktgG/+LI5vsVJC2zDbI7XsJmHBfGU89
+UCbvy/udp4+x4cr5K8X9Mcq4pzAtovoEG7K0dJd/DFdGH/h5lunIBsnkx4vL
+ApTx6vPhxc2ubGgK8u8OdVHG9YdiG+Uus+H4ns2+CobK+CJ5p5ZuDBsu9XA4
+xm1KeNC7uexJJRueiTxfFc1QQu+cSY9ydQ70q1189F1aCQX6CzqPanBAbfOm
+hTvElfCJWIDzr6UceHi+puvPvCJuO5naoKnNgbCengiHQUXMlDaf9VjHATcu
+ZWRtqSLaV53cm2bOAW2P8886Tygi/4KPpbleHChsWau2MkcBW57wEWalHJjv
+OvZBIl0Blb+YBT4u48CuweCgkWQFlD3PXPsTOdD990N/bqwCug6UOt+t5IDE
+Es+s1VcVUFVO5S+vngMOrhn6a80U8JqVkFV+NwdofHI7jQflcenDpoeiggTY
+iW75pdYrj3GKsXNKwgRkUpyeCXbI47fjd+xWiRCwhVUkXvleHnfIGSjsFSfA
+bde+9zvZ8ugFDiHnqQRUxN48vDtUHm93ZMfaqRNwYdkfV2uWPD45bVnIMSLg
+bawO/bGKPI5S/e96bCVAlc+xbFBOHongPRXq2wmoa2mQ9pGUx8luDaFQEwLU
+gp4WJczIoaTglJLhXgLed1rMf6mRQ/kueQFzWwKWx6bfOeMuh07D29naFwjw
+n2/fUOwsh47ytlm53gS0nKb0zdnL4aK/A5MrLxEQYHRtbZSVHBpohIYwfQho
+G93fXrCFfL95Cmfen4Bg0znWL4oc5jVcjz11m4DuOUtOYIks+leumZx5TMC9
+p6IqA89lMcqekrAxlYA95mVBu7NlMfTdTKHfEwJKH2hayD6WRfqqch3+dALu
+6//pzwmTxWXbL1uNZxGw73QS7eNRWdyvXp8UUkTAq+ZBDx0hWZwz0g4JeUPA
+5auJzbFzMmgzzD78oJqAVeoHNvz5JYMF7s2PM2sISPQsXVA5IoOD6B9VXUvA
+FfHIBJtWGdx8gTM83kCArpF+bXCmDEoevF79p5WA1GxfjXYLGXTLe72xv58A
+Z6PY/97skkGF3MFFn78RoN3y7OqLbTL4jDJLrR8ggJhvagxbJ4NKs+m83CEC
+Gvev8DNUlUHqIcuHNqMECPxubb07xkB6oW+w7U8CqsNHAgMHGVh11oarP01A
+hJqgtnsvA20Yc0vFZwiQN9cO2t7KwEVlO7ILfhGwOilo1VQZA3XN3KyG/xJw
+fPvqm/siGFg7vuOkmAAXND7t0N90g4GoX7a0ivSwu23X0kAGNotfXuovyIVL
+90PX8HkzUDDUrHVUiAuR3zt6co8ysKBu93SxCBfKosPWS2gx8FP2gNWEBBeC
+NJL7ZjQYuNR45r/oRVzYxS2K6lVl4PEKpxs6klxo+drdT9AY+Ob+YKajFBdG
+1q6NcZmlo3s7p6Z0MRcUO3u/V9XS8Z1jbiiDQdbTJBIpX0VHgVER5WjSL2tX
+6LojHfMwYaWYDBeOcbwu0YvoaCv9vmCGdHKsoLBDIh2D6NccUY4Lnrc0M0ru
+0/HozQGetjwXjALNzMRj6Dg1tzImnvQXj5joglA66pmGPfFU4ALLTF2Z/ywd
+tRVunl+oxIVpo53llq50HFrz/N5p0lXrXB0yHOnopb9Zv5a0s8aLzL02dNzS
+/OZjqDIXMvm3rk3cSsfi5n1toypc0GbbW2xg0FGuQTPfS40Lc7khkxHSdMw0
+f+75knTD08y7X8TomOMYnCWsTtYbM9F+c56GvVWboqJJF7gHurQN0PD+MT2Z
+e0wuBDqmSazspeGmJKusJtIHbN/m+XXQMCBAlZBmcWHKlDKt0UhDvV3VO4NI
+G7BSAi9waUg4XmEe1uDCAsUqVk0RDQt+N0SEkW6lDFUr5tMwsJx6niB9iU9X
+quIJDZtagvPomlwwmTlYIJNEw4QLr4WNSMuNXj7o+oB8PrSo9TRp4nN5PCWC
+9PK+IQ7psMa+zadu0HDpBj+tLtJHakS/cAJpKJWz5bvAUi7MFu9beuIiDY+f
+3de2nfS7nAu1hWdpuGcuS8SRdOKTB+4L3Wj45cS2gkDScKenMO84DSMPGF/m
+kFa+eCrhpg0NGVuaE5tIzx35HnzSkobdlJa/I6Q7tni6b9pDQ6Fa0yjhZVwo
+Zf08JGNCwweL1tgqkH4kdgXGjWjIZj2y0yHtMzanWbuBhteFrj80Im3TdF36
+6RqyfqMRif2k13MW/vbVIc9DtrP4OGn5xPAe62U0FPCwvn+G9O9AyltddRoO
+1x17fol0m9O9AgklGirYT/IHkmabK8b3M2jIEpINu0n63urH11Gahi+1600j
+SXszNNweipHnIShjFEP60N9My/NCNBzfNekRR3pNt86mPXNUDDl3suX/plUW
+spb+omJChNP5WNJTzwwlBSaoGHR43jSa9IeIsunP36n4WG+51W3SBV5bu4r6
+qBig/i0+mPQd6+o3kV1UrGvWl71G+uym3fkuH6lonLC47hxpC7XG+1s/ULHi
+nE/JKdKrRKwClN5R0eynxydr0tLDn11mqqjY4zKsb0p67P3x/f8hFTO5I1Vr
+SdcX9a3PIqjY5uMZxSSd+/C0enAh+bzHM1qKdLjfmLhdLhVPvx2q+UWel5vD
++al1GVR05Hw07Ca9Qtu3cjieint+CuAz0mJUwdyqOCq+DdFtuUV6aCb0bnIk
+Fe+ml6u7kc4oj3ayvE7FSKM+B03SN9IYFtrXqJiu7Wb9/35zuhW/buFFKnbd
+WXv9M9mPGgefipaepmJh9VXfG6QXrF8+EedAxaqN/XtsSfcp533yOEbFRjev
+Q9qknwyws9T3k5/n0CT2jrwfS67W7b5lSNaT/kjkJ3m/+E7sM3DUo+IlZ0oU
+Qbp7e4syaFHxzrXDe31JJ0p1j02oUpHGWXGOj7Ri6mS0zUIqHll2becYeb9n
+Qy9d0RegohtXMTiN9Ge3f/aSsxSsi2b+PkL6oYGI/qsxCo6/Xh1UTuaFzFv5
+lmWtFNQ6HMm8uIQL1kPKPqr/UbBvvDx3Cen7YuqqMrUUTPvr4fdWlexXsxWn
+hXgUfH/j7ySDtHLdhrnONArqzQxqxpN5ZTcMqc3JFDzQRv26lnSyxDaTuocU
+ZDcs728k823JbvM7nAgKrrjWyBUkzay31Yj1pmCQd2umBZmXjqPHa8M8Kdgh
+uCG2i8zTNElHz4DTFMwZ+PbKjbTm3jOE+zEKmlysHAsg83j5+2t7THdQsOov
+JfgemderGhO95+gUVBKevuFBJftxIkXhpxQFVXS+cr9QyP6lpON3UQrqOMTo
+WpLWO5An9vHfYlw+XjW0mpwXBk28xBd9izHf5cz1NnK+bGzprnIuWowxc8Mb
+GkXJ/PqkJvPBcjHOa6kPes8REGu7pnD13sUoxZhI4v0joKtz574o08W4YVPJ
++wWkvXvdbu3evBh936UlRZHz8slw8fwbzcXIPJowFk3O0/m5XQOlf6RReI6+
+wWyCgGJ1L05asjR+bdC4de8rOa/Tgg8Jx0tjRUbl5rxeAnYvvT95Mk4a7xgN
+OFV+IeDrypdaS8KksTBSRn6km4DFBiIp8V7SeDY67feyDnK/M4kPi9ohjRJC
+H/wPNxOw41NIyVSbFEq1eFyJqCDgD3HmalmdFF54Cs9sXxOQF29pdAOl8HvC
+Df5lrwiQPapWq5AhhX5/Q7VKeQQMdb3sNL4ohWMGum51BLkv9E0JR9Ol0Heb
+z67YfHJf+2FvqbVfEmct1qfxHhIQ9p+p3Mx2Sczrmvbf/4AAKFjViYaSGPfG
+6WrvPQIyvOacLJdIoqbYqqb5WHIfmn7g4/NjEc7Aq7klkQQoz75PqYlYhO0y
+T36LXyfASQTGHWsl0NyUvuG8C7lfZRunzfMkkJ8RMNzvRH4fix1HHhRKIF+u
+2KTVKbK+h7sr6xIkUNPeZE7/JPn7atk+0POUQC26tPBncv8UsrxsxE+XQKPY
+B5Et5H6akvwi+tExcYy/0H/ipj4B7YZLdT+Mi+LtK9kDb39xwPng8uNp/aJY
+evHcrk/THPjpuTLi8mdR7JYqmP02xQHJjFVDKpWi+EZHbt/cDw4YMQxT3O6L
+4irFulzGIAfSJkwpC0AUu+bO9v9s44BnluvEutsLcfOXX16uJRwQVMorSNQQ
+wb6Dbz7Le3Agl+bl6isvgnd+uG8LdeOAtcRa5jFJESxW/xY57sKB7L9lcUrT
+C7C2/EUdz4EDhz7VX3pUuQCZu6/UGttwIOPe6OaHDgtwn+lvky/bOGBO0a6N
+SxHGKrcfZwNlORAnktN7W1kIs97MCStz2GD5Ovz2RqoQDvVe0dcrZgPNz33N
+sIgQGiqOndjxgg2x0zqhZuOC2J/eV3wqhw13+gqWi1UI4kmhPv3Ix2yIeM0+
+G+oiiPWGazp8b7Lhhl/FfEChAFb8Co7+YMUGn5nPChd38WOD/3UJ1mgJ3O8Q
+FF3oNcuLa/id93ewGL60PB+Q40zzOg/IeljVFUHE6vidAwrjvFmOSWdqcCHo
+Rz68e1twnKfqOP0v3a8QPg0/6Fv1/QfvlyZVIuNyIWhk3L9+mfjBa47f0hd/
+phDKlO/yxA7/4GnIBLD2HyyEDhk1D5uVY7wdDJ97P9ULIbFu0d6vqsM8q7iw
+W7MvX8ASgz7JX6L9vAqVbMPFXwvgFb/VGf/2Pt4po/pMl44CcHhXXbswr493
+tnIi8mVLAaQ5ZN+Qs+zj1bzuTLGqKYCVMV4CGxK/8gQajE9Y5haAwQ/+6Wu6
+vTypScl3rhcLwDxTuUPwSDdPdFDPZViY/P++Mf+QinUzr01md2Yb5TkoF6W4
+xP5s4lUZz6uuEXsOe7TirorGNPEOi7Vbh/E/h1ylKymT7z7wLlRFdCn/yAf3
+ua2jb7Y28t79ERQbq8uHdr888Z5j9TzGs1jXJcH50Bk853J90Sve2S+Vif2d
+ebDZuzfyjEk5jxqgsT+pNg8ST1UXWV1H3tc/3lo72HnwMoIpaD3xkicVcavt
+aHQelC02131WU8JrbN9o8dw4D/x0DJbc+5HGm5BvZNc8zoUr7HDHLstM8P7W
+pZxtkQOmO2wj2mxyIGjppqgdG3JA4nTcZ+dV+RCoa9f1lpUDn2ZOCtkbvICF
+ka37ov5kgzeV/5ClMQfCk9kzC1OzwfppwlXFnFdgaNIzHzCWBdHtrSr8lfXA
+/STM6jufCUL+4qf9QhqAZ7DNcZdtJpRGq3yaU38Py0favaO3ZsKqNQeY1/re
+g03OhuLXizNB5irBvuzcCNHjazpys59Bn+jNnnPuzXBU/bqJWXsGBLI09Byv
+fIYY1xR/P5V0uNNyuPVJ02dg6NRb7RRKh8eh4T5ftdvhfUMK8W0gDXBw6vXJ
+3na4u9XxW97zNPiX89rS3rwTBFUc3XcbpcHG+FVcnchu8CvecGCl9VOo8NoV
+vre0G1Rq9iStXv8UzMwd7DwGuyFNE5KEFJ+Czb97gnlbeyAjM8NCuusJXLab
+N9P+1QMeApuVn9o/IedBffvKE73w27rDtftYKmye/ZZrHtELIilsVbNNqVDZ
+xB/gxu0FccJo5zmFVGgKXsPKpn8FDKEb/GhJgclvj86sePsVRFvns/x2pZB5
+6Tq3TK8f6C/euNipPQZ2UPB70+P9sKmSua7ybzJsOZqU4hLeDyqVXg3VTcmw
+V/LDjmff+iGdLXYhMTgZ3D3XRy599A2SZi+52FUkQZa+qKqm8CCoRipre4kk
+QOkjhTc0g0FYcHHbzKeUR1AnpO0u4DQIFacUd5ZvfASjTftLO6oHYTVvy1Sl
+azzoXnhkHXt7CIo+Gq+5WfgAtnbkzge8HILkvD30SqMHYLm9PM1jdAhM5R+I
+N9TdB296/9Qui+9w09A9oPbzPSCKdKL5acOg3fwuTepjHNQqGa8b2zYMGd2M
+ybMWcdAebNnVfmEYBEvOfV1ZEQtzBy9rsVuHwVvKy+xsUgxIld1qerpwBKZr
+CBYsiAFVjUSfGMMR+LN8fnbA6Q4YT7+qcY8fAeu/jeNRctFw4Fizp23dCJgv
+7hfSdI4Ch6pvMrv+jUB+/Yiz+9FIuKD9p2yt9ihE5pX1rmwLh5C7EqdYdqPg
+LFsSEL3pNtybU15EjRoFa4/N117eDIOMU6sL+cpHQTq40sCn5AZw6rceGR0f
+hRf/VWZe5YXAW4NDAu1qY/D7U1bC+N0g+Jzo/KzmwBj0SFauvbsyEIYX+FiU
+BI2BeX32PanXvjDrHj7zpGgMWiourbbvuwiLWpMS7/SPgafaj3aPKVdgiC87
+Jzo/BszwObXG19vhfxtewnk=
+ "]]}, "Charting`Private`Tag#1"]}}, {}}, <|
+ "HighlightElements" -> <|
+ "Label" -> {"XYLabel"}, "Ball" -> {"InterpolatedBall"}|>,
+ "LayoutOptions" -> <|
+ "PanelPlotLayout" -> <||>,
+ "PlotRange" -> {{-15., 3.}, {0., 0.12732395447351627`}},
+ "Frame" -> {{False, False}, {False, False}},
+ "AxesOrigin" -> {0, 0}, "ImageSize" -> {180, 72},
+ "Axes" -> {True, True}, "LabelStyle" -> {FontFamily -> "Helvetica",
+ GrayLevel[0], FontSize -> 12}, "AspectRatio" -> Rational[2, 5],
+ "DefaultStyle" -> {
+ Directive[
+ Opacity[1.],
+ RGBColor[0.368417, 0.506779, 0.709798],
+ AbsoluteThickness[2]]},
+ "HighlightLabelingFunctions" -> <|"CoordinatesToolOptions" -> ({
+ Identity[
+ Part[#, 1]],
+ Identity[
+ Part[#, 2]]}& ),
+ "ScalingFunctions" -> {{Identity, Identity}, {
+ Identity, Identity}}|>, "Primitives" -> {}, "GCFlag" ->
+ False|>,
+ "Meta" -> <|
+ "DefaultHighlight" -> {"Dynamic", None}, "Index" -> {}, "Function" ->
+ Plot, "GroupHighlight" -> False|>|>]]& )[<|
+ "HighlightElements" -> <|
+ "Label" -> {"XYLabel"}, "Ball" -> {"InterpolatedBall"}|>,
+ "LayoutOptions" -> <|
+ "PanelPlotLayout" -> <||>,
+ "PlotRange" -> {{-15., 3.}, {0., 0.12732395447351627`}},
+ "Frame" -> {{False, False}, {False, False}}, "AxesOrigin" -> {0, 0},
+ "ImageSize" -> {180, 72}, "Axes" -> {True, True},
+ "LabelStyle" -> {FontFamily -> "Helvetica",
+ GrayLevel[0], FontSize -> 12}, "AspectRatio" -> Rational[2, 5],
+ "DefaultStyle" -> {
+ Directive[
+ Opacity[1.],
+ RGBColor[0.368417, 0.506779, 0.709798],
+ AbsoluteThickness[2]]},
+ "HighlightLabelingFunctions" -> <|"CoordinatesToolOptions" -> ({
+ Identity[
+ Part[#, 1]],
+ Identity[
+ Part[#, 2]]}& ),
+ "ScalingFunctions" -> {{Identity, Identity}, {
+ Identity, Identity}}|>, "Primitives" -> {}, "GCFlag" -> False|>,
+ "Meta" -> <|
+ "DefaultHighlight" -> {"Dynamic", None}, "Index" -> {}, "Function" ->
+ Plot, "GroupHighlight" -> False|>|>],
+ ImageSizeCache->{{4.503599627370496*^15, -4.503599627370496*^15}, {
+ 4.503599627370496*^15, -4.503599627370496*^15}}],
+ Selectable->False]},
+ Annotation[{{{{}, {},
+ Annotation[{
+ Directive[
+ Opacity[1.],
+ RGBColor[0.368417, 0.506779, 0.709798],
+ AbsoluteThickness[2]],
+ Line[CompressedData["
+1:eJwV13k4lG8XB3BrsoRmsy8xQxsKKW0n2ohKpUhKiRChlBZly1LKFtpkiUL2
+ZJl5RuYoREQ/2SprImTJEi3ifd6/5vpczzXXnJn73N9zZom9x35HAT4+Pl9+
+Pr7/v05+N9WemGfhhPfWTRcebQOfRusDG/+xkLv8aUK9+zloOpU4eeIPC18V
+MWvUt18Brb+9MaEzLFxS3PBIQ9UfQiKX6edMsdBjZ3RNf2ogdKl7NDWOs7BB
+YYUw/VMQrGMXnv81ykIFjUPfjT+GgPGQodfKYRY6+oZPfXt6A8wVeWePD7Iw
+4jwvt3x/GNj517hX97JQq1L0n5d9ODgX7Dkz283CrIvW/hl1EXDu6wfXVZ0s
+rNP+75QFNQpCTDqd77exMDDI4L9c62iIunLSqa6ZhcWWRGLIRDQ8zB5w5PvA
+wvM39JgQegdypCftnd+x0G1Z0bBKagw0tYkcXfeKhYSDRYhSbhx0ioUfceOx
+0LuV47Ro2V0Y2EixSS5lYdnxNqPtj+/C32RFq4UlLCwvfRelG3YP1FxW72vL
+YuGq78LvXho9AI/fNtsvxbFwYc9m1pajj+DSiu6t2XdYmD6c/Q6IRxB41NG4
+O5KFTP0XDD5GAtwt9wCTMBaefVnu+6MmAUpvBhnK+rGwcN9F0VxmEojJ52qx
+nVn49f3gSY+WZEhbz8/4tYGFh3g/Ne1kU6Gk12Dt2DoWClNjg+s3pkL1bTfr
+/jXkef6Iezp2PBWGOlsfNumw8I4N9u/OSAWd67kqz9VZ+OFxn16a3hNg1x5Z
+dlqchTtT1uX+3vQU3toWb2z/xMQRvbLCyqXp8Fl4+OiHVia+m3g11Lw9HYZz
+l/i9bWLizZ+7f3Ds00GSP7ycXc/Esxt6x+fj0+HA05M74l4xkd/OMytWIgPa
+R6Qt9mQyMedrtqVtfwaM+rqexMtMdF/dlJXulwlChzP8v3szMcjAK+fW3UxQ
+0OtLYJxn4o0z/3oO5mSCybdjbW7uTGQ/3jWU8CkTUvbu3y13kok2Jh8cBfWz
+4JCq4dpz5ky0bfkuZv0lC16WLxBnqjDRdKVhwH3tHLgtlFIQWqGOTLm0K7kR
+eZB5MHLiQrk6mnts+k8pJQ+q067qOpSpY82hR5o+RXkgZGpVsIWtjtNZHYf4
+2vPAJ1yi4HeWOj7JEFZRpOXDacbF564x6igeVXO69Fg+mCw1z99rr46VGgW1
+8yP5IGQ+nSPDp45NNQ/DVGeeQ+N6dXPaPzWctZp6+HHuOTxeZjEk/UcNH/fG
+vrm9oAA2i2RqiE2pYciy0pgeegFcenU0afabGuqoKFVt1y+AkXWVUT0NavjA
++fq7OY8CaGHFemUlqSGH7/vAid4CeDa/2hBADU+m/6jW5b6A1CnDKsdbS1Dd
+L+C0vUoRXMyym7esVkXj9lEzS+diSE7dt34rRRVVBnM7hs+UwI0vI3RtKVVs
+sFtgIHiuBDyXhI3LSqhi6MfmCoZ3CWxJepUxKqyKW28/u7XGtwTK1zhp60+q
+YP6f3f37IkrAmLlioKdcBbN8fMVEcktgG/+LI5vsVJC2zDbI7XsJmHBfGU89
+UCbvy/udp4+x4cr5K8X9Mcq4pzAtovoEG7K0dJd/DFdGH/h5lunIBsnkx4vL
+ApTx6vPhxc2ubGgK8u8OdVHG9YdiG+Uus+H4ns2+CobK+CJ5p5ZuDBsu9XA4
+xm1KeNC7uexJJRueiTxfFc1QQu+cSY9ydQ70q1189F1aCQX6CzqPanBAbfOm
+hTvElfCJWIDzr6UceHi+puvPvCJuO5naoKnNgbCengiHQUXMlDaf9VjHATcu
+ZWRtqSLaV53cm2bOAW2P8886Tygi/4KPpbleHChsWau2MkcBW57wEWalHJjv
+OvZBIl0Blb+YBT4u48CuweCgkWQFlD3PXPsTOdD990N/bqwCug6UOt+t5IDE
+Es+s1VcVUFVO5S+vngMOrhn6a80U8JqVkFV+NwdofHI7jQflcenDpoeiggTY
+iW75pdYrj3GKsXNKwgRkUpyeCXbI47fjd+xWiRCwhVUkXvleHnfIGSjsFSfA
+bde+9zvZ8ugFDiHnqQRUxN48vDtUHm93ZMfaqRNwYdkfV2uWPD45bVnIMSLg
+bawO/bGKPI5S/e96bCVAlc+xbFBOHongPRXq2wmoa2mQ9pGUx8luDaFQEwLU
+gp4WJczIoaTglJLhXgLed1rMf6mRQ/kueQFzWwKWx6bfOeMuh07D29naFwjw
+n2/fUOwsh47ytlm53gS0nKb0zdnL4aK/A5MrLxEQYHRtbZSVHBpohIYwfQho
+G93fXrCFfL95Cmfen4Bg0znWL4oc5jVcjz11m4DuOUtOYIks+leumZx5TMC9
+p6IqA89lMcqekrAxlYA95mVBu7NlMfTdTKHfEwJKH2hayD6WRfqqch3+dALu
+6//pzwmTxWXbL1uNZxGw73QS7eNRWdyvXp8UUkTAq+ZBDx0hWZwz0g4JeUPA
+5auJzbFzMmgzzD78oJqAVeoHNvz5JYMF7s2PM2sISPQsXVA5IoOD6B9VXUvA
+FfHIBJtWGdx8gTM83kCArpF+bXCmDEoevF79p5WA1GxfjXYLGXTLe72xv58A
+Z6PY/97skkGF3MFFn78RoN3y7OqLbTL4jDJLrR8ggJhvagxbJ4NKs+m83CEC
+Gvev8DNUlUHqIcuHNqMECPxubb07xkB6oW+w7U8CqsNHAgMHGVh11oarP01A
+hJqgtnsvA20Yc0vFZwiQN9cO2t7KwEVlO7ILfhGwOilo1VQZA3XN3KyG/xJw
+fPvqm/siGFg7vuOkmAAXND7t0N90g4GoX7a0ivSwu23X0kAGNotfXuovyIVL
+90PX8HkzUDDUrHVUiAuR3zt6co8ysKBu93SxCBfKosPWS2gx8FP2gNWEBBeC
+NJL7ZjQYuNR45r/oRVzYxS2K6lVl4PEKpxs6klxo+drdT9AY+Ob+YKajFBdG
+1q6NcZmlo3s7p6Z0MRcUO3u/V9XS8Z1jbiiDQdbTJBIpX0VHgVER5WjSL2tX
+6LojHfMwYaWYDBeOcbwu0YvoaCv9vmCGdHKsoLBDIh2D6NccUY4Lnrc0M0ru
+0/HozQGetjwXjALNzMRj6Dg1tzImnvQXj5joglA66pmGPfFU4ALLTF2Z/ywd
+tRVunl+oxIVpo53llq50HFrz/N5p0lXrXB0yHOnopb9Zv5a0s8aLzL02dNzS
+/OZjqDIXMvm3rk3cSsfi5n1toypc0GbbW2xg0FGuQTPfS40Lc7khkxHSdMw0
+f+75knTD08y7X8TomOMYnCWsTtYbM9F+c56GvVWboqJJF7gHurQN0PD+MT2Z
+e0wuBDqmSazspeGmJKusJtIHbN/m+XXQMCBAlZBmcWHKlDKt0UhDvV3VO4NI
+G7BSAi9waUg4XmEe1uDCAsUqVk0RDQt+N0SEkW6lDFUr5tMwsJx6niB9iU9X
+quIJDZtagvPomlwwmTlYIJNEw4QLr4WNSMuNXj7o+oB8PrSo9TRp4nN5PCWC
+9PK+IQ7psMa+zadu0HDpBj+tLtJHakS/cAJpKJWz5bvAUi7MFu9beuIiDY+f
+3de2nfS7nAu1hWdpuGcuS8SRdOKTB+4L3Wj45cS2gkDScKenMO84DSMPGF/m
+kFa+eCrhpg0NGVuaE5tIzx35HnzSkobdlJa/I6Q7tni6b9pDQ6Fa0yjhZVwo
+Zf08JGNCwweL1tgqkH4kdgXGjWjIZj2y0yHtMzanWbuBhteFrj80Im3TdF36
+6RqyfqMRif2k13MW/vbVIc9DtrP4OGn5xPAe62U0FPCwvn+G9O9AyltddRoO
+1x17fol0m9O9AgklGirYT/IHkmabK8b3M2jIEpINu0n63urH11Gahi+1600j
+SXszNNweipHnIShjFEP60N9My/NCNBzfNekRR3pNt86mPXNUDDl3suX/plUW
+spb+omJChNP5WNJTzwwlBSaoGHR43jSa9IeIsunP36n4WG+51W3SBV5bu4r6
+qBig/i0+mPQd6+o3kV1UrGvWl71G+uym3fkuH6lonLC47hxpC7XG+1s/ULHi
+nE/JKdKrRKwClN5R0eynxydr0tLDn11mqqjY4zKsb0p67P3x/f8hFTO5I1Vr
+SdcX9a3PIqjY5uMZxSSd+/C0enAh+bzHM1qKdLjfmLhdLhVPvx2q+UWel5vD
++al1GVR05Hw07Ca9Qtu3cjieint+CuAz0mJUwdyqOCq+DdFtuUV6aCb0bnIk
+Fe+ml6u7kc4oj3ayvE7FSKM+B03SN9IYFtrXqJiu7Wb9/35zuhW/buFFKnbd
+WXv9M9mPGgefipaepmJh9VXfG6QXrF8+EedAxaqN/XtsSfcp533yOEbFRjev
+Q9qknwyws9T3k5/n0CT2jrwfS67W7b5lSNaT/kjkJ3m/+E7sM3DUo+IlZ0oU
+Qbp7e4syaFHxzrXDe31JJ0p1j02oUpHGWXGOj7Ri6mS0zUIqHll2becYeb9n
+Qy9d0RegohtXMTiN9Ge3f/aSsxSsi2b+PkL6oYGI/qsxCo6/Xh1UTuaFzFv5
+lmWtFNQ6HMm8uIQL1kPKPqr/UbBvvDx3Cen7YuqqMrUUTPvr4fdWlexXsxWn
+hXgUfH/j7ySDtHLdhrnONArqzQxqxpN5ZTcMqc3JFDzQRv26lnSyxDaTuocU
+ZDcs728k823JbvM7nAgKrrjWyBUkzay31Yj1pmCQd2umBZmXjqPHa8M8Kdgh
+uCG2i8zTNElHz4DTFMwZ+PbKjbTm3jOE+zEKmlysHAsg83j5+2t7THdQsOov
+JfgemderGhO95+gUVBKevuFBJftxIkXhpxQFVXS+cr9QyP6lpON3UQrqOMTo
+WpLWO5An9vHfYlw+XjW0mpwXBk28xBd9izHf5cz1NnK+bGzprnIuWowxc8Mb
+GkXJ/PqkJvPBcjHOa6kPes8REGu7pnD13sUoxZhI4v0joKtz574o08W4YVPJ
++wWkvXvdbu3evBh936UlRZHz8slw8fwbzcXIPJowFk3O0/m5XQOlf6RReI6+
+wWyCgGJ1L05asjR+bdC4de8rOa/Tgg8Jx0tjRUbl5rxeAnYvvT95Mk4a7xgN
+OFV+IeDrypdaS8KksTBSRn6km4DFBiIp8V7SeDY67feyDnK/M4kPi9ohjRJC
+H/wPNxOw41NIyVSbFEq1eFyJqCDgD3HmalmdFF54Cs9sXxOQF29pdAOl8HvC
+Df5lrwiQPapWq5AhhX5/Q7VKeQQMdb3sNL4ohWMGum51BLkv9E0JR9Ol0Heb
+z67YfHJf+2FvqbVfEmct1qfxHhIQ9p+p3Mx2Sczrmvbf/4AAKFjViYaSGPfG
+6WrvPQIyvOacLJdIoqbYqqb5WHIfmn7g4/NjEc7Aq7klkQQoz75PqYlYhO0y
+T36LXyfASQTGHWsl0NyUvuG8C7lfZRunzfMkkJ8RMNzvRH4fix1HHhRKIF+u
+2KTVKbK+h7sr6xIkUNPeZE7/JPn7atk+0POUQC26tPBncv8UsrxsxE+XQKPY
+B5Et5H6akvwi+tExcYy/0H/ipj4B7YZLdT+Mi+LtK9kDb39xwPng8uNp/aJY
+evHcrk/THPjpuTLi8mdR7JYqmP02xQHJjFVDKpWi+EZHbt/cDw4YMQxT3O6L
+4irFulzGIAfSJkwpC0AUu+bO9v9s44BnluvEutsLcfOXX16uJRwQVMorSNQQ
+wb6Dbz7Le3Agl+bl6isvgnd+uG8LdeOAtcRa5jFJESxW/xY57sKB7L9lcUrT
+C7C2/EUdz4EDhz7VX3pUuQCZu6/UGttwIOPe6OaHDgtwn+lvky/bOGBO0a6N
+SxHGKrcfZwNlORAnktN7W1kIs97MCStz2GD5Ovz2RqoQDvVe0dcrZgPNz33N
+sIgQGiqOndjxgg2x0zqhZuOC2J/eV3wqhw13+gqWi1UI4kmhPv3Ix2yIeM0+
+G+oiiPWGazp8b7Lhhl/FfEChAFb8Co7+YMUGn5nPChd38WOD/3UJ1mgJ3O8Q
+FF3oNcuLa/id93ewGL60PB+Q40zzOg/IeljVFUHE6vidAwrjvFmOSWdqcCHo
+Rz68e1twnKfqOP0v3a8QPg0/6Fv1/QfvlyZVIuNyIWhk3L9+mfjBa47f0hd/
+phDKlO/yxA7/4GnIBLD2HyyEDhk1D5uVY7wdDJ97P9ULIbFu0d6vqsM8q7iw
+W7MvX8ASgz7JX6L9vAqVbMPFXwvgFb/VGf/2Pt4po/pMl44CcHhXXbswr493
+tnIi8mVLAaQ5ZN+Qs+zj1bzuTLGqKYCVMV4CGxK/8gQajE9Y5haAwQ/+6Wu6
+vTypScl3rhcLwDxTuUPwSDdPdFDPZViY/P++Mf+QinUzr01md2Yb5TkoF6W4
+xP5s4lUZz6uuEXsOe7TirorGNPEOi7Vbh/E/h1ylKymT7z7wLlRFdCn/yAf3
+ua2jb7Y28t79ERQbq8uHdr888Z5j9TzGs1jXJcH50Bk853J90Sve2S+Vif2d
+ebDZuzfyjEk5jxqgsT+pNg8ST1UXWV1H3tc/3lo72HnwMoIpaD3xkicVcavt
+aHQelC02131WU8JrbN9o8dw4D/x0DJbc+5HGm5BvZNc8zoUr7HDHLstM8P7W
+pZxtkQOmO2wj2mxyIGjppqgdG3JA4nTcZ+dV+RCoa9f1lpUDn2ZOCtkbvICF
+ka37ov5kgzeV/5ClMQfCk9kzC1OzwfppwlXFnFdgaNIzHzCWBdHtrSr8lfXA
+/STM6jufCUL+4qf9QhqAZ7DNcZdtJpRGq3yaU38Py0favaO3ZsKqNQeY1/re
+g03OhuLXizNB5irBvuzcCNHjazpys59Bn+jNnnPuzXBU/bqJWXsGBLI09Byv
+fIYY1xR/P5V0uNNyuPVJ02dg6NRb7RRKh8eh4T5ftdvhfUMK8W0gDXBw6vXJ
+3na4u9XxW97zNPiX89rS3rwTBFUc3XcbpcHG+FVcnchu8CvecGCl9VOo8NoV
+vre0G1Rq9iStXv8UzMwd7DwGuyFNE5KEFJ+Czb97gnlbeyAjM8NCuusJXLab
+N9P+1QMeApuVn9o/IedBffvKE73w27rDtftYKmye/ZZrHtELIilsVbNNqVDZ
+xB/gxu0FccJo5zmFVGgKXsPKpn8FDKEb/GhJgclvj86sePsVRFvns/x2pZB5
+6Tq3TK8f6C/euNipPQZ2UPB70+P9sKmSua7ybzJsOZqU4hLeDyqVXg3VTcmw
+V/LDjmff+iGdLXYhMTgZ3D3XRy599A2SZi+52FUkQZa+qKqm8CCoRipre4kk
+QOkjhTc0g0FYcHHbzKeUR1AnpO0u4DQIFacUd5ZvfASjTftLO6oHYTVvy1Sl
+azzoXnhkHXt7CIo+Gq+5WfgAtnbkzge8HILkvD30SqMHYLm9PM1jdAhM5R+I
+N9TdB296/9Qui+9w09A9oPbzPSCKdKL5acOg3fwuTepjHNQqGa8b2zYMGd2M
+ybMWcdAebNnVfmEYBEvOfV1ZEQtzBy9rsVuHwVvKy+xsUgxIld1qerpwBKZr
+CBYsiAFVjUSfGMMR+LN8fnbA6Q4YT7+qcY8fAeu/jeNRctFw4Fizp23dCJgv
+7hfSdI4Ch6pvMrv+jUB+/Yiz+9FIuKD9p2yt9ihE5pX1rmwLh5C7EqdYdqPg
+LFsSEL3pNtybU15EjRoFa4/N117eDIOMU6sL+cpHQTq40sCn5AZw6rceGR0f
+hRf/VWZe5YXAW4NDAu1qY/D7U1bC+N0g+Jzo/KzmwBj0SFauvbsyEIYX+FiU
+BI2BeX32PanXvjDrHj7zpGgMWiourbbvuwiLWpMS7/SPgafaj3aPKVdgiC87
+Jzo/BszwObXG19vhfxtewnk=
+ "]]}, "Charting`Private`Tag#1"]}}, {}}, <|
+ "HighlightElements" -> <|
+ "Label" -> {"XYLabel"}, "Ball" -> {"InterpolatedBall"}|>,
+ "LayoutOptions" -> <|
+ "PanelPlotLayout" -> <||>,
+ "PlotRange" -> {{-15., 3.}, {0., 0.12732395447351627`}},
+ "Frame" -> {{False, False}, {False, False}}, "AxesOrigin" -> {0, 0},
+ "ImageSize" -> {180, 72}, "Axes" -> {True, True},
+ "LabelStyle" -> {FontFamily -> "Helvetica",
+ GrayLevel[0], FontSize -> 12}, "AspectRatio" -> Rational[2, 5],
+ "DefaultStyle" -> {
+ Directive[
+ Opacity[1.],
+ RGBColor[0.368417, 0.506779, 0.709798],
+ AbsoluteThickness[2]]},
+ "HighlightLabelingFunctions" -> <|"CoordinatesToolOptions" -> ({
+ Identity[
+ Part[#, 1]],
+ Identity[
+ Part[#, 2]]}& ),
+ "ScalingFunctions" -> {{Identity, Identity}, {Identity, Identity}}|>,
+ "Primitives" -> {}, "GCFlag" -> False|>,
+ "Meta" -> <|
+ "DefaultHighlight" -> {"Dynamic", None}, "Index" -> {}, "Function" ->
+ Plot, "GroupHighlight" -> False|>|>, "DynamicHighlight"]],
+ AspectRatio->NCache[
+ Rational[2, 5], 0.4],
+ Axes->{True, True},
+ AxesLabel->{
+ FormBox[
+ TagBox[
+ TagBox["\[Lambda]", HoldForm], HoldForm], TraditionalForm],
+ FormBox[
+ TagBox[
+ RowBox[{"\[Rho]", "(",
+ TagBox["\[Lambda]", HoldForm], ")"}], HoldForm], TraditionalForm]},
+ AxesOrigin->{0, 0},
+ DisplayFunction->Identity,
+ Frame->{{False, False}, {False, False}},
+ FrameLabel->{{None, None}, {None, None}},
+ FrameStyle->GrayLevel[0],
+ FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}},
+ GridLines->{None, None},
+ GridLinesStyle->Directive[
+ GrayLevel[0.5, 0.4]],
+ ImagePadding->All,
+ ImageSize->180,
+ LabelStyle->{FontFamily -> "Helvetica",
+ GrayLevel[0], FontSize -> 12},
+ Method->{
+ "DefaultBoundaryStyle" -> Automatic,
+ "DefaultGraphicsInteraction" -> {
+ "Version" -> 1.2, "TrackMousePosition" -> {True, False},
+ "Effects" -> {
+ "Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2},
+ "Droplines" -> {
+ "freeformCursorMode" -> True,
+ "placement" -> {"x" -> "All", "y" -> "None"}}}}, "DefaultMeshStyle" ->
+ AbsolutePointSize[6], "ScalingFunctions" -> None,
+ "CoordinatesToolOptions" -> {"DisplayFunction" -> ({
+ (Identity[#]& )[
+ Part[#, 1]],
+ (Identity[#]& )[
+ Part[#, 2]]}& ), "CopiedValueFunction" -> ({
+ (Identity[#]& )[
+ Part[#, 1]],
+ (Identity[#]& )[
+ Part[#, 2]]}& )}},
+ PlotRange->{{-15., 3.}, {0., 0.12732395447351627`}},
+ PlotRangeClipping->False,
+ PlotRangePadding->{{0, 0}, {0, 0}},
+ Prolog->{
+ ArrowBox[
+ NCache[{{0, Rational[1, 24]/Pi}, {-5, Rational[1, 24]/Pi}}, {{
+ 0, 0.013262911924324612`}, {-5, 0.013262911924324612`}}]], {
+ Dashing[{Small, Small}],
+ LineBox[
+ NCache[{{-5, 0}, {-5, Rational[1, 3]/Pi}}, {{-5,
+ 0}, {-5, 0.1061032953945969}}]],
+ InsetBox[
+ FormBox[
+ StyleBox["\"\[Mu]\"", SingleLetterItalics -> False,
+ Directive[FontFamily -> "Helvetica",
+ GrayLevel[0], FontSize -> 10], StripOnInput -> False],
+ TraditionalForm],
+ NCache[{
+ Rational[-5, 2], Rational[1, 12]/Pi}, {-2.5,
+ 0.026525823848649224`}]]}, {
+ Arrowheads[{-Automatic, Automatic}],
+ ArrowBox[
+ NCache[{{-11, Rational[1, 24]/Pi}, {-5, Rational[1, 24]/Pi}}, {{-11,
+ 0.013262911924324612`}, {-5, 0.013262911924324612`}}]]},
+ InsetBox[
+ FormBox[
+ StyleBox["\"2\[Sigma]\"", SingleLetterItalics -> False,
+ Directive[FontFamily -> "Helvetica",
+ GrayLevel[0], FontSize -> 10], StripOnInput -> False],
+ TraditionalForm],
+ NCache[{-8, Rational[1, 12]/Pi}, {-8, 0.026525823848649224`}]]},
+ Ticks->{{{0,
+ FormBox["0", TraditionalForm]}}, {}}]], "Output",
+ CellChangeTimes->{
+ 3.8952066993691473`*^9, 3.89520674386379*^9, {3.895206800311884*^9,
+ 3.8952068894420347`*^9}, {3.895206959308638*^9, 3.895206992894684*^9}, {
+ 3.8952070620060863`*^9, 3.895207067724165*^9}, {3.895207143255886*^9,
+ 3.895207260626754*^9}, {3.895207406363961*^9, 3.895207444229038*^9},
+ 3.895207478790277*^9, {3.89520759340065*^9, 3.895207626329248*^9}, {
+ 3.895207672105403*^9, 3.895207766860739*^9}, 3.895207868876601*^9, {
+ 3.89520792560944*^9, 3.895207930957688*^9}, {3.895208673993223*^9,
+ 3.895208731333771*^9}, 3.895208855336532*^9, 3.895208910073511*^9, {
+ 3.924161545406942*^9, 3.9241616063477488`*^9}, {3.924161639114283*^9,
+ 3.924161707916535*^9}, 3.924161917425612*^9, {3.924163199195035*^9,
+ 3.9241632684587812`*^9}},
+ CellLabel->
+ "Out[117]=",ExpressionUUID->"cc0cbfd4-3639-4208-9b14-59bc95d581ed"]
+}, Open ]],
+
+Cell[CellGroupData[{
+
+Cell[BoxData[
+ RowBox[{"pS2", "=",
+ RowBox[{"plotSpecWith\[Mu]Arrow", "[",
+ RowBox[{
+ RowBox[{"-", "6"}], ",", "\"\<b\>\""}], "]"}]}]], "Input",
+ CellChangeTimes->{{3.8952070062646313`*^9, 3.8952070063126*^9}, {
+ 3.895207089642592*^9, 3.8952070914663*^9}, {3.8952079701475897`*^9,
+ 3.8952079709309177`*^9}, {3.895208773410845*^9, 3.895208774210402*^9},
+ 3.924163254848674*^9},
+ CellLabel->
+ "In[118]:=",ExpressionUUID->"e68d9ce5-814e-4498-aeeb-52ccf1b87537"],
+
+Cell[BoxData[
+ GraphicsBox[
+ InterpretationBox[{
+ TagBox[{{{}, {},
+ TagBox[
+ {RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[2],
+ Opacity[1.], LineBox[CompressedData["
+1:eJwV13lYTd33APASEiUNt3ub53v1SqNSodVAEVHpK5LyRhIllCTNaZA0T9Ko
+WQNNdM+tzhKFzEmUNEcjESl663d+f53n86zznHP2Xmevvba8s6eNyzIuLi4v
+bi6u/79KTFw3+rbEQtr2+oD7d83AaMA2JGKRhZGNzMibU6fg+ovBZXV/Wdgs
+Ha7U+NsHutlnrwzNsdDn2/HjL64HALNocYXwLAvdtxy+JHIhBM4nxkQazbCw
+8HHQp+TWMGgKlODznGah48m9qksfwmH16ZLorCkWJon5O31qiIQDdrr8z8dZ
+KF1qVxfjfxW+qdsIqoywkNO+LdapNAa2SvXH2w2ycJxe+HSzbCxErTojHNHH
+QjnGv46eYXEgN3CVNtTFwmldjukDwQRwf0FPE3rPQkYi28imIgHq2YUMow4W
+5r39nnFuRyJYJz6QzHrJQq2F7SJ2rkkQajovb/eQhfO7ZReF/VPgpXpkfjiy
+0K6/0JQ+nwISUjTl2kYW2qtORJt5pULNT431QvUs1JB+2dTplAbDhSfVnpWz
+UOmG9olq6RtgtuqDAaRSzwtp26FmmgmJP10aPJJYONsd98gwLxN6+2e2Zcaz
+MNG3toB3MRMusgWN56NZ6DvywO5HTRaUnDI3rwli4VGQmN4vnANrXtzbz3Jj
+4bu5e3dPvM4FR41fvxknWDjyNlqr4k8uVCdpZ64+xsI2ncVdwUp5YG9/d3jK
+gYUJmrXKXT55UPKl9EKtFQvPW7iOFIvdArNlWWnGeizUXXfo4Oj2fAjZHPbx
+MC8Lm67PqS2eLISOjAdBlstZ6Lfg+UvpaiGsX1xSBG5qvnMrVUVKC+H1I393
+hb9M3JPG93TXaCHI2Pj8N/qVieBxWVP/eBE0uLvJ+nQy8XxuIHywKYbfefuO
+xRcykfHXFl8LloKVbgrPvVtM3HVtSTp9fSncbuvO/5jDRFfH+Xgj41JwmHEZ
+ZmYwUbNlUlr3fCngdn+XxlgmvrlQaNrYXgpRX0pcxy8y0dHr/n8hsbeBsXGZ
++3YLJloL3rz+6kcZ6NXXes99VUatgmp3b79KMBnX91KdVEa/4uFSieuVsEeK
+PHd0TBnj8y/tu5tTCU7BT888GVLGtD2/dt9+VAkRO3tPpn9QxqxVPIY9Aneg
+4wPvEb1mZdwRxn3RKusOeM7b7/BNUcaVKQ7HUg/ehSIDbrG5LcoYZrNJre5g
+Fdwf0t38TU8ZvZ15H80drYInMe4HP+soI2fDzH0dtyoY732f0aGujHEBiX03
+L1WBelilbJWiMvIG/lCTyKiC+meHVU6tUUab/9KiPndVQZvDva093Uq4fi40
+4rdtNXwNPH0MLynhscgu1asGNRCz/FZ15CNFDJLQ4ujV1sLyPbMVdC5FzHHu
+fvhY8B6ULmnqAyggd5N7/UrN+5D/U7/V5Zo8HhWaCOsUq4fAazJhh6LkkVtG
+86SHRD3YK/AYWYbLY3fJpTZumXpYZ/WcvSlIHjOTIwUUlan7yxwreLzksV3e
+v9xcux4OOocl59nLY1mNnZHEvnoQeP3c+ZOKPM5/NBWYvFIPF8uclmyfyKFG
+U3OY7xh1v9fuev8WOTR/qt5nOlkPels2nytolkOFm7VGAt/q4U/b2qGZBjlU
+WVbGyPhZD/7jja2JVXJ4265ILXOpHkJVpGJfZ8ihy17DMBMaG2KKP0jt8ZBD
+8VcrVKWADbn51gamwnLI7TirqHSdDVGDUzQ1QTn0it1rVRzHhrPy0d8Z/HJo
+KLrmwPpENhjlNJd8XSGHfuKbpxXT2PBAx1Vt04ws1n7/cJY7jw0mShtGBx7I
+otGtUtUDtWzYzl1zeJuTLE75qFWf6mKDaNCEsMghWRRnxunc/siG4QXFtlEb
+WfxhKlr45RMbrswl6yWbyaJoZo2FwyAbWr750CY2yuIl7c2k6gQbzHoNXqUv
+yODQtZzmUwts2MlpNvl5QwahuZdwlCbAz9vv3uckGVwe0OO/X5aAso1a/3Rd
+l8FxkTRLM3kC1ubmCTWFyGC71JIUU5mAjivB/ZFuMjirmxf0UpWAo3sNAyX1
+ZdCLO7G6eQsBvgNstskHaVz3c6Rwy0ECbmec26jTLo3XJ4/wzxwi4ON+lTzW
+c2mcaHKPLTlMgGFrehQ/SqM5PP4s4ETA8rKLdp3F0ij5IuvHAxcC4r11frld
+lEZTuNX66jwBpbxVGgli0vhjUazlyjUCPitczJxYJ42MF7uGPscQoGC4bZXZ
+Gmk8emCfi3ksARneT/v+LEnhmor2FJ4EAqIHBmKPj0lhb23xnZOpBLhzhKc2
+N0ihR8H7hZFcAtQ8vUt7/5XC/6ZlsitrCTgVbUDTd5DCYlWb8k91BBQVcoUk
+HZDCVRp1ymvuEyDbE3Nw524ptD3Qb/8vm4B1uwp5qzdJ4cWhhI4/jQR8V+h0
+CeeVQmPTeK3BVgJqOzcrqFZIYrDTPz/C3hOw1Of4lr9YEv+W63KlfiDAYiz8
+ylSuJOpkJukXdRHQ//ft58pkSQwsl1Z/8JEAfvmzZZr+kljQ7blhoI+A46dL
+Nm3eLYnHy26lPf1CwB3vVyP0HZI4of3Nq2mUgD8Bs6lzhpLoXtEZWDVGzWf8
+9nm2liRG822RT5wgoKGuv3GrhCTu9cjP2vaNAFEucXOTMQk89nM+a9ssAU58
+RnMKQxK4db26H+03lU9h11KeTxIYYDgcOUHZSLluTctrCVRquqSXOE/Np4X1
+a/N6Cey0/Prj6QIBj5KvHrKMlECH+ZzpwWUcuKDy5/RBZQm83OnBaBDgQFuy
+Oi1Plop7t/23by0H5LhcmsbEJXCb2QrbQcrPO1+tu7xWAnnd/fYvW8cBhSuF
+dVm/xfFgKC1PXZgDr3utlgafiuPRTw3XQIwDTIuIkg2PxLFDbls0QflyHcfa
+u0kcb6gI/tWmU/EYZsGKGnE07virrcDgQID+ws71meLYuVt9xaQ4B/5JLk70
+OCOOVSEfdHSkORC81LPl3klxjE4rdk6j3HlKeGTRWRzrGLPL5iiHGAdsjrcT
+x1Dr/dm1Mhz48NWmp9pIHNONXxhLynFAzT4q/K+BOPLpH+Q/RzmspVFtu444
+ukb3WbT8fzxzfcg7FXF0uiml5CbPgfBdi8pzwuLYq/R2Z7YCB7prtV8ZCYjj
+8KWW2i+UNeTcfK/yUs+fl01RV+RAz+zbNokFBtZYG9YQlLUKSj23jTDQ9azr
+iSYlDkQJ9jEi+hh4jmfY5y/lXj/R5pddDFx/TXFBV5kDV62DRI++ZODftyIu
+pZT7F23ZofcZODD/qOoykwNphXyyo1UMfJhn4VtGee+epiuW5Qx0mdR72EW5
+4QbLipHHwLQQj8+aLA54GfXUBdxkoNjW5qbDlP/5Ei85lMLArZcyJa9QTt/0
+53NFNAPbK/46v6a872PlHpFwBnIUrlv+pLwy9Fi1bxADTWmNDWLrOeD96nmA
+qTcDrz5Yq2JHeYNPyFDJGQaOrtzCvEB5UEp311o3BhoOSJQkULY+lSPadYSB
+ushr0Ep5lZCtn+FBBmo7SVv0Usb7q/rzbRj45fHv3p+ULzo27uCzZKBOecYc
+nwqVjxXny86YM/BrEF+aNOWRMqZQhzEDW3zNCXXKmTYfffS3MvB4rJ2zEeX9
+83E92boMdPLbGreP8urc7SbLNRloVD9ndITyA7P5YrcNDAwJj73oRtl3qkLg
+lTID0weWtLwpqyc7e22So953fa9XAOXPBvSuGxIMHBHw1wunnDXwzHBJlIF9
+RVdDr1G2jQouOC5Ije+or3U85TXqOqvb+Kjx8+wqTKLc/G7MU305A/dILgSk
+UL7kn/0ueZGOd38lfPx/ayju3/Jnjo7svNVNyZS/POXNc5qhY+20i3Ii5eyz
+DStbpug4diFfKJby/+jn3P8ZpeOtiObQKMr8TcrtcYN0lDdo9g2h/PB49+Zf
+PXQscsub8aXstyYuy/49HT3uOs6coaxZbcqDb+h4+/TcxWOURw/OnVR+Tsdr
+hHvIAco5S+Uvo1vpqB3IFtxJ+UDRv5umkY54qEdBj7KApVjG/zh01K9uJ5iU
+H820LRF1dMytvPFehLKW8aZn4bfp2DUXkzNG5XPsy6jGRAEdzR2rLdop58Zm
+pVrl0PFdaoYfm/LanpXOksl0PLMi/2QY5ZZQzuPgWDqqOxPME5T9Vc5u/BxF
+R7++UDdzyuM+XXN3A+jo8kk4YAXlPOlYRzFfOh5PemU5SP2vBx+ZPLp8no6F
+Haz8RsqtQuVxZq501Lyf+NGTcn55ILPHio5f4jNCm6n1ctI4+c1jCzrOgOLJ
+OMpqnaX+Ndvp2H1uNNaeMrHU0R6tR82n6VLOBLUe2202BOnL0fHw7w2v5qj1
+m/7F6B9lCTpanj/ZeJ+yo/+Bd+tE6TjiGTHpTXm8MGTDKC+Vbx5tgXGqHiyb
+f/8+9ZsYunO9PkBS9ePJ9anQ0DExdHHOtDhLOVaBR+3MkBgmJHUFylKW2KN2
+Zcd7MRxMdC3xpeqRZs4VjZ9NYiioy7tIo+rV0R2aV61jxVDepi9/QYqqp91m
+m7ZFiaGyYHFqAuXJMw5960PF0Kyk4YkSZd/0SB0uHzH8X5n/+A5JDsRNfBqo
+PCKGzkYT8l5UvW1KiDbg3yiGSS36ey7ROHCFmTvymymG++v1VH6IcsCCUxc/
+JCeGTfqrt7tR7hzu/0yIiqFDH1vLRoQDU5s3J7kt0PBQq8X3tUIckOodmmh9
+RsMmFk+3Nj/1PR28cRKtNGRFywXeXMOBxmcbtM4gDX20s9K5KTuyvXxpdTSU
+Ft6t8ZSP+l+SeVYcz6ah/JOoLzt4OaC8W1GG+xwNPb8qHfnFzYFZY/MHtqdp
+qJqzz3475Va908dLXGho3CT6PIGLyi+z5vY+exp2eczwr1+i9ktu083ZpjR8
+z5/GZULth2r1zlZbxGj4zEkjaQO1vy5WRszErqNhfsSqZ//+IuBV4e3UwdU0
+vGvieSH1JwFnk370XF0SxbKCw/J/fxBQfSbU7cOoKEpB65sqar/WVb4VeoEj
+ii5O+d4d1H4PiQO1d46KoubAzqopqn+QuXgi66q9KH4/fqClh+ovFg9PhB+z
+FcU842quNqr/aFD+dYC+UxSVH56bzH5HgAF71Xyguig6lD1I0HpDgE6/+ra9
+iyI4H/Gmj+sJARvUAlsmb4rgcHxxx2aqP1otwlPZmiKCNROuDhPVBIz/jkzN
+jRPB91IxPFlVBJQ8SHC1DRPBjP0jlX8qCWD+r5Cv4ZQIflpYeT6nlAB5/+eW
+1/RFcCbui1tsNgH0NolOlffCyBvcupIrkoCD4zKX5d4I4x9BLsnAcALSVyvK
+0Z8JY4RfwYE/YQRI7N5wajkpjHP/jplMBVPjfb5lsbdIGGPNT31u8CNA6aUD
+M9lHGJ9GzgnynCFAoz3bZ5EmjE3do1fX7ydgZ7cC/a2tEP6X8dbpIZ2AZAed
+Ws19QmgQ3ls2TiOgr9fcOn6XECqYvjVfJ0qAz5D7NUtDIbxsxHfmwDoCCibv
+LT1mCaG3rq/by1VUP7doMdrwZx0Gbvd76j7PhnuKXuyi3HUopGsbdJTq5826
+I+7//CCIXxpmmvmT2fCH8PBvei6IXoVj4UkJbLhz09Y4CgWxTNpsI4M6TzCO
+KDyTLBHE2b8NTMloNoz3NfaaXBREOXOo4Q1mQ+zIzxUJNEE8pzVd4HeaDZ3T
+zrYbbdbitED3/odGbHDlhe8uz/hR5F3bkfrhetAoNylaIvmxpiX92OcB6jxk
+ZXb4Ri0/NjzSOS3cVw+xGZYtz7P4cfSuYsDxrnq4t9HhhvZZfnQVTUyfflEP
+y20vGXPT+LHaSkWo5F493MqtSch0XIPiv1bMx0bUQ4/+eq233/lwlDrwCMnV
+A4/0nepsJi+aF4xMmm67Dym8FUMxMsvx2sxC0F6pe3D590fJixbcGPp5/diO
+/lpI/8TDt8prgUxOEtzasacGAlJCreQcFsiM/D/CrmY14GzJna63Y4EcmZRM
+/QU1oNq4yHSjL5A/puPjVmjXwIPM+e1tnL9kBa/x22lGDYwf/hYcs/wvKRd3
+JGd6qBq2dXfPrUudJx2EHKy8fKphsLNqVJw9S/Ka7LyxL6YKLP03KhTemiXD
+efv4nl2hzsvypYc1YmbJnyyTaaOAKrjunvvSzGmWfPOmiFvqTBXoLYur9Vox
+S9ocjXaL3UfFN7oHv7D+RQqUzxccEaLiV5iMkPEZUn/jBkv3+LuQr3LLmr9j
+hly3cF+IFXUX1r6SvpbWOEOu/JJt+DHoLgyJ0xYr4mfILT1hpeqedyH2Ds9w
+t+4MSSwrLIy0pOLd/Xc2hf0g0yJshsdXUXHNm+ajkt/JrVEC0vY/K2FTXEZq
+DM93MnaNWahnfyV0T94Y0ZiYJuXuqHw897wSmCXpYZeIaTLwQmX71oJKaJJJ
+JVcfmian20WLvthUwie6gqe96jfyx456D4/yCsh+LrBvWG6SXNvmLbawtxzG
+I/mnVKcnyFDtdGkHvXLQNV1z7QI5QWpnXdPMly+Hl+xVj1c6TpAWAhAzMlMG
+S0U8oHJznCxa3s7alFYGR0Pm1c7QxsiBcK9VTR9ug7zuyNo5vs8kkzH3wWVH
+KTRz23kE94yQn7wiiz+qlsLxF0+erbozQqpN3urSEi2FouPlUeK2I2R7w5qF
+sMESUE3yWrYle5h8c8T+fVFACehOc88GaA2RBjlqU8kVxbDntswnnsP9ZOaw
+6wxnuhCmLsRvidnYT8rHz38PflsIscbLMkS5+sk92x/Oit0rhFtVzyosLPrI
+ocH3AjV+hVCx1j7veu8n0rHIhZbCXQjNT3yiRHg/krxeKai3ogCmtt49IHvw
+HTmN194t78kDmbpbbsm/OsgjZol5LTV5sHdjij9fUgdZpTC2QvZaHlRK+92a
+efGWLPuqIhuvlwdnFk2/PjZtJ+PDZtREYnMh20eXe9vAG7LORFjR2DkXXn5d
+L1od+IY8si60eFInF9T6BAwy2a/J8eqbfgfu50BP0J01A44vyQ8D3tbBRtmw
+9Wyy5rMbL8j9Xs3cZX1ZkHn0kl1dx3Oys3TANSAgCxyMTfOvWjwj6YJhMwO1
+mfBp2XsDLd0n5JiPgdXkuptgOMM5KnXuMcmrlPruZn4GZA/lRqwsbyUvhC81
+uWzKAMdHp9q75VvIn18q9w7vuwG94YtuYQLNZOh3kXST02lg6DMU57HzARlh
+uX9j+EQqZJ94UmcXhmTD/u9SL06mQmOsEs/BH42kx7bhr/GHUiDQ8+te1ZMN
+pNmbj4LXnyeDoVV9BlcvQRok8drGbEmGJqE9WqVP75PCqnJRyvxJEPiDFhgA
+98hfSitHB90TwfBt31Prulqyf3cYz9DjBCCTvf79k1tFhjT27vnuFg9BF7ZV
+vBS7SxZp9DPDHeMgsHztjx3iFWTFs/zD4Z3XIUhdVz5tuogstOOqjAuJBq7v
+T6kilk+63vurtLssCoKrj1iNPs4lV7uf+BNZGQHco4Ov5F1vkvNPqrfSg6/A
+stOrl84bppD/JJpu4FobCit7jjlEbYglb829CI/zDATewWrin+4QMnrk7Xfe
+0xdBIZf3+CbFE+T2ik3CSbRTcFuibVvsGW1S5F/f90Y7reH/AHjhYGQ=
+ "]]},
+ Annotation[#, "Charting`Private`Tag#1"]& ]}, {}},
+ {"WolframDynamicHighlight", <|
+ "Label" -> {"XYLabel"}, "Ball" -> {"InterpolatedBall"}|>}],
+ StyleBox[
+ DynamicBox[(Charting`HighlightActionBox["DynamicHighlight", {},
+ Slot["HighlightElements"],
+ Slot["LayoutOptions"],
+ Slot["Meta"],
+ Charting`HighlightActionFunction["DynamicHighlight", {{{{}, {},
+ Annotation[{
+ Directive[
+ Opacity[1.],
+ RGBColor[0.368417, 0.506779, 0.709798],
+ AbsoluteThickness[2]],
+ Line[CompressedData["
+1:eJwV13lYTd33APASEiUNt3ub53v1SqNSodVAEVHpK5LyRhIllCTNaZA0T9Ko
+WQNNdM+tzhKFzEmUNEcjESl663d+f53n86zznHP2Xmevvba8s6eNyzIuLi4v
+bi6u/79KTFw3+rbEQtr2+oD7d83AaMA2JGKRhZGNzMibU6fg+ovBZXV/Wdgs
+Ha7U+NsHutlnrwzNsdDn2/HjL64HALNocYXwLAvdtxy+JHIhBM4nxkQazbCw
+8HHQp+TWMGgKlODznGah48m9qksfwmH16ZLorCkWJon5O31qiIQDdrr8z8dZ
+KF1qVxfjfxW+qdsIqoywkNO+LdapNAa2SvXH2w2ycJxe+HSzbCxErTojHNHH
+QjnGv46eYXEgN3CVNtTFwmldjukDwQRwf0FPE3rPQkYi28imIgHq2YUMow4W
+5r39nnFuRyJYJz6QzHrJQq2F7SJ2rkkQajovb/eQhfO7ZReF/VPgpXpkfjiy
+0K6/0JQ+nwISUjTl2kYW2qtORJt5pULNT431QvUs1JB+2dTplAbDhSfVnpWz
+UOmG9olq6RtgtuqDAaRSzwtp26FmmgmJP10aPJJYONsd98gwLxN6+2e2Zcaz
+MNG3toB3MRMusgWN56NZ6DvywO5HTRaUnDI3rwli4VGQmN4vnANrXtzbz3Jj
+4bu5e3dPvM4FR41fvxknWDjyNlqr4k8uVCdpZ64+xsI2ncVdwUp5YG9/d3jK
+gYUJmrXKXT55UPKl9EKtFQvPW7iOFIvdArNlWWnGeizUXXfo4Oj2fAjZHPbx
+MC8Lm67PqS2eLISOjAdBlstZ6Lfg+UvpaiGsX1xSBG5qvnMrVUVKC+H1I393
+hb9M3JPG93TXaCHI2Pj8N/qVieBxWVP/eBE0uLvJ+nQy8XxuIHywKYbfefuO
+xRcykfHXFl8LloKVbgrPvVtM3HVtSTp9fSncbuvO/5jDRFfH+Xgj41JwmHEZ
+ZmYwUbNlUlr3fCngdn+XxlgmvrlQaNrYXgpRX0pcxy8y0dHr/n8hsbeBsXGZ
++3YLJloL3rz+6kcZ6NXXes99VUatgmp3b79KMBnX91KdVEa/4uFSieuVsEeK
+PHd0TBnj8y/tu5tTCU7BT888GVLGtD2/dt9+VAkRO3tPpn9QxqxVPIY9Aneg
+4wPvEb1mZdwRxn3RKusOeM7b7/BNUcaVKQ7HUg/ehSIDbrG5LcoYZrNJre5g
+Fdwf0t38TU8ZvZ15H80drYInMe4HP+soI2fDzH0dtyoY732f0aGujHEBiX03
+L1WBelilbJWiMvIG/lCTyKiC+meHVU6tUUab/9KiPndVQZvDva093Uq4fi40
+4rdtNXwNPH0MLynhscgu1asGNRCz/FZ15CNFDJLQ4ujV1sLyPbMVdC5FzHHu
+fvhY8B6ULmnqAyggd5N7/UrN+5D/U7/V5Zo8HhWaCOsUq4fAazJhh6LkkVtG
+86SHRD3YK/AYWYbLY3fJpTZumXpYZ/WcvSlIHjOTIwUUlan7yxwreLzksV3e
+v9xcux4OOocl59nLY1mNnZHEvnoQeP3c+ZOKPM5/NBWYvFIPF8uclmyfyKFG
+U3OY7xh1v9fuev8WOTR/qt5nOlkPels2nytolkOFm7VGAt/q4U/b2qGZBjlU
+WVbGyPhZD/7jja2JVXJ4265ILXOpHkJVpGJfZ8ihy17DMBMaG2KKP0jt8ZBD
+8VcrVKWADbn51gamwnLI7TirqHSdDVGDUzQ1QTn0it1rVRzHhrPy0d8Z/HJo
+KLrmwPpENhjlNJd8XSGHfuKbpxXT2PBAx1Vt04ws1n7/cJY7jw0mShtGBx7I
+otGtUtUDtWzYzl1zeJuTLE75qFWf6mKDaNCEsMghWRRnxunc/siG4QXFtlEb
+WfxhKlr45RMbrswl6yWbyaJoZo2FwyAbWr750CY2yuIl7c2k6gQbzHoNXqUv
+yODQtZzmUwts2MlpNvl5QwahuZdwlCbAz9vv3uckGVwe0OO/X5aAso1a/3Rd
+l8FxkTRLM3kC1ubmCTWFyGC71JIUU5mAjivB/ZFuMjirmxf0UpWAo3sNAyX1
+ZdCLO7G6eQsBvgNstskHaVz3c6Rwy0ECbmec26jTLo3XJ4/wzxwi4ON+lTzW
+c2mcaHKPLTlMgGFrehQ/SqM5PP4s4ETA8rKLdp3F0ij5IuvHAxcC4r11frld
+lEZTuNX66jwBpbxVGgli0vhjUazlyjUCPitczJxYJ42MF7uGPscQoGC4bZXZ
+Gmk8emCfi3ksARneT/v+LEnhmor2FJ4EAqIHBmKPj0lhb23xnZOpBLhzhKc2
+N0ihR8H7hZFcAtQ8vUt7/5XC/6ZlsitrCTgVbUDTd5DCYlWb8k91BBQVcoUk
+HZDCVRp1ymvuEyDbE3Nw524ptD3Qb/8vm4B1uwp5qzdJ4cWhhI4/jQR8V+h0
+CeeVQmPTeK3BVgJqOzcrqFZIYrDTPz/C3hOw1Of4lr9YEv+W63KlfiDAYiz8
+ylSuJOpkJukXdRHQ//ft58pkSQwsl1Z/8JEAfvmzZZr+kljQ7blhoI+A46dL
+Nm3eLYnHy26lPf1CwB3vVyP0HZI4of3Nq2mUgD8Bs6lzhpLoXtEZWDVGzWf8
+9nm2liRG822RT5wgoKGuv3GrhCTu9cjP2vaNAFEucXOTMQk89nM+a9ssAU58
+RnMKQxK4db26H+03lU9h11KeTxIYYDgcOUHZSLluTctrCVRquqSXOE/Np4X1
+a/N6Cey0/Prj6QIBj5KvHrKMlECH+ZzpwWUcuKDy5/RBZQm83OnBaBDgQFuy
+Oi1Plop7t/23by0H5LhcmsbEJXCb2QrbQcrPO1+tu7xWAnnd/fYvW8cBhSuF
+dVm/xfFgKC1PXZgDr3utlgafiuPRTw3XQIwDTIuIkg2PxLFDbls0QflyHcfa
+u0kcb6gI/tWmU/EYZsGKGnE07virrcDgQID+ws71meLYuVt9xaQ4B/5JLk70
+OCOOVSEfdHSkORC81LPl3klxjE4rdk6j3HlKeGTRWRzrGLPL5iiHGAdsjrcT
+x1Dr/dm1Mhz48NWmp9pIHNONXxhLynFAzT4q/K+BOPLpH+Q/RzmspVFtu444
+ukb3WbT8fzxzfcg7FXF0uiml5CbPgfBdi8pzwuLYq/R2Z7YCB7prtV8ZCYjj
+8KWW2i+UNeTcfK/yUs+fl01RV+RAz+zbNokFBtZYG9YQlLUKSj23jTDQ9azr
+iSYlDkQJ9jEi+hh4jmfY5y/lXj/R5pddDFx/TXFBV5kDV62DRI++ZODftyIu
+pZT7F23ZofcZODD/qOoykwNphXyyo1UMfJhn4VtGee+epiuW5Qx0mdR72EW5
+4QbLipHHwLQQj8+aLA54GfXUBdxkoNjW5qbDlP/5Ei85lMLArZcyJa9QTt/0
+53NFNAPbK/46v6a872PlHpFwBnIUrlv+pLwy9Fi1bxADTWmNDWLrOeD96nmA
+qTcDrz5Yq2JHeYNPyFDJGQaOrtzCvEB5UEp311o3BhoOSJQkULY+lSPadYSB
+ushr0Ep5lZCtn+FBBmo7SVv0Usb7q/rzbRj45fHv3p+ULzo27uCzZKBOecYc
+nwqVjxXny86YM/BrEF+aNOWRMqZQhzEDW3zNCXXKmTYfffS3MvB4rJ2zEeX9
+83E92boMdPLbGreP8urc7SbLNRloVD9ndITyA7P5YrcNDAwJj73oRtl3qkLg
+lTID0weWtLwpqyc7e22So953fa9XAOXPBvSuGxIMHBHw1wunnDXwzHBJlIF9
+RVdDr1G2jQouOC5Ije+or3U85TXqOqvb+Kjx8+wqTKLc/G7MU305A/dILgSk
+UL7kn/0ueZGOd38lfPx/ayju3/Jnjo7svNVNyZS/POXNc5qhY+20i3Ii5eyz
+DStbpug4diFfKJby/+jn3P8ZpeOtiObQKMr8TcrtcYN0lDdo9g2h/PB49+Zf
+PXQscsub8aXstyYuy/49HT3uOs6coaxZbcqDb+h4+/TcxWOURw/OnVR+Tsdr
+hHvIAco5S+Uvo1vpqB3IFtxJ+UDRv5umkY54qEdBj7KApVjG/zh01K9uJ5iU
+H820LRF1dMytvPFehLKW8aZn4bfp2DUXkzNG5XPsy6jGRAEdzR2rLdop58Zm
+pVrl0PFdaoYfm/LanpXOksl0PLMi/2QY5ZZQzuPgWDqqOxPME5T9Vc5u/BxF
+R7++UDdzyuM+XXN3A+jo8kk4YAXlPOlYRzFfOh5PemU5SP2vBx+ZPLp8no6F
+Haz8RsqtQuVxZq501Lyf+NGTcn55ILPHio5f4jNCm6n1ctI4+c1jCzrOgOLJ
+OMpqnaX+Ndvp2H1uNNaeMrHU0R6tR82n6VLOBLUe2202BOnL0fHw7w2v5qj1
+m/7F6B9lCTpanj/ZeJ+yo/+Bd+tE6TjiGTHpTXm8MGTDKC+Vbx5tgXGqHiyb
+f/8+9ZsYunO9PkBS9ePJ9anQ0DExdHHOtDhLOVaBR+3MkBgmJHUFylKW2KN2
+Zcd7MRxMdC3xpeqRZs4VjZ9NYiioy7tIo+rV0R2aV61jxVDepi9/QYqqp91m
+m7ZFiaGyYHFqAuXJMw5960PF0Kyk4YkSZd/0SB0uHzH8X5n/+A5JDsRNfBqo
+PCKGzkYT8l5UvW1KiDbg3yiGSS36ey7ROHCFmTvymymG++v1VH6IcsCCUxc/
+JCeGTfqrt7tR7hzu/0yIiqFDH1vLRoQDU5s3J7kt0PBQq8X3tUIckOodmmh9
+RsMmFk+3Nj/1PR28cRKtNGRFywXeXMOBxmcbtM4gDX20s9K5KTuyvXxpdTSU
+Ft6t8ZSP+l+SeVYcz6ah/JOoLzt4OaC8W1GG+xwNPb8qHfnFzYFZY/MHtqdp
+qJqzz3475Va908dLXGho3CT6PIGLyi+z5vY+exp2eczwr1+i9ktu083ZpjR8
+z5/GZULth2r1zlZbxGj4zEkjaQO1vy5WRszErqNhfsSqZ//+IuBV4e3UwdU0
+vGvieSH1JwFnk370XF0SxbKCw/J/fxBQfSbU7cOoKEpB65sqar/WVb4VeoEj
+ii5O+d4d1H4PiQO1d46KoubAzqopqn+QuXgi66q9KH4/fqClh+ovFg9PhB+z
+FcU842quNqr/aFD+dYC+UxSVH56bzH5HgAF71Xyguig6lD1I0HpDgE6/+ra9
+iyI4H/Gmj+sJARvUAlsmb4rgcHxxx2aqP1otwlPZmiKCNROuDhPVBIz/jkzN
+jRPB91IxPFlVBJQ8SHC1DRPBjP0jlX8qCWD+r5Cv4ZQIflpYeT6nlAB5/+eW
+1/RFcCbui1tsNgH0NolOlffCyBvcupIrkoCD4zKX5d4I4x9BLsnAcALSVyvK
+0Z8JY4RfwYE/YQRI7N5wajkpjHP/jplMBVPjfb5lsbdIGGPNT31u8CNA6aUD
+M9lHGJ9GzgnynCFAoz3bZ5EmjE3do1fX7ydgZ7cC/a2tEP6X8dbpIZ2AZAed
+Ws19QmgQ3ls2TiOgr9fcOn6XECqYvjVfJ0qAz5D7NUtDIbxsxHfmwDoCCibv
+LT1mCaG3rq/by1VUP7doMdrwZx0Gbvd76j7PhnuKXuyi3HUopGsbdJTq5826
+I+7//CCIXxpmmvmT2fCH8PBvei6IXoVj4UkJbLhz09Y4CgWxTNpsI4M6TzCO
+KDyTLBHE2b8NTMloNoz3NfaaXBREOXOo4Q1mQ+zIzxUJNEE8pzVd4HeaDZ3T
+zrYbbdbitED3/odGbHDlhe8uz/hR5F3bkfrhetAoNylaIvmxpiX92OcB6jxk
+ZXb4Ri0/NjzSOS3cVw+xGZYtz7P4cfSuYsDxrnq4t9HhhvZZfnQVTUyfflEP
+y20vGXPT+LHaSkWo5F493MqtSch0XIPiv1bMx0bUQ4/+eq233/lwlDrwCMnV
+A4/0nepsJi+aF4xMmm67Dym8FUMxMsvx2sxC0F6pe3D590fJixbcGPp5/diO
+/lpI/8TDt8prgUxOEtzasacGAlJCreQcFsiM/D/CrmY14GzJna63Y4EcmZRM
+/QU1oNq4yHSjL5A/puPjVmjXwIPM+e1tnL9kBa/x22lGDYwf/hYcs/wvKRd3
+JGd6qBq2dXfPrUudJx2EHKy8fKphsLNqVJw9S/Ka7LyxL6YKLP03KhTemiXD
+efv4nl2hzsvypYc1YmbJnyyTaaOAKrjunvvSzGmWfPOmiFvqTBXoLYur9Vox
+S9ocjXaL3UfFN7oHv7D+RQqUzxccEaLiV5iMkPEZUn/jBkv3+LuQr3LLmr9j
+hly3cF+IFXUX1r6SvpbWOEOu/JJt+DHoLgyJ0xYr4mfILT1hpeqedyH2Ds9w
+t+4MSSwrLIy0pOLd/Xc2hf0g0yJshsdXUXHNm+ajkt/JrVEC0vY/K2FTXEZq
+DM93MnaNWahnfyV0T94Y0ZiYJuXuqHw897wSmCXpYZeIaTLwQmX71oJKaJJJ
+JVcfmian20WLvthUwie6gqe96jfyx456D4/yCsh+LrBvWG6SXNvmLbawtxzG
+I/mnVKcnyFDtdGkHvXLQNV1z7QI5QWpnXdPMly+Hl+xVj1c6TpAWAhAzMlMG
+S0U8oHJznCxa3s7alFYGR0Pm1c7QxsiBcK9VTR9ug7zuyNo5vs8kkzH3wWVH
+KTRz23kE94yQn7wiiz+qlsLxF0+erbozQqpN3urSEi2FouPlUeK2I2R7w5qF
+sMESUE3yWrYle5h8c8T+fVFACehOc88GaA2RBjlqU8kVxbDntswnnsP9ZOaw
+6wxnuhCmLsRvidnYT8rHz38PflsIscbLMkS5+sk92x/Oit0rhFtVzyosLPrI
+ocH3AjV+hVCx1j7veu8n0rHIhZbCXQjNT3yiRHg/krxeKai3ogCmtt49IHvw
+HTmN194t78kDmbpbbsm/OsgjZol5LTV5sHdjij9fUgdZpTC2QvZaHlRK+92a
+efGWLPuqIhuvlwdnFk2/PjZtJ+PDZtREYnMh20eXe9vAG7LORFjR2DkXXn5d
+L1od+IY8si60eFInF9T6BAwy2a/J8eqbfgfu50BP0J01A44vyQ8D3tbBRtmw
+9Wyy5rMbL8j9Xs3cZX1ZkHn0kl1dx3Oys3TANSAgCxyMTfOvWjwj6YJhMwO1
+mfBp2XsDLd0n5JiPgdXkuptgOMM5KnXuMcmrlPruZn4GZA/lRqwsbyUvhC81
+uWzKAMdHp9q75VvIn18q9w7vuwG94YtuYQLNZOh3kXST02lg6DMU57HzARlh
+uX9j+EQqZJ94UmcXhmTD/u9SL06mQmOsEs/BH42kx7bhr/GHUiDQ8+te1ZMN
+pNmbj4LXnyeDoVV9BlcvQRok8drGbEmGJqE9WqVP75PCqnJRyvxJEPiDFhgA
+98hfSitHB90TwfBt31Prulqyf3cYz9DjBCCTvf79k1tFhjT27vnuFg9BF7ZV
+vBS7SxZp9DPDHeMgsHztjx3iFWTFs/zD4Z3XIUhdVz5tuogstOOqjAuJBq7v
+T6kilk+63vurtLssCoKrj1iNPs4lV7uf+BNZGQHco4Ov5F1vkvNPqrfSg6/A
+stOrl84bppD/JJpu4FobCit7jjlEbYglb829CI/zDATewWrin+4QMnrk7Xfe
+0xdBIZf3+CbFE+T2ik3CSbRTcFuibVvsGW1S5F/f90Y7reH/AHjhYGQ=
+ "]]}, "Charting`Private`Tag#1"]}}, {}}, <|
+ "HighlightElements" -> <|
+ "Label" -> {"XYLabel"}, "Ball" -> {"InterpolatedBall"}|>,
+ "LayoutOptions" -> <|
+ "PanelPlotLayout" -> <||>,
+ "PlotRange" -> {{-15., 3.}, {0., 0.12732395447351627`}},
+ "Frame" -> {{False, False}, {False, False}},
+ "AxesOrigin" -> {0, 0}, "ImageSize" -> {180, 72},
+ "Axes" -> {True, True}, "LabelStyle" -> {FontFamily -> "Helvetica",
+ GrayLevel[0], FontSize -> 12}, "AspectRatio" -> Rational[2, 5],
+ "DefaultStyle" -> {
+ Directive[
+ Opacity[1.],
+ RGBColor[0.368417, 0.506779, 0.709798],
+ AbsoluteThickness[2]]},
+ "HighlightLabelingFunctions" -> <|"CoordinatesToolOptions" -> ({
+ Identity[
+ Part[#, 1]],
+ Identity[
+ Part[#, 2]]}& ),
+ "ScalingFunctions" -> {{Identity, Identity}, {
+ Identity, Identity}}|>, "Primitives" -> {}, "GCFlag" ->
+ False|>,
+ "Meta" -> <|
+ "DefaultHighlight" -> {"Dynamic", None}, "Index" -> {}, "Function" ->
+ Plot, "GroupHighlight" -> False|>|>]]& )[<|
+ "HighlightElements" -> <|
+ "Label" -> {"XYLabel"}, "Ball" -> {"InterpolatedBall"}|>,
+ "LayoutOptions" -> <|
+ "PanelPlotLayout" -> <||>,
+ "PlotRange" -> {{-15., 3.}, {0., 0.12732395447351627`}},
+ "Frame" -> {{False, False}, {False, False}}, "AxesOrigin" -> {0, 0},
+ "ImageSize" -> {180, 72}, "Axes" -> {True, True},
+ "LabelStyle" -> {FontFamily -> "Helvetica",
+ GrayLevel[0], FontSize -> 12}, "AspectRatio" -> Rational[2, 5],
+ "DefaultStyle" -> {
+ Directive[
+ Opacity[1.],
+ RGBColor[0.368417, 0.506779, 0.709798],
+ AbsoluteThickness[2]]},
+ "HighlightLabelingFunctions" -> <|"CoordinatesToolOptions" -> ({
+ Identity[
+ Part[#, 1]],
+ Identity[
+ Part[#, 2]]}& ),
+ "ScalingFunctions" -> {{Identity, Identity}, {
+ Identity, Identity}}|>, "Primitives" -> {}, "GCFlag" -> False|>,
+ "Meta" -> <|
+ "DefaultHighlight" -> {"Dynamic", None}, "Index" -> {}, "Function" ->
+ Plot, "GroupHighlight" -> False|>|>],
+ ImageSizeCache->{{4.503599627370496*^15, -4.503599627370496*^15}, {
+ 4.503599627370496*^15, -4.503599627370496*^15}}],
+ Selectable->False]},
+ Annotation[{{{{}, {},
+ Annotation[{
+ Directive[
+ Opacity[1.],
+ RGBColor[0.368417, 0.506779, 0.709798],
+ AbsoluteThickness[2]],
+ Line[CompressedData["
+1:eJwV13lYTd33APASEiUNt3ub53v1SqNSodVAEVHpK5LyRhIllCTNaZA0T9Ko
+WQNNdM+tzhKFzEmUNEcjESl663d+f53n86zznHP2Xmevvba8s6eNyzIuLi4v
+bi6u/79KTFw3+rbEQtr2+oD7d83AaMA2JGKRhZGNzMibU6fg+ovBZXV/Wdgs
+Ha7U+NsHutlnrwzNsdDn2/HjL64HALNocYXwLAvdtxy+JHIhBM4nxkQazbCw
+8HHQp+TWMGgKlODznGah48m9qksfwmH16ZLorCkWJon5O31qiIQDdrr8z8dZ
+KF1qVxfjfxW+qdsIqoywkNO+LdapNAa2SvXH2w2ycJxe+HSzbCxErTojHNHH
+QjnGv46eYXEgN3CVNtTFwmldjukDwQRwf0FPE3rPQkYi28imIgHq2YUMow4W
+5r39nnFuRyJYJz6QzHrJQq2F7SJ2rkkQajovb/eQhfO7ZReF/VPgpXpkfjiy
+0K6/0JQ+nwISUjTl2kYW2qtORJt5pULNT431QvUs1JB+2dTplAbDhSfVnpWz
+UOmG9olq6RtgtuqDAaRSzwtp26FmmgmJP10aPJJYONsd98gwLxN6+2e2Zcaz
+MNG3toB3MRMusgWN56NZ6DvywO5HTRaUnDI3rwli4VGQmN4vnANrXtzbz3Jj
+4bu5e3dPvM4FR41fvxknWDjyNlqr4k8uVCdpZ64+xsI2ncVdwUp5YG9/d3jK
+gYUJmrXKXT55UPKl9EKtFQvPW7iOFIvdArNlWWnGeizUXXfo4Oj2fAjZHPbx
+MC8Lm67PqS2eLISOjAdBlstZ6Lfg+UvpaiGsX1xSBG5qvnMrVUVKC+H1I393
+hb9M3JPG93TXaCHI2Pj8N/qVieBxWVP/eBE0uLvJ+nQy8XxuIHywKYbfefuO
+xRcykfHXFl8LloKVbgrPvVtM3HVtSTp9fSncbuvO/5jDRFfH+Xgj41JwmHEZ
+ZmYwUbNlUlr3fCngdn+XxlgmvrlQaNrYXgpRX0pcxy8y0dHr/n8hsbeBsXGZ
++3YLJloL3rz+6kcZ6NXXes99VUatgmp3b79KMBnX91KdVEa/4uFSieuVsEeK
+PHd0TBnj8y/tu5tTCU7BT888GVLGtD2/dt9+VAkRO3tPpn9QxqxVPIY9Aneg
+4wPvEb1mZdwRxn3RKusOeM7b7/BNUcaVKQ7HUg/ehSIDbrG5LcoYZrNJre5g
+Fdwf0t38TU8ZvZ15H80drYInMe4HP+soI2fDzH0dtyoY732f0aGujHEBiX03
+L1WBelilbJWiMvIG/lCTyKiC+meHVU6tUUab/9KiPndVQZvDva093Uq4fi40
+4rdtNXwNPH0MLynhscgu1asGNRCz/FZ15CNFDJLQ4ujV1sLyPbMVdC5FzHHu
+fvhY8B6ULmnqAyggd5N7/UrN+5D/U7/V5Zo8HhWaCOsUq4fAazJhh6LkkVtG
+86SHRD3YK/AYWYbLY3fJpTZumXpYZ/WcvSlIHjOTIwUUlan7yxwreLzksV3e
+v9xcux4OOocl59nLY1mNnZHEvnoQeP3c+ZOKPM5/NBWYvFIPF8uclmyfyKFG
+U3OY7xh1v9fuev8WOTR/qt5nOlkPels2nytolkOFm7VGAt/q4U/b2qGZBjlU
+WVbGyPhZD/7jja2JVXJ4265ILXOpHkJVpGJfZ8ihy17DMBMaG2KKP0jt8ZBD
+8VcrVKWADbn51gamwnLI7TirqHSdDVGDUzQ1QTn0it1rVRzHhrPy0d8Z/HJo
+KLrmwPpENhjlNJd8XSGHfuKbpxXT2PBAx1Vt04ws1n7/cJY7jw0mShtGBx7I
+otGtUtUDtWzYzl1zeJuTLE75qFWf6mKDaNCEsMghWRRnxunc/siG4QXFtlEb
+WfxhKlr45RMbrswl6yWbyaJoZo2FwyAbWr750CY2yuIl7c2k6gQbzHoNXqUv
+yODQtZzmUwts2MlpNvl5QwahuZdwlCbAz9vv3uckGVwe0OO/X5aAso1a/3Rd
+l8FxkTRLM3kC1ubmCTWFyGC71JIUU5mAjivB/ZFuMjirmxf0UpWAo3sNAyX1
+ZdCLO7G6eQsBvgNstskHaVz3c6Rwy0ECbmec26jTLo3XJ4/wzxwi4ON+lTzW
+c2mcaHKPLTlMgGFrehQ/SqM5PP4s4ETA8rKLdp3F0ij5IuvHAxcC4r11frld
+lEZTuNX66jwBpbxVGgli0vhjUazlyjUCPitczJxYJ42MF7uGPscQoGC4bZXZ
+Gmk8emCfi3ksARneT/v+LEnhmor2FJ4EAqIHBmKPj0lhb23xnZOpBLhzhKc2
+N0ihR8H7hZFcAtQ8vUt7/5XC/6ZlsitrCTgVbUDTd5DCYlWb8k91BBQVcoUk
+HZDCVRp1ymvuEyDbE3Nw524ptD3Qb/8vm4B1uwp5qzdJ4cWhhI4/jQR8V+h0
+CeeVQmPTeK3BVgJqOzcrqFZIYrDTPz/C3hOw1Of4lr9YEv+W63KlfiDAYiz8
+ylSuJOpkJukXdRHQ//ft58pkSQwsl1Z/8JEAfvmzZZr+kljQ7blhoI+A46dL
+Nm3eLYnHy26lPf1CwB3vVyP0HZI4of3Nq2mUgD8Bs6lzhpLoXtEZWDVGzWf8
+9nm2liRG822RT5wgoKGuv3GrhCTu9cjP2vaNAFEucXOTMQk89nM+a9ssAU58
+RnMKQxK4db26H+03lU9h11KeTxIYYDgcOUHZSLluTctrCVRquqSXOE/Np4X1
+a/N6Cey0/Prj6QIBj5KvHrKMlECH+ZzpwWUcuKDy5/RBZQm83OnBaBDgQFuy
+Oi1Plop7t/23by0H5LhcmsbEJXCb2QrbQcrPO1+tu7xWAnnd/fYvW8cBhSuF
+dVm/xfFgKC1PXZgDr3utlgafiuPRTw3XQIwDTIuIkg2PxLFDbls0QflyHcfa
+u0kcb6gI/tWmU/EYZsGKGnE07virrcDgQID+ws71meLYuVt9xaQ4B/5JLk70
+OCOOVSEfdHSkORC81LPl3klxjE4rdk6j3HlKeGTRWRzrGLPL5iiHGAdsjrcT
+x1Dr/dm1Mhz48NWmp9pIHNONXxhLynFAzT4q/K+BOPLpH+Q/RzmspVFtu444
+ukb3WbT8fzxzfcg7FXF0uiml5CbPgfBdi8pzwuLYq/R2Z7YCB7prtV8ZCYjj
+8KWW2i+UNeTcfK/yUs+fl01RV+RAz+zbNokFBtZYG9YQlLUKSj23jTDQ9azr
+iSYlDkQJ9jEi+hh4jmfY5y/lXj/R5pddDFx/TXFBV5kDV62DRI++ZODftyIu
+pZT7F23ZofcZODD/qOoykwNphXyyo1UMfJhn4VtGee+epiuW5Qx0mdR72EW5
+4QbLipHHwLQQj8+aLA54GfXUBdxkoNjW5qbDlP/5Ei85lMLArZcyJa9QTt/0
+53NFNAPbK/46v6a872PlHpFwBnIUrlv+pLwy9Fi1bxADTWmNDWLrOeD96nmA
+qTcDrz5Yq2JHeYNPyFDJGQaOrtzCvEB5UEp311o3BhoOSJQkULY+lSPadYSB
+ushr0Ep5lZCtn+FBBmo7SVv0Usb7q/rzbRj45fHv3p+ULzo27uCzZKBOecYc
+nwqVjxXny86YM/BrEF+aNOWRMqZQhzEDW3zNCXXKmTYfffS3MvB4rJ2zEeX9
+83E92boMdPLbGreP8urc7SbLNRloVD9ndITyA7P5YrcNDAwJj73oRtl3qkLg
+lTID0weWtLwpqyc7e22So953fa9XAOXPBvSuGxIMHBHw1wunnDXwzHBJlIF9
+RVdDr1G2jQouOC5Ije+or3U85TXqOqvb+Kjx8+wqTKLc/G7MU305A/dILgSk
+UL7kn/0ueZGOd38lfPx/ayju3/Jnjo7svNVNyZS/POXNc5qhY+20i3Ii5eyz
+DStbpug4diFfKJby/+jn3P8ZpeOtiObQKMr8TcrtcYN0lDdo9g2h/PB49+Zf
+PXQscsub8aXstyYuy/49HT3uOs6coaxZbcqDb+h4+/TcxWOURw/OnVR+Tsdr
+hHvIAco5S+Uvo1vpqB3IFtxJ+UDRv5umkY54qEdBj7KApVjG/zh01K9uJ5iU
+H820LRF1dMytvPFehLKW8aZn4bfp2DUXkzNG5XPsy6jGRAEdzR2rLdop58Zm
+pVrl0PFdaoYfm/LanpXOksl0PLMi/2QY5ZZQzuPgWDqqOxPME5T9Vc5u/BxF
+R7++UDdzyuM+XXN3A+jo8kk4YAXlPOlYRzFfOh5PemU5SP2vBx+ZPLp8no6F
+Haz8RsqtQuVxZq501Lyf+NGTcn55ILPHio5f4jNCm6n1ctI4+c1jCzrOgOLJ
+OMpqnaX+Ndvp2H1uNNaeMrHU0R6tR82n6VLOBLUe2202BOnL0fHw7w2v5qj1
+m/7F6B9lCTpanj/ZeJ+yo/+Bd+tE6TjiGTHpTXm8MGTDKC+Vbx5tgXGqHiyb
+f/8+9ZsYunO9PkBS9ePJ9anQ0DExdHHOtDhLOVaBR+3MkBgmJHUFylKW2KN2
+Zcd7MRxMdC3xpeqRZs4VjZ9NYiioy7tIo+rV0R2aV61jxVDepi9/QYqqp91m
+m7ZFiaGyYHFqAuXJMw5960PF0Kyk4YkSZd/0SB0uHzH8X5n/+A5JDsRNfBqo
+PCKGzkYT8l5UvW1KiDbg3yiGSS36ey7ROHCFmTvymymG++v1VH6IcsCCUxc/
+JCeGTfqrt7tR7hzu/0yIiqFDH1vLRoQDU5s3J7kt0PBQq8X3tUIckOodmmh9
+RsMmFk+3Nj/1PR28cRKtNGRFywXeXMOBxmcbtM4gDX20s9K5KTuyvXxpdTSU
+Ft6t8ZSP+l+SeVYcz6ah/JOoLzt4OaC8W1GG+xwNPb8qHfnFzYFZY/MHtqdp
+qJqzz3475Va908dLXGho3CT6PIGLyi+z5vY+exp2eczwr1+i9ktu083ZpjR8
+z5/GZULth2r1zlZbxGj4zEkjaQO1vy5WRszErqNhfsSqZ//+IuBV4e3UwdU0
+vGvieSH1JwFnk370XF0SxbKCw/J/fxBQfSbU7cOoKEpB65sqar/WVb4VeoEj
+ii5O+d4d1H4PiQO1d46KoubAzqopqn+QuXgi66q9KH4/fqClh+ovFg9PhB+z
+FcU842quNqr/aFD+dYC+UxSVH56bzH5HgAF71Xyguig6lD1I0HpDgE6/+ra9
+iyI4H/Gmj+sJARvUAlsmb4rgcHxxx2aqP1otwlPZmiKCNROuDhPVBIz/jkzN
+jRPB91IxPFlVBJQ8SHC1DRPBjP0jlX8qCWD+r5Cv4ZQIflpYeT6nlAB5/+eW
+1/RFcCbui1tsNgH0NolOlffCyBvcupIrkoCD4zKX5d4I4x9BLsnAcALSVyvK
+0Z8JY4RfwYE/YQRI7N5wajkpjHP/jplMBVPjfb5lsbdIGGPNT31u8CNA6aUD
+M9lHGJ9GzgnynCFAoz3bZ5EmjE3do1fX7ydgZ7cC/a2tEP6X8dbpIZ2AZAed
+Ws19QmgQ3ls2TiOgr9fcOn6XECqYvjVfJ0qAz5D7NUtDIbxsxHfmwDoCCibv
+LT1mCaG3rq/by1VUP7doMdrwZx0Gbvd76j7PhnuKXuyi3HUopGsbdJTq5826
+I+7//CCIXxpmmvmT2fCH8PBvei6IXoVj4UkJbLhz09Y4CgWxTNpsI4M6TzCO
+KDyTLBHE2b8NTMloNoz3NfaaXBREOXOo4Q1mQ+zIzxUJNEE8pzVd4HeaDZ3T
+zrYbbdbitED3/odGbHDlhe8uz/hR5F3bkfrhetAoNylaIvmxpiX92OcB6jxk
+ZXb4Ri0/NjzSOS3cVw+xGZYtz7P4cfSuYsDxrnq4t9HhhvZZfnQVTUyfflEP
+y20vGXPT+LHaSkWo5F493MqtSch0XIPiv1bMx0bUQ4/+eq233/lwlDrwCMnV
+A4/0nepsJi+aF4xMmm67Dym8FUMxMsvx2sxC0F6pe3D590fJixbcGPp5/diO
+/lpI/8TDt8prgUxOEtzasacGAlJCreQcFsiM/D/CrmY14GzJna63Y4EcmZRM
+/QU1oNq4yHSjL5A/puPjVmjXwIPM+e1tnL9kBa/x22lGDYwf/hYcs/wvKRd3
+JGd6qBq2dXfPrUudJx2EHKy8fKphsLNqVJw9S/Ka7LyxL6YKLP03KhTemiXD
+efv4nl2hzsvypYc1YmbJnyyTaaOAKrjunvvSzGmWfPOmiFvqTBXoLYur9Vox
+S9ocjXaL3UfFN7oHv7D+RQqUzxccEaLiV5iMkPEZUn/jBkv3+LuQr3LLmr9j
+hly3cF+IFXUX1r6SvpbWOEOu/JJt+DHoLgyJ0xYr4mfILT1hpeqedyH2Ds9w
+t+4MSSwrLIy0pOLd/Xc2hf0g0yJshsdXUXHNm+ajkt/JrVEC0vY/K2FTXEZq
+DM93MnaNWahnfyV0T94Y0ZiYJuXuqHw897wSmCXpYZeIaTLwQmX71oJKaJJJ
+JVcfmian20WLvthUwie6gqe96jfyx456D4/yCsh+LrBvWG6SXNvmLbawtxzG
+I/mnVKcnyFDtdGkHvXLQNV1z7QI5QWpnXdPMly+Hl+xVj1c6TpAWAhAzMlMG
+S0U8oHJznCxa3s7alFYGR0Pm1c7QxsiBcK9VTR9ug7zuyNo5vs8kkzH3wWVH
+KTRz23kE94yQn7wiiz+qlsLxF0+erbozQqpN3urSEi2FouPlUeK2I2R7w5qF
+sMESUE3yWrYle5h8c8T+fVFACehOc88GaA2RBjlqU8kVxbDntswnnsP9ZOaw
+6wxnuhCmLsRvidnYT8rHz38PflsIscbLMkS5+sk92x/Oit0rhFtVzyosLPrI
+ocH3AjV+hVCx1j7veu8n0rHIhZbCXQjNT3yiRHg/krxeKai3ogCmtt49IHvw
+HTmN194t78kDmbpbbsm/OsgjZol5LTV5sHdjij9fUgdZpTC2QvZaHlRK+92a
+efGWLPuqIhuvlwdnFk2/PjZtJ+PDZtREYnMh20eXe9vAG7LORFjR2DkXXn5d
+L1od+IY8si60eFInF9T6BAwy2a/J8eqbfgfu50BP0J01A44vyQ8D3tbBRtmw
+9Wyy5rMbL8j9Xs3cZX1ZkHn0kl1dx3Oys3TANSAgCxyMTfOvWjwj6YJhMwO1
+mfBp2XsDLd0n5JiPgdXkuptgOMM5KnXuMcmrlPruZn4GZA/lRqwsbyUvhC81
+uWzKAMdHp9q75VvIn18q9w7vuwG94YtuYQLNZOh3kXST02lg6DMU57HzARlh
+uX9j+EQqZJ94UmcXhmTD/u9SL06mQmOsEs/BH42kx7bhr/GHUiDQ8+te1ZMN
+pNmbj4LXnyeDoVV9BlcvQRok8drGbEmGJqE9WqVP75PCqnJRyvxJEPiDFhgA
+98hfSitHB90TwfBt31Prulqyf3cYz9DjBCCTvf79k1tFhjT27vnuFg9BF7ZV
+vBS7SxZp9DPDHeMgsHztjx3iFWTFs/zD4Z3XIUhdVz5tuogstOOqjAuJBq7v
+T6kilk+63vurtLssCoKrj1iNPs4lV7uf+BNZGQHco4Ov5F1vkvNPqrfSg6/A
+stOrl84bppD/JJpu4FobCit7jjlEbYglb829CI/zDATewWrin+4QMnrk7Xfe
+0xdBIZf3+CbFE+T2ik3CSbRTcFuibVvsGW1S5F/f90Y7reH/AHjhYGQ=
+ "]]}, "Charting`Private`Tag#1"]}}, {}}, <|
+ "HighlightElements" -> <|
+ "Label" -> {"XYLabel"}, "Ball" -> {"InterpolatedBall"}|>,
+ "LayoutOptions" -> <|
+ "PanelPlotLayout" -> <||>,
+ "PlotRange" -> {{-15., 3.}, {0., 0.12732395447351627`}},
+ "Frame" -> {{False, False}, {False, False}}, "AxesOrigin" -> {0, 0},
+ "ImageSize" -> {180, 72}, "Axes" -> {True, True},
+ "LabelStyle" -> {FontFamily -> "Helvetica",
+ GrayLevel[0], FontSize -> 12}, "AspectRatio" -> Rational[2, 5],
+ "DefaultStyle" -> {
+ Directive[
+ Opacity[1.],
+ RGBColor[0.368417, 0.506779, 0.709798],
+ AbsoluteThickness[2]]},
+ "HighlightLabelingFunctions" -> <|"CoordinatesToolOptions" -> ({
+ Identity[
+ Part[#, 1]],
+ Identity[
+ Part[#, 2]]}& ),
+ "ScalingFunctions" -> {{Identity, Identity}, {Identity, Identity}}|>,
+ "Primitives" -> {}, "GCFlag" -> False|>,
+ "Meta" -> <|
+ "DefaultHighlight" -> {"Dynamic", None}, "Index" -> {}, "Function" ->
+ Plot, "GroupHighlight" -> False|>|>, "DynamicHighlight"]],
+ AspectRatio->NCache[
+ Rational[2, 5], 0.4],
+ Axes->{True, True},
+ AxesLabel->{
+ FormBox[
+ TagBox[
+ TagBox["\[Lambda]", HoldForm], HoldForm], TraditionalForm],
+ FormBox[
+ TagBox[
+ RowBox[{"\[Rho]", "(",
+ TagBox["\[Lambda]", HoldForm], ")"}], HoldForm], TraditionalForm]},
+ AxesOrigin->{0, 0},
+ DisplayFunction->Identity,
+ Frame->{{False, False}, {False, False}},
+ FrameLabel->{{None, None}, {None, None}},
+ FrameStyle->GrayLevel[0],
+ FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}},
+ GridLines->{None, None},
+ GridLinesStyle->Directive[
+ GrayLevel[0.5, 0.4]],
+ ImagePadding->All,
+ ImageSize->180,
+ LabelStyle->{FontFamily -> "Helvetica",
+ GrayLevel[0], FontSize -> 12},
+ Method->{
+ "DefaultBoundaryStyle" -> Automatic,
+ "DefaultGraphicsInteraction" -> {
+ "Version" -> 1.2, "TrackMousePosition" -> {True, False},
+ "Effects" -> {
+ "Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2},
+ "Droplines" -> {
+ "freeformCursorMode" -> True,
+ "placement" -> {"x" -> "All", "y" -> "None"}}}}, "DefaultMeshStyle" ->
+ AbsolutePointSize[6], "ScalingFunctions" -> None,
+ "CoordinatesToolOptions" -> {"DisplayFunction" -> ({
+ (Identity[#]& )[
+ Part[#, 1]],
+ (Identity[#]& )[
+ Part[#, 2]]}& ), "CopiedValueFunction" -> ({
+ (Identity[#]& )[
+ Part[#, 1]],
+ (Identity[#]& )[
+ Part[#, 2]]}& )}},
+ PlotRange->{{-15., 3.}, {0., 0.12732395447351627`}},
+ PlotRangeClipping->False,
+ PlotRangePadding->{{0, 0}, {0, 0}},
+ Prolog->{
+ ArrowBox[
+ NCache[{{0, Rational[1, 24]/Pi}, {-6, Rational[1, 24]/Pi}}, {{
+ 0, 0.013262911924324612`}, {-6, 0.013262911924324612`}}]], {
+ Dashing[{Small, Small}],
+ LineBox[
+ NCache[{{-6, 0}, {-6, Rational[1, 3]/Pi}}, {{-6,
+ 0}, {-6, 0.1061032953945969}}]],
+ InsetBox[
+ FormBox[
+ StyleBox["\"\[Mu]\"", SingleLetterItalics -> False,
+ Directive[FontFamily -> "Helvetica",
+ GrayLevel[0], FontSize -> 10], StripOnInput -> False],
+ TraditionalForm],
+ NCache[{-3, Rational[1, 12]/Pi}, {-3, 0.026525823848649224`}]]}, {
+ Arrowheads[{-Automatic, Automatic}],
+ ArrowBox[
+ NCache[{{-12, Rational[1, 24]/Pi}, {-6, Rational[1, 24]/Pi}}, {{-12,
+ 0.013262911924324612`}, {-6, 0.013262911924324612`}}]]},
+ InsetBox[
+ FormBox[
+ StyleBox["\"2\[Sigma]\"", SingleLetterItalics -> False,
+ Directive[FontFamily -> "Helvetica",
+ GrayLevel[0], FontSize -> 10], StripOnInput -> False],
+ TraditionalForm],
+ NCache[{-9, Rational[1, 12]/Pi}, {-9, 0.026525823848649224`}]]},
+ Ticks->{{{0,
+ FormBox["0", TraditionalForm]}}, {}}]], "Output",
+ CellChangeTimes->{
+ 3.895207006790284*^9, {3.895207070220139*^9, 3.8952070917239933`*^9}, {
+ 3.895207143838638*^9, 3.89520718662168*^9}, {3.8952072225436153`*^9,
+ 3.895207261231798*^9}, {3.895207414307035*^9, 3.895207445020737*^9},
+ 3.8952074790122743`*^9, {3.895207593605205*^9, 3.89520762652086*^9}, {
+ 3.895207672440133*^9, 3.89520776704414*^9}, 3.895207869061739*^9,
+ 3.895207971302621*^9, 3.895208774788427*^9, 3.895208856296947*^9,
+ 3.895208911233605*^9, 3.924161607806319*^9, 3.924161708547617*^9,
+ 3.924161888307276*^9, {3.9241632469636393`*^9, 3.924163268743547*^9}},
+ CellLabel->
+ "Out[118]=",ExpressionUUID->"3c5405c9-baef-4a9a-9cf9-a1990522ea6a"]
+}, Open ]],
+
+Cell[CellGroupData[{
+
+Cell[BoxData[
+ RowBox[{"ps6", "=",
+ RowBox[{"plotSpecWithIso", "[",
+ RowBox[{
+ RowBox[{"-", "8"}], ",", "0", ",", "\"\<f\>\""}], "]"}]}]], "Input",
+ CellChangeTimes->{{3.89520778997552*^9, 3.8952077901675262`*^9}, {
+ 3.895207839433116*^9, 3.8952078422645893`*^9}, {3.895208024284871*^9,
+ 3.895208026220129*^9}, {3.895208867468687*^9, 3.8952088688522387`*^9}, {
+ 3.924161720316*^9, 3.9241617206431513`*^9}, 3.9241632611684847`*^9},
+ CellLabel->
+ "In[119]:=",ExpressionUUID->"9df7247c-bae3-4562-95d7-d5d547f8369d"],
+
+Cell[BoxData[
+ GraphicsBox[
+ InterpretationBox[{
+ TagBox[{{{}, {},
+ TagBox[
+ {RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[2],
+ Opacity[1.], LineBox[CompressedData["
+1:eJwV13k0VW0bB+BjJpJkns4+x+yQlAjlbk6ZvRJ9yFuKIioiJVJCMlXmkDlT
+5unsk7rJUGgSiopE0qAomZq+/f6117XW3s96xvv3bMZ+X7uD3DQaLZCLRvvv
+2Vjre2bqLwt7EsQXHZ9vg8VHUWGFv1nYvXHVfMKfY9CtqyHUucjCw3PuhR6W
+QZCZ0JEwOcfCEnmVdLHgUPCZPiSz/AcLv88PuyrYnoeNdvzZ+t9YmKspJNl3
+JRzEawrUHb+ysKBGNmMkNQJGV2yrOPOZhY0JvfZZ/lEQ0XfhTss4C2Pdp+/o
+dV8GRwPl7eOjLHzf5ho4bxcLmiktD4VGWKidYson0h4H3Y5cr21esrBDNEg/
+vSkBlr8K+Tn0mIU7F1ZO6Wtcg8RBlxGxh5QFMr9+rbkGUgPrOzZ3snAQugLa
+TRJBrn/xamErC8mvmZe+bEwC5pMALR82Cz/K2kOkegrkP9otll3PwicPt+V3
+pqeA2kP92ac1LLxQ4vm4UzgVtDq/Na8tZ6HysXtLg9+nwupWH6ffuSw8aFus
+6heVDrUtlqCbzcJMxx+u4Z/TwaBZW/XfTBa62KXtWWZ9HYzvfJxqTWHhC7Pq
+8J5lGbCl8VBUTAwL2xu9niWGZYJ9mWuDfAAL+T9c0hiSzob+kg2Zln4sTJSv
+fZ+8MRscixUuhB5joaDXRPsbz2xwLhy0Gj3Cwrvm7/brN2bDwWyH8ZJ9LHzI
+2JilZZcDAYlWksY7qf7JRpE+J3MhJdjUz1GBhXu+/Hti4mI+EN8enrGUZaH/
+pg6RyzfzocTDJXyzFNW+9C6ZL/fzockuOElbjIVq0xeMF5cUwKgG2UDjZeEM
+f13pzpgC0O1b+6vokxaeL/vYkBteCB06OhcXSC2sWXh94JVtEdjk3Y790qCF
+xPYjLyyOFsGgjEXyaK0Wzt658SY5qggmebxuPizXwshdj2+y7xTBisGiBzm5
+WsilWLNnh2Yx7ItQEd0VrYUtY21q7+aKYW5IPiXdSQvt5t36Os+WQsTF6uv3
+HLSw2lnHpehaKUho78z+/I8WBjway/UpLoXVQQHFplZaaGhguLm+txR8Vjzl
+vN2shUuXXE421CqDsR0Rb7S0tfC0n5Xiyqdl0FM5pcn5o4nX3Y0vM8TKoex8
+2+2XeZqY+Uotj1unEjZni4x1ZGvihs+Dou4GlfCi6R/h2kxN3NFVvaIJKoFv
+YcQpJkUT+WVCmQ52leDq+2d2/WVNlJcPH1INrAQxZ0O9rBOa2LR8+tqOu5Xg
+v7a4wG2TJkLBGc2PO6tg/URM3LshDaSRkro/dlXDhbwVEm9eaqCiNDL97aqh
+0zU9bfCFBqpzFE5POlWDY9/N/Mc9GtistcH3sWc1+Le0kOx2DXT3fLTSNqIa
+SjPmx2PLNXC90dlyW6wGOVt3MAjRQIWtmcTxVTWwwDaZilDUQJ8QfpHd3LUg
+/LD+H/XD6vhU4u9TFZc6mMuxPpBQoIYdfW9uB2TWw7rGWv/5L6roeT60SDyj
+AQqNuaTmTVTxU8GoktHxRmgYNTD8uk4V5b8s2MT4N8L9GG/H8bWqKHqVw3gd
+2Agfh56n9+qqYpSgUl5gSCPoXiinVymrYlmX+saEy43Q2PU/zSPCqjhLK62z
+KWiETuf69a8GVbD4A+OdxPNG+BLidQCDVPCpuVLEwBo28DoVnfsUoIICZp8Z
+3gZskF/zLlPKXwVfx6YN/FrHBrP3ri+8fVRwydRwlowpG3Kt7SxlD6jg2CrZ
+K0ZmbHAgjAxPWKigt7HgVYYzG5qa+YVV6Cp4y33Vs9jzbIjhza2ObFVGK6cl
+D74/YEPJ7vhvJ5uVMXVh9qNpNxvuFwavdr+jjNVbxxYiH1H92bmnemOjMm7Z
+NPNmxTM2nIkVqV4oVUbmN61R8VdsOCIVWOV1TRn1Ou/qlk9S/dOwqLTer4w/
+OMIXXZaRcCjIaGrDPmVM8DA191hOQnin2iptZ2X033Zf1HcFCejNVSnooIwB
+dc3xp6RJMKyqr2jeqYxHVu2K8KOToGbMqFijp4z/66koFdIlgddi9pY0TRld
+WbMTbAsSeoyVLSR+M7EjNXjwjBUJOZo2H8UWmchxdftgYkOCqUCJ2pIZJv68
+hm71/5BwqsXlxq/3TNQcMsfEvSRMrmtLGHnMRF/llYlzHiT0qyb6ld5g4obh
+OG7HMBLyJZqXF2Uw0VyvxWboPAl+PF8q8tOY+ODJ4Y794SSIjez4nHmNiSs3
+OukeiiTBPOOne0IkE/u9A745xFLjEz/gcNKXiWmZCtFvUkko/qtnBMDECPVg
+4eRyEoLph575rmcit5VhWVcFCTaQfjTbiIntlYPk30oS5kO4c7n0mXjaqYZ5
+oIYEsz89S1o1mIgj0UzpRhImfvm9MhNnoplMi5h+MzVfi3Whdu8YeGq6kH9L
+DwmLsh9lL7xl4GJuS8f2ZyQ8MlKqrRlmoPzzhV9mvSQEBEVMSAwycEL0aKtZ
+Pwlt8w62zx8xkLA26F47SIL73BzTuZFqz+vVWNsICXkzRu0HLzNQJL5gz92v
+JIRcVrrgFMVA5Qm1srwpEvYyeTZaXmRgYuhr/Yhpan5sutn6oQwsMbwxuu07
+9X6p6y0ePwbOSdpyKmZJcNx/ITFnLwMNPMWDdH6TsGbBwzZpDwMFs6xUf1AW
+TbAQvWTPQF8XD0HOH6p/TZJRx6wYuFyry28TjQOrZYvOwGYGbhNJGF3Hw4Gl
+T7r3v9Zk4PDpoB09ghyYOFRFf6rGwLe60n5nhTjQ+jvpVasyAy96DzxXW8KB
+06x9DmWKDOwot7H0F6bej5jeeWY5A6OOpn9aWMqBlg1SerILBEqnfharFOdA
+Zu/ipMgsgS+sK16bruDAKa/hEtp3As9Gh73roqybVqQy8ZnAaGwpfCPBgYwZ
+Y5mGNwTOPb/5bUaKA4Gl+/7a3yfQ/61N+305Djj6mTcGtxF4Z6Lu9hp5Dqwz
+MTye30Kgs8trzUzKi52io99vE/jnF+nppcCB4I9N7VerCJxfmXz6hyIHXKqL
+Q8lyAhczfmjYK3HA9HTSurelBC7zuWFVRfmv0NESvUICp1Yup3nQOXBeUyHu
+STqBacrSv+8SHNg/LbBjPoVA8TMnPcQZHNjC/v6XnkRg6c6knQco8+7sOu4b
+T6DRgPVJGpMDkZ6nd4uGE+j1ne6tocwBz1WHRA3CCMwW/pnkQ9ls3rbDJYTA
+4ve/DWsoL4nSNLp1ikCQLx4zVOFAzM0XChZHCbyr2TmyUpUD3r6tfX5HCAye
+lH3kSdnSsDLuugeBCmLvV+dQFu2IpH36l8D3VvRDS9U48DXOjy2+j0DPmgz9
+TZSfOOw7YexM4EWB22f8KF8ZNxi75EDgX31u/2eUT5QzM6v+IRC3GKlyqXPA
+LkDUYcCGwJmy1dY6lCX4xzs0zAn0IaKXhlGeefj0nI0ZgTxWszlFlPuSmoxO
+bSOwRmFTxSPKyapJpR1AIK9IjL6UBgcCJs+5f11PYJZpapkh5T113orSxgRa
+GFzP3ENZZtvW+EP6BLY3p3+8SnlBZJVZnB6BvQ4528spD/bKc9WvJDCmplr+
+PuXr7t9P8GkSqDrFrzdHOVh7mKWjRiCj2fa4iCYHnGc6x+yVCfxp0qBFUN5w
+uz4zmCDQvtbYZTVlpfBch3xFAh+YDAtuofzHPG5ZtxyBK3Jv6thRHl5x+v53
+aWr8/sld+yjjy4Nh8pIEmtLK33pRzs6zNd4iTuCA5dSJAMpRbyclVy4j8NwO
+Xu1zlI8xoqdlRAhMLVknF0XZ0U3tIY8QgUJC8RviKG+80VL0hY/Aj2mCyVcp
+awy5hg9wE3jKqFA5iTJhPHs36i8dJQ97jv/nqYaVga4LdLS1th5KpNy81mOl
+/nc6jjXsFf7v+6s1N94JTdKxfEX00VjK+/VeZAyP05Fz6hVvJOXVFWL2dW/o
+aJRr8zSEMrfOTuHLg3QMmxrr8afcUxLW4tZLR/HDKUKHKedqkEEGj+gYU3/w
+5P8onyj8tkrkPh1vaVhKWVDerMKaGGmmo2Ptrs/GlMVzD9xo4FDtfd87p075
+LT3DIbaOjqB62nAF5erM3qUHKuhYr5Nf9otar/PyS9vWFdNRPrnXYYyyXdq2
+YNE8OpbF8Bt0UmZKh6wZy6Bj7Zj+rv/W/57415z4BDrugGPLj1NOTFB3OhhN
+zQfjeKs1ZXdRNzGTcDq2KzuUaVPmXfI0ZDyQjir7KuVGqP3YGylkcPs4HQey
+pHIaKefzbZ684kXHsyJbnOMob+Wq+d+GfXRUTew+pv/ffg/9JL7CiY5WL6U7
+eSmP/VLunLCjY0EJn+N/5yV8PnFd4nY65lrnLPei3PY1QPKTDh0/1VQshlPn
+MfloRTeq0zHp9sTcdsqHPr2/kMygY++Ql6YAZf73jt82SdLxhrei5nnqvG8f
+Mn6c+ksJncJq0/ZT9UDK2S/CZ1YJf5d2GEpRHh8o3bB1SgmtkuqE7lP1JaJP
+oezrqBJmM0fN1Ch3dP+J2t6lhDzHOasfUvXKjNOyeSZNCaU7R/Nbqfp32v90
+/fg1JZQUnjjkQrlUZ7XWQKwSHgsz856h6qVods7yO2FKKM/zcKMi5d7wc28i
+Dyvh5WXponup+utmZRoib6SECRa9mueo+nxVYHZ66RolfBDoKf1bklofvHWQ
+pqOEW1ZPbj9FWW2NouU7QgmlTvzrdZiq75+lf8lXCCphWsbyDgMqH06NsNmb
+XyhioYhd1VkqP0rSj+us7VHERC/NqiERDrz8RzNHvVsRjxfqTG+gbNqeGiWC
+isi4AnpzVB7xlgbu6b+piKE1QuX2VH4l+K/9cThQEX3dxM9yuDlQLFC16oqU
+ItJT5E4aUvk5zgzM+CSmiPguqt7nBwlM0w2C24UVMRzW++TPkJDu/2B48a8C
+Lpq9B2Eqf6NHRuLcPyigeoCfZzuV394c8UnD2wpY+SGz/NsECSt9/YuH/lXA
+pAEZbiaV/0eijSWNnBWwUyzpnvoACYUFtLBrDgr4TOXkLOsFCfRXMY5m5gro
+ZFlVoUvdH8R2FghU6ysgz5iJlwp1/5hm9h+8KKCAunJVQy0PSKjtN2Rq35LH
++t8fPXoaSPg77PpM5KY8uic7Z8TUk7Drw8XwyWx5vOko9WNrHQlvfj4bL0+U
+RzlzG/HKahJEGMdK9YLlceDh9hnfW9T9xKtI39BcHnPGl8kk55IgQZPdsfmD
+HMaffNMXdJmEfUIb55mjcujzXZF//hIJJeIexTyv5fBGsIGtfxQJG1XrhNue
+yOH6/lIDj4vUfOyyfbKjUQ63FJxYaxBKQmviJSfLSDk8ZqfbcOoECSc1F70c
+VeXw+N6te2L3kNCZqCuZQ5fD9pt3pj7tJoGgHbzzQVYOXRWPDZjZk9Dd/1js
+jKgcblJYm/Kbuo8ywwvqMudkMfadI8duFwlPhmz+vn0gi/Odxi6l60nQSrx5
+9aiPLKql8JSuIKjx/7Fnn2+QQVe1cwplI2xIKRCiT1TJYMw6AfXCYTZYWdwJ
+tyyTwfjAT6ezXrPhdpq6jUyODC7t0vl9aYANqfqL47eiZXAwU9fN4ikbbI/c
+kBhwkUHRD9u3hCAbWvo++OryyqB/vcrZa5lsyCsLUXtlI42PFVxEjtixwXNT
+4tOOXdK45V8+yyZrNqzsLw6u2SqNcx92HBK1ZAP5t7cnep001k++opfsYEOP
+HSvUiJDGLuvh6x3r2cC98Px58lcpVOM3lE1XY4PbNr1LtnFSWMDQWJI63wgK
+Q6Of2rskcTR+rLorqRE+9wrEy7VLIks6N6b9aiM0dbFW+6AkPvqV5nQ3vhFc
+2X6nJOsk8RnodpZcaoTsRB4+9yxJLFt+esrzbCOomisrcR2XxKPj73PD3Bth
+ZeN+GxMpSbTRPzOvpNcIcHWktsJNAvfcDhp9ca8BpDvl+jWfi2NbqE+aTEM9
+mA0ypZ/ZL8ezEhUWOaF1sH0womHmxTK8FJJIirBqYZE8GnynexneG6m7/kil
+Fiqu22+KwmV4o9xBJ0apFmRcmF3yRcuQ7Jm2XVxeCx+Hm4Y2By7DHzt7dHLn
+ayDu3QzfFcll2BJ5LlShrQb6p/bb69iJ4ly/hFHG3hrwEIDpg10ieE1/879l
+AdWwqmxz4d+7IqjdHyha61sNizbb/5dWK4JBNUf66qn/47h0y7buTBFUeEGk
+39pbDfU6zmlrjomgjcq6fftMq4HXPmgTl6QIvpQyqXzEWw252TVXMlyF0aGT
+sbUytgpeGWmsfjYthGH2PM3jsZXguVvLrXBcCAVUNkQVX6yEH8e044JeCuGq
+1ObWg2crQbRo1Ud6mxDyBDEDOr0rYZOUUa53qhA+v+R2Y4t5JRR+2ynOD0KY
++2XPs0/8lXCs1OvbuhhBTISj4RHT5fCr/SghEiaIE0pTgabD5XDpra/V8ElB
+3GYg7zbeXQ65sv4lF/cJou+I/HW+onLoiwze37NaEIMc0kNDXMrB2D22x2tA
+AI/oHekxbbsFPIoV1VlqAjigWhwjGFkG5RJ+XiFyAvh2JqX3zrEycBQxVHEV
+FUD9hY5vznvLoOznnSTFWX5seuHUZa1TBg6Dj05ltPFjxIyap1BPKRSlfDFN
+d+fH77TR4kSpUrAQX9mVlMuHJ+8vzxOJLoZZoW8XTibzYfvm3N+Gx4ohm6t+
+/e5oPuz1abu2yaEYfkxtKJc4wYd9vfmPJxnFkPXY8sq1TXzY/UYxPquhCKZi
+ju658oYXB58nEQsvb0KSwK3RGCVe5IpuenSLtxDs78XGrF/Bi+cnHpyoe19A
+5bXP2s8CvJi7asvS+M4CSJzVjTSf5kGC5mdUF18AV99Vay1p5cFpNd4nDdIF
+EHev8XjkYR70Xtog0aeYD1ahaXKGrjx4Sd/cOPV3Hiw1OX1v3I4Hucq2PlR6
+nQcx1SaS29fz4NjP3RePX8+Dyzl3GnmX8SCPqdYPIck8iApt/RtWy413VnDP
+3VvMATOTgiK9Ym40OTD4ULo/BwTmLtqOZHIjremWs1RVDkT47MjbGEl5K0dB
++FAOXHTp3P7XiRvP+ozJX+3KhvMmT2KD/3IhQzXkpD3fDdg8V2mgPcOFGyd/
+/RkszwKumivDLye4sHHT2tO792TBOa1/9Ex6uLDyMFuMqyATQmT7exfyuXDD
+uptiS1dnwJm5l/KBu7jQrIpHRFsgDRzjQ6zXmHJhHL662pSQCgbqjAtf9biw
+q1lG4oN0Kkw5HProIcuF+RKtgwFKKfDwi6CSylIudI4IgwuZyVASUWr7hsaF
+TnJwOVg2GQ7WTzU6TtDwJ5k1ZCGQBJutrn2WeEXDT7pftTNOJQIxvpZ4+piG
+V8zTPrS9uwaDkmcidzbQcO7Gaw169VVouKXI4Sul4RI90Xw3sauQuA2/NGfR
+kE+hVynV8wpYn+RzMI6g4ZT2fatPPAmgvbTo0mwQDbN9T7D0o+NgScGupuqj
+NPRrPzUdPR8D79dPTvn8S0OX89+iPawvQ2tvvAprNw23bB2fWxt9CXK8Vzu+
+N6Oh688zxsW5kRDC23c5bz0NFZ+cySqKvwjOGYF3962iYbrKlxrdLRfASF/u
+u7wKDb1D5CPPFZwDqe7bai+kaWj2fvJJ7rIzMHNg395EYRo+dbucNvzqBPTR
+X0RF02h4sPWPSYyNDfwfBVQvfw==
+ "]]},
+ Annotation[#, "Charting`Private`Tag#1"]& ]}, {}},
+ {"WolframDynamicHighlight", <|
+ "Label" -> {"XYLabel"}, "Ball" -> {"InterpolatedBall"}|>}],
+ StyleBox[
+ DynamicBox[(Charting`HighlightActionBox["DynamicHighlight", {},
+ Slot["HighlightElements"],
+ Slot["LayoutOptions"],
+ Slot["Meta"],
+ Charting`HighlightActionFunction["DynamicHighlight", {{{{}, {},
+ Annotation[{
+ Directive[
+ Opacity[1.],
+ RGBColor[0.368417, 0.506779, 0.709798],
+ AbsoluteThickness[2]],
+ Line[CompressedData["
+1:eJwV13k0VW0bB+BjJpJkns4+x+yQlAjlbk6ZvRJ9yFuKIioiJVJCMlXmkDlT
+5unsk7rJUGgSiopE0qAomZq+/f6117XW3s96xvv3bMZ+X7uD3DQaLZCLRvvv
+2Vjre2bqLwt7EsQXHZ9vg8VHUWGFv1nYvXHVfMKfY9CtqyHUucjCw3PuhR6W
+QZCZ0JEwOcfCEnmVdLHgUPCZPiSz/AcLv88PuyrYnoeNdvzZ+t9YmKspJNl3
+JRzEawrUHb+ysKBGNmMkNQJGV2yrOPOZhY0JvfZZ/lEQ0XfhTss4C2Pdp+/o
+dV8GRwPl7eOjLHzf5ho4bxcLmiktD4VGWKidYson0h4H3Y5cr21esrBDNEg/
+vSkBlr8K+Tn0mIU7F1ZO6Wtcg8RBlxGxh5QFMr9+rbkGUgPrOzZ3snAQugLa
+TRJBrn/xamErC8mvmZe+bEwC5pMALR82Cz/K2kOkegrkP9otll3PwicPt+V3
+pqeA2kP92ac1LLxQ4vm4UzgVtDq/Na8tZ6HysXtLg9+nwupWH6ffuSw8aFus
+6heVDrUtlqCbzcJMxx+u4Z/TwaBZW/XfTBa62KXtWWZ9HYzvfJxqTWHhC7Pq
+8J5lGbCl8VBUTAwL2xu9niWGZYJ9mWuDfAAL+T9c0hiSzob+kg2Zln4sTJSv
+fZ+8MRscixUuhB5joaDXRPsbz2xwLhy0Gj3Cwrvm7/brN2bDwWyH8ZJ9LHzI
+2JilZZcDAYlWksY7qf7JRpE+J3MhJdjUz1GBhXu+/Hti4mI+EN8enrGUZaH/
+pg6RyzfzocTDJXyzFNW+9C6ZL/fzockuOElbjIVq0xeMF5cUwKgG2UDjZeEM
+f13pzpgC0O1b+6vokxaeL/vYkBteCB06OhcXSC2sWXh94JVtEdjk3Y790qCF
+xPYjLyyOFsGgjEXyaK0Wzt658SY5qggmebxuPizXwshdj2+y7xTBisGiBzm5
+WsilWLNnh2Yx7ItQEd0VrYUtY21q7+aKYW5IPiXdSQvt5t36Os+WQsTF6uv3
+HLSw2lnHpehaKUho78z+/I8WBjway/UpLoXVQQHFplZaaGhguLm+txR8Vjzl
+vN2shUuXXE421CqDsR0Rb7S0tfC0n5Xiyqdl0FM5pcn5o4nX3Y0vM8TKoex8
+2+2XeZqY+Uotj1unEjZni4x1ZGvihs+Dou4GlfCi6R/h2kxN3NFVvaIJKoFv
+YcQpJkUT+WVCmQ52leDq+2d2/WVNlJcPH1INrAQxZ0O9rBOa2LR8+tqOu5Xg
+v7a4wG2TJkLBGc2PO6tg/URM3LshDaSRkro/dlXDhbwVEm9eaqCiNDL97aqh
+0zU9bfCFBqpzFE5POlWDY9/N/Mc9GtistcH3sWc1+Le0kOx2DXT3fLTSNqIa
+SjPmx2PLNXC90dlyW6wGOVt3MAjRQIWtmcTxVTWwwDaZilDUQJ8QfpHd3LUg
+/LD+H/XD6vhU4u9TFZc6mMuxPpBQoIYdfW9uB2TWw7rGWv/5L6roeT60SDyj
+AQqNuaTmTVTxU8GoktHxRmgYNTD8uk4V5b8s2MT4N8L9GG/H8bWqKHqVw3gd
+2Agfh56n9+qqYpSgUl5gSCPoXiinVymrYlmX+saEy43Q2PU/zSPCqjhLK62z
+KWiETuf69a8GVbD4A+OdxPNG+BLidQCDVPCpuVLEwBo28DoVnfsUoIICZp8Z
+3gZskF/zLlPKXwVfx6YN/FrHBrP3ri+8fVRwydRwlowpG3Kt7SxlD6jg2CrZ
+K0ZmbHAgjAxPWKigt7HgVYYzG5qa+YVV6Cp4y33Vs9jzbIjhza2ObFVGK6cl
+D74/YEPJ7vhvJ5uVMXVh9qNpNxvuFwavdr+jjNVbxxYiH1H92bmnemOjMm7Z
+NPNmxTM2nIkVqV4oVUbmN61R8VdsOCIVWOV1TRn1Ou/qlk9S/dOwqLTer4w/
+OMIXXZaRcCjIaGrDPmVM8DA191hOQnin2iptZ2X033Zf1HcFCejNVSnooIwB
+dc3xp6RJMKyqr2jeqYxHVu2K8KOToGbMqFijp4z/66koFdIlgddi9pY0TRld
+WbMTbAsSeoyVLSR+M7EjNXjwjBUJOZo2H8UWmchxdftgYkOCqUCJ2pIZJv68
+hm71/5BwqsXlxq/3TNQcMsfEvSRMrmtLGHnMRF/llYlzHiT0qyb6ld5g4obh
+OG7HMBLyJZqXF2Uw0VyvxWboPAl+PF8q8tOY+ODJ4Y794SSIjez4nHmNiSs3
+OukeiiTBPOOne0IkE/u9A745xFLjEz/gcNKXiWmZCtFvUkko/qtnBMDECPVg
+4eRyEoLph575rmcit5VhWVcFCTaQfjTbiIntlYPk30oS5kO4c7n0mXjaqYZ5
+oIYEsz89S1o1mIgj0UzpRhImfvm9MhNnoplMi5h+MzVfi3Whdu8YeGq6kH9L
+DwmLsh9lL7xl4GJuS8f2ZyQ8MlKqrRlmoPzzhV9mvSQEBEVMSAwycEL0aKtZ
+Pwlt8w62zx8xkLA26F47SIL73BzTuZFqz+vVWNsICXkzRu0HLzNQJL5gz92v
+JIRcVrrgFMVA5Qm1srwpEvYyeTZaXmRgYuhr/Yhpan5sutn6oQwsMbwxuu07
+9X6p6y0ePwbOSdpyKmZJcNx/ITFnLwMNPMWDdH6TsGbBwzZpDwMFs6xUf1AW
+TbAQvWTPQF8XD0HOH6p/TZJRx6wYuFyry28TjQOrZYvOwGYGbhNJGF3Hw4Gl
+T7r3v9Zk4PDpoB09ghyYOFRFf6rGwLe60n5nhTjQ+jvpVasyAy96DzxXW8KB
+06x9DmWKDOwot7H0F6bej5jeeWY5A6OOpn9aWMqBlg1SerILBEqnfharFOdA
+Zu/ipMgsgS+sK16bruDAKa/hEtp3As9Gh73roqybVqQy8ZnAaGwpfCPBgYwZ
+Y5mGNwTOPb/5bUaKA4Gl+/7a3yfQ/61N+305Djj6mTcGtxF4Z6Lu9hp5Dqwz
+MTye30Kgs8trzUzKi52io99vE/jnF+nppcCB4I9N7VerCJxfmXz6hyIHXKqL
+Q8lyAhczfmjYK3HA9HTSurelBC7zuWFVRfmv0NESvUICp1Yup3nQOXBeUyHu
+STqBacrSv+8SHNg/LbBjPoVA8TMnPcQZHNjC/v6XnkRg6c6knQco8+7sOu4b
+T6DRgPVJGpMDkZ6nd4uGE+j1ne6tocwBz1WHRA3CCMwW/pnkQ9ls3rbDJYTA
+4ve/DWsoL4nSNLp1ikCQLx4zVOFAzM0XChZHCbyr2TmyUpUD3r6tfX5HCAye
+lH3kSdnSsDLuugeBCmLvV+dQFu2IpH36l8D3VvRDS9U48DXOjy2+j0DPmgz9
+TZSfOOw7YexM4EWB22f8KF8ZNxi75EDgX31u/2eUT5QzM6v+IRC3GKlyqXPA
+LkDUYcCGwJmy1dY6lCX4xzs0zAn0IaKXhlGeefj0nI0ZgTxWszlFlPuSmoxO
+bSOwRmFTxSPKyapJpR1AIK9IjL6UBgcCJs+5f11PYJZpapkh5T113orSxgRa
+GFzP3ENZZtvW+EP6BLY3p3+8SnlBZJVZnB6BvQ4528spD/bKc9WvJDCmplr+
+PuXr7t9P8GkSqDrFrzdHOVh7mKWjRiCj2fa4iCYHnGc6x+yVCfxp0qBFUN5w
+uz4zmCDQvtbYZTVlpfBch3xFAh+YDAtuofzHPG5ZtxyBK3Jv6thRHl5x+v53
+aWr8/sld+yjjy4Nh8pIEmtLK33pRzs6zNd4iTuCA5dSJAMpRbyclVy4j8NwO
+Xu1zlI8xoqdlRAhMLVknF0XZ0U3tIY8QgUJC8RviKG+80VL0hY/Aj2mCyVcp
+awy5hg9wE3jKqFA5iTJhPHs36i8dJQ97jv/nqYaVga4LdLS1th5KpNy81mOl
+/nc6jjXsFf7v+6s1N94JTdKxfEX00VjK+/VeZAyP05Fz6hVvJOXVFWL2dW/o
+aJRr8zSEMrfOTuHLg3QMmxrr8afcUxLW4tZLR/HDKUKHKedqkEEGj+gYU3/w
+5P8onyj8tkrkPh1vaVhKWVDerMKaGGmmo2Ptrs/GlMVzD9xo4FDtfd87p075
+LT3DIbaOjqB62nAF5erM3qUHKuhYr5Nf9otar/PyS9vWFdNRPrnXYYyyXdq2
+YNE8OpbF8Bt0UmZKh6wZy6Bj7Zj+rv/W/57415z4BDrugGPLj1NOTFB3OhhN
+zQfjeKs1ZXdRNzGTcDq2KzuUaVPmXfI0ZDyQjir7KuVGqP3YGylkcPs4HQey
+pHIaKefzbZ684kXHsyJbnOMob+Wq+d+GfXRUTew+pv/ffg/9JL7CiY5WL6U7
+eSmP/VLunLCjY0EJn+N/5yV8PnFd4nY65lrnLPei3PY1QPKTDh0/1VQshlPn
+MfloRTeq0zHp9sTcdsqHPr2/kMygY++Ql6YAZf73jt82SdLxhrei5nnqvG8f
+Mn6c+ksJncJq0/ZT9UDK2S/CZ1YJf5d2GEpRHh8o3bB1SgmtkuqE7lP1JaJP
+oezrqBJmM0fN1Ch3dP+J2t6lhDzHOasfUvXKjNOyeSZNCaU7R/Nbqfp32v90
+/fg1JZQUnjjkQrlUZ7XWQKwSHgsz856h6qVods7yO2FKKM/zcKMi5d7wc28i
+Dyvh5WXponup+utmZRoib6SECRa9mueo+nxVYHZ66RolfBDoKf1bklofvHWQ
+pqOEW1ZPbj9FWW2NouU7QgmlTvzrdZiq75+lf8lXCCphWsbyDgMqH06NsNmb
+XyhioYhd1VkqP0rSj+us7VHERC/NqiERDrz8RzNHvVsRjxfqTG+gbNqeGiWC
+isi4AnpzVB7xlgbu6b+piKE1QuX2VH4l+K/9cThQEX3dxM9yuDlQLFC16oqU
+ItJT5E4aUvk5zgzM+CSmiPguqt7nBwlM0w2C24UVMRzW++TPkJDu/2B48a8C
+Lpq9B2Eqf6NHRuLcPyigeoCfZzuV394c8UnD2wpY+SGz/NsECSt9/YuH/lXA
+pAEZbiaV/0eijSWNnBWwUyzpnvoACYUFtLBrDgr4TOXkLOsFCfRXMY5m5gro
+ZFlVoUvdH8R2FghU6ysgz5iJlwp1/5hm9h+8KKCAunJVQy0PSKjtN2Rq35LH
++t8fPXoaSPg77PpM5KY8uic7Z8TUk7Drw8XwyWx5vOko9WNrHQlvfj4bL0+U
+RzlzG/HKahJEGMdK9YLlceDh9hnfW9T9xKtI39BcHnPGl8kk55IgQZPdsfmD
+HMaffNMXdJmEfUIb55mjcujzXZF//hIJJeIexTyv5fBGsIGtfxQJG1XrhNue
+yOH6/lIDj4vUfOyyfbKjUQ63FJxYaxBKQmviJSfLSDk8ZqfbcOoECSc1F70c
+VeXw+N6te2L3kNCZqCuZQ5fD9pt3pj7tJoGgHbzzQVYOXRWPDZjZk9Dd/1js
+jKgcblJYm/Kbuo8ywwvqMudkMfadI8duFwlPhmz+vn0gi/Odxi6l60nQSrx5
+9aiPLKql8JSuIKjx/7Fnn2+QQVe1cwplI2xIKRCiT1TJYMw6AfXCYTZYWdwJ
+tyyTwfjAT6ezXrPhdpq6jUyODC7t0vl9aYANqfqL47eiZXAwU9fN4ikbbI/c
+kBhwkUHRD9u3hCAbWvo++OryyqB/vcrZa5lsyCsLUXtlI42PFVxEjtixwXNT
+4tOOXdK45V8+yyZrNqzsLw6u2SqNcx92HBK1ZAP5t7cnep001k++opfsYEOP
+HSvUiJDGLuvh6x3r2cC98Px58lcpVOM3lE1XY4PbNr1LtnFSWMDQWJI63wgK
+Q6Of2rskcTR+rLorqRE+9wrEy7VLIks6N6b9aiM0dbFW+6AkPvqV5nQ3vhFc
+2X6nJOsk8RnodpZcaoTsRB4+9yxJLFt+esrzbCOomisrcR2XxKPj73PD3Bth
+ZeN+GxMpSbTRPzOvpNcIcHWktsJNAvfcDhp9ca8BpDvl+jWfi2NbqE+aTEM9
+mA0ypZ/ZL8ezEhUWOaF1sH0womHmxTK8FJJIirBqYZE8GnynexneG6m7/kil
+Fiqu22+KwmV4o9xBJ0apFmRcmF3yRcuQ7Jm2XVxeCx+Hm4Y2By7DHzt7dHLn
+ayDu3QzfFcll2BJ5LlShrQb6p/bb69iJ4ly/hFHG3hrwEIDpg10ieE1/879l
+AdWwqmxz4d+7IqjdHyha61sNizbb/5dWK4JBNUf66qn/47h0y7buTBFUeEGk
+39pbDfU6zmlrjomgjcq6fftMq4HXPmgTl6QIvpQyqXzEWw252TVXMlyF0aGT
+sbUytgpeGWmsfjYthGH2PM3jsZXguVvLrXBcCAVUNkQVX6yEH8e044JeCuGq
+1ObWg2crQbRo1Ud6mxDyBDEDOr0rYZOUUa53qhA+v+R2Y4t5JRR+2ynOD0KY
++2XPs0/8lXCs1OvbuhhBTISj4RHT5fCr/SghEiaIE0pTgabD5XDpra/V8ElB
+3GYg7zbeXQ65sv4lF/cJou+I/HW+onLoiwze37NaEIMc0kNDXMrB2D22x2tA
+AI/oHekxbbsFPIoV1VlqAjigWhwjGFkG5RJ+XiFyAvh2JqX3zrEycBQxVHEV
+FUD9hY5vznvLoOznnSTFWX5seuHUZa1TBg6Dj05ltPFjxIyap1BPKRSlfDFN
+d+fH77TR4kSpUrAQX9mVlMuHJ+8vzxOJLoZZoW8XTibzYfvm3N+Gx4ohm6t+
+/e5oPuz1abu2yaEYfkxtKJc4wYd9vfmPJxnFkPXY8sq1TXzY/UYxPquhCKZi
+ju658oYXB58nEQsvb0KSwK3RGCVe5IpuenSLtxDs78XGrF/Bi+cnHpyoe19A
+5bXP2s8CvJi7asvS+M4CSJzVjTSf5kGC5mdUF18AV99Vay1p5cFpNd4nDdIF
+EHev8XjkYR70Xtog0aeYD1ahaXKGrjx4Sd/cOPV3Hiw1OX1v3I4Hucq2PlR6
+nQcx1SaS29fz4NjP3RePX8+Dyzl3GnmX8SCPqdYPIck8iApt/RtWy413VnDP
+3VvMATOTgiK9Ym40OTD4ULo/BwTmLtqOZHIjremWs1RVDkT47MjbGEl5K0dB
++FAOXHTp3P7XiRvP+ozJX+3KhvMmT2KD/3IhQzXkpD3fDdg8V2mgPcOFGyd/
+/RkszwKumivDLye4sHHT2tO792TBOa1/9Ex6uLDyMFuMqyATQmT7exfyuXDD
+uptiS1dnwJm5l/KBu7jQrIpHRFsgDRzjQ6zXmHJhHL662pSQCgbqjAtf9biw
+q1lG4oN0Kkw5HProIcuF+RKtgwFKKfDwi6CSylIudI4IgwuZyVASUWr7hsaF
+TnJwOVg2GQ7WTzU6TtDwJ5k1ZCGQBJutrn2WeEXDT7pftTNOJQIxvpZ4+piG
+V8zTPrS9uwaDkmcidzbQcO7Gaw169VVouKXI4Sul4RI90Xw3sauQuA2/NGfR
+kE+hVynV8wpYn+RzMI6g4ZT2fatPPAmgvbTo0mwQDbN9T7D0o+NgScGupuqj
+NPRrPzUdPR8D79dPTvn8S0OX89+iPawvQ2tvvAprNw23bB2fWxt9CXK8Vzu+
+N6Oh688zxsW5kRDC23c5bz0NFZ+cySqKvwjOGYF3962iYbrKlxrdLRfASF/u
+u7wKDb1D5CPPFZwDqe7bai+kaWj2fvJJ7rIzMHNg395EYRo+dbucNvzqBPTR
+X0RF02h4sPWPSYyNDfwfBVQvfw==
+ "]]}, "Charting`Private`Tag#1"]}}, {}}, <|
+ "HighlightElements" -> <|
+ "Label" -> {"XYLabel"}, "Ball" -> {"InterpolatedBall"}|>,
+ "LayoutOptions" -> <|
+ "PanelPlotLayout" -> <||>,
+ "PlotRange" -> {{-15., 3.}, {0., 0.12732395447351627`}},
+ "Frame" -> {{False, False}, {False, False}},
+ "AxesOrigin" -> {0, 0}, "ImageSize" -> {180, 72},
+ "Axes" -> {True, True}, "LabelStyle" -> {FontFamily -> "Helvetica",
+ GrayLevel[0], FontSize -> 12}, "AspectRatio" -> Rational[2, 5],
+ "DefaultStyle" -> {
+ Directive[
+ Opacity[1.],
+ RGBColor[0.368417, 0.506779, 0.709798],
+ AbsoluteThickness[2]]},
+ "HighlightLabelingFunctions" -> <|"CoordinatesToolOptions" -> ({
+ Identity[
+ Part[#, 1]],
+ Identity[
+ Part[#, 2]]}& ),
+ "ScalingFunctions" -> {{Identity, Identity}, {
+ Identity, Identity}}|>, "Primitives" -> {}, "GCFlag" ->
+ False|>,
+ "Meta" -> <|
+ "DefaultHighlight" -> {"Dynamic", None}, "Index" -> {}, "Function" ->
+ Plot, "GroupHighlight" -> False|>|>]]& )[<|
+ "HighlightElements" -> <|
+ "Label" -> {"XYLabel"}, "Ball" -> {"InterpolatedBall"}|>,
+ "LayoutOptions" -> <|
+ "PanelPlotLayout" -> <||>,
+ "PlotRange" -> {{-15., 3.}, {0., 0.12732395447351627`}},
+ "Frame" -> {{False, False}, {False, False}}, "AxesOrigin" -> {0, 0},
+ "ImageSize" -> {180, 72}, "Axes" -> {True, True},
+ "LabelStyle" -> {FontFamily -> "Helvetica",
+ GrayLevel[0], FontSize -> 12}, "AspectRatio" -> Rational[2, 5],
+ "DefaultStyle" -> {
+ Directive[
+ Opacity[1.],
+ RGBColor[0.368417, 0.506779, 0.709798],
+ AbsoluteThickness[2]]},
+ "HighlightLabelingFunctions" -> <|"CoordinatesToolOptions" -> ({
+ Identity[
+ Part[#, 1]],
+ Identity[
+ Part[#, 2]]}& ),
+ "ScalingFunctions" -> {{Identity, Identity}, {
+ Identity, Identity}}|>, "Primitives" -> {}, "GCFlag" -> False|>,
+ "Meta" -> <|
+ "DefaultHighlight" -> {"Dynamic", None}, "Index" -> {}, "Function" ->
+ Plot, "GroupHighlight" -> False|>|>],
+ ImageSizeCache->{{4.503599627370496*^15, -4.503599627370496*^15}, {
+ 4.503599627370496*^15, -4.503599627370496*^15}}],
+ Selectable->False]},
+ Annotation[{{{{}, {},
+ Annotation[{
+ Directive[
+ Opacity[1.],
+ RGBColor[0.368417, 0.506779, 0.709798],
+ AbsoluteThickness[2]],
+ Line[CompressedData["
+1:eJwV13k0VW0bB+BjJpJkns4+x+yQlAjlbk6ZvRJ9yFuKIioiJVJCMlXmkDlT
+5unsk7rJUGgSiopE0qAomZq+/f6117XW3s96xvv3bMZ+X7uD3DQaLZCLRvvv
+2Vjre2bqLwt7EsQXHZ9vg8VHUWGFv1nYvXHVfMKfY9CtqyHUucjCw3PuhR6W
+QZCZ0JEwOcfCEnmVdLHgUPCZPiSz/AcLv88PuyrYnoeNdvzZ+t9YmKspJNl3
+JRzEawrUHb+ysKBGNmMkNQJGV2yrOPOZhY0JvfZZ/lEQ0XfhTss4C2Pdp+/o
+dV8GRwPl7eOjLHzf5ho4bxcLmiktD4VGWKidYson0h4H3Y5cr21esrBDNEg/
+vSkBlr8K+Tn0mIU7F1ZO6Wtcg8RBlxGxh5QFMr9+rbkGUgPrOzZ3snAQugLa
+TRJBrn/xamErC8mvmZe+bEwC5pMALR82Cz/K2kOkegrkP9otll3PwicPt+V3
+pqeA2kP92ac1LLxQ4vm4UzgVtDq/Na8tZ6HysXtLg9+nwupWH6ffuSw8aFus
+6heVDrUtlqCbzcJMxx+u4Z/TwaBZW/XfTBa62KXtWWZ9HYzvfJxqTWHhC7Pq
+8J5lGbCl8VBUTAwL2xu9niWGZYJ9mWuDfAAL+T9c0hiSzob+kg2Zln4sTJSv
+fZ+8MRscixUuhB5joaDXRPsbz2xwLhy0Gj3Cwrvm7/brN2bDwWyH8ZJ9LHzI
+2JilZZcDAYlWksY7qf7JRpE+J3MhJdjUz1GBhXu+/Hti4mI+EN8enrGUZaH/
+pg6RyzfzocTDJXyzFNW+9C6ZL/fzockuOElbjIVq0xeMF5cUwKgG2UDjZeEM
+f13pzpgC0O1b+6vokxaeL/vYkBteCB06OhcXSC2sWXh94JVtEdjk3Y790qCF
+xPYjLyyOFsGgjEXyaK0Wzt658SY5qggmebxuPizXwshdj2+y7xTBisGiBzm5
+WsilWLNnh2Yx7ItQEd0VrYUtY21q7+aKYW5IPiXdSQvt5t36Os+WQsTF6uv3
+HLSw2lnHpehaKUho78z+/I8WBjway/UpLoXVQQHFplZaaGhguLm+txR8Vjzl
+vN2shUuXXE421CqDsR0Rb7S0tfC0n5Xiyqdl0FM5pcn5o4nX3Y0vM8TKoex8
+2+2XeZqY+Uotj1unEjZni4x1ZGvihs+Dou4GlfCi6R/h2kxN3NFVvaIJKoFv
+YcQpJkUT+WVCmQ52leDq+2d2/WVNlJcPH1INrAQxZ0O9rBOa2LR8+tqOu5Xg
+v7a4wG2TJkLBGc2PO6tg/URM3LshDaSRkro/dlXDhbwVEm9eaqCiNDL97aqh
+0zU9bfCFBqpzFE5POlWDY9/N/Mc9GtistcH3sWc1+Le0kOx2DXT3fLTSNqIa
+SjPmx2PLNXC90dlyW6wGOVt3MAjRQIWtmcTxVTWwwDaZilDUQJ8QfpHd3LUg
+/LD+H/XD6vhU4u9TFZc6mMuxPpBQoIYdfW9uB2TWw7rGWv/5L6roeT60SDyj
+AQqNuaTmTVTxU8GoktHxRmgYNTD8uk4V5b8s2MT4N8L9GG/H8bWqKHqVw3gd
+2Agfh56n9+qqYpSgUl5gSCPoXiinVymrYlmX+saEy43Q2PU/zSPCqjhLK62z
+KWiETuf69a8GVbD4A+OdxPNG+BLidQCDVPCpuVLEwBo28DoVnfsUoIICZp8Z
+3gZskF/zLlPKXwVfx6YN/FrHBrP3ri+8fVRwydRwlowpG3Kt7SxlD6jg2CrZ
+K0ZmbHAgjAxPWKigt7HgVYYzG5qa+YVV6Cp4y33Vs9jzbIjhza2ObFVGK6cl
+D74/YEPJ7vhvJ5uVMXVh9qNpNxvuFwavdr+jjNVbxxYiH1H92bmnemOjMm7Z
+NPNmxTM2nIkVqV4oVUbmN61R8VdsOCIVWOV1TRn1Ou/qlk9S/dOwqLTer4w/
+OMIXXZaRcCjIaGrDPmVM8DA191hOQnin2iptZ2X033Zf1HcFCejNVSnooIwB
+dc3xp6RJMKyqr2jeqYxHVu2K8KOToGbMqFijp4z/66koFdIlgddi9pY0TRld
+WbMTbAsSeoyVLSR+M7EjNXjwjBUJOZo2H8UWmchxdftgYkOCqUCJ2pIZJv68
+hm71/5BwqsXlxq/3TNQcMsfEvSRMrmtLGHnMRF/llYlzHiT0qyb6ld5g4obh
+OG7HMBLyJZqXF2Uw0VyvxWboPAl+PF8q8tOY+ODJ4Y794SSIjez4nHmNiSs3
+OukeiiTBPOOne0IkE/u9A745xFLjEz/gcNKXiWmZCtFvUkko/qtnBMDECPVg
+4eRyEoLph575rmcit5VhWVcFCTaQfjTbiIntlYPk30oS5kO4c7n0mXjaqYZ5
+oIYEsz89S1o1mIgj0UzpRhImfvm9MhNnoplMi5h+MzVfi3Whdu8YeGq6kH9L
+DwmLsh9lL7xl4GJuS8f2ZyQ8MlKqrRlmoPzzhV9mvSQEBEVMSAwycEL0aKtZ
+Pwlt8w62zx8xkLA26F47SIL73BzTuZFqz+vVWNsICXkzRu0HLzNQJL5gz92v
+JIRcVrrgFMVA5Qm1srwpEvYyeTZaXmRgYuhr/Yhpan5sutn6oQwsMbwxuu07
+9X6p6y0ePwbOSdpyKmZJcNx/ITFnLwMNPMWDdH6TsGbBwzZpDwMFs6xUf1AW
+TbAQvWTPQF8XD0HOH6p/TZJRx6wYuFyry28TjQOrZYvOwGYGbhNJGF3Hw4Gl
+T7r3v9Zk4PDpoB09ghyYOFRFf6rGwLe60n5nhTjQ+jvpVasyAy96DzxXW8KB
+06x9DmWKDOwot7H0F6bej5jeeWY5A6OOpn9aWMqBlg1SerILBEqnfharFOdA
+Zu/ipMgsgS+sK16bruDAKa/hEtp3As9Gh73roqybVqQy8ZnAaGwpfCPBgYwZ
+Y5mGNwTOPb/5bUaKA4Gl+/7a3yfQ/61N+305Djj6mTcGtxF4Z6Lu9hp5Dqwz
+MTye30Kgs8trzUzKi52io99vE/jnF+nppcCB4I9N7VerCJxfmXz6hyIHXKqL
+Q8lyAhczfmjYK3HA9HTSurelBC7zuWFVRfmv0NESvUICp1Yup3nQOXBeUyHu
+STqBacrSv+8SHNg/LbBjPoVA8TMnPcQZHNjC/v6XnkRg6c6knQco8+7sOu4b
+T6DRgPVJGpMDkZ6nd4uGE+j1ne6tocwBz1WHRA3CCMwW/pnkQ9ls3rbDJYTA
+4ve/DWsoL4nSNLp1ikCQLx4zVOFAzM0XChZHCbyr2TmyUpUD3r6tfX5HCAye
+lH3kSdnSsDLuugeBCmLvV+dQFu2IpH36l8D3VvRDS9U48DXOjy2+j0DPmgz9
+TZSfOOw7YexM4EWB22f8KF8ZNxi75EDgX31u/2eUT5QzM6v+IRC3GKlyqXPA
+LkDUYcCGwJmy1dY6lCX4xzs0zAn0IaKXhlGeefj0nI0ZgTxWszlFlPuSmoxO
+bSOwRmFTxSPKyapJpR1AIK9IjL6UBgcCJs+5f11PYJZpapkh5T113orSxgRa
+GFzP3ENZZtvW+EP6BLY3p3+8SnlBZJVZnB6BvQ4528spD/bKc9WvJDCmplr+
+PuXr7t9P8GkSqDrFrzdHOVh7mKWjRiCj2fa4iCYHnGc6x+yVCfxp0qBFUN5w
+uz4zmCDQvtbYZTVlpfBch3xFAh+YDAtuofzHPG5ZtxyBK3Jv6thRHl5x+v53
+aWr8/sld+yjjy4Nh8pIEmtLK33pRzs6zNd4iTuCA5dSJAMpRbyclVy4j8NwO
+Xu1zlI8xoqdlRAhMLVknF0XZ0U3tIY8QgUJC8RviKG+80VL0hY/Aj2mCyVcp
+awy5hg9wE3jKqFA5iTJhPHs36i8dJQ97jv/nqYaVga4LdLS1th5KpNy81mOl
+/nc6jjXsFf7v+6s1N94JTdKxfEX00VjK+/VeZAyP05Fz6hVvJOXVFWL2dW/o
+aJRr8zSEMrfOTuHLg3QMmxrr8afcUxLW4tZLR/HDKUKHKedqkEEGj+gYU3/w
+5P8onyj8tkrkPh1vaVhKWVDerMKaGGmmo2Ptrs/GlMVzD9xo4FDtfd87p075
+LT3DIbaOjqB62nAF5erM3qUHKuhYr5Nf9otar/PyS9vWFdNRPrnXYYyyXdq2
+YNE8OpbF8Bt0UmZKh6wZy6Bj7Zj+rv/W/57415z4BDrugGPLj1NOTFB3OhhN
+zQfjeKs1ZXdRNzGTcDq2KzuUaVPmXfI0ZDyQjir7KuVGqP3YGylkcPs4HQey
+pHIaKefzbZ684kXHsyJbnOMob+Wq+d+GfXRUTew+pv/ffg/9JL7CiY5WL6U7
+eSmP/VLunLCjY0EJn+N/5yV8PnFd4nY65lrnLPei3PY1QPKTDh0/1VQshlPn
+MfloRTeq0zHp9sTcdsqHPr2/kMygY++Ql6YAZf73jt82SdLxhrei5nnqvG8f
+Mn6c+ksJncJq0/ZT9UDK2S/CZ1YJf5d2GEpRHh8o3bB1SgmtkuqE7lP1JaJP
+oezrqBJmM0fN1Ch3dP+J2t6lhDzHOasfUvXKjNOyeSZNCaU7R/Nbqfp32v90
+/fg1JZQUnjjkQrlUZ7XWQKwSHgsz856h6qVods7yO2FKKM/zcKMi5d7wc28i
+Dyvh5WXponup+utmZRoib6SECRa9mueo+nxVYHZ66RolfBDoKf1bklofvHWQ
+pqOEW1ZPbj9FWW2NouU7QgmlTvzrdZiq75+lf8lXCCphWsbyDgMqH06NsNmb
+XyhioYhd1VkqP0rSj+us7VHERC/NqiERDrz8RzNHvVsRjxfqTG+gbNqeGiWC
+isi4AnpzVB7xlgbu6b+piKE1QuX2VH4l+K/9cThQEX3dxM9yuDlQLFC16oqU
+ItJT5E4aUvk5zgzM+CSmiPguqt7nBwlM0w2C24UVMRzW++TPkJDu/2B48a8C
+Lpq9B2Eqf6NHRuLcPyigeoCfZzuV394c8UnD2wpY+SGz/NsECSt9/YuH/lXA
+pAEZbiaV/0eijSWNnBWwUyzpnvoACYUFtLBrDgr4TOXkLOsFCfRXMY5m5gro
+ZFlVoUvdH8R2FghU6ysgz5iJlwp1/5hm9h+8KKCAunJVQy0PSKjtN2Rq35LH
++t8fPXoaSPg77PpM5KY8uic7Z8TUk7Drw8XwyWx5vOko9WNrHQlvfj4bL0+U
+RzlzG/HKahJEGMdK9YLlceDh9hnfW9T9xKtI39BcHnPGl8kk55IgQZPdsfmD
+HMaffNMXdJmEfUIb55mjcujzXZF//hIJJeIexTyv5fBGsIGtfxQJG1XrhNue
+yOH6/lIDj4vUfOyyfbKjUQ63FJxYaxBKQmviJSfLSDk8ZqfbcOoECSc1F70c
+VeXw+N6te2L3kNCZqCuZQ5fD9pt3pj7tJoGgHbzzQVYOXRWPDZjZk9Dd/1js
+jKgcblJYm/Kbuo8ywwvqMudkMfadI8duFwlPhmz+vn0gi/Odxi6l60nQSrx5
+9aiPLKql8JSuIKjx/7Fnn2+QQVe1cwplI2xIKRCiT1TJYMw6AfXCYTZYWdwJ
+tyyTwfjAT6ezXrPhdpq6jUyODC7t0vl9aYANqfqL47eiZXAwU9fN4ikbbI/c
+kBhwkUHRD9u3hCAbWvo++OryyqB/vcrZa5lsyCsLUXtlI42PFVxEjtixwXNT
+4tOOXdK45V8+yyZrNqzsLw6u2SqNcx92HBK1ZAP5t7cnep001k++opfsYEOP
+HSvUiJDGLuvh6x3r2cC98Px58lcpVOM3lE1XY4PbNr1LtnFSWMDQWJI63wgK
+Q6Of2rskcTR+rLorqRE+9wrEy7VLIks6N6b9aiM0dbFW+6AkPvqV5nQ3vhFc
+2X6nJOsk8RnodpZcaoTsRB4+9yxJLFt+esrzbCOomisrcR2XxKPj73PD3Bth
+ZeN+GxMpSbTRPzOvpNcIcHWktsJNAvfcDhp9ca8BpDvl+jWfi2NbqE+aTEM9
+mA0ypZ/ZL8ezEhUWOaF1sH0womHmxTK8FJJIirBqYZE8GnynexneG6m7/kil
+Fiqu22+KwmV4o9xBJ0apFmRcmF3yRcuQ7Jm2XVxeCx+Hm4Y2By7DHzt7dHLn
+ayDu3QzfFcll2BJ5LlShrQb6p/bb69iJ4ly/hFHG3hrwEIDpg10ieE1/879l
+AdWwqmxz4d+7IqjdHyha61sNizbb/5dWK4JBNUf66qn/47h0y7buTBFUeEGk
+39pbDfU6zmlrjomgjcq6fftMq4HXPmgTl6QIvpQyqXzEWw252TVXMlyF0aGT
+sbUytgpeGWmsfjYthGH2PM3jsZXguVvLrXBcCAVUNkQVX6yEH8e044JeCuGq
+1ObWg2crQbRo1Ud6mxDyBDEDOr0rYZOUUa53qhA+v+R2Y4t5JRR+2ynOD0KY
++2XPs0/8lXCs1OvbuhhBTISj4RHT5fCr/SghEiaIE0pTgabD5XDpra/V8ElB
+3GYg7zbeXQ65sv4lF/cJou+I/HW+onLoiwze37NaEIMc0kNDXMrB2D22x2tA
+AI/oHekxbbsFPIoV1VlqAjigWhwjGFkG5RJ+XiFyAvh2JqX3zrEycBQxVHEV
+FUD9hY5vznvLoOznnSTFWX5seuHUZa1TBg6Dj05ltPFjxIyap1BPKRSlfDFN
+d+fH77TR4kSpUrAQX9mVlMuHJ+8vzxOJLoZZoW8XTibzYfvm3N+Gx4ohm6t+
+/e5oPuz1abu2yaEYfkxtKJc4wYd9vfmPJxnFkPXY8sq1TXzY/UYxPquhCKZi
+ju658oYXB58nEQsvb0KSwK3RGCVe5IpuenSLtxDs78XGrF/Bi+cnHpyoe19A
+5bXP2s8CvJi7asvS+M4CSJzVjTSf5kGC5mdUF18AV99Vay1p5cFpNd4nDdIF
+EHev8XjkYR70Xtog0aeYD1ahaXKGrjx4Sd/cOPV3Hiw1OX1v3I4Hucq2PlR6
+nQcx1SaS29fz4NjP3RePX8+Dyzl3GnmX8SCPqdYPIck8iApt/RtWy413VnDP
+3VvMATOTgiK9Ym40OTD4ULo/BwTmLtqOZHIjremWs1RVDkT47MjbGEl5K0dB
++FAOXHTp3P7XiRvP+ozJX+3KhvMmT2KD/3IhQzXkpD3fDdg8V2mgPcOFGyd/
+/RkszwKumivDLye4sHHT2tO792TBOa1/9Ex6uLDyMFuMqyATQmT7exfyuXDD
+uptiS1dnwJm5l/KBu7jQrIpHRFsgDRzjQ6zXmHJhHL662pSQCgbqjAtf9biw
+q1lG4oN0Kkw5HProIcuF+RKtgwFKKfDwi6CSylIudI4IgwuZyVASUWr7hsaF
+TnJwOVg2GQ7WTzU6TtDwJ5k1ZCGQBJutrn2WeEXDT7pftTNOJQIxvpZ4+piG
+V8zTPrS9uwaDkmcidzbQcO7Gaw169VVouKXI4Sul4RI90Xw3sauQuA2/NGfR
+kE+hVynV8wpYn+RzMI6g4ZT2fatPPAmgvbTo0mwQDbN9T7D0o+NgScGupuqj
+NPRrPzUdPR8D79dPTvn8S0OX89+iPawvQ2tvvAprNw23bB2fWxt9CXK8Vzu+
+N6Oh688zxsW5kRDC23c5bz0NFZ+cySqKvwjOGYF3962iYbrKlxrdLRfASF/u
+u7wKDb1D5CPPFZwDqe7bai+kaWj2fvJJ7rIzMHNg395EYRo+dbucNvzqBPTR
+X0RF02h4sPWPSYyNDfwfBVQvfw==
+ "]]}, "Charting`Private`Tag#1"]}}, {}}, <|
+ "HighlightElements" -> <|
+ "Label" -> {"XYLabel"}, "Ball" -> {"InterpolatedBall"}|>,
+ "LayoutOptions" -> <|
+ "PanelPlotLayout" -> <||>,
+ "PlotRange" -> {{-15., 3.}, {0., 0.12732395447351627`}},
+ "Frame" -> {{False, False}, {False, False}}, "AxesOrigin" -> {0, 0},
+ "ImageSize" -> {180, 72}, "Axes" -> {True, True},
+ "LabelStyle" -> {FontFamily -> "Helvetica",
+ GrayLevel[0], FontSize -> 12}, "AspectRatio" -> Rational[2, 5],
+ "DefaultStyle" -> {
+ Directive[
+ Opacity[1.],
+ RGBColor[0.368417, 0.506779, 0.709798],
+ AbsoluteThickness[2]]},
+ "HighlightLabelingFunctions" -> <|"CoordinatesToolOptions" -> ({
+ Identity[
+ Part[#, 1]],
+ Identity[
+ Part[#, 2]]}& ),
+ "ScalingFunctions" -> {{Identity, Identity}, {Identity, Identity}}|>,
+ "Primitives" -> {}, "GCFlag" -> False|>,
+ "Meta" -> <|
+ "DefaultHighlight" -> {"Dynamic", None}, "Index" -> {}, "Function" ->
+ Plot, "GroupHighlight" -> False|>|>, "DynamicHighlight"]],
+ AspectRatio->NCache[
+ Rational[2, 5], 0.4],
+ Axes->{True, True},
+ AxesLabel->{
+ FormBox[
+ TagBox[
+ TagBox["\[Lambda]", HoldForm], HoldForm], TraditionalForm],
+ FormBox[
+ TagBox[
+ RowBox[{"\[Rho]", "(",
+ TagBox["\[Lambda]", HoldForm], ")"}], HoldForm], TraditionalForm]},
+ AxesOrigin->{0, 0},
+ DisplayFunction->Identity,
+ Epilog->{{
+ RGBColor[0.368417, 0.506779, 0.709798],
+ PointSize[0.035],
+ PointBox[{0, 0}]}},
+ Frame->{{False, False}, {False, False}},
+ FrameLabel->{{None, None}, {None, None}},
+ FrameStyle->GrayLevel[0],
+ FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}},
+ GridLines->{None, None},
+ GridLinesStyle->Directive[
+ GrayLevel[0.5, 0.4]],
+ ImagePadding->All,
+ ImageSize->180,
+ LabelStyle->{FontFamily -> "Helvetica",
+ GrayLevel[0], FontSize -> 12},
+ Method->{
+ "DefaultBoundaryStyle" -> Automatic,
+ "DefaultGraphicsInteraction" -> {
+ "Version" -> 1.2, "TrackMousePosition" -> {True, False},
+ "Effects" -> {
+ "Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2},
+ "Droplines" -> {
+ "freeformCursorMode" -> True,
+ "placement" -> {"x" -> "All", "y" -> "None"}}}}, "DefaultMeshStyle" ->
+ AbsolutePointSize[6], "ScalingFunctions" -> None,
+ "CoordinatesToolOptions" -> {"DisplayFunction" -> ({
+ (Identity[#]& )[
+ Part[#, 1]],
+ (Identity[#]& )[
+ Part[#, 2]]}& ), "CopiedValueFunction" -> ({
+ (Identity[#]& )[
+ Part[#, 1]],
+ (Identity[#]& )[
+ Part[#, 2]]}& )}},
+ PlotRange->{{-15., 3.}, {0., 0.12732395447351627`}},
+ PlotRangeClipping->False,
+ PlotRangePadding->{{0, 0}, {0, 0}},
+ Prolog->{
+ ArrowBox[
+ NCache[{{0, Rational[1, 24]/Pi}, {-8, Rational[1, 24]/Pi}}, {{
+ 0, 0.013262911924324612`}, {-8, 0.013262911924324612`}}]], {
+ Dashing[{Small, Small}],
+ LineBox[
+ NCache[{{-8, 0}, {-8, Rational[1, 3]/Pi}}, {{-8,
+ 0}, {-8, 0.1061032953945969}}]],
+ InsetBox[
+ FormBox[
+ StyleBox["\"\[Mu]\"", SingleLetterItalics -> False,
+ Directive[FontFamily -> "Helvetica",
+ GrayLevel[0], FontSize -> 10], StripOnInput -> False],
+ TraditionalForm],
+ NCache[{-4, Rational[1, 12]/Pi}, {-4, 0.026525823848649224`}]]}, {
+ Arrowheads[{-Automatic, Automatic}],
+ ArrowBox[
+ NCache[{{-14, Rational[1, 24]/Pi}, {-8, Rational[1, 24]/Pi}}, {{-14,
+ 0.013262911924324612`}, {-8, 0.013262911924324612`}}]]},
+ InsetBox[
+ FormBox[
+ StyleBox["\"2\[Sigma]\"", SingleLetterItalics -> False,
+ Directive[FontFamily -> "Helvetica",
+ GrayLevel[0], FontSize -> 10], StripOnInput -> False],
+ TraditionalForm],
+ NCache[{-11, Rational[1, 12]/Pi}, {-11, 0.026525823848649224`}]]},
+ Ticks->{{{0,
+ FormBox["0", TraditionalForm]}}, {}}]], "Output",
+ CellChangeTimes->{
+ 3.895207790740121*^9, {3.895207839744895*^9, 3.895207870243621*^9},
+ 3.895208026480008*^9, 3.895208869333159*^9, 3.895208913648329*^9,
+ 3.9241616117250557`*^9, {3.9241617105380583`*^9, 3.924161720851728*^9},
+ 3.924161760789225*^9, {3.924161828428911*^9, 3.9241618666389923`*^9}, {
+ 3.924163256019329*^9, 3.9241632689619207`*^9}},
+ CellLabel->
+ "Out[119]=",ExpressionUUID->"3f12c55c-759f-4a69-abfd-c867f63cceda"]
+}, Open ]],
+
+Cell[BoxData[{
+ RowBox[{
+ RowBox[{"Export", "[",
+ RowBox[{
+ "\"\<~/doc/research/least_squares/posters/lausanne/figs/spectrum_less.pdf\>\
+\"", ",", "pS1"}], "]"}], ";"}], "\[IndentingNewLine]",
+ RowBox[{
+ RowBox[{"Export", "[",
+ RowBox[{
+ "\"\<~/doc/research/least_squares/posters/lausanne/figs/spectrum_eq.pdf\>\"\
+", ",", "pS2"}], "]"}], ";"}], "\[IndentingNewLine]",
+ RowBox[{
+ RowBox[{"Export", "[",
+ RowBox[{
+ "\"\<~/doc/research/least_squares/posters/lausanne/figs/spectrum_more.pdf\>\
+\"", ",", "ps6"}], "]"}], ";"}]}], "Input",
+ CellChangeTimes->{{3.924161919335609*^9, 3.924161984768268*^9}, {
+ 3.924162080650302*^9, 3.924162081777878*^9}},
+ CellLabel->
+ "In[120]:=",ExpressionUUID->"9c8fbe7e-534f-4567-b9e1-d7a5c3ce1086"]
+}, Open ]],
+
+Cell[CellGroupData[{
+
+Cell["Two-sphere", "Section",
+ CellChangeTimes->{{3.9155323567472897`*^9,
+ 3.915532358033332*^9}},ExpressionUUID->"8475cc42-326a-4ebf-b66b-\
+7d80366a5280"],
+
+Cell[BoxData[
+ RowBox[{
+ RowBox[{"p0RSBrules", "=",
+ RowBox[{"{", "\[IndentingNewLine]",
+ RowBox[{
+ RowBox[{
+ RowBox[{
+ RowBox[{"p0RSBmat", "[",
+ RowBox[{"n_", ",",
+ RowBox[{"{",
+ RowBox[{
+ "adt_", ",", "a0tu_", ",", "a0tl_", ",", "ad_", ",", "a0_"}],
+ "}"}]}], "]"}], ".",
+ RowBox[{"p0RSBmat", "[",
+ RowBox[{"n_", ",",
+ RowBox[{"{",
+ RowBox[{
+ "bdt_", ",", "b0tu_", ",", "b0tl_", ",", "bd_", ",", "b0_"}],
+ "}"}]}], "]"}]}], ":>",
+ RowBox[{"p0RSBmat", "[",
+ RowBox[{"n", ",",
+ RowBox[{"{", "\[IndentingNewLine]",
+ RowBox[{
+ RowBox[{
+ RowBox[{"adt", " ", "bdt"}], "+",
+ RowBox[{
+ RowBox[{"(",
+ RowBox[{"n", "-", "1"}], ")"}], "a0tu", " ", "b0tl"}]}], ",",
+ "\[IndentingNewLine]",
+ RowBox[{
+ RowBox[{"a0tu", " ", "bd"}], "+",
+ RowBox[{"adt", " ", "b0tu"}], "+",
+ RowBox[{
+ RowBox[{"(",
+ RowBox[{"n", "-", "2"}], ")"}], "a0tu", " ", "b0"}]}], ",",
+ "\[IndentingNewLine]",
+ RowBox[{
+ RowBox[{"a0tl", " ", "bdt"}], "+",
+ RowBox[{"ad", " ", "b0tl"}], "+",
+ RowBox[{
+ RowBox[{"(",
+ RowBox[{"n", "-", "2"}], ")"}], "b0tl", " ", "a0"}]}], ",",
+ "\[IndentingNewLine]",
+ RowBox[{
+ RowBox[{"ad", " ", "bd"}], "+",
+ RowBox[{"a0tl", " ", "b0tu"}], "+",
+ RowBox[{
+ RowBox[{"(",
+ RowBox[{"n", "-", "2"}], ")"}], "a0", " ", "b0"}]}], ",",
+ "\[IndentingNewLine]",
+ RowBox[{
+ RowBox[{"a0", " ", "bd"}], "+",
+ RowBox[{"ad", " ", "b0"}], "+",
+ RowBox[{"a0tl", " ", "b0tu"}], "+",
+ RowBox[{
+ RowBox[{"(",
+ RowBox[{"n", "-", "3"}], ")"}], "a0", " ", "b0"}]}]}],
+ "\[IndentingNewLine]", "}"}]}], "]"}]}], ",", "\[IndentingNewLine]",
+
+ RowBox[{
+ RowBox[{
+ RowBox[{"p0RSBmat", "[",
+ RowBox[{"n_", ",",
+ RowBox[{"{",
+ RowBox[{
+ "adt_", ",", "a0tu_", ",", "a0tl_", ",", "ad_", ",", "a0_"}],
+ "}"}]}], "]"}], "+",
+ RowBox[{"p0RSBmat", "[",
+ RowBox[{"n_", ",",
+ RowBox[{"{",
+ RowBox[{
+ "bdt_", ",", "b0tu_", ",", "b0tl_", ",", "bd_", ",", "b0_"}],
+ "}"}]}], "]"}]}], ":>",
+ RowBox[{"p0RSBmat", "[",
+ RowBox[{"n", ",",
+ RowBox[{"{", "\[IndentingNewLine]",
+ RowBox[{
+ RowBox[{"adt", "+", "bdt"}], ",", "\[IndentingNewLine]",
+ RowBox[{"a0tu", "+", "b0tu"}], ",", "\[IndentingNewLine]",
+ RowBox[{"a0tl", "+", "b0tl"}], ",", "\[IndentingNewLine]",
+ RowBox[{"ad", "+", "bd"}], ",", "\[IndentingNewLine]",
+ RowBox[{"a0", "+", "b0"}]}], "\[IndentingNewLine]", "}"}]}],
+ "]"}]}], ",", "\[IndentingNewLine]",
+ RowBox[{
+ RowBox[{"-",
+ RowBox[{"p0RSBmat", "[",
+ RowBox[{"n_", ",",
+ RowBox[{"{",
+ RowBox[{
+ "adt_", ",", "a0tu_", ",", "a0tl_", ",", "ad_", ",", "a0_"}],
+ "}"}]}], "]"}]}], ":>",
+ RowBox[{"p0RSBmat", "[",
+ RowBox[{"n", ",",
+ RowBox[{"{",
+ RowBox[{
+ RowBox[{"-", "adt"}], ",",
+ RowBox[{"-", "a0tu"}], ",",
+ RowBox[{"-", "a0tl"}], ",",
+ RowBox[{"-", "ad"}], ",",
+ RowBox[{"-", "a0"}]}], "}"}]}], "]"}]}], ",", "\[IndentingNewLine]",
+ RowBox[{
+ RowBox[{"logDet", "[",
+ RowBox[{"p0RSBmat", "[",
+ RowBox[{"n_", ",",
+ RowBox[{"{",
+ RowBox[{
+ "adt_", ",", "a0tu_", ",", "a0tl_", ",", "ad_", ",", "a0_"}],
+ "}"}]}], "]"}], "]"}], ":>",
+ RowBox[{
+ RowBox[{
+ RowBox[{"(",
+ RowBox[{"n", "-", "2"}], ")"}],
+ RowBox[{"Log", "[",
+ RowBox[{"ad", "-", "a0"}], "]"}]}], "+",
+ RowBox[{"Log", "[",
+ RowBox[{
+ RowBox[{"adt", " ", "ad"}], "+",
+ RowBox[{
+ RowBox[{"(",
+ RowBox[{"n", "-", "2"}], ")"}], "adt", " ", "a0"}], "-",
+ RowBox[{
+ RowBox[{"(",
+ RowBox[{"n", "-", "1"}], ")"}], "a0tu", " ", "a0tl"}]}], "]"}]}]}],
+ ",", "\[IndentingNewLine]",
+ RowBox[{
+ SuperscriptBox[
+ RowBox[{"p0RSBmat", "[",
+ RowBox[{"n_", ",",
+ RowBox[{"{",
+ RowBox[{
+ "adt_", ",", "a0tu_", ",", "a0tl_", ",", "ad_", ",", "a0_"}],
+ "}"}]}], "]"}], "2"], ":>",
+ RowBox[{"p0RSBmat", "[",
+ RowBox[{"n", ",",
+ RowBox[{"{",
+ RowBox[{
+ SuperscriptBox["adt", "2"], ",",
+ SuperscriptBox["a0tu", "2"], ",",
+ SuperscriptBox["a0tl", "2"], ",",
+ SuperscriptBox["ad", "2"], ",",
+ SuperscriptBox["a0", "2"]}], "}"}]}], "]"}]}], ",",
+ "\[IndentingNewLine]",
+ RowBox[{
+ RowBox[{"sumDiag", "[",
+ RowBox[{"p0RSBmat", "[",
+ RowBox[{"n_", ",",
+ RowBox[{"{",
+ RowBox[{
+ "adt_", ",", "a0tu_", ",", "a0tl_", ",", "ad_", ",", "a0_"}],
+ "}"}]}], "]"}], "]"}], ":>",
+ RowBox[{"adt", "+",
+ RowBox[{
+ RowBox[{"(",
+ RowBox[{"n", "-", "1"}], ")"}], "ad"}]}]}], ",",
+ "\[IndentingNewLine]",
+ RowBox[{
+ RowBox[{"sum", "[",
+ RowBox[{"p0RSBmat", "[",
+ RowBox[{"n_", ",",
+ RowBox[{"{",
+ RowBox[{
+ "adt_", ",", "a0tu_", ",", "a0tl_", ",", "ad_", ",", "a0_"}],
+ "}"}]}], "]"}], "]"}], ":>",
+ RowBox[{"adt", "+",
+ RowBox[{
+ RowBox[{"(",
+ RowBox[{"n", "-", "1"}], ")"}],
+ RowBox[{"(",
+ RowBox[{"ad", "+", "a0tu", "+", "a0tl"}], ")"}]}], "+",
+ RowBox[{
+ RowBox[{"(",
+ RowBox[{
+ SuperscriptBox["n", "2"], "-", "1", "-",
+ RowBox[{"3",
+ RowBox[{"(",
+ RowBox[{"n", "-", "1"}], ")"}]}]}], ")"}], "a0"}]}]}]}],
+ "\[IndentingNewLine]", "}"}]}], ";"}]], "Input",
+ CellChangeTimes->{{3.9060154869143467`*^9, 3.9060156486206284`*^9}, {
+ 3.906015706414013*^9, 3.906015879409375*^9}, {3.9060159104259157`*^9,
+ 3.90601616215897*^9}, {3.9060164087157993`*^9, 3.9060164195478573`*^9}, {
+ 3.906016724777636*^9, 3.906016759546612*^9}, {3.906017868966701*^9,
+ 3.906017993144882*^9}},
+ CellLabel->
+ "In[196]:=",ExpressionUUID->"830d12ec-ccc1-4fbc-9de0-2282430f4840"],
+
+Cell[BoxData[
+ RowBox[{
+ RowBox[{"matForm", "[",
+ RowBox[{"p0RSBmat", "[",
+ RowBox[{"n_", ",",
+ RowBox[{"{",
+ RowBox[{"adt_", ",", "a0tu_", ",", "a0tl_", ",", "ad_", ",", "a0_"}],
+ "}"}]}], "]"}], "]"}], ":=",
+ RowBox[{"With", "[",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"a", "=",
+ RowBox[{"Unique", "[", "a", "]"}]}], "}"}], ",",
+ RowBox[{
+ RowBox[{"Array", "[",
+ RowBox[{"a", ",",
+ RowBox[{"{",
+ RowBox[{"n", ",", "n"}], "}"}]}], "]"}], "/.",
+ RowBox[{"{",
+ RowBox[{
+ RowBox[{
+ RowBox[{"a", "[",
+ RowBox[{"1", ",", "1"}], "]"}], ":>", "adt"}], ",",
+ RowBox[{
+ RowBox[{"a", "[",
+ RowBox[{"i_", ",", "i_"}], "]"}], ":>", "ad"}], ",",
+ RowBox[{
+ RowBox[{"a", "[",
+ RowBox[{"i_", ",", "j_"}], "]"}], ":>",
+ RowBox[{"a0tu", "/;",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"i", "==", "1"}], "&&",
+ RowBox[{"j", "!=", "1"}]}], ")"}]}]}], ",",
+ RowBox[{
+ RowBox[{"a", "[",
+ RowBox[{"i_", ",", "j_"}], "]"}], ":>",
+ RowBox[{"a0tl", "/;",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"i", "!=", "1"}], "&&",
+ RowBox[{"j", "==", "1"}]}], ")"}]}]}], ",",
+ RowBox[{
+ RowBox[{"a", "[",
+ RowBox[{"_", ",", "_"}], "]"}], ":>", "a0"}]}], "}"}]}]}],
+ "]"}]}]], "Input",
+ CellChangeTimes->{{3.90601619406374*^9, 3.906016261000745*^9}},
+ CellLabel->
+ "In[197]:=",ExpressionUUID->"bcf9e08b-5bc8-4156-8987-ae991b3777be"],
+
+Cell[BoxData[{
+ RowBox[{
+ RowBox[{"A", "=",
+ RowBox[{"p0RSBmat", "[",
+ RowBox[{"7", ",",
+ RowBox[{"{",
+ RowBox[{"adt", ",", "a0tu", ",", "a0tl", ",", "ad", ",", "a0"}],
+ "}"}]}], "]"}]}], ";"}], "\[IndentingNewLine]",
+ RowBox[{
+ RowBox[{"B", "=",
+ RowBox[{"p0RSBmat", "[",
+ RowBox[{"7", ",",
+ RowBox[{"{",
+ RowBox[{"bdt", ",", "b0tu", ",", "b0tl", ",", "bd", ",", "b0"}],
+ "}"}]}], "]"}]}], ";"}]}], "Input",
+ CellChangeTimes->{{3.906016273153998*^9, 3.906016296681038*^9}, {
+ 3.906016335065982*^9, 3.906016335785755*^9}, {3.906016425291695*^9,
+ 3.906016427035625*^9}},
+ CellLabel->
+ "In[198]:=",ExpressionUUID->"90676af5-535d-4801-950c-574cc68db098"],
+
+Cell[CellGroupData[{
+
+Cell[BoxData[
+ RowBox[{
+ RowBox[{"matForm", "[", "A", "]"}], "//", "MatrixForm"}]], "Input",
+ CellChangeTimes->{{3.90601650742142*^9, 3.906016511901194*^9}},
+ CellLabel->
+ "In[200]:=",ExpressionUUID->"3e4fb69d-9599-4326-945e-414023395a5f"],
+
+Cell[BoxData[
+ TagBox[
+ RowBox[{"(", "\[NoBreak]", GridBox[{
+ {"adt", "a0tu", "a0tu", "a0tu", "a0tu", "a0tu", "a0tu"},
+ {"a0tl", "ad", "a0", "a0", "a0", "a0", "a0"},
+ {"a0tl", "a0", "ad", "a0", "a0", "a0", "a0"},
+ {"a0tl", "a0", "a0", "ad", "a0", "a0", "a0"},
+ {"a0tl", "a0", "a0", "a0", "ad", "a0", "a0"},
+ {"a0tl", "a0", "a0", "a0", "a0", "ad", "a0"},
+ {"a0tl", "a0", "a0", "a0", "a0", "a0", "ad"}
+ },
+ GridBoxAlignment->{"Columns" -> {{Center}}, "Rows" -> {{Baseline}}},
+ GridBoxSpacings->{"Columns" -> {
+ Offset[0.27999999999999997`], {
+ Offset[0.7]},
+ Offset[0.27999999999999997`]}, "Rows" -> {
+ Offset[0.2], {
+ Offset[0.4]},
+ Offset[0.2]}}], "\[NoBreak]", ")"}],
+ Function[BoxForm`e$,
+ MatrixForm[BoxForm`e$]]]], "Output",
+ CellChangeTimes->{3.9060165121210833`*^9, 3.906186585845617*^9,
+ 3.906188367634499*^9, 3.906445737287404*^9, 3.906526380957107*^9,
+ 3.907146520679757*^9, 3.907328401870837*^9, 3.90852775810122*^9,
+ 3.90853517690338*^9, 3.9086033051904783`*^9, 3.908611419200552*^9,
+ 3.908621322305964*^9, 3.908959013422355*^9, 3.909041244953446*^9,
+ 3.915532039997315*^9, 3.915532490361631*^9, 3.9157715661300697`*^9,
+ 3.916379988951159*^9},
+ CellLabel->
+ "Out[200]//MatrixForm=",ExpressionUUID->"31ed0430-b8ee-4e74-8482-\
+c51b4ee8b6d3"]
+}, Open ]],
+
+Cell[CellGroupData[{
+
+Cell[BoxData[
+ RowBox[{
+ RowBox[{
+ RowBox[{
+ RowBox[{"matForm", "[", "A", "]"}], ".",
+ RowBox[{"matForm", "[", "B", "]"}]}], "-",
+ RowBox[{"matForm", "[",
+ RowBox[{
+ RowBox[{"A", ".", "B"}], "/.", "p0RSBrules"}], "]"}]}], "//",
+ "MatrixForm"}]], "Input",
+ CellChangeTimes->{{3.90601630021717*^9, 3.9060163020008*^9}, {
+ 3.906016344778521*^9, 3.906016369306422*^9}},
+ CellLabel->
+ "In[201]:=",ExpressionUUID->"692c829b-e066-4a5e-bd71-7d2bb33fb03d"],
+
+Cell[BoxData[
+ TagBox[
+ RowBox[{"(", "\[NoBreak]", GridBox[{
+ {"0", "0", "0", "0", "0", "0", "0"},
+ {"0", "0", "0", "0", "0", "0", "0"},
+ {"0", "0", "0", "0", "0", "0", "0"},
+ {"0", "0", "0", "0", "0", "0", "0"},
+ {"0", "0", "0", "0", "0", "0", "0"},
+ {"0", "0", "0", "0", "0", "0", "0"},
+ {"0", "0", "0", "0", "0", "0", "0"}
+ },
+ GridBoxAlignment->{"Columns" -> {{Center}}, "Rows" -> {{Baseline}}},
+ GridBoxSpacings->{"Columns" -> {
+ Offset[0.27999999999999997`], {
+ Offset[0.7]},
+ Offset[0.27999999999999997`]}, "Rows" -> {
+ Offset[0.2], {
+ Offset[0.4]},
+ Offset[0.2]}}], "\[NoBreak]", ")"}],
+ Function[BoxForm`e$,
+ MatrixForm[BoxForm`e$]]]], "Output",
+ CellChangeTimes->{{3.906016302200728*^9, 3.9060163698749247`*^9}, {
+ 3.906016412112354*^9, 3.906016427752605*^9}, 3.906186586394137*^9,
+ 3.906188367784443*^9, 3.906445737488733*^9, 3.906526381171613*^9,
+ 3.9071465208390102`*^9, 3.907328401969231*^9, 3.90852775852439*^9,
+ 3.908535176947983*^9, 3.9086033052426033`*^9, 3.908611419390637*^9,
+ 3.908621322502807*^9, 3.9089590134471207`*^9, 3.909041245152533*^9,
+ 3.915532040420734*^9, 3.915532490902354*^9, 3.9157715661819*^9,
+ 3.916379989103819*^9},
+ CellLabel->
+ "Out[201]//MatrixForm=",ExpressionUUID->"5c44de21-95e3-40ea-8171-\
+bdba9bd0ca88"]
+}, Open ]],
+
+Cell[CellGroupData[{
+
+Cell[BoxData[
+ RowBox[{
+ RowBox[{
+ RowBox[{
+ RowBox[{"logDet", "[", "A", "]"}], "-",
+ RowBox[{"Log", "[",
+ RowBox[{"Det", "[",
+ RowBox[{"matForm", "[", "A", "]"}], "]"}], "]"}]}], "/.",
+ "p0RSBrules"}], "//",
+ RowBox[{
+ RowBox[{"FullSimplify", "[",
+ RowBox[{"#", ",",
+ RowBox[{"Assumptions", "->",
+ RowBox[{"{",
+ RowBox[{
+ RowBox[{"ad", ">", "a0"}], ",",
+ RowBox[{"a0", ">", "0"}], ",",
+ RowBox[{"ad", ">", "0"}], ",",
+ RowBox[{"ad", ">", "0"}]}], "}"}]}]}], "]"}], "&"}]}]], "Input",
+ CellChangeTimes->{{3.906016432156065*^9, 3.906016492940791*^9}},
+ CellLabel->
+ "In[202]:=",ExpressionUUID->"9dee447a-c909-40cb-8546-4295c33c7ecb"],
+
+Cell[BoxData["0"], "Output",
+ CellChangeTimes->{{3.906016435385942*^9, 3.906016493093434*^9},
+ 3.9061865868641443`*^9, 3.906188367909843*^9, 3.906445737894533*^9,
+ 3.906526381387528*^9, 3.907146521410756*^9, 3.907328402072982*^9,
+ 3.908527759253859*^9, 3.908535176992972*^9, 3.908603305293064*^9,
+ 3.908611419701027*^9, 3.908621322735462*^9, 3.908959013614911*^9,
+ 3.909041245371322*^9, 3.915532041003538*^9, 3.915532491323807*^9,
+ 3.9157715663195257`*^9, 3.916379989663705*^9},
+ CellLabel->
+ "Out[202]=",ExpressionUUID->"a4b05569-f206-413a-a53c-79ed31b50a77"]
+}, Open ]],
+
+Cell[BoxData[
+ RowBox[{
+ RowBox[{"\[ScriptCapitalS]twin", "=",
+ RowBox[{"With", "[",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{
+ RowBox[{"Q11", "=",
+ RowBox[{"p0RSBmat", "[",
+ RowBox[{"n", ",",
+ RowBox[{"{",
+ RowBox[{
+ "q11d1", ",", "q111", ",", "q111", ",", "q11d0", ",", "q110"}],
+ "}"}]}], "]"}]}], ",",
+ RowBox[{"Q22", "=",
+ RowBox[{"p0RSBmat", "[",
+ RowBox[{"n", ",",
+ RowBox[{"{",
+ RowBox[{
+ "q22d1", ",", "q221", ",", "q221", ",", "q22d0", ",", "q220"}],
+ "}"}]}], "]"}]}], ",",
+ RowBox[{"Q12", "=",
+ RowBox[{"p0RSBmat", "[",
+ RowBox[{"n", ",",
+ RowBox[{"{",
+ RowBox[{
+ "q12d1", ",", "q121", ",", "q121", ",", "q12d0", ",", "q120"}],
+ "}"}]}], "]"}]}]}], "}"}], ",", "\[IndentingNewLine]",
+ RowBox[{
+ RowBox[{
+ RowBox[{
+ RowBox[{"-", "\[Beta]"}],
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"\[Omega]1", " ",
+ RowBox[{"sumDiag", "[", "Q11", "]"}]}], "+",
+ RowBox[{"\[Omega]2", " ",
+ RowBox[{"sumDiag", "[", "Q22", "]"}]}], "+",
+ RowBox[{"2", " ", "\[Epsilon]", " ",
+ RowBox[{"sumDiag", "[", "Q12", "]"}]}]}], ")"}]}], "+",
+ RowBox[{"\[Lambda]",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"\[Omega]1", " ", "q11d1"}], "+",
+ RowBox[{"\[Omega]2", " ", "q22d1"}], "+",
+ RowBox[{"2", " ", "\[Epsilon]", " ", "q12d1"}]}], ")"}]}], "+",
+ RowBox[{
+ SuperscriptBox["\[Sigma]1", "2"],
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{
+ SuperscriptBox["\[Beta]", "2"],
+ RowBox[{"sum", "[",
+ SuperscriptBox["Q11", "2"], "]"}]}], "+",
+ RowBox[{
+ SuperscriptBox["\[Lambda]", "2"],
+ SuperscriptBox["q11d1", "2"]}], "-",
+ RowBox[{"2", " ", "\[Beta]", " ", "\[Lambda]",
+ RowBox[{"(",
+ RowBox[{
+ SuperscriptBox["q11d1", "2"], "+",
+ RowBox[{
+ RowBox[{"(",
+ RowBox[{"n", "-", "1"}], ")"}],
+ SuperscriptBox["q111", "2"]}]}], ")"}]}]}], ")"}]}], "+",
+ RowBox[{
+ SuperscriptBox["\[Sigma]2", "2"],
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{
+ SuperscriptBox["\[Beta]", "2"],
+ RowBox[{"sum", "[",
+ SuperscriptBox["Q22", "2"], "]"}]}], "+",
+ RowBox[{
+ SuperscriptBox["\[Lambda]", "2"],
+ SuperscriptBox["q22d1", "2"]}], "-",
+ RowBox[{"2", " ", "\[Beta]", " ", "\[Lambda]",
+ RowBox[{"(",
+ RowBox[{
+ SuperscriptBox["q22d1", "2"], "+",
+ RowBox[{
+ RowBox[{"(",
+ RowBox[{"n", "-", "1"}], ")"}],
+ SuperscriptBox["q221", "2"]}]}], ")"}]}]}], ")"}]}], "+",
+ RowBox[{
+ FractionBox["1", "2"],
+ RowBox[{"logDet", "[",
+ RowBox[{
+ RowBox[{"Q11", ".", "Q22"}], "-",
+ RowBox[{"Q12", ".", "Q12"}]}], "]"}]}]}], "//.", "p0RSBrules"}]}],
+ "\[IndentingNewLine]", "]"}]}], ";"}]], "Input",
+ CellChangeTimes->{{3.905848963495986*^9, 3.905849056640668*^9}, {
+ 3.905849098609572*^9, 3.905849153378747*^9}, {3.905849229244924*^9,
+ 3.905849299413603*^9}, {3.9058497801426687`*^9, 3.905849929641574*^9}, {
+ 3.905850661167429*^9, 3.905850663479553*^9}, {3.9058506988640537`*^9,
+ 3.905850823299843*^9}, {3.906016526231467*^9, 3.906016610960813*^9}, {
+ 3.906016648120619*^9, 3.906016668361017*^9}, {3.906018022634241*^9,
+ 3.906018040601918*^9}, {3.906018074803009*^9, 3.906018131963895*^9}},
+ CellLabel->
+ "In[203]:=",ExpressionUUID->"ae225317-c8f2-42eb-a092-5a3d6696fcf1"],
+
+Cell[CellGroupData[{
+
+Cell[BoxData[
+ RowBox[{"e1", "=",
+ RowBox[{
+ RowBox[{"FullSimplify", "[",
+ RowBox[{
+ RowBox[{"Limit", "[",
+ RowBox[{"\[ScriptCapitalS]twin", ",",
+ RowBox[{"n", "->", "0"}]}], "]"}], ",",
+ RowBox[{"Assumptions", "->",
+ RowBox[{"{",
+ RowBox[{
+ RowBox[{"0", "<", "q11d0", "<", "1"}], ",",
+ RowBox[{"0", "<", "q11d1", "<", "1"}], ",",
+ RowBox[{"0", "<", "q110", "<", "1"}], ",",
+ RowBox[{"0", "<", "q220", "<", "1"}]}], "}"}]}]}], "]"}], "/.",
+ RowBox[{"{",
+ RowBox[{
+ RowBox[{"q22d0", "->",
+ RowBox[{"1", "-", "q11d0"}]}], ",",
+ RowBox[{"q22d1", "->",
+ RowBox[{"1", "-", "q11d1"}]}]}], "}"}]}]}]], "Input",
+ CellChangeTimes->{{3.905850825091011*^9, 3.905850839218413*^9}, {
+ 3.905851002581938*^9, 3.905851024062209*^9}, {3.905853123574729*^9,
+ 3.905853141726667*^9}, {3.906014604394625*^9, 3.906014632601555*^9}},
+ CellLabel->
+ "In[204]:=",ExpressionUUID->"27f3f5fd-a103-416e-9e22-49288939ab46"],
+
+Cell[BoxData[
+ RowBox[{
+ RowBox[{
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"2", " ",
+ SuperscriptBox["q110", "2"]}], "-",
+ RowBox[{"2", " ",
+ SuperscriptBox["q111", "2"]}], "-",
+ SuperscriptBox["q11d0", "2"], "+",
+ SuperscriptBox["q11d1", "2"]}], ")"}], " ",
+ SuperscriptBox["\[Beta]", "2"]}], "+",
+ RowBox[{"2", " ",
+ RowBox[{"(",
+ RowBox[{"q111", "-", "q11d1"}], ")"}], " ",
+ RowBox[{"(",
+ RowBox[{"q111", "+", "q11d1"}], ")"}], " ", "\[Beta]", " ",
+ "\[Lambda]"}], "+",
+ RowBox[{
+ SuperscriptBox["q11d1", "2"], " ",
+ SuperscriptBox["\[Lambda]", "2"]}]}], ")"}], " ",
+ SuperscriptBox["\[Sigma]1", "2"]}], "+",
+ RowBox[{
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"-",
+ SuperscriptBox[
+ RowBox[{"(",
+ RowBox[{"1", "-", "q11d0"}], ")"}], "2"]}], "+",
+ SuperscriptBox[
+ RowBox[{"(",
+ RowBox[{"1", "-", "q11d1"}], ")"}], "2"], "+",
+ RowBox[{"2", " ",
+ SuperscriptBox["q220", "2"]}], "-",
+ RowBox[{"2", " ",
+ SuperscriptBox["q221", "2"]}]}], ")"}], " ",
+ SuperscriptBox["\[Beta]", "2"]}], "+",
+ RowBox[{"2", " ",
+ RowBox[{"(",
+ RowBox[{"1", "-", "q11d1", "+", "q221"}], ")"}], " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"-", "1"}], "+", "q11d1", "+", "q221"}], ")"}], " ",
+ "\[Beta]", " ", "\[Lambda]"}], "+",
+ RowBox[{
+ SuperscriptBox[
+ RowBox[{"(",
+ RowBox[{"1", "-", "q11d1"}], ")"}], "2"], " ",
+ SuperscriptBox["\[Lambda]", "2"]}]}], ")"}], " ",
+ SuperscriptBox["\[Sigma]2", "2"]}], "+",
+ RowBox[{"\[Beta]", " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"2", " ", "q12d0", " ", "\[Epsilon]"}], "-",
+ RowBox[{"2", " ", "q12d1", " ", "\[Epsilon]"}], "+",
+ RowBox[{"q11d0", " ", "\[Omega]1"}], "-",
+ RowBox[{"q11d1", " ", "\[Omega]1"}], "+",
+ RowBox[{
+ RowBox[{"(",
+ RowBox[{"1", "-", "q11d0"}], ")"}], " ", "\[Omega]2"}], "-",
+ RowBox[{
+ RowBox[{"(",
+ RowBox[{"1", "-", "q11d1"}], ")"}], " ", "\[Omega]2"}]}], ")"}]}], "+",
+ RowBox[{"\[Lambda]", " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"2", " ", "q12d1", " ", "\[Epsilon]"}], "+",
+ RowBox[{"q11d1", " ", "\[Omega]1"}], "+",
+ RowBox[{
+ RowBox[{"(",
+ RowBox[{"1", "-", "q11d1"}], ")"}], " ", "\[Omega]2"}]}], ")"}]}], "+",
+ RowBox[{
+ FractionBox["1", "2"], " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{
+ RowBox[{"-", "2"}], " ",
+ RowBox[{"Log", "[",
+ RowBox[{
+ RowBox[{"-",
+ SuperscriptBox[
+ RowBox[{"(",
+ RowBox[{"q120", "-", "q12d0"}], ")"}], "2"]}], "+",
+ RowBox[{
+ RowBox[{"(",
+ RowBox[{"q110", "-", "q11d0"}], ")"}], " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"-", "1"}], "+", "q11d0", "+", "q220"}], ")"}]}]}],
+ "]"}]}], "+",
+ RowBox[{"Log", "[",
+ RowBox[{
+ RowBox[{
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{
+ RowBox[{"(",
+ RowBox[{"1", "-", "q11d1"}], ")"}], " ", "q11d1"}], "+",
+ SuperscriptBox["q121", "2"], "-",
+ SuperscriptBox["q12d1", "2"], "-",
+ RowBox[{"q111", " ", "q221"}]}], ")"}], " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{
+ RowBox[{"(",
+ RowBox[{"1", "-", "q11d0"}], ")"}], " ", "q11d0"}], "+",
+ RowBox[{"2", " ",
+ SuperscriptBox["q120", "2"]}], "-",
+ SuperscriptBox["q121", "2"], "-",
+ SuperscriptBox["q12d0", "2"], "-",
+ RowBox[{"2", " ", "q110", " ", "q220"}], "+",
+ RowBox[{"q111", " ", "q221"}]}], ")"}]}], "-",
+ RowBox[{"2", " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{
+ RowBox[{"(",
+ RowBox[{"1", "-", "q11d1"}], ")"}], " ", "q11d1"}], "+",
+ SuperscriptBox["q121", "2"], "-",
+ SuperscriptBox["q12d1", "2"], "-",
+ RowBox[{"q111", " ", "q221"}]}], ")"}], " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"q110", " ",
+ RowBox[{"(",
+ RowBox[{"1", "-", "q11d0"}], ")"}]}], "+",
+ RowBox[{"3", " ",
+ SuperscriptBox["q120", "2"]}], "-",
+ SuperscriptBox["q121", "2"], "-",
+ RowBox[{"2", " ", "q120", " ", "q12d0"}], "-",
+ RowBox[{"3", " ", "q110", " ", "q220"}], "+",
+ RowBox[{"q11d0", " ", "q220"}], "+",
+ RowBox[{"q111", " ", "q221"}]}], ")"}]}], "+",
+ RowBox[{
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"q111", " ",
+ RowBox[{"(",
+ RowBox[{"1", "-", "q11d1"}], ")"}]}], "+",
+ RowBox[{"2", " ", "q120", " ", "q121"}], "-",
+ RowBox[{"q121", " ",
+ RowBox[{"(",
+ RowBox[{"q12d0", "+", "q12d1"}], ")"}]}], "-",
+ RowBox[{"2", " ", "q110", " ", "q221"}], "+",
+ RowBox[{"q11d0", " ", "q221"}]}], ")"}], " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"q111", " ",
+ RowBox[{"(",
+ RowBox[{"1", "-", "q11d0"}], ")"}]}], "+",
+ RowBox[{"2", " ", "q120", " ", "q121"}], "-",
+ RowBox[{"q121", " ",
+ RowBox[{"(",
+ RowBox[{"q12d0", "+", "q12d1"}], ")"}]}], "-",
+ RowBox[{"2", " ", "q111", " ", "q220"}], "+",
+ RowBox[{"q11d1", " ", "q221"}]}], ")"}]}]}], "]"}]}],
+ ")"}]}]}]], "Output",
+ CellChangeTimes->{{3.905850829877305*^9, 3.905850839465863*^9}, {
+ 3.905851005629496*^9, 3.905851024399541*^9}, {3.90585312526083*^9,
+ 3.90585314326528*^9}, 3.9058615885407877`*^9, 3.905912499053171*^9,
+ 3.905931598682398*^9, 3.906014581119566*^9, {3.906014625989239*^9,
+ 3.906014632954865*^9}, 3.906016701530336*^9, 3.906016767211265*^9,
+ 3.906018142729081*^9, 3.906186592965066*^9, 3.906188369691762*^9,
+ 3.906445739624508*^9, 3.906526383503549*^9, 3.907146523319407*^9,
+ 3.9073284035521383`*^9, 3.908527761322122*^9, 3.908535178552448*^9,
+ 3.908603306888613*^9, 3.908611423684043*^9, 3.90862132459629*^9,
+ 3.9089590151457157`*^9, 3.909041247694905*^9, 3.915532043468378*^9,
+ 3.915532493400175*^9, 3.9157715677141747`*^9, 3.9163799917950907`*^9},
+ CellLabel->
+ "Out[204]=",ExpressionUUID->"7c116b5c-7bb6-4259-98ab-703694af8842"]
+}, Open ]],
+
+Cell[CellGroupData[{
+
+Cell[BoxData[
+ RowBox[{"e2", "=",
+ RowBox[{"FullSimplify", "[",
+ RowBox[{
+ RowBox[{"e1", "/.",
+ RowBox[{"{",
+ RowBox[{
+ RowBox[{"\[Epsilon]", "->", "0"}], ",",
+ RowBox[{"q120", "->", "0"}], ",",
+ RowBox[{"q121", "->", "0"}], ",",
+ RowBox[{"q12d0", "->", "0"}], ",",
+ RowBox[{"q12d1", "->", "0"}]}], "}"}]}], ",",
+ RowBox[{"Assumptions", "->",
+ RowBox[{"{",
+ RowBox[{
+ RowBox[{
+ SuperscriptBox["q111", "2"], "+",
+ RowBox[{
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{
+ RowBox[{"-", "2"}], " ", "q110"}], "+", "q11d0"}], ")"}], " ",
+ "q11d1"}]}], ">", "0"}], "}"}]}]}], "]"}]}]], "Input",
+ CellChangeTimes->{{3.906186860286684*^9, 3.906186879686674*^9}, {
+ 3.906186913895919*^9, 3.906186964896375*^9}},
+ CellLabel->
+ "In[205]:=",ExpressionUUID->"ad63e4bc-666e-46ed-8c23-6d418adb2b5d"],
+
+Cell[BoxData[
+ RowBox[{
+ RowBox[{
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"2", " ",
+ SuperscriptBox["q110", "2"]}], "-",
+ RowBox[{"2", " ",
+ SuperscriptBox["q111", "2"]}], "-",
+ SuperscriptBox["q11d0", "2"], "+",
+ SuperscriptBox["q11d1", "2"]}], ")"}], " ",
+ SuperscriptBox["\[Beta]", "2"]}], "+",
+ RowBox[{"2", " ",
+ RowBox[{"(",
+ RowBox[{"q111", "-", "q11d1"}], ")"}], " ",
+ RowBox[{"(",
+ RowBox[{"q111", "+", "q11d1"}], ")"}], " ", "\[Beta]", " ",
+ "\[Lambda]"}], "+",
+ RowBox[{
+ SuperscriptBox["q11d1", "2"], " ",
+ SuperscriptBox["\[Lambda]", "2"]}]}], ")"}], " ",
+ SuperscriptBox["\[Sigma]1", "2"]}], "+",
+ RowBox[{
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"-",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"-", "2"}], "+", "q11d0"}], ")"}], " ", "q11d0"}],
+ ")"}]}], "+",
+ RowBox[{
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"-", "2"}], "+", "q11d1"}], ")"}], " ", "q11d1"}], "+",
+ RowBox[{"2", " ",
+ RowBox[{"(",
+ RowBox[{"q220", "-", "q221"}], ")"}], " ",
+ RowBox[{"(",
+ RowBox[{"q220", "+", "q221"}], ")"}]}]}], ")"}], " ",
+ SuperscriptBox["\[Beta]", "2"]}], "+",
+ RowBox[{"2", " ",
+ RowBox[{"(",
+ RowBox[{"1", "-", "q11d1", "+", "q221"}], ")"}], " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"-", "1"}], "+", "q11d1", "+", "q221"}], ")"}], " ",
+ "\[Beta]", " ", "\[Lambda]"}], "+",
+ RowBox[{
+ SuperscriptBox[
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"-", "1"}], "+", "q11d1"}], ")"}], "2"], " ",
+ SuperscriptBox["\[Lambda]", "2"]}]}], ")"}], " ",
+ SuperscriptBox["\[Sigma]2", "2"]}], "+",
+ RowBox[{
+ RowBox[{"(",
+ RowBox[{"q11d0", "-", "q11d1"}], ")"}], " ", "\[Beta]", " ",
+ RowBox[{"(",
+ RowBox[{"\[Omega]1", "-", "\[Omega]2"}], ")"}]}], "+",
+ RowBox[{"\[Lambda]", " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"q11d1", " ",
+ RowBox[{"(",
+ RowBox[{"\[Omega]1", "-", "\[Omega]2"}], ")"}]}], "+", "\[Omega]2"}],
+ ")"}]}], "+",
+ RowBox[{
+ FractionBox["1", "2"], " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"Log", "[",
+ RowBox[{
+ SuperscriptBox["q111", "2"], "+",
+ RowBox[{
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{
+ RowBox[{"-", "2"}], " ", "q110"}], "+", "q11d0"}], ")"}], " ",
+ "q11d1"}]}], "]"}], "-",
+ RowBox[{"2", " ",
+ RowBox[{"Log", "[",
+ RowBox[{
+ RowBox[{"(",
+ RowBox[{"q110", "-", "q11d0"}], ")"}], " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"-", "1"}], "+", "q11d0", "+", "q220"}], ")"}]}], "]"}]}],
+ "+",
+ RowBox[{"Log", "[",
+ RowBox[{
+ RowBox[{
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"-", "1"}], "+", "q11d1"}], ")"}], " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"-", "1"}], "+", "q11d0", "+",
+ RowBox[{"2", " ", "q220"}]}], ")"}]}], "+",
+ SuperscriptBox["q221", "2"]}], "]"}]}], ")"}]}]}]], "Output",
+ CellChangeTimes->{
+ 3.906186880315091*^9, {3.906186921002465*^9, 3.906186965149336*^9},
+ 3.906188370518162*^9, 3.906445740478343*^9, 3.9065263844885607`*^9,
+ 3.907146524270124*^9, 3.907328404486239*^9, 3.908527762345582*^9,
+ 3.908535179422303*^9, 3.90860330775679*^9, 3.908613742673404*^9,
+ 3.908621325654201*^9, 3.9089590159595833`*^9, 3.909041248490795*^9,
+ 3.915532082121131*^9, 3.915532494340509*^9, 3.9157715685543637`*^9,
+ 3.916379992916336*^9},
+ CellLabel->
+ "Out[205]=",ExpressionUUID->"2f3c957d-28b6-4286-a434-e11d516208bf"]
+}, Open ]],
+
+Cell[BoxData[
+ RowBox[{
+ RowBox[{"e3", "=",
+ RowBox[{"FullSimplify", "[",
+ RowBox[{"D", "[",
+ RowBox[{"e2", ",",
+ RowBox[{"{",
+ RowBox[{"{",
+ RowBox[{
+ "\[Lambda]", ",", "q110", ",", "q111", ",", "q11d0", ",", "q11d1",
+ ",", "q220", ",", "q221"}], "}"}], "}"}]}], "]"}], "]"}]}],
+ ";"}]], "Input",
+ CellChangeTimes->{{3.905853319610465*^9, 3.905853347658437*^9}, {
+ 3.905853411443419*^9, 3.9058535161262627`*^9}, {3.905853841139458*^9,
+ 3.905853844563665*^9}, {3.9058539127007103`*^9, 3.905853914092967*^9}, {
+ 3.9058542703157997`*^9, 3.905854333908738*^9}, {3.905854765669025*^9,
+ 3.9058547679168243`*^9}, {3.905861540945331*^9, 3.90586155147735*^9}, {
+ 3.905931930671042*^9, 3.905931935878457*^9}, {3.906014640147063*^9,
+ 3.906014648273918*^9}, {3.906016798634808*^9, 3.906016810306693*^9}, {
+ 3.9061871443158627`*^9, 3.906187168844187*^9}},
+ CellLabel->
+ "In[206]:=",ExpressionUUID->"c88cdbf9-9e5d-49a2-927e-12c0fc1e998e"],
+
+Cell[BoxData[
+ RowBox[{
+ RowBox[{"rules", "=",
+ RowBox[{"{",
+ RowBox[{
+ RowBox[{"q110", "->",
+ RowBox[{"q11d", "-",
+ RowBox[{"y11", "/", "\[Beta]"}], "-",
+ RowBox[{"z110", "/",
+ SuperscriptBox["\[Beta]", "2"]}]}]}], ",",
+ RowBox[{"q111", "->",
+ RowBox[{"q11d", "-",
+ RowBox[{"y11", "/", "\[Beta]"}], "-",
+ RowBox[{"z111", "/",
+ SuperscriptBox["\[Beta]", "2"]}]}]}], ",",
+ RowBox[{"q11d0", "->",
+ RowBox[{"q11d", "-", " ",
+ RowBox[{"y11d", "/", "\[Beta]"}], "-", " ",
+ RowBox[{"z11d0", "/",
+ SuperscriptBox["\[Beta]", "2"]}]}]}], ",",
+ RowBox[{"q11d1", "->",
+ RowBox[{"q11d", "-", " ",
+ RowBox[{"y11d", "/", "\[Beta]"}], "-", " ",
+ RowBox[{"z11d1", "/",
+ SuperscriptBox["\[Beta]", "2"]}]}]}], ",",
+ RowBox[{"q220", "->",
+ RowBox[{"q22d", "-",
+ RowBox[{"y22", "/", "\[Beta]"}], "-",
+ RowBox[{"z220", "/",
+ SuperscriptBox["\[Beta]", "2"]}]}]}], ",",
+ RowBox[{"q221", "->",
+ RowBox[{"q22d", "-",
+ RowBox[{"y22", "/", "\[Beta]"}], "-",
+ RowBox[{"z221", "/",
+ SuperscriptBox["\[Beta]", "2"]}]}]}], ",",
+ RowBox[{"q22d", "->",
+ RowBox[{"1", "-", "q11d"}]}]}], "}"}]}], ";"}]], "Input",
+ CellChangeTimes->{{3.905861542929487*^9, 3.905861546187963*^9}, {
+ 3.9058616088771887`*^9, 3.905861619740603*^9}, {3.9058616556854*^9,
+ 3.905861699276464*^9}, {3.905861855312809*^9, 3.905861857476181*^9}, {
+ 3.905912367239668*^9, 3.905912369548286*^9}, {3.905912613884484*^9,
+ 3.905912616896575*^9}, {3.90591332909175*^9, 3.9059133499069*^9}, {
+ 3.905913476003109*^9, 3.905913478780634*^9}, 3.905913510172113*^9, {
+ 3.905913658453998*^9, 3.905913661681223*^9}, {3.905918897671769*^9,
+ 3.905918933808075*^9}, {3.9059194397219048`*^9, 3.905919487154225*^9}, {
+ 3.905919971332117*^9, 3.905919981516094*^9}, {3.905921624987239*^9,
+ 3.905921647467622*^9}, {3.905921807702829*^9, 3.905921811630349*^9}, {
+ 3.905922272815454*^9, 3.9059222846000423`*^9}, {3.905931570960396*^9,
+ 3.905931578736177*^9}, {3.905931954887074*^9, 3.905931975071704*^9}, {
+ 3.906014772838179*^9, 3.90601477479656*^9}, {3.906014805045081*^9,
+ 3.906014807781166*^9}, {3.906014900111161*^9, 3.906014903118968*^9}, {
+ 3.906015113442898*^9, 3.906015153147285*^9}, {3.906016827027356*^9,
+ 3.906016885852555*^9}, 3.906187789048245*^9, {3.906189215794698*^9,
+ 3.906189222514817*^9}, {3.90619067192666*^9, 3.906190680838689*^9}},
+ CellLabel->
+ "In[207]:=",ExpressionUUID->"13c828e2-dc96-418a-98b1-bcedb602773f"],
+
+Cell[CellGroupData[{
+
+Cell[BoxData[
+ RowBox[{"e4", "=",
+ RowBox[{"SeriesCoefficient", "[",
+ RowBox[{
+ RowBox[{"e3", "//.", "rules"}], ",",
+ RowBox[{"{",
+ RowBox[{"\[Beta]", ",", "\[Infinity]", ",",
+ RowBox[{"-", "2"}]}], "}"}]}], "]"}]}]], "Input",
+ CellChangeTimes->{
+ 3.906187797968542*^9, {3.906187865137899*^9, 3.906187871433025*^9}},
+ CellLabel->
+ "In[208]:=",ExpressionUUID->"5547b70f-6ccc-4c3c-b7a2-430267adff70"],
+
+Cell[BoxData[
+ RowBox[{"{",
+ RowBox[{"0", ",",
+ RowBox[{
+ RowBox[{"-",
+ FractionBox["q11d",
+ RowBox[{
+ SuperscriptBox["y11", "2"], "-",
+ RowBox[{"2", " ", "y11", " ", "y11d"}], "+",
+ SuperscriptBox["y11d", "2"], "+",
+ RowBox[{"2", " ", "q11d", " ", "z110"}], "-",
+ RowBox[{"2", " ", "q11d", " ", "z111"}], "-",
+ RowBox[{"q11d", " ", "z11d0"}], "+",
+ RowBox[{"q11d", " ", "z11d1"}]}]]}], "+",
+ RowBox[{"4", " ", "q11d", " ",
+ SuperscriptBox["\[Sigma]1", "2"]}]}], ",",
+ RowBox[{"q11d", " ",
+ RowBox[{"(",
+ RowBox[{
+ FractionBox["1",
+ RowBox[{
+ SuperscriptBox["y11", "2"], "-",
+ RowBox[{"2", " ", "y11", " ", "y11d"}], "+",
+ SuperscriptBox["y11d", "2"], "+",
+ RowBox[{"2", " ", "q11d", " ", "z110"}], "-",
+ RowBox[{"2", " ", "q11d", " ", "z111"}], "-",
+ RowBox[{"q11d", " ", "z11d0"}], "+",
+ RowBox[{"q11d", " ", "z11d1"}]}]], "-",
+ RowBox[{"4", " ",
+ SuperscriptBox["\[Sigma]1", "2"]}]}], ")"}]}], ",",
+ RowBox[{
+ FractionBox["q11d",
+ RowBox[{"2", " ",
+ RowBox[{"(",
+ RowBox[{
+ SuperscriptBox["y11", "2"], "-",
+ RowBox[{"2", " ", "y11", " ", "y11d"}], "+",
+ SuperscriptBox["y11d", "2"], "+",
+ RowBox[{"2", " ", "q11d", " ", "z110"}], "-",
+ RowBox[{"2", " ", "q11d", " ", "z111"}], "-",
+ RowBox[{"q11d", " ", "z11d0"}], "+",
+ RowBox[{"q11d", " ", "z11d1"}]}], ")"}]}]], "+",
+ FractionBox[
+ RowBox[{
+ RowBox[{"-", "1"}], "+", "q11d"}],
+ RowBox[{"2", " ",
+ RowBox[{"(",
+ RowBox[{
+ SuperscriptBox["y11d", "2"], "+",
+ RowBox[{"2", " ", "y11d", " ", "y22"}], "+",
+ SuperscriptBox["y22", "2"], "+", "z11d0", "-",
+ RowBox[{"q11d", " ", "z11d0"}], "-", "z11d1", "+",
+ RowBox[{"q11d", " ", "z11d1"}], "+",
+ RowBox[{"2", " ", "z220"}], "-",
+ RowBox[{"2", " ", "q11d", " ", "z220"}], "-",
+ RowBox[{"2", " ", "z221"}], "+",
+ RowBox[{"2", " ", "q11d", " ", "z221"}]}], ")"}]}]], "-",
+ RowBox[{"2", " ", "q11d", " ",
+ SuperscriptBox["\[Sigma]1", "2"]}], "-",
+ RowBox[{"2", " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"-", "1"}], "+", "q11d"}], ")"}], " ",
+ SuperscriptBox["\[Sigma]2", "2"]}]}], ",",
+ RowBox[{
+ RowBox[{
+ FractionBox["1", "2"], " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"-",
+ FractionBox["q11d",
+ RowBox[{
+ SuperscriptBox["y11", "2"], "-",
+ RowBox[{"2", " ", "y11", " ", "y11d"}], "+",
+ SuperscriptBox["y11d", "2"], "+",
+ RowBox[{"2", " ", "q11d", " ", "z110"}], "-",
+ RowBox[{"2", " ", "q11d", " ", "z111"}], "-",
+ RowBox[{"q11d", " ", "z11d0"}], "+",
+ RowBox[{"q11d", " ", "z11d1"}]}]]}], "+",
+ FractionBox[
+ RowBox[{"1", "-", "q11d"}],
+ RowBox[{
+ SuperscriptBox["y11d", "2"], "+",
+ RowBox[{"2", " ", "y11d", " ", "y22"}], "+",
+ SuperscriptBox["y22", "2"], "+", "z11d0", "-",
+ RowBox[{"q11d", " ", "z11d0"}], "-", "z11d1", "+",
+ RowBox[{"q11d", " ", "z11d1"}], "+",
+ RowBox[{"2", " ", "z220"}], "-",
+ RowBox[{"2", " ", "q11d", " ", "z220"}], "-",
+ RowBox[{"2", " ", "z221"}], "+",
+ RowBox[{"2", " ", "q11d", " ", "z221"}]}]]}], ")"}]}], "+",
+ RowBox[{"2", " ", "q11d", " ",
+ SuperscriptBox["\[Sigma]1", "2"]}], "+",
+ RowBox[{"2", " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"-", "1"}], "+", "q11d"}], ")"}], " ",
+ SuperscriptBox["\[Sigma]2", "2"]}]}], ",",
+ RowBox[{
+ FractionBox[
+ RowBox[{
+ RowBox[{"-", "1"}], "+", "q11d"}],
+ RowBox[{
+ SuperscriptBox["y11d", "2"], "+",
+ RowBox[{"2", " ", "y11d", " ", "y22"}], "+",
+ SuperscriptBox["y22", "2"], "+", "z11d0", "-",
+ RowBox[{"q11d", " ", "z11d0"}], "-", "z11d1", "+",
+ RowBox[{"q11d", " ", "z11d1"}], "+",
+ RowBox[{"2", " ", "z220"}], "-",
+ RowBox[{"2", " ", "q11d", " ", "z220"}], "-",
+ RowBox[{"2", " ", "z221"}], "+",
+ RowBox[{"2", " ", "q11d", " ", "z221"}]}]], "-",
+ RowBox[{"4", " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"-", "1"}], "+", "q11d"}], ")"}], " ",
+ SuperscriptBox["\[Sigma]2", "2"]}]}], ",",
+ RowBox[{
+ RowBox[{"(",
+ RowBox[{"1", "-", "q11d"}], ")"}], " ",
+ RowBox[{"(",
+ RowBox[{
+ FractionBox["1",
+ RowBox[{
+ SuperscriptBox["y11d", "2"], "+",
+ RowBox[{"2", " ", "y11d", " ", "y22"}], "+",
+ SuperscriptBox["y22", "2"], "+", "z11d0", "-",
+ RowBox[{"q11d", " ", "z11d0"}], "-", "z11d1", "+",
+ RowBox[{"q11d", " ", "z11d1"}], "+",
+ RowBox[{"2", " ", "z220"}], "-",
+ RowBox[{"2", " ", "q11d", " ", "z220"}], "-",
+ RowBox[{"2", " ", "z221"}], "+",
+ RowBox[{"2", " ", "q11d", " ", "z221"}]}]], "-",
+ RowBox[{"4", " ",
+ SuperscriptBox["\[Sigma]2", "2"]}]}], ")"}]}]}], "}"}]], "Output",
+ CellChangeTimes->{
+ 3.906187758262377*^9, 3.906187802390731*^9, {3.906187867026927*^9,
+ 3.9061878721263776`*^9}, 3.906188383111711*^9, 3.906189229151506*^9,
+ 3.90619068735071*^9, 3.906445753142694*^9, 3.906526396982582*^9,
+ 3.907146536871374*^9, 3.907328416692205*^9, 3.908527776739359*^9,
+ 3.908535193733109*^9, 3.908603321580958*^9, 3.908613759558733*^9,
+ 3.908621342371894*^9, 3.908959029760838*^9, 3.909041262667035*^9,
+ 3.915532095652994*^9, 3.915532506920657*^9, 3.915771581205089*^9,
+ 3.916380012398842*^9},
+ CellLabel->
+ "Out[208]=",ExpressionUUID->"36211747-6213-49d3-af64-0c1c0cf9c4be"]
+}, Open ]],
+
+Cell[CellGroupData[{
+
+Cell[BoxData[
+ RowBox[{"e5", "=",
+ RowBox[{
+ RowBox[{"SeriesCoefficient", "[",
+ RowBox[{
+ RowBox[{"e3", "//.", "rules"}], ",",
+ RowBox[{"{",
+ RowBox[{"\[Beta]", ",", "\[Infinity]", ",",
+ RowBox[{"-", "1"}]}], "}"}]}], "]"}], "//", "Simplify"}]}]], "Input",
+ CellChangeTimes->{{3.906187873026173*^9, 3.906187899186184*^9}},
+ CellLabel->
+ "In[209]:=",ExpressionUUID->"87393889-0e58-4140-85b8-c09bdfb83fa6"],
+
+Cell[BoxData[
+ RowBox[{"{",
+ RowBox[{"0", ",",
+ RowBox[{
+ FractionBox["1",
+ RowBox[{"y11", "-", "y11d"}]], "+",
+ FractionBox[
+ RowBox[{
+ RowBox[{"(",
+ RowBox[{"y11", "-", "y11d"}], ")"}], " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"y11", " ", "y11d"}], "-",
+ SuperscriptBox["y11d", "2"], "+",
+ RowBox[{"2", " ", "q11d", " ",
+ RowBox[{"(",
+ RowBox[{"z111", "-", "z11d1"}], ")"}]}]}], ")"}]}],
+ SuperscriptBox[
+ RowBox[{"(",
+ RowBox[{
+ SuperscriptBox["y11", "2"], "-",
+ RowBox[{"2", " ", "y11", " ", "y11d"}], "+",
+ SuperscriptBox["y11d", "2"], "+",
+ RowBox[{"q11d", " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"2", " ", "z110"}], "-",
+ RowBox[{"2", " ", "z111"}], "-", "z11d0", "+", "z11d1"}],
+ ")"}]}]}], ")"}], "2"]], "-",
+ RowBox[{"4", " ", "y11", " ",
+ SuperscriptBox["\[Sigma]1", "2"]}]}], ",",
+ RowBox[{
+ RowBox[{"-",
+ FractionBox["y11",
+ RowBox[{
+ SuperscriptBox["y11", "2"], "-",
+ RowBox[{"2", " ", "y11", " ", "y11d"}], "+",
+ SuperscriptBox["y11d", "2"], "+",
+ RowBox[{"q11d", " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"2", " ", "z110"}], "-",
+ RowBox[{"2", " ", "z111"}], "-", "z11d0", "+", "z11d1"}],
+ ")"}]}]}]]}], "-",
+ FractionBox[
+ RowBox[{"q11d", " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"2", " ", "y11", " ",
+ RowBox[{"(",
+ RowBox[{"z111", "-", "z11d1"}], ")"}]}], "+",
+ RowBox[{"y11d", " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{
+ RowBox[{"-", "2"}], " ", "z110"}], "+", "z11d0", "+", "z11d1"}],
+ ")"}]}]}], ")"}]}],
+ SuperscriptBox[
+ RowBox[{"(",
+ RowBox[{
+ SuperscriptBox["y11", "2"], "-",
+ RowBox[{"2", " ", "y11", " ", "y11d"}], "+",
+ SuperscriptBox["y11d", "2"], "+",
+ RowBox[{"q11d", " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"2", " ", "z110"}], "-",
+ RowBox[{"2", " ", "z111"}], "-", "z11d0", "+", "z11d1"}],
+ ")"}]}]}], ")"}], "2"]], "+",
+ RowBox[{"4", " ", "y11", " ",
+ SuperscriptBox["\[Sigma]1", "2"]}], "+",
+ RowBox[{"4", " ", "q11d", " ", "\[Lambda]", " ",
+ SuperscriptBox["\[Sigma]1", "2"]}]}], ",",
+ RowBox[{
+ FractionBox["1",
+ RowBox[{
+ RowBox[{"-", "y11"}], "+", "y11d"}]], "+",
+ FractionBox["1",
+ RowBox[{"y11d", "+", "y22"}]], "-",
+ FractionBox[
+ RowBox[{
+ RowBox[{"(",
+ RowBox[{"y11", "-", "y11d"}], ")"}], " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"y11", " ", "y11d"}], "-",
+ SuperscriptBox["y11d", "2"], "+",
+ RowBox[{"2", " ", "q11d", " ",
+ RowBox[{"(",
+ RowBox[{"z111", "-", "z11d1"}], ")"}]}]}], ")"}]}],
+ RowBox[{"2", " ",
+ SuperscriptBox[
+ RowBox[{"(",
+ RowBox[{
+ SuperscriptBox["y11", "2"], "-",
+ RowBox[{"2", " ", "y11", " ", "y11d"}], "+",
+ SuperscriptBox["y11d", "2"], "+",
+ RowBox[{"q11d", " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"2", " ", "z110"}], "-",
+ RowBox[{"2", " ", "z111"}], "-", "z11d0", "+", "z11d1"}],
+ ")"}]}]}], ")"}], "2"]}]], "-",
+ FractionBox[
+ RowBox[{
+ RowBox[{"(",
+ RowBox[{"y11d", "+", "y22"}], ")"}], " ",
+ RowBox[{"(",
+ RowBox[{
+ SuperscriptBox["y11d", "2"], "+",
+ RowBox[{"y11d", " ", "y22"}], "+",
+ RowBox[{"2", " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"-", "1"}], "+", "q11d"}], ")"}], " ",
+ RowBox[{"(",
+ RowBox[{"z11d1", "+", "z221"}], ")"}]}]}], ")"}]}],
+ RowBox[{"2", " ",
+ SuperscriptBox[
+ RowBox[{"(",
+ RowBox[{
+ SuperscriptBox["y11d", "2"], "+",
+ RowBox[{"2", " ", "y11d", " ", "y22"}], "+",
+ SuperscriptBox["y22", "2"], "-",
+ RowBox[{
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"-", "1"}], "+", "q11d"}], ")"}], " ",
+ RowBox[{"(",
+ RowBox[{"z11d0", "-", "z11d1", "+",
+ RowBox[{"2", " ", "z220"}], "-",
+ RowBox[{"2", " ", "z221"}]}], ")"}]}]}], ")"}], "2"]}]], "+",
+ RowBox[{"2", " ", "y11d", " ",
+ SuperscriptBox["\[Sigma]1", "2"]}], "+",
+ RowBox[{"2", " ", "y11d", " ",
+ SuperscriptBox["\[Sigma]2", "2"]}], "+", "\[Omega]1", "-", "\[Omega]2"}],
+ ",",
+ RowBox[{
+ RowBox[{
+ FractionBox["1", "2"], " ",
+ RowBox[{"(",
+ RowBox[{
+ FractionBox[
+ RowBox[{
+ RowBox[{"(",
+ RowBox[{"y11", "-", "y11d"}], ")"}], " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"2", " ",
+ SuperscriptBox["y11", "2"]}], "-",
+ RowBox[{"3", " ", "y11", " ", "y11d"}], "+",
+ SuperscriptBox["y11d", "2"], "+",
+ RowBox[{"4", " ", "q11d", " ", "z110"}], "-",
+ RowBox[{"2", " ", "q11d", " ", "z111"}], "-",
+ RowBox[{"2", " ", "q11d", " ", "z11d0"}]}], ")"}]}],
+ SuperscriptBox[
+ RowBox[{"(",
+ RowBox[{
+ SuperscriptBox["y11", "2"], "-",
+ RowBox[{"2", " ", "y11", " ", "y11d"}], "+",
+ SuperscriptBox["y11d", "2"], "+",
+ RowBox[{"q11d", " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"2", " ", "z110"}], "-",
+ RowBox[{"2", " ", "z111"}], "-", "z11d0", "+", "z11d1"}],
+ ")"}]}]}], ")"}], "2"]], "-",
+ FractionBox[
+ RowBox[{"y11d", "+",
+ RowBox[{"2", " ", "y22"}]}],
+ RowBox[{
+ SuperscriptBox["y11d", "2"], "+",
+ RowBox[{"2", " ", "y11d", " ", "y22"}], "+",
+ SuperscriptBox["y22", "2"], "-",
+ RowBox[{
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"-", "1"}], "+", "q11d"}], ")"}], " ",
+ RowBox[{"(",
+ RowBox[{"z11d0", "-", "z11d1", "+",
+ RowBox[{"2", " ", "z220"}], "-",
+ RowBox[{"2", " ", "z221"}]}], ")"}]}]}]], "+",
+ FractionBox[
+ RowBox[{
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"-", "1"}], "+", "q11d"}], ")"}], " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"y11d", " ",
+ RowBox[{"(",
+ RowBox[{"z11d0", "+", "z11d1", "+",
+ RowBox[{"2", " ", "z220"}]}], ")"}]}], "+",
+ RowBox[{"2", " ", "y22", " ",
+ RowBox[{"(",
+ RowBox[{"z11d1", "+", "z221"}], ")"}]}]}], ")"}]}],
+ SuperscriptBox[
+ RowBox[{"(",
+ RowBox[{
+ SuperscriptBox["y11d", "2"], "+",
+ RowBox[{"2", " ", "y11d", " ", "y22"}], "+",
+ SuperscriptBox["y22", "2"], "-",
+ RowBox[{
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"-", "1"}], "+", "q11d"}], ")"}], " ",
+ RowBox[{"(",
+ RowBox[{"z11d0", "-", "z11d1", "+",
+ RowBox[{"2", " ", "z220"}], "-",
+ RowBox[{"2", " ", "z221"}]}], ")"}]}]}], ")"}], "2"]]}],
+ ")"}]}], "-",
+ RowBox[{"2", " ",
+ RowBox[{"(",
+ RowBox[{"y11d", "+",
+ RowBox[{"2", " ", "q11d", " ", "\[Lambda]"}]}], ")"}], " ",
+ SuperscriptBox["\[Sigma]1", "2"]}], "-",
+ RowBox[{"2", " ",
+ RowBox[{"(",
+ RowBox[{"y11d", "+",
+ RowBox[{"2", " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"-", "1"}], "+", "q11d"}], ")"}], " ", "\[Lambda]"}]}],
+ ")"}], " ",
+ SuperscriptBox["\[Sigma]2", "2"]}], "-", "\[Omega]1", "+", "\[Omega]2"}],
+ ",",
+ RowBox[{
+ FractionBox["1",
+ RowBox[{"y11d", "+", "y22"}]], "-",
+ FractionBox[
+ RowBox[{
+ RowBox[{"(",
+ RowBox[{"y11d", "+", "y22"}], ")"}], " ",
+ RowBox[{"(",
+ RowBox[{
+ SuperscriptBox["y11d", "2"], "+",
+ RowBox[{"y11d", " ", "y22"}], "+",
+ RowBox[{"2", " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"-", "1"}], "+", "q11d"}], ")"}], " ",
+ RowBox[{"(",
+ RowBox[{"z11d1", "+", "z221"}], ")"}]}]}], ")"}]}],
+ SuperscriptBox[
+ RowBox[{"(",
+ RowBox[{
+ SuperscriptBox["y11d", "2"], "+",
+ RowBox[{"2", " ", "y11d", " ", "y22"}], "+",
+ SuperscriptBox["y22", "2"], "-",
+ RowBox[{
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"-", "1"}], "+", "q11d"}], ")"}], " ",
+ RowBox[{"(",
+ RowBox[{"z11d0", "-", "z11d1", "+",
+ RowBox[{"2", " ", "z220"}], "-",
+ RowBox[{"2", " ", "z221"}]}], ")"}]}]}], ")"}], "2"]], "-",
+ RowBox[{"4", " ", "y22", " ",
+ SuperscriptBox["\[Sigma]2", "2"]}]}], ",",
+ RowBox[{
+ RowBox[{
+ RowBox[{"-", "y22"}], " ",
+ RowBox[{"(",
+ RowBox[{
+ FractionBox["1",
+ RowBox[{
+ SuperscriptBox["y11d", "2"], "+",
+ RowBox[{"2", " ", "y11d", " ", "y22"}], "+",
+ SuperscriptBox["y22", "2"], "-",
+ RowBox[{
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"-", "1"}], "+", "q11d"}], ")"}], " ",
+ RowBox[{"(",
+ RowBox[{"z11d0", "-", "z11d1", "+",
+ RowBox[{"2", " ", "z220"}], "-",
+ RowBox[{"2", " ", "z221"}]}], ")"}]}]}]], "-",
+ RowBox[{"4", " ",
+ SuperscriptBox["\[Sigma]2", "2"]}]}], ")"}]}], "+",
+ RowBox[{
+ RowBox[{"(",
+ RowBox[{"1", "-", "q11d"}], ")"}], " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"-",
+ FractionBox[
+ RowBox[{
+ RowBox[{"y11d", " ",
+ RowBox[{"(",
+ RowBox[{"z11d0", "+", "z11d1", "+",
+ RowBox[{"2", " ", "z220"}]}], ")"}]}], "+",
+ RowBox[{"2", " ", "y22", " ",
+ RowBox[{"(",
+ RowBox[{"z11d1", "+", "z221"}], ")"}]}]}],
+ SuperscriptBox[
+ RowBox[{"(",
+ RowBox[{
+ SuperscriptBox["y11d", "2"], "+",
+ RowBox[{"2", " ", "y11d", " ", "y22"}], "+",
+ SuperscriptBox["y22", "2"], "-",
+ RowBox[{
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"-", "1"}], "+", "q11d"}], ")"}], " ",
+ RowBox[{"(",
+ RowBox[{"z11d0", "-", "z11d1", "+",
+ RowBox[{"2", " ", "z220"}], "-",
+ RowBox[{"2", " ", "z221"}]}], ")"}]}]}], ")"}], "2"]]}], "+",
+ RowBox[{"4", " ", "\[Lambda]", " ",
+ SuperscriptBox["\[Sigma]2", "2"]}]}], ")"}]}]}]}], "}"}]], "Output",
+ CellChangeTimes->{{3.9061878924875402`*^9, 3.906187907449717*^9},
+ 3.906188395619846*^9, 3.9061892307700033`*^9, 3.906190699743403*^9,
+ 3.906445765588705*^9, 3.906526409231572*^9, 3.907146549327018*^9,
+ 3.9073284290518627`*^9, 3.9085278141653852`*^9, 3.908535231005335*^9,
+ 3.908603358180184*^9, 3.908613796140329*^9, 3.9086213853239603`*^9,
+ 3.908959065638323*^9, 3.909041299813568*^9, 3.915532108906477*^9,
+ 3.915532519605406*^9, 3.9157715941794653`*^9, 3.91638002605516*^9},
+ CellLabel->
+ "Out[209]=",ExpressionUUID->"45c1ecc4-6c35-4af1-a8c6-4c6db7168bb2"]
+}, Open ]],
+
+Cell[CellGroupData[{
+
+Cell[BoxData[
+ RowBox[{"e6", "=",
+ RowBox[{
+ RowBox[{"SeriesCoefficient", "[",
+ RowBox[{
+ RowBox[{
+ RowBox[{"e3", "[",
+ RowBox[{"[", "1", "]"}], "]"}], "//.", "rules"}], ",",
+ RowBox[{"{",
+ RowBox[{"\[Beta]", ",", "\[Infinity]", ",", "0"}], "}"}]}], "]"}], "//",
+ "Simplify"}]}]], "Input",
+ CellChangeTimes->{{3.906187902458308*^9, 3.906187917954363*^9}},
+ CellLabel->
+ "In[210]:=",ExpressionUUID->"4d2d8f62-3f6d-45b3-9a63-780219e0e7e8"],
+
+Cell[BoxData[
+ RowBox[{
+ RowBox[{"2", " ", "q11d", " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{
+ RowBox[{"-", "2"}], " ", "y11"}], "+",
+ RowBox[{"2", " ", "y11d"}], "+",
+ RowBox[{"q11d", " ", "\[Lambda]"}]}], ")"}], " ",
+ SuperscriptBox["\[Sigma]1", "2"]}], "+",
+ RowBox[{"2", " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"-", "1"}], "+", "q11d"}], ")"}], " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"2", " ",
+ RowBox[{"(",
+ RowBox[{"y11d", "+", "y22"}], ")"}]}], "+",
+ RowBox[{
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"-", "1"}], "+", "q11d"}], ")"}], " ", "\[Lambda]"}]}], ")"}],
+ " ",
+ SuperscriptBox["\[Sigma]2", "2"]}], "+",
+ RowBox[{"q11d", " ",
+ RowBox[{"(",
+ RowBox[{"\[Omega]1", "-", "\[Omega]2"}], ")"}]}], "+",
+ "\[Omega]2"}]], "Output",
+ CellChangeTimes->{3.906187918228827*^9, 3.906188395740288*^9,
+ 3.906189231662617*^9, 3.906190699863659*^9, 3.906445765679088*^9,
+ 3.9065264093386173`*^9, 3.907146549432131*^9, 3.907328429169303*^9,
+ 3.908527814198004*^9, 3.908535231041009*^9, 3.908603358210541*^9,
+ 3.90861379620579*^9, 3.90862138535625*^9, 3.909041299849929*^9,
+ 3.915532115920799*^9, 3.9155325197505903`*^9, 3.9157715942701187`*^9,
+ 3.9163800261257687`*^9},
+ CellLabel->
+ "Out[210]=",ExpressionUUID->"76297447-9a1b-4498-9d3f-c2078f821920"]
+}, Open ]],
+
+Cell[CellGroupData[{
+
+Cell[BoxData[
+ RowBox[{
+ RowBox[{"s6", "=",
+ RowBox[{"Simplify", "[",
+ RowBox[{"Solve", "[",
+ RowBox[{
+ RowBox[{"0", "==",
+ RowBox[{"Join", "[",
+ RowBox[{"e4", ",", "e5", ",",
+ RowBox[{"{", "e6", "}"}]}], "]"}]}], ",",
+ RowBox[{"{",
+ RowBox[{
+ "\[Lambda]", ",", "y11", ",", "y11d", ",", "y22", ",", "q11d", ",",
+ "z110", ",", "z111", ",", "z11d0", ",", "z11d1", ",", "z220", ",",
+ "z221"}], "}"}]}], "]"}], "]"}]}], ";"}]], "Input",
+ CellChangeTimes->{{3.906187633925405*^9, 3.9061876626932497`*^9}, {
+ 3.906187731847047*^9, 3.906187753167115*^9}, {3.90618781156046*^9,
+ 3.906187831432788*^9}, {3.906187923675535*^9, 3.906187969649603*^9}, {
+ 3.906188000516306*^9, 3.9061880008675756`*^9}, {3.906188709249345*^9,
+ 3.906188738449854*^9}, {3.906190696079129*^9, 3.9061906986149282`*^9}},
+ CellLabel->
+ "In[211]:=",ExpressionUUID->"83eebe5d-3503-4b31-b14f-639ea14a0248"],
+
+Cell[BoxData[
+ TemplateBox[{
+ "Solve", "svars",
+ "\"Equations may not give solutions for all \\\"solve\\\" variables.\"", 2,
+ 211, 11, 23804047810745838865, "Local"},
+ "MessageTemplate"]], "Message", "MSG",
+ CellChangeTimes->{3.906188768978856*^9, 3.906189233017943*^9,
+ 3.906190730289953*^9, 3.906445795758022*^9, 3.906455280766007*^9,
+ 3.9065264390893784`*^9, 3.9071465797681427`*^9, 3.907328458968724*^9,
+ 3.908527846938418*^9, 3.90853526395877*^9, 3.908603390307139*^9,
+ 3.908613828558267*^9, 3.908615455337167*^9, 3.90862142384585*^9,
+ 3.908959097492876*^9, 3.909041332451538*^9, 3.915532146769128*^9,
+ 3.915532550417849*^9, 3.915771624173337*^9, 3.916380057276285*^9},
+ CellLabel->
+ "During evaluation of \
+In[211]:=",ExpressionUUID->"8caaea4c-f1d2-4f89-97f5-7e5b71ca8e2a"]
+}, Open ]],
+
+Cell[BoxData[
+ RowBox[{
+ RowBox[{"testparams", "=",
+ RowBox[{"{",
+ RowBox[{
+ RowBox[{"\[Sigma]1", "->", "1"}], ",",
+ RowBox[{"\[Sigma]2", "->", "1"}], ",",
+ RowBox[{"\[Omega]1", "->",
+ RowBox[{"3", "+",
+ RowBox[{"1", "/", "10"}]}]}], ",",
+ RowBox[{"\[Omega]2", "->",
+ RowBox[{"200005", "/", "100000"}]}], ",",
+ RowBox[{"\[Epsilon]", "->",
+ RowBox[{"1", "/", "100"}]}]}], "}"}]}], ";"}]], "Input",
+ CellChangeTimes->{{3.907245948262267*^9, 3.907245950646895*^9}, {
+ 3.908611448200711*^9, 3.908611448896093*^9}, {3.908614445394108*^9,
+ 3.908614446153916*^9}, {3.908615875779113*^9, 3.908615877987123*^9}, {
+ 3.908616482086334*^9, 3.908616482206256*^9}, 3.908616534687642*^9, {
+ 3.908616963967916*^9, 3.908616965983852*^9}, 3.908617191179674*^9,
+ 3.908962534254868*^9, 3.908963027542485*^9, {3.908963083415245*^9,
+ 3.908963089503387*^9}, 3.9089631790945587`*^9, {3.908963292075355*^9,
+ 3.908963292187259*^9}, {3.916386845349831*^9, 3.916386846349766*^9}},
+ CellLabel->
+ "In[229]:=",ExpressionUUID->"4c448220-e031-41d2-9096-b9e341dcd981"],
+
+Cell[BoxData[
+ RowBox[{
+ RowBox[{"rules2", "=",
+ RowBox[{"{",
+ RowBox[{
+ RowBox[{"q110", "->",
+ RowBox[{"q11d", "-",
+ RowBox[{"y110", "/", "\[Beta]"}], "-",
+ RowBox[{"z110", "/",
+ SuperscriptBox["\[Beta]", "2"]}]}]}], ",",
+ RowBox[{"q111", "->",
+ RowBox[{"q11d", "-",
+ RowBox[{"y111", "/", "\[Beta]"}], "-",
+ RowBox[{"z111", "/",
+ SuperscriptBox["\[Beta]", "2"]}]}]}], ",",
+ RowBox[{"q11d0", "->",
+ RowBox[{"q11d", "-", " ",
+ RowBox[{"y11d0", "/", "\[Beta]"}], "-",
+ RowBox[{"z11d0", "/",
+ SuperscriptBox["\[Beta]", "2"]}]}]}], ",",
+ RowBox[{"q11d1", "->",
+ RowBox[{"q11d", "-",
+ RowBox[{"y11d1", "/", "\[Beta]"}], "-",
+ RowBox[{"z11d1", "/",
+ SuperscriptBox["\[Beta]", "2"]}]}]}], ",",
+ RowBox[{"q220", "->",
+ RowBox[{"q22d", "-",
+ RowBox[{"y220", "/", "\[Beta]"}], "-",
+ RowBox[{"z220", "/",
+ SuperscriptBox["\[Beta]", "2"]}]}]}], ",",
+ RowBox[{"q221", "->",
+ RowBox[{"q22d", "-",
+ RowBox[{"y221", "/", "\[Beta]"}], "-",
+ RowBox[{"z221", "/",
+ SuperscriptBox["\[Beta]", "2"]}]}]}], ",",
+ RowBox[{"q12d1", "->",
+ RowBox[{"q12", "-",
+ RowBox[{"y12d1", "/", "\[Beta]"}], "-",
+ RowBox[{"z12d1", "/",
+ SuperscriptBox["\[Beta]", "2"]}]}]}], ",",
+ RowBox[{"q12d0", "->",
+ RowBox[{"q12", "-",
+ RowBox[{"y12d0", "/", "\[Beta]"}], "-",
+ RowBox[{"z12d0", "/",
+ SuperscriptBox["\[Beta]", "2"]}]}]}], ",",
+ RowBox[{"q121", "->",
+ RowBox[{"q12", "-",
+ RowBox[{"y121", "/", "\[Beta]"}], "-",
+ RowBox[{"z121", "/",
+ SuperscriptBox["\[Beta]", "2"]}]}]}], ",",
+ RowBox[{"q120", "->",
+ RowBox[{"q12", "-",
+ RowBox[{"y120", "/", "\[Beta]"}], "-",
+ RowBox[{"z120", "/",
+ SuperscriptBox["\[Beta]", "2"]}]}]}], ",",
+ RowBox[{"q22d", "->",
+ RowBox[{"1", "-", "q11d"}]}], ",",
+ RowBox[{"\[Lambda]", "->",
+ RowBox[{"\[Lambda]0", "-",
+ RowBox[{"\[Lambda]1", "/", "\[Beta]"}], "-",
+ RowBox[{"\[Lambda]2", "/",
+ SuperscriptBox["\[Beta]", "2"]}]}]}]}], "}"}]}], ";"}]], "Input",
+ CellChangeTimes->{{3.905861542929487*^9, 3.905861546187963*^9}, {
+ 3.9058616088771887`*^9, 3.905861619740603*^9}, {3.9058616556854*^9,
+ 3.905861699276464*^9}, {3.905861855312809*^9, 3.905861857476181*^9}, {
+ 3.905912367239668*^9, 3.905912369548286*^9}, {3.905912613884484*^9,
+ 3.905912616896575*^9}, {3.90591332909175*^9, 3.9059133499069*^9}, {
+ 3.905913476003109*^9, 3.905913478780634*^9}, 3.905913510172113*^9, {
+ 3.905913658453998*^9, 3.905913661681223*^9}, {3.905918897671769*^9,
+ 3.905918933808075*^9}, {3.9059194397219048`*^9, 3.905919487154225*^9}, {
+ 3.905919971332117*^9, 3.905919981516094*^9}, {3.905921624987239*^9,
+ 3.905921647467622*^9}, {3.905921807702829*^9, 3.905921811630349*^9}, {
+ 3.905922272815454*^9, 3.9059222846000423`*^9}, {3.905931570960396*^9,
+ 3.905931578736177*^9}, {3.905931954887074*^9, 3.905931975071704*^9}, {
+ 3.906014772838179*^9, 3.90601477479656*^9}, {3.906014805045081*^9,
+ 3.906014807781166*^9}, {3.906014900111161*^9, 3.906014903118968*^9}, {
+ 3.906015113442898*^9, 3.906015153147285*^9}, {3.906016827027356*^9,
+ 3.906016885852555*^9}, 3.906190615589766*^9, {3.906192507465321*^9,
+ 3.9061925793946037`*^9}, {3.906195398887929*^9, 3.906195399407722*^9}, {
+ 3.906195767951429*^9, 3.9061957720793056`*^9}, {3.906195840496765*^9,
+ 3.906195919154381*^9}, {3.906213868718033*^9, 3.906213885938034*^9}, {
+ 3.906449467308639*^9, 3.906449467504347*^9}, {3.906458374848988*^9,
+ 3.90645838768067*^9}, 3.907244382872212*^9, 3.908959048467206*^9},
+ CellLabel->
+ "In[230]:=",ExpressionUUID->"63ea8c17-6059-4955-9b14-1b9deb692962"],
+
+Cell[CellGroupData[{
+
+Cell[BoxData[
+ RowBox[{"stest2", "=",
+ RowBox[{"Solve", "[",
+ RowBox[{
+ RowBox[{"0", "==",
+ RowBox[{"{",
+ RowBox[{
+ RowBox[{
+ RowBox[{"2", " ", "y120"}], "-",
+ RowBox[{"2", " ", "y121"}], "-", "y12d0", "+", "y12d1"}], ",",
+ RowBox[{
+ RowBox[{"2", " ", "y110"}], "-",
+ RowBox[{"2", " ", "y111"}], "-", "y11d0", "+", "y11d1"}], ",",
+ RowBox[{"y11d0", "-", "y11d1", "+",
+ RowBox[{"2", " ", "y220"}], "-",
+ RowBox[{"2", " ", "y221"}]}]}], "}"}]}], ",",
+ RowBox[{"{",
+ RowBox[{"y110", ",", "y120", ",", "y220"}], "}"}]}], "]"}]}]], "Input",
+ CellChangeTimes->{{3.906209108534292*^9, 3.906209142918777*^9}, {
+ 3.906209281514675*^9, 3.906209401810359*^9}, {3.906209557442634*^9,
+ 3.90620956311773*^9}, {3.906210598464419*^9, 3.906210622697938*^9}, {
+ 3.90621490877896*^9, 3.906214961058323*^9}, {3.906215011570169*^9,
+ 3.906215011869331*^9}, {3.90621511367527*^9, 3.906215113937558*^9}, {
+ 3.906449850271374*^9, 3.906449864831753*^9}, {3.906452288389834*^9,
+ 3.906452349678601*^9}, {3.906452536307121*^9, 3.906452536562147*^9}, {
+ 3.90724443620947*^9, 3.907244488412445*^9}},
+ CellLabel->
+ "In[231]:=",ExpressionUUID->"7fe546c9-0af1-4973-85bb-971e16ca3307"],
+
+Cell[BoxData[
+ RowBox[{"{",
+ RowBox[{"{",
+ RowBox[{
+ RowBox[{"y110", "\[Rule]",
+ RowBox[{
+ FractionBox["1", "2"], " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"2", " ", "y111"}], "+", "y11d0", "-", "y11d1"}], ")"}]}]}],
+ ",",
+ RowBox[{"y120", "\[Rule]",
+ RowBox[{
+ FractionBox["1", "2"], " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"2", " ", "y121"}], "+", "y12d0", "-", "y12d1"}], ")"}]}]}],
+ ",",
+ RowBox[{"y220", "\[Rule]",
+ RowBox[{
+ FractionBox["1", "2"], " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"-", "y11d0"}], "+", "y11d1", "+",
+ RowBox[{"2", " ", "y221"}]}], ")"}]}]}]}], "}"}], "}"}]], "Output",
+ CellChangeTimes->{{3.906209114847683*^9, 3.906209134528015*^9}, {
+ 3.9062092861324043`*^9, 3.906209307644665*^9}, {3.906209348694558*^9,
+ 3.906209402069257*^9}, 3.906209567919038*^9, {3.906210599059472*^9,
+ 3.906210623077407*^9}, {3.906214910275611*^9, 3.906214961402548*^9},
+ 3.906215012221205*^9, 3.906215114141577*^9, 3.906449865837833*^9, {
+ 3.906452290224807*^9, 3.906452324323553*^9}, 3.9064523548160133`*^9,
+ 3.906452536825111*^9, 3.906452992821587*^9, 3.906535913473673*^9, {
+ 3.907244450027872*^9, 3.9072444889943857`*^9}, 3.907329066028408*^9,
+ 3.908528771220576*^9, 3.908535928499719*^9, 3.908604043703294*^9,
+ 3.908611456149561*^9, 3.9086144305920887`*^9, 3.908621428030292*^9,
+ 3.9089591306410522`*^9, 3.909041335868808*^9, 3.915532186836844*^9,
+ 3.915532553880711*^9, 3.915771627638197*^9, 3.916380060899454*^9,
+ 3.916386848539817*^9},
+ CellLabel->
+ "Out[231]=",ExpressionUUID->"fafa3e14-532d-4f8f-a8ed-c5504aa4836f"]
+}, Open ]],
+
+Cell[BoxData[
+ RowBox[{
+ RowBox[{"e9", "=",
+ RowBox[{"Simplify", "[",
+ RowBox[{
+ RowBox[{
+ RowBox[{
+ RowBox[{"e1", "/.",
+ RowBox[{
+ RowBox[{
+ RowBox[{
+ RowBox[{"-", "2"}],
+ RowBox[{"Log", "[", "x_", "]"}]}], "+",
+ RowBox[{"Log", "[", "y_", "]"}]}], ":>",
+ RowBox[{"Log", "[",
+ RowBox[{"y", " ",
+ SuperscriptBox["x",
+ RowBox[{"-", "2"}]]}], "]"}]}]}], "//.", "rules2"}], "/.",
+ RowBox[{"stest2", "[",
+ RowBox[{"[", "1", "]"}], "]"}]}], ",",
+ RowBox[{"TimeConstraint", "->", "600"}]}], "]"}]}], ";"}]], "Input",
+ CellChangeTimes->{{3.906460267036875*^9, 3.906460376670369*^9}, {
+ 3.906460777446906*^9, 3.906460792814526*^9}, {3.90724455188748*^9,
+ 3.907244564134206*^9}, {3.908530577362788*^9, 3.908530577674566*^9},
+ 3.908533636339531*^9},
+ CellLabel->
+ "In[232]:=",ExpressionUUID->"84934d64-fc27-4a55-a1de-6f9f09494033"],
+
+Cell[BoxData[
+ RowBox[{
+ RowBox[{"e10", "=",
+ RowBox[{"Simplify", "[",
+ RowBox[{"Limit", "[",
+ RowBox[{"e9", ",",
+ RowBox[{"\[Beta]", "->", "\[Infinity]"}]}], "]"}], "]"}]}],
+ ";"}]], "Input",
+ CellChangeTimes->{{3.908529782124156*^9, 3.908529796140355*^9}},
+ CellLabel->
+ "In[233]:=",ExpressionUUID->"83f76904-20b3-4c92-8479-9704a86e9bc3"],
+
+Cell[BoxData[
+ RowBox[{
+ RowBox[{"e11", "=",
+ RowBox[{"Simplify", "[",
+ RowBox[{"D", "[",
+ RowBox[{"e10", ",",
+ RowBox[{"{",
+ RowBox[{"{",
+ RowBox[{
+ "q11d", ",", "q12", ",", "y111", ",", "y221", ",", "y12d1", ",",
+ "y11d0", ",", "y11d1", ",", "y121", ",", "y12d0", ",", "z110", ",",
+ "z111", ",", "z11d0", ",", "z11d1", ",", "z220", ",", "z221", ",",
+ "z120", ",", "z121", ",", "z12d0", ",", "z12d1", ",", "\[Lambda]0"}],
+ "}"}], "}"}]}], "]"}], "]"}]}], ";"}]], "Input",
+ CellChangeTimes->{{3.908534070987885*^9, 3.908534106731855*^9}, {
+ 3.908534493867115*^9, 3.908534503451172*^9}, {3.908534639469946*^9,
+ 3.908534652366032*^9}, {3.908534769136189*^9, 3.908534784840426*^9}, {
+ 3.908534838729506*^9, 3.908534842369544*^9}},
+ CellLabel->
+ "In[234]:=",ExpressionUUID->"82f4b3f0-5071-4e29-8e26-febf3110e5e0"],
+
+Cell[CellGroupData[{
+
+Cell[BoxData[{
+ RowBox[{
+ RowBox[{"iniTest", "=",
+ RowBox[{"Thread", "[",
+ RowBox[{"{",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{
+ "q11d", ",", "q12", ",", "y111", ",", "y221", ",", "y12d1", ",",
+ "y11d0", ",", "y11d1", ",", "y121", ",", "y12d0", ",", "z110", ",",
+ "z111", ",", "z11d0", ",", "z11d1", ",", "z220", ",", "z221", ",",
+ "z120", ",", "z121", ",", "z12d0", ",", "z12d1", ",", "\[Lambda]0"}],
+ "}"}], ",", "\[IndentingNewLine]",
+ RowBox[{
+ RowBox[{
+ RowBox[{
+ RowBox[{
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{
+ "q11d", ",", "q12", ",", "y111", ",", "y221", ",", "y12d1", ",",
+ "y11d0", ",", "y11d1", ",", "y121", ",", "y12d0", ",", "z110",
+ ",", "z111", ",", "z11d0", ",", "z11d1", ",", "z220", ",",
+ "z221", ",", "z120", ",", "z121", ",", "z12d0", ",", "z12d1",
+ ",", "\[Lambda]0"}], "}"}], "/.",
+ RowBox[{"{", "\[IndentingNewLine]",
+ RowBox[{
+ RowBox[{"\[Lambda]0", "->", " ", "\[Lambda]"}], ",",
+ RowBox[{"y110", "->", "y11"}], ",",
+ RowBox[{"y111", "->", "y11"}], ",",
+ RowBox[{"y220", "->", "y22"}], ",",
+ RowBox[{"y221", "->", "y22"}], ",",
+ RowBox[{"y11d0", "->", "y11d"}], ",",
+ RowBox[{"y11d1", "->", "y11d"}]}], "\[IndentingNewLine]",
+ "}"}]}], "/.",
+ RowBox[{"s6", "[",
+ RowBox[{"[", "3", "]"}], "]"}]}], "/.",
+ RowBox[{"{",
+ RowBox[{
+ RowBox[{"z111", "->", "0"}], ",",
+ RowBox[{"z110", "->", "0"}], ",",
+ RowBox[{"z11d0", "->", "0"}], ",",
+ RowBox[{"z220", "->", "0"}], ",",
+ RowBox[{"z221", "->", "0"}], ",",
+ RowBox[{"z11d1", "->", "0"}], ",",
+ RowBox[{"q12", "->", "0"}], ",",
+ RowBox[{"y12d1", "->", "0"}], ",",
+ RowBox[{"y121", "->", "0"}], ",",
+ RowBox[{"y12d0", "->", "0"}], ",",
+ RowBox[{"z120", "->", "0"}], ",",
+ RowBox[{"z121", "->", "0"}], ",",
+ RowBox[{"z12d0", "->", "0"}], ",",
+ RowBox[{"z12d1", "->", "0"}]}], "}"}]}], "/.",
+ RowBox[{"Append", "[",
+ RowBox[{
+ RowBox[{"Most", "[", "testparams", "]"}], ",",
+ RowBox[{"\[Epsilon]", "->",
+ SuperscriptBox["10",
+ RowBox[{"-", "2"}]]}]}], "]"}]}], "/.", " ",
+ RowBox[{"0", ":>",
+ RowBox[{
+ RowBox[{"RandomReal", "[", "]"}],
+ SuperscriptBox["10",
+ RowBox[{"-", "5"}]]}]}]}]}], "\[IndentingNewLine]", "}"}], "]"}]}],
+ ";"}], "\[IndentingNewLine]",
+ RowBox[{"newsol", "=",
+ RowBox[{"FindRoot", "[",
+ RowBox[{
+ RowBox[{"e11", "/.",
+ RowBox[{"Append", "[",
+ RowBox[{
+ RowBox[{"Most", "[", "testparams", "]"}], ",",
+ RowBox[{"\[Epsilon]", "->",
+ SuperscriptBox["10",
+ RowBox[{"-", "2"}]]}]}], "]"}]}], ",", "iniTest", ",",
+ RowBox[{"WorkingPrecision", "->", "20"}], ",",
+ RowBox[{"MaxIterations", "->", "1000"}]}], "]"}]}]}], "Input",
+ CellChangeTimes->CompressedData["
+1:eJxTTMoPSmViYGAQA2IQLdE9S/2D3FtH5vuy2iDa/tFuQxC9p1/FCETPEk1y
+ANElVcaOIFqlcf0/Ufm3jkcyp/0H0aFtxzXFgbTYUh5dEP1IWO4WiHbJ2nYP
+RGtxijJJAGmpRWfZQXRSG1vBfiD9I9YeTFtYn1I/AKTl2M+A6RkRci4g+tlC
+BTAt9O3pNRCdUv3zNoh+tE7zI4hWLM8G041iFT9A9KTblWA6pYiP7yCQFrAV
+BNMpeqFyIPpDhb0uiP4S89oRRLfMfuAMok9IVkWDaIWz68C0gbx+Coh+7qKd
+BqJlptqVguiZffMqQHT/pUm1IHrDSp86EP2u7nALiK5mmdUGojfn3esH0Tqe
+XDNANACqiaYp
+ "],
+ CellLabel->
+ "In[235]:=",ExpressionUUID->"acfb6249-e04b-4f94-810b-05af73aac0bc"],
+
+Cell[BoxData[
+ RowBox[{"{",
+ RowBox[{
+ RowBox[{
+ "q11d", "\[Rule]", "0.00001555391729866629797472775730626373`20."}], ",",
+ RowBox[{"q12", "\[Rule]",
+ RowBox[{"-", "0.00367071456291392575312445824850019499`20."}]}], ",",
+ RowBox[{
+ "y111", "\[Rule]", "0.00033858409845575102083505966686412731`20."}], ",",
+ RowBox[{
+ "y221", "\[Rule]", "0.68070455758563213693748528088857631738`20."}], ",",
+ RowBox[{
+ "y12d1", "\[Rule]", "0.00061358582971333318235353772778447249`20."}], ",",
+
+ RowBox[{"y11d0", "\[Rule]",
+ RowBox[{"-", "0.18253314460417188528814576298805655592`20."}]}], ",",
+ RowBox[{"y11d1", "\[Rule]",
+ RowBox[{"-", "0.1825331441926777986672902898135362193`20."}]}], ",",
+ RowBox[{"y121", "\[Rule]",
+ RowBox[{"-", "0.00120835267088457118172131643072694046`20."}]}], ",",
+ RowBox[{
+ "y12d0", "\[Rule]", "0.00061363474324793547409750971155517618`20."}], ",",
+
+ RowBox[{"z110", "\[Rule]",
+ RowBox[{"-", "0.00013380799505638768781232499297312236`20."}]}], ",",
+ RowBox[{"z111", "\[Rule]",
+ RowBox[{"-", "0.0001079112344361901100475709114334677`20."}]}], ",",
+ RowBox[{"z11d0", "\[Rule]",
+ RowBox[{"-", "0.00053775194785584789698397549918490971`20."}]}], ",",
+ RowBox[{
+ "z11d1", "\[Rule]", "0.0001840728825727838669466807086649851`20."}], ",",
+ RowBox[{
+ "z220", "\[Rule]", "0.00038063878056963354381408981552681325`20."}], ",",
+ RowBox[{"z221", "\[Rule]",
+ RowBox[{"-", "0.00089290936566054849698320650119853781`20."}]}], ",",
+ RowBox[{"z120", "\[Rule]", "2.24370583430332780906403890946873`20.*^-6"}],
+ ",",
+ RowBox[{"z121", "\[Rule]", "6.81538156918646112795382580040737`20.*^-6"}],
+ ",",
+ RowBox[{"z12d0", "\[Rule]", "7.83396611914168097812443541938521`20.*^-6"}],
+ ",",
+ RowBox[{
+ "z12d1", "\[Rule]", "0.00001032656907739480873012483108652759`20."}], ",",
+
+ RowBox[{"\[Lambda]0", "\[Rule]",
+ RowBox[{"-", "0.00366394260012867290278422551661714775`20."}]}]}],
+ "}"}]], "Output",
+ CellChangeTimes->{
+ 3.908534617165332*^9, 3.908534760405347*^9, 3.9085347944529567`*^9,
+ 3.9085362696996202`*^9, 3.908604381422617*^9, 3.908612093101529*^9,
+ 3.908614449703895*^9, {3.908614481344686*^9, 3.908614504811044*^9}, {
+ 3.908616210963707*^9, 3.908616254842885*^9}, {3.908616312237392*^9,
+ 3.9086163170447197`*^9}, 3.908616970303256*^9, 3.908621789726719*^9, {
+ 3.90862195734993*^9, 3.908621968286858*^9}, 3.908959467170705*^9, {
+ 3.908960499329819*^9, 3.908960526670731*^9}, {3.908960574847391*^9,
+ 3.9089606038254843`*^9}, {3.908960782913903*^9, 3.908960813745655*^9}, {
+ 3.908961757784819*^9, 3.908961770114484*^9}, 3.90896180984956*^9, {
+ 3.908961981727275*^9, 3.908962027694907*^9}, {3.908962188993072*^9,
+ 3.908962209399077*^9}, {3.908962244124213*^9, 3.908962284221075*^9},
+ 3.908962342678248*^9, {3.9089624171398773`*^9, 3.908962455324469*^9}, {
+ 3.9089625398547907`*^9, 3.9089626737739773`*^9}, {3.908962847416065*^9,
+ 3.908962888610635*^9}, {3.908962952419513*^9, 3.90896296095532*^9}, {
+ 3.9089630322598047`*^9, 3.908963121645569*^9}, {3.9089631813370247`*^9,
+ 3.908963207296228*^9}, {3.908963248759201*^9, 3.90896338669203*^9}, {
+ 3.908963452507598*^9, 3.908963523634545*^9}, {3.909041670516673*^9,
+ 3.909041694543151*^9}, 3.909042006145735*^9, {3.915532160299971*^9,
+ 3.915532168934849*^9}, 3.9155327735576057`*^9, 3.915771847507398*^9,
+ 3.916380285011002*^9, 3.916387076462816*^9},
+ CellLabel->
+ "Out[236]=",ExpressionUUID->"22fa23af-56ac-41f0-bad7-75e203e68dfd"]
+}, Open ]],
+
+Cell[CellGroupData[{
+
+Cell[BoxData[
+ RowBox[{
+ RowBox[{"e12", "=",
+ RowBox[{"FoldList", "[",
+ RowBox[{
+ RowBox[{"Function", "[",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"sol", ",", "\[Omega]22"}], "}"}], ",",
+ RowBox[{"Join", "[",
+ RowBox[{
+ RowBox[{"Append", "[",
+ RowBox[{
+ RowBox[{"Delete", "[",
+ RowBox[{"testparams", ",",
+ RowBox[{"{", "4", "}"}]}], "]"}], ",",
+ RowBox[{"\[Omega]2", "->", "\[Omega]22"}]}], "]"}], ",",
+ RowBox[{"FindRoot", "[",
+ RowBox[{
+ RowBox[{"e11", "/.",
+ RowBox[{"Append", "[",
+ RowBox[{
+ RowBox[{"Delete", "[",
+ RowBox[{"testparams", ",",
+ RowBox[{"{", "4", "}"}]}], "]"}], ",",
+ RowBox[{"\[Omega]2", "->", "\[Omega]22"}]}], "]"}]}], ",",
+ RowBox[{
+ RowBox[{"Drop", "[",
+ RowBox[{"sol", ",", "5"}], "]"}], "/.",
+ RowBox[{"Rule", "->", "List"}]}], ",",
+ RowBox[{"WorkingPrecision", "->", "20"}]}], "]"}]}], "]"}]}],
+ "]"}], ",",
+ RowBox[{"Join", "[",
+ RowBox[{
+ RowBox[{"Append", "[",
+ RowBox[{
+ RowBox[{"Most", "[", "testparams", "]"}], ",",
+ RowBox[{"\[Epsilon]", "->",
+ SuperscriptBox["10",
+ RowBox[{"-", "2"}]]}]}], "]"}], ",", "newsol"}], "]"}], ",",
+ RowBox[{"Range", "[",
+ RowBox[{
+ RowBox[{"200005", "/", "100000"}], ",",
+ RowBox[{"200003", "/", "100000"}], ",",
+ RowBox[{"-",
+ SuperscriptBox["10",
+ RowBox[{"-", "6"}]]}]}], "]"}]}], "]"}]}], ";"}]], "Input",
+ CellChangeTimes->{{3.908612319761338*^9, 3.908612417546509*^9}, {
+ 3.9086124874051113`*^9, 3.90861254511722*^9}, {3.908612745906377*^9,
+ 3.908612793106409*^9}, {3.908612832420323*^9, 3.908612861411959*^9}, {
+ 3.908613309205525*^9, 3.908613364644801*^9}, {3.90861342802299*^9,
+ 3.908613519839675*^9}, 3.9086135669615602`*^9, {3.90861449347665*^9,
+ 3.908614589381097*^9}, {3.908614669654983*^9, 3.908614697639248*^9}, {
+ 3.9086147913854*^9, 3.908614791473036*^9}, {3.908614898533624*^9,
+ 3.908614898571179*^9}, {3.908616326011752*^9, 3.908616327083562*^9}, {
+ 3.908616469198354*^9, 3.908616512344514*^9}, {3.908616543200011*^9,
+ 3.9086165541439466`*^9}, {3.908616606713204*^9, 3.908616607505047*^9}, {
+ 3.908616705004503*^9, 3.908616705122736*^9}, {3.9086168341272717`*^9,
+ 3.908616895070513*^9}, {3.908617028003454*^9, 3.908617065841843*^9}, {
+ 3.908964574277124*^9, 3.908964612668378*^9}, {3.908965377762587*^9,
+ 3.90896537784248*^9}, {3.909042427724539*^9, 3.90904242782031*^9}, {
+ 3.909042471277335*^9, 3.909042532246409*^9}},
+ CellLabel->
+ "In[237]:=",ExpressionUUID->"2a2f7dd9-b465-4d3a-81cf-abf195bcfc21"],
+
+Cell[BoxData[
+ TemplateBox[{
+ "FindRoot", "lstol",
+ "\"The line search decreased the step size to within tolerance specified \
+by AccuracyGoal and PrecisionGoal but was unable to find a sufficient \
+decrease in the merit function. You may need more than \
+\\!\\(\\*RowBox[{\\\"20.`\\\"}]\\) digits of working precision to meet these \
+tolerances.\"", 2, 237, 25, 23804047810745838865, "Local"},
+ "MessageTemplate"]], "Message", "MSG",
+ CellChangeTimes->{3.909042535149797*^9, 3.9155328751204443`*^9,
+ 3.915771850129451*^9, 3.916380287761401*^9, 3.916387078856232*^9},
+ CellLabel->
+ "During evaluation of \
+In[237]:=",ExpressionUUID->"fd049e2d-b962-42ba-8dca-46fc9644cce9"],
+
+Cell[BoxData[
+ TemplateBox[{
+ "FindRoot", "cvmit",
+ "\"Failed to converge to the requested accuracy or precision within \\!\\(\
+\\*RowBox[{\\\"100\\\"}]\\) iterations.\"", 2, 237, 26, 23804047810745838865,
+ "Local"},
+ "MessageTemplate"]], "Message", "MSG",
+ CellChangeTimes->{3.909042535149797*^9, 3.9155328751204443`*^9,
+ 3.915771850129451*^9, 3.916380287761401*^9, 3.916387082656042*^9},
+ CellLabel->
+ "During evaluation of \
+In[237]:=",ExpressionUUID->"5cb44bf7-173f-499b-851b-adf000d36880"],
+
+Cell[BoxData[
+ TemplateBox[{
+ "FindRoot", "cvmit",
+ "\"Failed to converge to the requested accuracy or precision within \\!\\(\
+\\*RowBox[{\\\"100\\\"}]\\) iterations.\"", 2, 237, 27, 23804047810745838865,
+ "Local"},
+ "MessageTemplate"]], "Message", "MSG",
+ CellChangeTimes->{3.909042535149797*^9, 3.9155328751204443`*^9,
+ 3.915771850129451*^9, 3.916380287761401*^9, 3.916387084945113*^9},
+ CellLabel->
+ "During evaluation of \
+In[237]:=",ExpressionUUID->"3413d04c-3008-4bee-a8ec-f365f773087f"],
+
+Cell[BoxData[
+ TemplateBox[{
+ "FindRoot", "cvmit",
+ "\"Failed to converge to the requested accuracy or precision within \\!\\(\
+\\*RowBox[{\\\"100\\\"}]\\) iterations.\"", 2, 237, 28, 23804047810745838865,
+ "Local"},
+ "MessageTemplate"]], "Message", "MSG",
+ CellChangeTimes->{3.909042535149797*^9, 3.9155328751204443`*^9,
+ 3.915771850129451*^9, 3.916380287761401*^9, 3.916387087774027*^9},
+ CellLabel->
+ "During evaluation of \
+In[237]:=",ExpressionUUID->"982a2288-fc78-4c1e-8b15-7a87bdc87b9b"],
+
+Cell[BoxData[
+ TemplateBox[{
+ "General", "stop",
+ "\"Further output of \\!\\(\\*StyleBox[RowBox[{\\\"FindRoot\\\", \
+\\\"::\\\", \\\"cvmit\\\"}], \\\"MessageName\\\"]\\) will be suppressed \
+during this calculation.\"", 2, 237, 29, 23804047810745838865, "Local"},
+ "MessageTemplate"]], "Message", "MSG",
+ CellChangeTimes->{3.909042535149797*^9, 3.9155328751204443`*^9,
+ 3.915771850129451*^9, 3.916380287761401*^9, 3.916387087780196*^9},
+ CellLabel->
+ "During evaluation of \
+In[237]:=",ExpressionUUID->"a6869e09-be0b-47fc-9d8f-a7b647e3ebf2"],
+
+Cell[BoxData[
+ TemplateBox[{
+ "FindRoot", "lstol",
+ "\"The line search decreased the step size to within tolerance specified \
+by AccuracyGoal and PrecisionGoal but was unable to find a sufficient \
+decrease in the merit function. You may need more than \
+\\!\\(\\*RowBox[{\\\"20.`\\\"}]\\) digits of working precision to meet these \
+tolerances.\"", 2, 237, 30, 23804047810745838865, "Local"},
+ "MessageTemplate"]], "Message", "MSG",
+ CellChangeTimes->{3.909042535149797*^9, 3.9155328751204443`*^9,
+ 3.915771850129451*^9, 3.916380287761401*^9, 3.916387088426792*^9},
+ CellLabel->
+ "During evaluation of \
+In[237]:=",ExpressionUUID->"3e572292-7317-4d82-b804-f7ec1744c5da"],
+
+Cell[BoxData[
+ TemplateBox[{
+ "FindRoot", "lstol",
+ "\"The line search decreased the step size to within tolerance specified \
+by AccuracyGoal and PrecisionGoal but was unable to find a sufficient \
+decrease in the merit function. You may need more than \
+\\!\\(\\*RowBox[{\\\"20.`\\\"}]\\) digits of working precision to meet these \
+tolerances.\"", 2, 237, 31, 23804047810745838865, "Local"},
+ "MessageTemplate"]], "Message", "MSG",
+ CellChangeTimes->{3.909042535149797*^9, 3.9155328751204443`*^9,
+ 3.915771850129451*^9, 3.916380287761401*^9, 3.916387088708995*^9},
+ CellLabel->
+ "During evaluation of \
+In[237]:=",ExpressionUUID->"d651ce85-ec36-45c7-9151-74cc477901a5"],
+
+Cell[BoxData[
+ TemplateBox[{
+ "General", "stop",
+ "\"Further output of \\!\\(\\*StyleBox[RowBox[{\\\"FindRoot\\\", \
+\\\"::\\\", \\\"lstol\\\"}], \\\"MessageName\\\"]\\) will be suppressed \
+during this calculation.\"", 2, 237, 32, 23804047810745838865, "Local"},
+ "MessageTemplate"]], "Message", "MSG",
+ CellChangeTimes->{3.909042535149797*^9, 3.9155328751204443`*^9,
+ 3.915771850129451*^9, 3.916380287761401*^9, 3.916387088719208*^9},
+ CellLabel->
+ "During evaluation of \
+In[237]:=",ExpressionUUID->"9996e476-8dd5-4dff-abe4-3dc38d2bcc7b"]
+}, Open ]],
+
+Cell[CellGroupData[{
+
+Cell[BoxData[{
+ RowBox[{
+ RowBox[{"testzero", "=",
+ RowBox[{"SelectFirst", "[",
+ RowBox[{"e12", ",",
+ RowBox[{
+ RowBox[{
+ RowBox[{
+ RowBox[{"Abs", "[", "\[Lambda]0", "]"}], "<",
+ SuperscriptBox["10",
+ RowBox[{"-", "2"}]]}], "/.", "#"}], "&"}]}], "]"}]}],
+ ";"}], "\[IndentingNewLine]",
+ RowBox[{"solzero", "=",
+ RowBox[{"Join", "[",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"\[Lambda]0", "->", "0"}], "}"}], ",",
+ RowBox[{"Delete", "[",
+ RowBox[{
+ RowBox[{"Take", "[",
+ RowBox[{"testzero", ",", "5"}], "]"}], ",",
+ RowBox[{"{", "4", "}"}]}], "]"}], ",",
+ RowBox[{"FindRoot", "[",
+ RowBox[{
+ RowBox[{
+ RowBox[{"e11", "/.",
+ RowBox[{"Delete", "[",
+ RowBox[{
+ RowBox[{"Take", "[",
+ RowBox[{"testzero", ",", "5"}], "]"}], ",",
+ RowBox[{"{", "4", "}"}]}], "]"}]}], "/.",
+ RowBox[{"\[Lambda]0", "->", "0"}]}], ",",
+ RowBox[{
+ RowBox[{"Prepend", "[",
+ RowBox[{
+ RowBox[{"Delete", "[",
+ RowBox[{
+ RowBox[{"Drop", "[",
+ RowBox[{"testzero", ",", "5"}], "]"}], ",",
+ RowBox[{"{",
+ RowBox[{"-", "1"}], "}"}]}], "]"}], ",",
+ RowBox[{"\[Omega]2", "->",
+ RowBox[{"(",
+ RowBox[{"\[Omega]2", "/.", "testzero"}], ")"}]}]}], "]"}], "/.",
+ RowBox[{"Rule", "->", "List"}]}], ",",
+ RowBox[{"WorkingPrecision", "->", "30"}]}], "]"}]}], "]"}]}]}], "Input",\
+
+ CellChangeTimes->{{3.908622224176259*^9, 3.908622421996703*^9}, {
+ 3.908961708782144*^9, 3.908961740141968*^9}, {3.908965836484462*^9,
+ 3.908965836578917*^9}, {3.909042567863147*^9, 3.909042711337614*^9}, {
+ 3.909042759667089*^9, 3.90904277613109*^9}, {3.909042894757884*^9,
+ 3.909042904805442*^9}},
+ CellLabel->
+ "In[238]:=",ExpressionUUID->"f6acd6ad-220b-4828-a7d3-5558b5c91e4c"],
+
+Cell[BoxData[
+ RowBox[{"{",
+ RowBox[{
+ RowBox[{"\[Lambda]0", "\[Rule]", "0"}], ",",
+ RowBox[{"\[Sigma]1", "\[Rule]", "1"}], ",",
+ RowBox[{"\[Sigma]2", "\[Rule]", "1"}], ",",
+ RowBox[{"\[Omega]1", "\[Rule]",
+ FractionBox["31", "10"]}], ",",
+ RowBox[{"\[Epsilon]", "\[Rule]",
+ FractionBox["1", "100"]}], ",",
+ RowBox[{
+ "\[Omega]2", "\[Rule]",
+ "2.0000365730137153135952404255176887426970060493906141151625`30."}], ",",
+ RowBox[{
+ "q11d", "\[Rule]",
+ "0.0000154411885960749806570359963625850074975963718398794377`30."}], ",",
+ RowBox[{"q12", "\[Rule]",
+ RowBox[{
+ "-", "0.0036572655523585039857887359364182652063520921841108989632`30."}]}\
+], ",",
+ RowBox[{
+ "y111", "\[Rule]",
+ "0.0003386123105505361182865069029509473242041492787494270806`30."}], ",",
+ RowBox[{
+ "y221", "\[Rule]",
+ "0.6825331441410422329153783475535059155865609176335310367929`30."}], ",",
+ RowBox[{
+ "y12d1", "\[Rule]",
+ "0.0006136347432479354740975097115551761817180859196653769117`30."}], ",",
+ RowBox[{"y11d0", "\[Rule]",
+ RowBox[{
+ "-", "0.1825331441926777986672902898135362192987769629226134978264`30."}]}\
+], ",",
+ RowBox[{"y11d1", "\[Rule]",
+ RowBox[{
+ "-", "0.182533144192677798667290289813536219298839569091796875`30."}]}],
+ ",",
+ RowBox[{"y121", "\[Rule]",
+ RowBox[{
+ "-", "0.0012150159423288969292331708269371724992158204698129572583`30."}]}\
+], ",",
+ RowBox[{
+ "y12d0", "\[Rule]",
+ "0.0006136347432479354740975097115551761817187070846557617188`30."}], ",",
+ RowBox[{"z110", "\[Rule]",
+ RowBox[{
+ "-", "0.0013814593806663721508448672281588187617783672559652109653`30."}]}\
+], ",",
+ RowBox[{"z111", "\[Rule]",
+ RowBox[{
+ "-", "0.0001079112344361901100475709114334676996804773807525634766`30."}]}\
+], ",",
+ RowBox[{"z11d0", "\[Rule]",
+ RowBox[{
+ "-", "0.0023630234098875802146479119247857170198026030953386613244`30."}]}\
+], ",",
+ RowBox[{
+ "z11d1", "\[Rule]",
+ "0.0001840728825727838669466807086649851044057868421077728271`30."}], ",",
+ RowBox[{
+ "z220", "\[Rule]",
+ "0.0003806387805696335438140898155268132541095837950706481934`30."}], ",",
+ RowBox[{"z221", "\[Rule]",
+ RowBox[{
+ "-", "0.000892909365660548496983206501198537807795219123363494873`30."}]}]\
+, ",",
+ RowBox[{
+ "z120", "\[Rule]",
+ "5.5690800900598972519536279668361800090279321547008477`30.*^-6"}], ",",
+ RowBox[{
+ "z121", "\[Rule]",
+ "6.81538156918646112795382580040737252602411899715662`30.*^-6"}], ",",
+ RowBox[{
+ "z12d0", "\[Rule]",
+ "7.8339661191416809781244354193852075241011334583163261`30.*^-6"}], ",",
+ RowBox[{
+ "z12d1", "\[Rule]",
+ "0.0000103265690773948087301248310865275925607420504093170166`30."}]}],
+ "}"}]], "Output",
+ CellChangeTimes->{{3.908622258019921*^9, 3.908622282010366*^9}, {
+ 3.908622358176366*^9, 3.908622423275463*^9}, 3.908960404757339*^9,
+ 3.9089619597735023`*^9, 3.90896216556334*^9, 3.908965839807811*^9,
+ 3.909041910725379*^9, 3.909041952412874*^9, 3.909042132178347*^9, {
+ 3.9090426426640863`*^9, 3.909042703605441*^9}, 3.909042794897882*^9,
+ 3.909042920676709*^9, {3.915532883718834*^9, 3.9155328867105827`*^9},
+ 3.915771852468653*^9, 3.916380290705749*^9, 3.916387091153274*^9},
+ CellLabel->
+ "Out[239]=",ExpressionUUID->"9b8635de-045e-4f3a-b8b3-4a1dc739d03e"]
+}, Open ]],
+
+Cell[BoxData[
+ RowBox[{
+ RowBox[{"solzeros", "=",
+ RowBox[{"FoldList", "[",
+ RowBox[{
+ RowBox[{"Function", "[",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"sol", ",", "\[Epsilon]\[Epsilon]"}], "}"}], ",",
+ RowBox[{"Join", "[",
+ RowBox[{
+ RowBox[{"Append", "[",
+ RowBox[{
+ RowBox[{"Take", "[",
+ RowBox[{"sol", ",", "4"}], "]"}], ",",
+ RowBox[{"\[Epsilon]", "->", "\[Epsilon]\[Epsilon]"}]}], "]"}], ",",
+ RowBox[{"FindRoot", "[",
+ RowBox[{
+ RowBox[{"e11", "/.",
+ RowBox[{"Append", "[",
+ RowBox[{
+ RowBox[{"Take", "[",
+ RowBox[{"sol", ",", "4"}], "]"}], ",",
+ RowBox[{"\[Epsilon]", "->", "\[Epsilon]\[Epsilon]"}]}], "]"}]}],
+ ",",
+ RowBox[{
+ RowBox[{"Drop", "[",
+ RowBox[{"sol", ",", "5"}], "]"}], "/.",
+ RowBox[{"Rule", "->", "List"}]}], ",",
+ RowBox[{"WorkingPrecision", "->", "20"}], ",",
+ RowBox[{"MaxIterations", "->", "500"}]}], "]"}]}], "]"}]}], "]"}],
+ ",", "solzero", ",",
+ RowBox[{"Range", "[",
+ RowBox[{
+ RowBox[{"1", "/", "100"}], ",", "1.6", ",",
+ SuperscriptBox["10",
+ RowBox[{"-", "3"}]]}], "]"}]}], "]"}]}], ";"}]], "Input",
+ CellChangeTimes->{{3.909043333070065*^9, 3.909043451649344*^9}, {
+ 3.9090464238882*^9, 3.909046424128012*^9}, {3.909046458976687*^9,
+ 3.909046460128731*^9}},
+ CellLabel->
+ "In[240]:=",ExpressionUUID->"b04acde6-1c4d-4632-b34e-b05a8c3158f7"],
+
+Cell[CellGroupData[{
+
+Cell[BoxData[
+ RowBox[{"ListPlot", "[",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"\[Epsilon]", ",", "\[Omega]2"}], "}"}], "/.", "solzeros"}],
+ "]"}]], "Input",
+ CellChangeTimes->{{3.909043941257431*^9, 3.909043955169023*^9}},
+ CellLabel->
+ "In[241]:=",ExpressionUUID->"bb7ea87c-a295-4530-bdcd-103371a64b77"],
+
+Cell[BoxData[
+ GraphicsBox[{{},
+ InterpretationBox[{
+ TagBox[
+ TagBox[
+ {RGBColor[0.368417, 0.506779, 0.709798], PointSize[
+ 0.0055000000000000005`], AbsoluteThickness[2],
+ PointBox[CompressedData["
+1:eJxd13dcje//B/DOPtkj2UlDQqhEiFf2SPbI3luyZ7ZCoZCslJWMyKasShRF
+e++9xxmdc7L63fq8r+8fv/7xeD/Sfe77uq/r9XydniucZq7ma2lpWYu1tP79
+u1/n8YT8fcfxof/Hfu21tGz//xwyqQW/7wlXpA6+ZNmRm38e3PBux4WTWF7p
+49OVm4e+iNr1wc8Nxw7GrdXn5r3lvcylgafxvpfFRWNufqPnUjnjzVnU6YUb
+9eXm3/dlCfYrPDH37mFdc272idB/sm3dOZzU2rxhCDcPz5125tLm83De6aY/
+kpszG5o+EMdnpFiP+9/9eWF68YznU7i564BsI/GRi6h2+eMx+3/3643Pp9N/
+LOLmBauarogb80qcVv/v/i/j9kSj7Zu5+eqVph/M+HIhbff/nucqTg+3unGE
+m9N/qGcV+l/D+Y7a39z/93w+4P1oPdebmzsL57Yye3YdySmTxt783/P6Yu3j
+116B3Ozw3wWxNXn+hDf/e/4baB4/cFEEN08ZcmrUsuIbeNhnRGLc/9bjJky2
+HArM5uaqGf+ueBMvLDWlFf9bn1sob37PRcPN7ptKf92X3ULwBQ8XMY+t123s
+2xBUqsPNfU/oco9wG/mW0kBDHlu/OxBevppgwc3RN8e9Uvy5g/lj1i4czWPr
+6Y83JZvHz+Tmf6vVSXgXC4Y8u7CCx9b3LtJqzMds5+Zmqbe3jGgWgP7RNbOP
+89h6ByDkbHnURW5+8O9x29zDCC1DvwAeW/97SKu4lhrMzZP/XU73PtrqzdkW
+w2Pv4z7iHac55XJz03J3e4AVz9x/yHns/TzAzqhmnmK+lu2/1YszeIju574/
+78Jn7+sh4mVJQwdws+kij/D63oHYnNTTYCyfvb9AWJm83DSfm79yV+sy4BGi
+szw6O/HZ+3yEkVXPertw87pz1c6weoy/03tcvcZn7/cxipqlOD7jZu7muEcO
+Qn+9tNtf+ex9B+HYhV42+dw8m9s83CtFze7wwQ189v6foCQr8EJbgZbtHW71
+Um8/wbi0kpl9BGw/PMHM41t3jOFm5Z+kPeW9niKk0V6zSMD2x1N4OR7I2cXN
+Y5s2wFOsqNcyOSdg++UpWn9Kj3/IzdzL+/dAqBFr534RsP3zDOH1HlMLuPm/
+23uGF1FO+n8FbD89w+L392d3EWrZWjb9PEdoB1QOFrL99RxTOpkXzeLmY6Hf
+uB30HLmtj2CrkO235/hkN/DPWW5O5N4+tyZ42sO2+yMh238vEFf41C+amw2b
+LvgCL5SuxyuEbD++wKrnodHaIi3b7U0v4CXmuCzbaSpi+/MlNiWtPTKJmz/V
+9+be8EtotU6rXS9i+/UVUgOehbpxc7v/bhBmug2KhyK2f18hMDnw1Hdubrq7
+qFfYsSb2SK2I7efX6Gi/IqutWMv22fXagC92r3Gt3dorg8Rsf7/G/rG5b+Zx
+M7/pgV/j3o6YYfvFbL+/gevQgT38uHnmfxsGCrMWaz6J2f5/A8iWty7j5lv/
+HjfpDQabWHZtKWHnIRid9xw5ZcHN8n+XcwjGLc+pCxwk7HwEQ2Tgc+YgN4/+
+t/0zg1GTv9HQX8LOSwhOuH3sGsPNTdt3SQi2ZFzepZCw8xOCKK8Gy65SLdv8
+ff9eSAh6HymcNUbKztNb3NvokLKRm82bNvhbZBkteOslZefrLVKOVPA/cPOR
+i2O4LfMWJouaPyqVsvP2DnnnPgS31dayjTdoesHwFIlNbbTZ+XuHyb6FP9dw
+c89/6V/9DjcmzB9wXpudx/e4K1v35T03b/13PLa8h9JTJ7Rcm53P9/DXW9JN
+t5mWbdi/t6t4j7mXJ2SObsbO6wf010r87cTNbf47kEhcxD9yvRk7vx+wOzh1
+bTQ3Ny1fwwfEGc952tCMneeP6PbKeXHv5lq2Tbfn/BEGx6Zvmtecne+PsHyQ
+kO3KzVpNP6HobS969qo5O++hWHO+oqyEm+99seNOdCiy7xw/2rEFO/+haP4i
++eBEbp7OnUZuj6JBkZu9twXLg1Dgur/fQ27W/NMnIhT86t4R2S1YPoRCY7TJ
+rk1LLdsbXf4diDCsc99qNaYly4swmGwcfnQXN09sesFh8GsfY/6gJcuPMMSk
+GY/N4ea6gH83GAab9nbB7VqxPAlDe/2R5yZw8+V/d/ctDNrLeTHOrVi+hMHR
+5tL6Z9z8b3NNahEOo+78DWWtWN6EI3Db2O96rbVs/6VJgn04uj5ddmFOa5Y/
+4dCfMf/daW7+t1u4LQNx3MCJEa1ZHoXjaVD54N/c3PS4ceG4s8v15KA2LJ/C
+8TtIe4QjNzddrt0n7KrcOftuG5ZXn7D5/fcfudzcFEezPiHvQ/vAzm1Zfn3C
+mjOTq2Zx83/14RNGRe/wONuW5dknTOtx8eJXbm6Kg9RP0LV6/FfYjuXbJ3x4
+F/7NlpsPNQVOBHQ3Jjc4t2N5F4HzDWXuwdxs0nSAIjC9l9YRVTuWfxHQedE9
+3bK9lm1sU72IgP2GsV5b27M8jED7DrufBXHz7n/HITsC/VzeWNa0Z/kYAYln
+805mOlq2Pf5tZ73P+Nx6+9JNOiwvP8O8UKYdyM2R/7bfss/4Wu3WsUqH5edn
+hHQcdbJfBy1bp6aA/IxC+46LHDuwPP3Mne82Fx5zc8emA/8Z6fcHmNV1YPn6
+BcWhu/tY6GrZNt2e0RcEfql026HL8vYLvD6enfqam9c0/XzBxxcrd/7UZfn7
+BYIXjo0jOmrZ/itPXMJCFRtUdaQjy+MvKOphNuILN/9Lxz3lX5D5sayuWSeW
+z5G4FVcsmc7NS5ouGImw3SZHL3ZieR2Jw7lPlmZys7gpoCJROtjlRs/OLL8j
+8elpwNh13Pzvbeg85q53suuUoM4szyORoil8peLmpnZXG4m9Y4UuI7uwfI/C
+hmeHXrly899/x808CjPPzreL7cLyPgq3e18c06mrlu3df9t5WxQupVj5Le/K
+8j8K1vKRSx5y89T/HhjzM54fru/KPIiCr/yS2Lablq3q3+uoj8K+2zW1bt2Y
+D18xYMFbmxRu9v33uEO+IuEkr7pnd+bFV9jfjdDazM3jmxbwKxb1l+4J6c78
++IpzN2NnSvS0bGuaePiKuS5652brMU++onqlxuIWN3v/i/dfX7E1Zpl1nR7z
+5RsyZi68ObKHlm1TPI/4hp8elY5nejBvvuFIzw6+WdzcFK8Hv+HP/UzzfvrM
+n2/Iixtt6szN/8XfN+wZPfV4jD7z6Bt+BfHGdO+pZdsUL/xoHIpdtnpzT+ZT
+NISLnCo/cnPT8R0TjU0dzJPbGjCvouESet9gFTc3HQ+XaEhMshNfGTC/onGu
+Y2yZtqGW7X/bLxovVh9bvtiQeRaNyvI/I55yc/K/1yuNwc0jow+KjJhvMRjU
+eo7BAm4+0BSAMZDtHdonyIh5F4OujxUXhcZatsZNGzAGFT4nVi8wZv7FwN2m
+4fITbv4e0/QDo5NTBkp6MQ9jkHLIpe8Sbt7ZFKjfEdz7ntvLXszH7yg+/ca+
+pYmWbfemDf0dW96G7Fhtwrz8jk1Rzxrfc/Pnpq9X31EXc6dGtzfz8zt0Sr1G
+beFmx6aA/g750BOar72Zp9/xqPpQeyNTLdumuNL5AccBx84fNGW+/sAK84s7
+07m5KQ7m/kBUn5B3g/owb3+gdJ5qrSc3//f16wfa/bTfXdWH+fsDj+Z9rpjY
+V8u2xX8HDv3eLQv378s8/gGdPUZ/+f20bJu2S5dYaOXr+C7rx3yOxfUZg299
+4Oam17EoFi9MzzTrbsa8jkXPH91T93Pzf1/PYpFzr0qSacb8jkVj778+w/pr
+2TZdLjcWr8Pnel/tzzyPg0PtT8XP/uy8x2GWWe3LhQOY73Hc9xnrrHcD2PmP
+Q3xd+hq9gcz7OFSfTp9zeCDLgzhcWjv8fsFA5n8ceJ2Fy8eZs3yIg8tI6wP3
+zFkfiEPgvqw/zS1YXsTBbGd9gZMF6wdxqM040S/JguVHHJotuZxhbcn6Qhy+
+v+xbfd2S5Ukcgn3HrxIMYv0hDm4Z1Vg/iOVLHCwG9jocO4j1iXjkbVQaDbZi
+eRMPraWL+1+3Yv0iHsPyVvsIB7P8icf+6HZOmwazvhGPat76u0mDWR7FQ7DB
+cfSIIax/xGN7rdGYu0NYPsXD5pjXvdbWrI/EI6Br2La91iyv4jHxRdDNQmvW
+T7j7mbraaupQll/x4NeWmAUPZX0lHrG3hrobDWN5Fo8R+1bYew5j/SUeu93X
+7Pg9jOUbdz35ZK31w1mfScDzHzqy5OEs7xLwZcLX8WNsWL9JQMxJR95TG5Z/
+Cdz+EffsMYL1nQRk9L3qf2YEy8MEVDX28/g9gvWfBEgPR2RvHMnyMQFB8tXn
+MkeyPpSA77d1H9iB5WUCXhVlmrwD60cJGNDibTMzW5afCVi/K3imry3rSwmQ
+uGQ1th7F8jQB+n6m7Y6OYv0pATC/e0o5iuVrItY+mrdm7WjWpxLRwX3MvYzR
+LG8TYTvBadrUMaxfJWLJqryF4WNY/iZi1Qaf74PHsr6ViG8l9+48HMvyOBHu
+m5rn649j/SsRpl5fj3qPY/mciMe/yk61GM/6WCIejXdSHR3P8joRk/RWRDWM
+Z/0sERbmkY1bJrD8TsQ9yzs+ZRNYX0vEkdy/vssmsjxPhIkyS5w+kfW3RFwb
+PDZpxiSW70nYt3WYJHoS63NJ+LXjs9/YySzvk6DSrbz+YTLrd0nIt3jKG2rH
+8j+J60fdo5/bsb6XBJ8Vg3/2n8I8SMKFSTyPB1NY/0vCj+nHT/WyZz4koeWW
+z+W37FkfTMLbO9+CekxlXnCfL7uS6TOV9cMkeC4b6thlGvMjCa0aH6+6PI31
+xSQE5WuF605nniRhk4GVy8XprD8m4XfejMc6M5gvyUgavXiE1wzWJ5Nhun2x
+hc5M5k0yNLccznjNZP0yGTztOVM7zGL+JCM232Gn9yzWN5PxxmkDv9Ns5lEy
+cn961F+ZzfpnMqzjY6d2m8N8Sobb+IGt/OawPpqMbS9eWxrMZV4lY+W+TR/9
+57J+mozAP7Ofms5jfiVjz/3d2o/nsb6ajPiajEgLB+ZZMu6Odal67cD6awq+
+mBzYPWI+8y0FlV2+rvs0n/XZFLy66xQ6aQHzjpvn7z4Yt4D12xSsjyq5NW8h
+8y8FI85EmOUuZH03Bd4TO/ZYu4h5mILvN4p31S5i/TcFQ0YPttqzmPmYAoPc
+1gt4S1gfTkH2gL3FbkuYlyl4I9+TqrOU9eMUSKo6DPRbyvxMgXHJ3FrTZawv
+p2DX09EdXi5jnqZgk1HeTdvlrD+nwrXr4Isxy5mvqZi3167WYQXr06lw6WXy
+pHgF8zYVP9rGpW5byfp1KrQH2q/RWsX8TYWZs//Cs6tY307FVHXu626rmcep
+uHNPsP/hata/U+F+vaP/sDXM51S4lRsM/raG9fFUTL/br/+CtczrVLxVDD9T
+sZb181Rkq+fN2r+O+Z0Kdc6Jwy3Ws77O3X9mgo7veuZ5Gob2sm0zcAPzPA3C
+vynbwjcwz9Oge8/XZs5G5nka8p18Hcs2Ms/ToBeQLXLexDxPQ4z/SlEbR+Z5
+GoZ8G7LpjiPzPA0/9ywfNnQz8zwNjd3KnH5sZp6n4aRJYotVTszzNPRr06ft
+TyfmeRqyZiudPbcwz9NQsXfodJOtzPM0iJvx3D9sZZ6nYZz3TLO525jnaTB4
+ZTWkZhvzPB1HJc/uuW5nnqcjuH/skR47mOfpcEvxCn+zg3mejr5Pmm2cuZN5
+ng677db7q3Yyz9PROsdY4bqLeZ6O7i8zEnruZp6n4+qnJV3e72aep6NfZvBX
+hz3M83QIkxR5yj3M83RknNZZdm4v8zwdygrDCf33Mc/T0SfD1Dt6H/M8HUVT
++tuv3888T0cvm6GbJM7M83S4B8xU+DszzzNgf/FowdgDzPMMTGgXP7ToAPM8
+Axrz8Q3HDjLPM3CyVYW+0SHmeQa+RkU8iTjEPM/AiJM591YfZp5noON+aEuO
+MM8zgJTa+HtHmOcZcEhW8+2OMs8z8CFkqU/1UeZ5BjxjB/h6HmOeZ+DJyi3S
+QceZ5xn4/N00M/U48zwDozau0nV2YZ5nYNWN3iH6rszzTIxKO/jlsyvzPBPv
+jzsN33iCeZ6JK3qCzm1PMs8zsdl49NLXJ5nnmXjdw6rVklPM80wkXS0yFrkx
+zzMh7Tv/bqAb8zwTxzde85jtzjzPxJq/z/N/uzPPM/Hu9EMf/9PM80yc+eIW
+OvUM8zwTqSsW2GvOMM8z4d3DcMyts8zzTESGVd+c4sE8z8T6Dp/Wqz2Y55lw
+rX549ZYn8zwLlkZPB009xzzPwsWrmUN+nmOeZ6HIetCdu+eZ51nYUvNp76wL
+zPMs+D+98EbLi3mehZaHA5c99mKeZ2H2ko7bFl1knmdhmkN2VTNv5nkWfh+W
+xAd7M8+zcEruq7f+EvM8C/N+BCZ3usw8z8Ivm2GqqMvM8yyM3zz98N4rzPMs
+TLqi2d7nKvM8C3N+D4/PvMo8z4Ig2/DymWvM82xYnQyOgg/zPBvdZ4pXyn2Y
+59mAd/u1/teZ59nY+boiycGXeZ4NVY+LgS38mOfZmDuqW02oH/M8G+5ep67s
+vME8z4bySsnjPjeZ59lYmG7TP+8m8zwbDfkXO3rfYp5nY//kXxum3GaeZ0P0
+dFdvwR3meTaGvG07PeQO8zwbFrop+Vv9mefZuL7re7bpXeZ5Du5c5o0tuMs8
+z4HA1lnnWgDzPAdS6wnTZt9jnufgwqxNypb3mec5MHCsF0TdZ57nIG5N1YGj
+D5jnOZjfZ+GKEQ+Z5zkwum/3VPOQeZ4DZEVueBHIPM/Bpoj0s1seMc9zoL/B
+vbvZY+Z5Dk5ml+hWPGae58BzsGpfQBDzPAeFXp8mrX7CPM+Busf8Y4ZPmec5
+XNiEmRQ8ZZ7novcR0ZCbz5jnuRj0feDTZc+Z57moMLf31n/BPM9F7p9VJXkv
+mOe58Dxx9ObNl8zzXCw0exK54hXzPBfuczQORq+Z57lYsnn1nJLXzPNc8Gp4
+7++9YZ7nwndmmsfGYOZ5LhYbKL73D2Ge52Jt5aLd8hDmeS6qx+iffvWWeZ6L
+/t8mtNj/jnmei91GOWq8Z57nYQCvZqroAzvveUjUPdo2+gPzPQ9CI3+c+8jO
+fx5ca5enzwtl3udh3MRPOXphLA/ysESUNK0kjPmfhx5iv36Pw1k+5KG1xYCd
+uz6xPpAH5R4PU0SwvOA+P+HbJOln1g/y8BtVyfGfWX7kQfr17/drX1hfyEPR
+wZYWayJZnuQhYZ8h3zyK9Yc8bMmxG/k7iuVLHt4nniuJ/Mr6RB70zmj9uvCN
+5U0elo+7vX9ZNOsXeYiCyzqzGJY/eZBEPQ37GcP6Rh6mWQw6EfWd5VEepmZ2
+DPb+wfpHHob3XjdvdSzLpzwkuw5cMSiO9ZE8bHR0ThfEs7zKQ/6Cee8T41k/
+ycOrlJiWdxJYfuVBe2vZtx2JrK/kwTf8pXJcEsuzPBRusnXvmMz6Sx7Unb3O
+liezfMvDI+d3f9+msD6TD+/pnzPPprK8y0fj/BDjFWms3+RDa01AllU6y798
+7J18WatZBus7+ehecvlcTgbLw3zs0H/p8TyT9Z98FJVrfp7MYvmYj5fDtyQu
+yWZ9KB8dOpl0tspheZmPnm6mMc1zWT/KR7n/saqCXJaf+dh+ctS+kDzWl/IR
+Oc9p5/l8lqf5qBvdOWdDAetP+eAftXsxppDlaz4M57bTdCtifSofp7X33VcV
+sbzNh1ft2ai4Ytav8vFs1eI5D0tY/ubD5Ydsmmsp61v5SL/m8GZ5GcvjfDwa
+63t2RDnrX/kYNjk2oXMFy+d8aAZrjqsqWB/Lx21fY//ESpbX+Rijt8ryaRXr
+Z/mwXBQ6wKOa5Xc+jKQTrjrWsL7GPU+mcPuUWpbn+fC/JA7pW8f6Wz6Oa893
+ai5j+V6AVmLtC5Uy1ucKINxkaBwjZ3lfgHuGL40fKVi/K0CwXrTXWSXL/wK4
+OGzbtqWe9b0CFCe//jBTxTwowGT/e3ut1Kz/FSA0Z8btThrmQwE0t0OH/9aw
+PliAifr8MXkNzAvu804aBkf8ZP2wANrdLHzv/2J+FOCJwXD52d+sLxagqsbu
+5Y4/zJMCfMraWrrgL+uPBWgxM+TkqEbmSwG2fbC40luLR32yAEevlXVqw+OR
+NwUI2FQu0XDzf/2yADYfR6/J4/PInwK49eEP+irgUd8sQNI0q63PhDzyqADz
+M8q7+4h41D8LsPyQ2TBXMY98KgD+tvyyRcKjPloAB/0rYQulPPKqAP2Cs/pN
+0OZRPy3A4rslEstmPPKrAC9iI2b2aM6jvlqA3iYuLVu04JFnBSi7Z2XdwM3/
+9ddCLF1YlFDSkke+FWLYNL/spFY86rOF2OG3w+FTax55VwiHrdvGPGvDo35b
+CDflXd+bbXnkXyHartTfcK4dj/ou9/951f5H2vPIQ+76el1nbtPhUf8tRLP2
+wZtXduCRj4W4OCb512xdHvXhQvTXO9gwviOPvCzEy67ha4d24lE/LsTVj0Hj
++3XmkZ+FqLg0x7tHFx715ULMHhE+t31XHnnKXW+W8KSkG4/6cyGOnejT5zc3
+/+drIdpfGDNC1p1HfboQi4cuCSvR45G3hQiceOpVVg8e9etCdLia2C1Rn0f+
+FuJE2ynKrz151LcL8eM6b0SYAY88LoSPtUD9xpBH/bsQ50qWGjw14pHPhRj9
+utfH+8Y86uOFGPV5zfdbvXjkdSF6DR5g72PCo35eCK9hHiO9e/PI70KMb+V9
+09OUR329EG00M3e59+GR50WompT8zrUvjzwvAn95v51H+/HI8yI89F/rd9CM
+R54X4ZC79/D9/XnkeREWnouatGcAjzwvwtpRLb/tHMgjz4ugb77j3XZzHnle
+hOW8lj23WfDI8yKsX1Kq3mLJI8+LUNzYbtSWQTzyvAjqe36/nax45HkRbHtf
+77NlMI88L0LJvK7RW4bwyPMi+HXvk7PVmkeeF+HlhvSV24fyyPMi6NgMXbRz
+GI88L8K0q/Mjdw/nkedFeHBlsv8+Gx55XoSeC7qpDozgkedF2CrJDT4ykkee
+c79Pv1XnAh55XoTT7fZcdbPlkedFKOU7vfYYxSPPizBFdHnCxdE88rwIoYcF
+dtfG8MjzIowsCwu7OZZHnhchLKTw4b1xPPK8CJOO7dV+Mp5HnnPPn3Yh4/UE
+HnlehPAlY3qETuSR50UwjbicGjWJR54XwTPijiBhMo88L8ZNkz23M+145Hkx
+xoYZvi6ewiPPi3Fn65uRdfY88rwYI4wnDPs1lUeeF6MoKe++eDqPPC/GDxfv
+M+1m8MjzYlybtLdYbyaPPC/G0pFXn/adxSPPi/HwbDO59WweeV4M762Zd8fP
+4ZHnxfjWRy9u9lweeV6ME82KHFfO45HnxXjqOPLwNgceeV6M9PcjJUfn88jz
+YozbquKfX8Ajz4vxq9nu7bcW8shz7vpdEhyeL+KR58VcPnR+HrGYR54Xo1O3
+JUdTlvDI82LsdXz2pWwpjzwvxnelyeFfy3jkeTGWH4173GoFjzzn7lfxfqbB
+Sh55XowbFvxNg1fxyPNi9BwS9HPyah55zq23KPXv0jU88rwYVUHue3au5ZHn
+xZDPzl3rvo5HnhejTr8o5uZ6HnlejHX2gQFvNvDI82KY95ysid3II89LcLgu
+9kPpJh55XgJ5t+m/Gh155HkJLnXIftTJiUeel+D33FMp5lt45HkJrDau3Wm3
+lUeel6C8/JTb6m088rwEC/cIdA9v55HnJdjxtaTjtR088rwEsdfHe77aySPP
+SxDxyepQwi4eeV4Cp46RRTW7eeR5CcKOtgxrvpdHnpfg2J+uOqb7eOR5Cdaf
+EeWM388jz0ugOz5bb7UzjzwvQZ9Jr1KOHeCR5yWY8uW26PZB5nkJrH+9eRh+
+iHnO3Y+l9teCw8zzEtR9DVgsOMo8L0Gt8b31RseY59x6fOhePe4487wEzh27
+la11YZ6XIDni1QI3V+Z5CZ6v5Y17dIJ5XgJZUOuAuJPM8xIULaw/rDzFPC/B
+CusvCZ3cmecl+KHv7TPiNPO8BL0b9+SsOMM8L0GbmKOXT55lnpci42zkt8ce
+zPNSeC1euDPZk3leCt3FMy//Psc8L0WzsFBLowvM81L8jA6ZMMWLeV6KBbGz
+k3ZcZJ6Xwrvv7fTr3szzUuhND5kXeYl5Xgqnt4+nyi4zz0th8MvrQ9erzPNS
+qB8eCRh/jXleioK9p7S3+TDPS6GjH1Z0/TrzvBTN148Y+s2XeV4Kv/7tJWo/
+5nkppAvmTTW6yTwvhbxQr/XMW8zzUrgkHZx0+DbzvBRbx5z+8/gO87wUjfMW
+9c3xZ56XouMkYWLLAOZ5KWYtvqIccY95zn1e5UDPzfeZ56WY7ZDn7/eAeV4K
+067vreIfMs9LsSQ4C4JHzPNSvIqaHWH1mHnO3W/NsE/rgpjnpcjOv2Pj84R5
+Xoq5a+8NjHvKPC/F8jkL/YTPmedlGHg+8eTQF8zzMgzWMane/JJ5XoYBBRtj
+7rxinnP/v/2bXpmvmedlePaj5++2wczzMtye8nHKpBDmeRm2Jt/tdOQt87wM
+ncJrlga/Y55z13N+ZCB/zzwvQ8OBhmV9PzLPy7BxZnmX1aHM8zKMu3hhul8Y
+87wMOopW/Ixw5nkZJptuG9AhgnnO/X9xUtr0z8zzMixbb/f39BfmeRm0xtT6
+fY1knpfhrlfKe/FX5nkZlFs6OYz9xjwvw5df0ZuPRjPPyzBsg5QfFsM8L8MH
+fnFbrR/M8zIYdN/ri1jmeRnuGGQFHIpjnpeh8Yxx/9B45nkZ9lZuMuclMs/L
+oEj7+nR0EvOcWx/R7KDjyczzMnyzNOwTmcI8L8MWq2kGzdKY52X4Wlt7yT6d
+eV4G7/nd3c9lMM/LcXZ/7a/kTOZ5OTZsOVjRJZt5Xg75qoK5y3KY5+Voe9ly
+1N1c5nk5iha43a/KY56X41ObRg/LAuZ5ORwGPFDuK2Sel+PhyDup4UXM83KY
+p4uGNi9hnpcj62Fpp9mlzPNy9N21Yvf1MuZ5OWyaecwuLWeelyNliusT80rm
+eTkOWS13d65inpfj5A/r4shq5nk59Kx6fWhfyzwvx8Iro3WX1THPyzF7ZEB1
+oIx5Xo5++xzH/pQzz8vR89XjLhOVzPNy3Nh8fIt3PfO8HDMtpeOLVczzcvQP
+mHVtkIZ5zt3P4cNbjjcwz8vR69S9z0k/meflmOxbfNX4N/O8HFFPZtTt+sM8
+L0eHz+IvUX+Z59z6KvS6ddXik+fl2Lv2hdyRxyfPyzFoef6kMD6fPK+A2aDQ
+nh2EfPK8Ag0TNu5bL+KT5xUY0unPrA9iPnleAd9Bno/bS/nkeQVajYLbem0+
+eV6BW/VGpR+b8cnzCoTpLfqs24JPnlfA4nqj0eaWfPK8AqZr+oi/tOKT5xVY
+eky9Tq8NnzyvQNf2R+13t+WT5xWwn1j8PK4dnzyvwLUNNj59dPjkeQW2p9wS
+u3Tgk+cV0PtjqcjV5ZPnFUhc1XzF8E588rwCkffGzrrUmU+eV2DU3l9fFF34
+5HkFAq/ZvZ/ejU+eV+BBxfTBj7vzyfMKGM41sWjRg0+eV2BJYcWTDfp88pxb
+n0evn33tySfPK7C28P4QU0M+eV4B85hsnDLik+cVyAh3ii435pPnFXCzds6Y
+bMInzysw6EUPx8DefPKcu7+EXcda9eGT5xUIGe/bfWtfPnlegd7pz4Yn9eOT
+55XIWRefPaQ/nzyvRE2FrtBnAJ88r0TghhuPtcz55HklPmi7Z6+24JPnlRik
+pfSMtuST55W45KOJMrfik+eV4I195XJ5MJ88r8SAbZMjG4fwyfNKXAxOOLN2
+KJ88r8TWT5vSY4fxyfNKFEwb/MDahk+eV+Knlb3WrRF88rwSSStjM5uDT55X
+4k5Ohs0uWz55zv0+/Ixh/ig+eV6J1mPFnlPG8MnzSix6tOLom7F88rwS5svD
+fhqN55PnlTiZbttwbgKfPK+ELKDxQONEPnleiUc7u51ynMwnz7n1EbzqkmXH
+J88r8bdPpYWdPZ8859YrKyM+ZCqfPK+Eqf4ddZ/pfPKc+/uOa+5cm8Enzysh
++I20FrP45HklJunNuHBwNp88r8SwsjfJdXP45Hkl6jK9/VbO45PnlRB7NZOl
+OPDJ8yq8/GT5bfICPnlehcLBFn0/LuST51VAgrHOoMV88rwKsy/0d7m/hE+e
+V8HXc9PBHsv45HkV7jQ0Nl5czifPq9Cqo3azliv55HkV3ky+53N8FZ88r0JM
+67+vf6/mk+dVSP3ZZ9HOtXzyvApFwdNO1azjk+dVcNM5g3Ub+OQ5d/0qwaGC
+jXzyvArbhidPWOzIJ8+r4NHR4GraZj55XoX+Qc13zd7CJ8+r0MXueWbcVj55
+XoVRU4dF22/nk+dV+GgVPjZ6B588r4LgyqaJk3bxyfMqZJouTInczSfPq+D1
+Iqhm/F4+eV6F1vqnz33ZxyfPq5Dm2O7jeGc+eV4F25BVuyMP8MnzKuyw8Q+Z
+eIhPnlfh0njVyW+H+eR5FdLH7SuYcpRPnlfhbPisyNhjfPK8ClOW+Q+Z5cIn
+z6vQmH3OMtWVT55XQUvX5u3Ck3zyvBqD/375kXeKT55Xw+TenM1r3PnkeTV0
+RzW/WnWaT55Xo1O75jO3n+WT59WwOLzH+6cHnzyvxpYWu9cePccnz6vxd1af
+z80u8Mnzaoxu8yroghefPK+GRnekSXdvPnlejQkLSvoGXOKT59UoKEt4b36F
+T55Xo3ONSfa7q3zyvBq/n2q7TfThk+fc51/xiUi6zifPqzGpl+jMcj8+eV6N
+deq1hTU3+OR5NRKiyiOdb/HJ82rEbg8a1vwOnzyvRmNN9vCr/nzyvBp7pl6N
+Ng3gk+fVKPykXRF8j0+eV+OC74xLkx/wyfNq3LK7lJj5kE+eV6PlXC0/x0d8
+8rwaP9Y8a2h8zCfPq6Eem1h4/gmfPOfuL/nk4l7P+OR5NVTdGtaEPOeT59zz
+2EzWmvaSeV6N5ztumRa9Yp5XQ2rcu3DvG+Z5DRyieWZtQpjnNdgsnCsJeMs8
+r0Hb03bbRr5nntegywjtzSkfmOc18G776ufmUOZ5DXIM9naShjPPa/Dm/t7I
+m5+Y5zXY+jdHYvOZeV6Dn5fj0lO+MM9rIGm7a8S2KOZ5DfrqqS1afWOe10Bx
+aX/Ig2jmeQ2a7eqbNOE787wG0+L6Hy7+wTyvgSrn0YdjcczzGtz9GedhkMA8
+r+E8ClWEJTLPa/BkiX/F8mTmeQ1u/grYwU9lntdAe5rs3O005nkNTs95MHpc
+BvO8Bup+v11LM5nnNVis02apWzbzvAaDNrWONstlntdg9yvD6Pg85nkNQr13
+Ld1VwDyvgWOC+cmuRcxzbj2nHxoXVsw859a7y6lLa0uZ5zUYsmjvwVblzPMa
+LFix7+fLCuZ5LWyuv2q+pIp5Xgt7P4dn4hrmeS2udnevCaplnteiunZP6HwZ
+87wWlW3sewsVzPNaDPa16BWkZJ7X4kza7JAFKuZ5LSoMc4vEGuZ5Lfwlf/yf
+NzDPa3Gxf8afZb+Y57UwW3urqtUf5nktbt4+su39X+Z5LXg/b3ts0hKQ57VY
+ecdqbDe+gDyvxS+tlZ4xAgF5XotR5x12HBAJyPNatGscXddfIiDPaxHfbpow
+Xyogz2vh8v7+kwvNBOR5Lfg6h+vHtxCQ57UQTm9M+NlSQJ7XYk7c7ElBrQXk
+ObdenR47rGorIM+5z0u05nVpLyDPa3Hku8GYOB0BeV6LU7+v6J3QFZDntbDY
+F3NhZCcBeV6Lxa5lt1SdBeR5LUpdu00J6iogz2vxQ3LJY113AXleixlvXR0N
+egjI8zro7utSkqUvoPNeh0ljjjRcMhCQ73WIsKkImGUkoPNfB7Pnx2WtewnI
++zrodTmcEmMioDyow4QWLea5mQrI/zqct3PYPrGvgPKhDuPCvPpKzATUB+pg
+clB26Et/AeVFHfxDfLe4DhRQP6iDKiXmz3gLAeVHHUYsDDSRDhJQX6jDY7Vj
+zVcrAeVJHV4dHz3z9BAB9Yc6dBMsnDVtqIDypQ6GPmWydsMF1Cfq8OZmt/6p
+NgLKmzqcPttb6jNSQP2iDqPEIw8vtxVQ/tTBLfmst8loAfWNOsyRT7GrGSOg
+PKpD5f4Hvi/HCah/1KHL23TPAxMElE91mGfQ0mD8JAH1kTqU2O+e2dpOQHlV
+By2hnUH6FAH1E+75B709d3uqgPKrDgt+/byxebqA+kodDHxGTB82U0B5VodE
+11d+4tkC6i91uDnnikfiHAHlWx2ufu+sf3OegPpMHb7nbJzhNF9AeVeHjXc+
+GY5cKKB+UwfFqjmXWi4WUP7VweH8nMDsJQLqO3Xo9U2z4vEyAeVhHe4nb397
+aIWA+k8dOj349XLGKgHlI/d+1n2eabRGQH2oDo1LxOfVawWUl3WIFiu3R68X
+UD+qwx5xhMZvo4Dysw7tzAP1dzoKqC/VYbdrQeVkJwHlaR1cLa8v6LlVQP2J
+2y/n2zlqtgkoX+tQYbrXMG6HgPpUHeyDJAfv7RJQ3tbhs7De+cgeAfWrOmwb
+tkd/4T4B5W8dVp+NWmflLKC+VYfwTd3ntjkooDzm3r/T47LKQwLqX9x6LHuu
+H3VEQPnM7ZfBq/7eOSagPsY9v27DkaMuAsrrOlyZ9+DhshMC6md16O78ZD9O
+CSi/6xAyZKxcz11Afa0ODZt8WzeeFlCec59vpknMPSug/lYHu3duCPMUUL7L
+8PSUx8zb5wXU52R4PsS2pauXgPJehnaXU5zWewuo38lQEnh6n/1lAeW/DGH3
+fMwsrgqo78mQX2N7qqOPgDyQYVb7F2f+XBdQ/5OhZ+bA4UV+AvJBhr028nPR
+NwXUB2VIX2J5/vltAXkhw/BrA2x8/AXUD2UY5mzg6RIgID9kGPVhwlmn+wLq
+i9zzTMscvOChgDyRoe2Mzm7jHgmoP8pg2WHkSfMgAfkiw4qeruZ6TwXUJ2Vw
+M+vv2vy5gLyRYZXRdteGFwLqlzLcNDxvUfZKQP7IoOsc5Zb6RkB9k3v+p7M8
+IkME5JEMPs5bbd+8E1D/lOFw5FLf+x8E5JMMl54uun8tVEB9lPv7M3eXnw1n
+XslwvHB/5JEIAfVTGWSOXTN3fmF+ydCxe4TPhigB9VUZTnZ42WLZN+aZDHee
+mPWdGyOg/irDN2dHzZQfzDcZnEe82DE2TkB9VoZzlaNu2CQw72RY8HLufqsk
+AfVbGRL+WogHpDD/ZIha3nGUaZqA+q4M0sdj+xllMA9lOF3+K7JHloD6rww3
+ph/U6ZbDfOT219yW7TrnCagPy7DsdkWobgHzUobsTg49OxQJqB/LkPP9kqVO
+CfNThqo2Ver2ZQLqyzKUrr20WaeCeSqDlWfWpQ5VAurPMtQe/Lu9Yw3zVQZt
+Lsy71AmoT8tw9FrxuO5y5q0Mp6LNbXoqBdSvZQj6sq7EWMX8laH1tR9j+2oE
+1Ldl2OcRMM/8J/NYhluG1j2sfwuof8swrs3na/jLfJZh0YQL3ydoCamPywBl
+6YvpfCF5LUPafunMBUIh9XMZvjoP818lFpLfMlyL/fTYSSqkvi5DkWvF5v3N
+hOS5HHtrlcUnWgjJcznOe5rqXGwlJM/l+Nk3tuFWGyF5LsfQD/0uPW0nJM/l
+eHvwVFWojpA8l0OQ1+9nnK6QPJcj2mNJaH4nIXnO/f3uNVB0EZLncgjfnt4t
+6i4kz+W4/rbz+k49hOS5HEs7zNXp11NInsvx8obbXltDIXkux4RtWlfmGAvJ
+czmXH1rbN5oIyXM58tclS46aCslzObKLI+dd6Sskz+WYOd9g5VMzIXkuxwnJ
+gD7fBgjJczl+b7V+VGguJM/l8Jp3quqPpZA8lyP4xaayToOF5Lkcbp/Mbg6y
+FpLncoh+d+w4Y5iQPJejj87uyZtthOS5HP20Lg0/PVJInnPrL/9U8cBWSJ7L
+sWbRZIdvo4XkuRzzq3cdrxgrJM/lqLng7dR8gpA8l+PmAVVns0lC8lyONh2L
+jk2zE5Lncui3ePRom72QPJej90S/S97ThOS5HB1V0tFvZwjJczl8Dls/ypsl
+JM/lmHzeOV08V0iey/G5g1GkmYOQPOfW2+rgrjkLhOS5HPGLM0oPLBKS53KM
+GXqya8ASIXkux7kXqW3jlwnJczlyf3eK/rVCSJ7LMfqwzwST1ULyXI7y6mcn
+Zq0VkudyYPAj98PrheS5HC3ds2Y93igkz+UIWHo+L8tRSJ7LIV2vb9Fii5A8
+l6PhetpEm21C8lwO6yEtjR13CMlz7n0HtYn03SUkz+XoEmE1IH6PkDyXY8CO
+2MXC/ULyXI5XPPNZ1geE5Lkcg2WPWjseEpLncqi1r164dURInsthMHdSbtox
+IXkuR5VBG0VrVyF5LsdDrTGxE04KyXM5GsMH7zjsJiTP5ag7bFsQfFpInsvR
+4uLLzsqzQvJcjlPXK7sMOCckzxVY7WxdsuGCkDxX4Og8+f6Ai0LyXIGIy05Z
+RZeE5LmC+8otlhpeFZLnCnSd3LpxuY+QPFegW2Fu2E1fIXmuwJxBcdMLbgjJ
+cwX2/RkSaHhbSJ4roBjtlLTaX0ieK1Bv/+PrvQAhea7AtcBHp6vuC8lzBbQt
+1nQ3DxSS5wo4q6Y773osJM8V2Dgv8v67J0LyXAFftcFdwXMhea7AuI/vt9q9
+FJLnCrTPkrXwei0kz7n7Deu8JztYSJ4rIO3t+dzknZA8V0DW6snHbR+E5LkC
+z0KSfD6ECslzBfJfzrdr/klIniugF3812uGzkDxXwNBQ2T0gUkieK5AtDR+t
++iokzxU4aLx82PgYIXmuwJkV/UWXfgjJcwV+17reLosTkucKWI+N6jA8UUie
+KzCs2/RFZ5OF5LkC3vuddxekCslz7nqBD9cOyRCS5wp0sbUxO5MlJM8VELU6
+E1WYIyTPFSgf9Gfo8Hwhea7A+C5VRy4UCslzBTw2BN+oKhaS5wpYdP7sPb5M
+SJ4rcHuZ06qbFULyXIH14Z2a/akSkucKGEsMTs6vFZLn3PsaWZXzSiYkz7n9
+9zGtVQelkDxX4F3vSZ12qITkuQKFS/x+JWqE5LkCKWdHBA/6JSTPFdjTz3WG
+9x8hec69P3lmhKZRSJ4r8KroZvtFfBF5roC73fCRoUIRec6dhzfNxxlLROS5
+Ao2C3b3dtUXkuQIv7PPLZM1F5LkCd34/dp3fSkSeK9Dj41h+eBsRea5AmJtk
+Ud/2IvKcWw+fRV4XO4jIcwVG7rn/UKuTiDxXwK981q1NXUTkuQJGgvA96d1E
+5LkCF/QWDJjQQ0SeK5CedfTLy54i8lyJRuPbI42NROS5EkamBpcv9hKR50ps
+WLQ2UWwqIs+VkDtn1O3pKyLPlYg8W1hXaSYiz5VIyapIXDpQRJ4rkaFxuJpk
+ISLPlbB/6z12spWIPFdi3piWiaFDROS5EiEq4/HWw0TkuRIfjkz2fWIjIs+V
+0EstyjSFiDxXonbA0sbbo0TkuRLuzY20e4wVkedK7B7g23B1vIg8V8IuwDq+
+4yQRea6Ed8QSz4t2IvJciTA95yE6U0XkuRL1539/uTBdRJ4r8XPMFOjMEpHn
+SnS8mnrj4hwRea7k8qp5VUcHEXmuxDbz2T2vLRCR50qcu95jVI/FIvJcidHC
+TLs7S0XkuRLjTJSj+qwQkedK8FumGz5dJSLPlViqpZFZrxWR50pc8vwYGLZe
+RJ4r0eqc72y7TSLyXAnjzsKK5M0i8lyJZseXOi7fKiLPlTi9RT+3eruIPFei
+OPQV9u8Skefc76+e99DeKyLPldBaYxR7eb+IPFfi/I+sv70PishzJQaE9+sR
+clhEnithstVl4JRjIvJcCZW9g2Wui4g8V0LQsmPv7SdF5LkSG+9Ytpa6i8hz
+Jd7Z6ZdfPyMiz7l5/7RXgzxF5LkS+jWWu2POi8hzJaZet+23+qKIPFeia0RZ
+8t9LIvJciYPZfjuuXBWR59x+vJMutbouIs+VULZrdiHeT0SeK2G60r+90y0R
+ea6Eb0t995b+IvJciddfaxoCA0TkuRKDz7gus38gIs+VqHRf9LEmUESeK7Fy
+SInuuSARea6Ex8grawc9E5HnSmw9U/k07YWIPFcifMos1YHXIvJciSv5462M
+QkTkuRKtq22cot+JyHMlcu0C72z/KCLPlWiu2yKlW7iIPK/HXt9EQWSEiDyv
+x5lt+/pvixSR5/WInr9nrt43EXlej41zxjlHx4jI83rI/ebf2BsrIs/r8TXQ
+7FPvBBF5Xo8Ek2HFaUki8rweaqVa7JYqIs/r8W5AXm+bDBF5Xo/vfTbZ1WaJ
+yHPufpw6ON3OFZHn9bj+fo6XQ4GIPK/HumYBb1sVi8jzevgfPlb8uVREntej
+6NDqdgcrROR5PaQ+kaOHVIvI83rE+RjtltWKyPN6TD+gDgqUi8jzemzf+LZ6
+Xb2IPK/HtsjKgb00IvK8HtMMhfuKforIc+7vRx/+evuPiDyvh2OnrB6rtMTk
+Obc+Xy8cMBaIyfN6GD4wLCwVicnzeoyykc54KBWT5/VYaf4h0qm5mDyvx/11
+4ROsWonJ83ocrTkX/6uNmDyvR6vf91d/ai8mz+txQnVCeFpXTJ7X4+bm+4/n
+dBaT5/Wo7XF6lX43MXlej5F1j3pV6YnJ83poak7Xv+kpJs/rsXt2QLyrkZg8
+r8fqI/vfzjERk+f1aPP3xHPjPmLyvB6he+1CVP3E5Dm3/t/GxkUNEJPn9ehc
+Ia+/ZiEmz+vR+mdS3y1WYvK8HrYjN2wbZy0mz+vhqmfxretwMXlej+PGgZaK
+EWLynNuPjfOCom3F5Hk9cva/HOE/Rkye16PuxNjcQ+PF5Dm3nhYuXgsniclz
+bv/cVy+2niImz+sRb93NRneamDyvx8NJ2wfUzxCT5/XYs+KAdfJsMXnOnSfj
+t/NezROT5/UwmP7ozOUFYvK8HpNDkjL2LxaT5/VYNOcZli0Tk+fc8/SNfDdu
+pZg8r0fWEq+Z/daIyfN6XO59jaezXkye18M0bdG33xvF5Hk91icseFSyWUye
+qxDiqfswfquYPFfB7EbbiPc7xOS5Cj43vmse7BaT5yrEjYmZdGWfmDxXwXuK
+x+uTB8TkuQo5Zy6P3ntYTJ6rEF++vnLDMTF5rkL5dJdni13F5LkK4rBNl2ec
+EpPnKhwce+v6+NNi8lwFc1lAuI2HmDxXwau0UTLovJg8VyFiRr/N/S6KyXMV
+Tq8Iqje+LCbPVdg6u7mf/jUxec4977rwDd18xeS5CttL5s7vfFNMnquwo7Pd
+xo53xOS5Cqtm9LypGyAmz1V4nbfwl+4DMXmuQmDXA/s6PRKT5ypMnyfp0fWJ
+mDznrl/mXK73XEyeq3DXYFmG4Ssxec493zxLuWmwmDxXoXnSHnPzd2LyXIXv
+Bc8uD/0oJs9VuB+5sveYcDF5roJDaMt8+89i8lyFlgLLT/OjxOS5Civfz4ld
+Ey0mz1WY2F4j2vlDTJ6rUNPdZ+3xeDF5rsKTik9KryQxea6C1j7Zo7upYvJc
+hUkf7l4IzhCT5ypkXV1993u2mDxX4UdBUElBnpg8V6FgnmROQ6GYPFdh9f1q
+WZtSMXmugu72ovemFWLyXIXG4Y7BY6rF5LkKC3dqFy+pE5PnKjjuHTZqv0JM
+nquw1O3Ij8sqMXmuQo/4pWdeN4jJcxUGL5p7MPW3mDxXwV+v5KamUUyeqxBc
+46HpIpCQ5yqUHk86OlIsIc+5/b9v0KiV2hLyXIWukwYOOtVCQp6rMHnixEVP
+WkvIcxVOPPodnNZOQp6rcMTtuz1fV0Keq8CPGdbJrLOEPFfhs3VE5/ndJOS5
+CuO3lM907SEhz7n9Xm4a8cJAQp5zny8Xbi4ylpDnKuwNbJjewVRCnnP30/qE
+44R+EvJcBWVh34h9AyTkuRp7Pq+ZE2QhIc/VsOnxqmexlYQ8VyOj72XTbkMl
+5LkaFQo3x9k2EvJcjYQpLWrOQEKeq+GeeuVh1GgJea7GjsYnd4XjJeS5Gh0b
+fuSOmiQhz9X4Fbpl3uEpEvJcjTVd2rcKnSYhz9WwPGsh5M2SkOdqnF9vN2zM
+XAl5rkb2u/QnrvMl5LkaCxfMXxe9SEKeq9E+edzytssk5LkaHoe6+DislJDn
+agRtmNn55hoJea7G1lXr0ivWS8hzNT6qUrKsHCXkuRrD1nQyOrpFQp6rIX16
+Nyh2u4Q8V+PWmV+H9HZLyHM1fNd7Xty8T0Keq+GyLqfu4wEJea7GlRVLzrc7
+IiHP1XhQeHLfmuMS8lyNUtOU+29PSMhzNe4bfdBv5y4hz9Ww2/4md/1ZCXmu
+xs+VNqXh5yTkOfd58tAh3S9KyHM1rCPfxe+5LCHP1Xhodfdl8jUJec7dz3BF
+oaWfhDxX4+2hzosv3JKQ52pcnX62p9JfQp6r4Xj7i/nc+xLyXA15uyFngwMl
+5LkaE3JmDdF7IiHP1fhW6ml2/LmEPFdD/Xz51spXEvJcjTHrhgpmh0jIczX4
+39wK37+XkOdqjB8R1c40TEKeq/Hp08pzFyMk5LkaL3/9WCqIkpDnanzR239w
+W7SEPFdDqZVeXfBDQp6rcaj1/MezEyTkObefp20MjUyWkOdqbFlyyMgmXUKe
+q1HgKMx8miUhz9UIHLe+qHeehDzn9seobqNuFkrIczXSprrLupRKyHM1AmoM
+VRcrJOS5Gt7ms6a1q5GQ52oseOPyx0MmIc/V2PzMhNe6XkKeq9E6+84CD42E
+PFdjxNF1zdr+lpDnanzYnd3Gq1FCnmvQU2/z5k4CKXmuQdTS44a+Yil5rkFt
+0KmBxs2k5LkGIdqlFx+1lJLnGoysFc4e0lZKnmtwZZ3dxnAdKXmuwR++QdbU
+TlLyXIPo2Nq7WV2l5LkGd1d2jdnYQ0qea3A+udmU3wZS8lyDFh8MTc72kpLn
+GpgNjl7cs4+UPOfuN2V13UszKXmuwYXX83LtzKXkuQZTNgv7Fg6Skuca5LWM
+TdxvLSXPNbhu3CWjg42UPNdgSeiEkU8hJc81eL8yWGvqGCl5rsGk1nE9q8ZL
+yXMNPg6vuuk+WUqea2Cb4Xik31Qpea6B16wXoT9mSMlzDdad0Fu2bY6UPNfA
+I7rZso7zpeS5BvaVKaHvF0nJcw18euUdXb1MSp5rsN/82N1Wq6TkObf+lt36
+Ba+VkucaZH4W66zeKCXPNRhff31JOycpea7Bl5E2LcK2SclzDaZ7Du++dZeU
+PNegYkL9OYN9UvJcA7Fl+IbkA1LyXIOqMz8DTh2RkucaGAhUk+AiJc81SHnQ
+fIbqpJQ818Cu2fn3j09LyXPu+drneqzzlJLnGgQYTowy9JKS5xpcEhqszbsk
+Jc81mFoRusn3mpQ812DT9j3pi/2k5LkGR+9de6R3W0qea3D5l3N53l0pea7B
+qwmbz9x5ICXPNXCMC72y/rGUPNdg46jPrQY+k5LnGkgfR1epX0rJcw1yPQ0H
+hQVLyXMNVkd3LXZ/LyXPNTjlz9dyCJOS59zzfTd2Mf4sJc812DI3YYcySkqe
+a9A6ZHZsRIyUPNdgZorGyztOSp5roFuj/WV9kpQ81+DGvYQVI9Ok5Dm3Hm2v
+b9TJkpLnGky79CyvMldKnmuwqOWi8IhCKXmuwZ77+W38SqXkeQOChO4x+yql
+5HkD0rr41c+rlZLnDVg2edXpwQoped4Andn653TVUvK8ARULuJT4KSXPG5BR
+6Fmc8VdKnjfgYfJ3q498bfK8AXF72tXfEWuT5w2w3X3T8HQzbfK8AXOy3oXt
+aKVNnjcgUOdu7JJ22uR5A1rVXLefrKtNnjdg+qWi4UO6aJPnDRh3I/iqsZ42
+ec59fsPCDR0MtMnzBujWaz8U99ImzxtQM5a3uMFUmzxvwOLfBw9Xm2mT5w2Y
+5fGxQ6G5NnneAOeEv90yrLTJ8waM+bXbO2GoNnnOrZ/f6qMxI7TJ8wYMfs3L
+jxylTZ43oM8Vl2cR47TJ8was+WuqDp+kTZ434JSWSVC4vTZ53oChXV5kfJqh
+TZ43YJCJdN+XOdrkeQMcV80/822+NnneAMMt2Tpxi7XJ8wYIJn9tk7pcmzxv
+wIRZM47krtYmzxuQM/X+mvL12uR5A84uF4YpHbXJ8wbot7voydumTZ434Nyk
+M8mtd2mT5w2wnqXn2WOfNnneAF72ntCBB7Vt/w9HjB69
+ "]]},
+ Annotation[#, "Charting`Private`Tag#1"]& ],
+ {"WolframDynamicHighlight", <|
+ "Label" -> {"XYLabel"}, "Ball" -> {"IndicatedBall"}|>}],
+ StyleBox[
+ DynamicBox[(Charting`HighlightActionBox["DynamicHighlight", {},
+ Slot["HighlightElements"],
+ Slot["LayoutOptions"],
+ Slot["Meta"],
+ Charting`HighlightActionFunction["DynamicHighlight", {{
+ Annotation[{
+ Directive[
+ PointSize[0.0055000000000000005`],
+ RGBColor[0.368417, 0.506779, 0.709798],
+ AbsoluteThickness[2]],
+ Point[CompressedData["
+1:eJxd13dcje//B/DOPtkj2UlDQqhEiFf2SPbI3luyZ7ZCoZCslJWMyKasShRF
+e++9xxmdc7L63fq8r+8fv/7xeD/Sfe77uq/r9XydniucZq7ma2lpWYu1tP79
+u1/n8YT8fcfxof/Hfu21tGz//xwyqQW/7wlXpA6+ZNmRm38e3PBux4WTWF7p
+49OVm4e+iNr1wc8Nxw7GrdXn5r3lvcylgafxvpfFRWNufqPnUjnjzVnU6YUb
+9eXm3/dlCfYrPDH37mFdc272idB/sm3dOZzU2rxhCDcPz5125tLm83De6aY/
+kpszG5o+EMdnpFiP+9/9eWF68YznU7i564BsI/GRi6h2+eMx+3/3643Pp9N/
+LOLmBauarogb80qcVv/v/i/j9kSj7Zu5+eqVph/M+HIhbff/nucqTg+3unGE
+m9N/qGcV+l/D+Y7a39z/93w+4P1oPdebmzsL57Yye3YdySmTxt783/P6Yu3j
+116B3Ozw3wWxNXn+hDf/e/4baB4/cFEEN08ZcmrUsuIbeNhnRGLc/9bjJky2
+HArM5uaqGf+ueBMvLDWlFf9bn1sob37PRcPN7ptKf92X3ULwBQ8XMY+t123s
+2xBUqsPNfU/oco9wG/mW0kBDHlu/OxBevppgwc3RN8e9Uvy5g/lj1i4czWPr
+6Y83JZvHz+Tmf6vVSXgXC4Y8u7CCx9b3LtJqzMds5+Zmqbe3jGgWgP7RNbOP
+89h6ByDkbHnURW5+8O9x29zDCC1DvwAeW/97SKu4lhrMzZP/XU73PtrqzdkW
+w2Pv4z7iHac55XJz03J3e4AVz9x/yHns/TzAzqhmnmK+lu2/1YszeIju574/
+78Jn7+sh4mVJQwdws+kij/D63oHYnNTTYCyfvb9AWJm83DSfm79yV+sy4BGi
+szw6O/HZ+3yEkVXPertw87pz1c6weoy/03tcvcZn7/cxipqlOD7jZu7muEcO
+Qn+9tNtf+ex9B+HYhV42+dw8m9s83CtFze7wwQ189v6foCQr8EJbgZbtHW71
+Um8/wbi0kpl9BGw/PMHM41t3jOFm5Z+kPeW9niKk0V6zSMD2x1N4OR7I2cXN
+Y5s2wFOsqNcyOSdg++UpWn9Kj3/IzdzL+/dAqBFr534RsP3zDOH1HlMLuPm/
+23uGF1FO+n8FbD89w+L392d3EWrZWjb9PEdoB1QOFrL99RxTOpkXzeLmY6Hf
+uB30HLmtj2CrkO235/hkN/DPWW5O5N4+tyZ42sO2+yMh238vEFf41C+amw2b
+LvgCL5SuxyuEbD++wKrnodHaIi3b7U0v4CXmuCzbaSpi+/MlNiWtPTKJmz/V
+9+be8EtotU6rXS9i+/UVUgOehbpxc7v/bhBmug2KhyK2f18hMDnw1Hdubrq7
+qFfYsSb2SK2I7efX6Gi/IqutWMv22fXagC92r3Gt3dorg8Rsf7/G/rG5b+Zx
+M7/pgV/j3o6YYfvFbL+/gevQgT38uHnmfxsGCrMWaz6J2f5/A8iWty7j5lv/
+HjfpDQabWHZtKWHnIRid9xw5ZcHN8n+XcwjGLc+pCxwk7HwEQ2Tgc+YgN4/+
+t/0zg1GTv9HQX8LOSwhOuH3sGsPNTdt3SQi2ZFzepZCw8xOCKK8Gy65SLdv8
+ff9eSAh6HymcNUbKztNb3NvokLKRm82bNvhbZBkteOslZefrLVKOVPA/cPOR
+i2O4LfMWJouaPyqVsvP2DnnnPgS31dayjTdoesHwFIlNbbTZ+XuHyb6FP9dw
+c89/6V/9DjcmzB9wXpudx/e4K1v35T03b/13PLa8h9JTJ7Rcm53P9/DXW9JN
+t5mWbdi/t6t4j7mXJ2SObsbO6wf010r87cTNbf47kEhcxD9yvRk7vx+wOzh1
+bTQ3Ny1fwwfEGc952tCMneeP6PbKeXHv5lq2Tbfn/BEGx6Zvmtecne+PsHyQ
+kO3KzVpNP6HobS969qo5O++hWHO+oqyEm+99seNOdCiy7xw/2rEFO/+haP4i
++eBEbp7OnUZuj6JBkZu9twXLg1Dgur/fQ27W/NMnIhT86t4R2S1YPoRCY7TJ
+rk1LLdsbXf4diDCsc99qNaYly4swmGwcfnQXN09sesFh8GsfY/6gJcuPMMSk
+GY/N4ea6gH83GAab9nbB7VqxPAlDe/2R5yZw8+V/d/ctDNrLeTHOrVi+hMHR
+5tL6Z9z8b3NNahEOo+78DWWtWN6EI3Db2O96rbVs/6VJgn04uj5ddmFOa5Y/
+4dCfMf/daW7+t1u4LQNx3MCJEa1ZHoXjaVD54N/c3PS4ceG4s8v15KA2LJ/C
+8TtIe4QjNzddrt0n7KrcOftuG5ZXn7D5/fcfudzcFEezPiHvQ/vAzm1Zfn3C
+mjOTq2Zx83/14RNGRe/wONuW5dknTOtx8eJXbm6Kg9RP0LV6/FfYjuXbJ3x4
+F/7NlpsPNQVOBHQ3Jjc4t2N5F4HzDWXuwdxs0nSAIjC9l9YRVTuWfxHQedE9
+3bK9lm1sU72IgP2GsV5b27M8jED7DrufBXHz7n/HITsC/VzeWNa0Z/kYAYln
+805mOlq2Pf5tZ73P+Nx6+9JNOiwvP8O8UKYdyM2R/7bfss/4Wu3WsUqH5edn
+hHQcdbJfBy1bp6aA/IxC+46LHDuwPP3Mne82Fx5zc8emA/8Z6fcHmNV1YPn6
+BcWhu/tY6GrZNt2e0RcEfql026HL8vYLvD6enfqam9c0/XzBxxcrd/7UZfn7
+BYIXjo0jOmrZ/itPXMJCFRtUdaQjy+MvKOphNuILN/9Lxz3lX5D5sayuWSeW
+z5G4FVcsmc7NS5ouGImw3SZHL3ZieR2Jw7lPlmZys7gpoCJROtjlRs/OLL8j
+8elpwNh13Pzvbeg85q53suuUoM4szyORoil8peLmpnZXG4m9Y4UuI7uwfI/C
+hmeHXrly899/x808CjPPzreL7cLyPgq3e18c06mrlu3df9t5WxQupVj5Le/K
+8j8K1vKRSx5y89T/HhjzM54fru/KPIiCr/yS2Lablq3q3+uoj8K+2zW1bt2Y
+D18xYMFbmxRu9v33uEO+IuEkr7pnd+bFV9jfjdDazM3jmxbwKxb1l+4J6c78
++IpzN2NnSvS0bGuaePiKuS5652brMU++onqlxuIWN3v/i/dfX7E1Zpl1nR7z
+5RsyZi68ObKHlm1TPI/4hp8elY5nejBvvuFIzw6+WdzcFK8Hv+HP/UzzfvrM
+n2/Iixtt6szN/8XfN+wZPfV4jD7z6Bt+BfHGdO+pZdsUL/xoHIpdtnpzT+ZT
+NISLnCo/cnPT8R0TjU0dzJPbGjCvouESet9gFTc3HQ+XaEhMshNfGTC/onGu
+Y2yZtqGW7X/bLxovVh9bvtiQeRaNyvI/I55yc/K/1yuNwc0jow+KjJhvMRjU
+eo7BAm4+0BSAMZDtHdonyIh5F4OujxUXhcZatsZNGzAGFT4nVi8wZv7FwN2m
+4fITbv4e0/QDo5NTBkp6MQ9jkHLIpe8Sbt7ZFKjfEdz7ntvLXszH7yg+/ca+
+pYmWbfemDf0dW96G7Fhtwrz8jk1Rzxrfc/Pnpq9X31EXc6dGtzfz8zt0Sr1G
+beFmx6aA/g750BOar72Zp9/xqPpQeyNTLdumuNL5AccBx84fNGW+/sAK84s7
+07m5KQ7m/kBUn5B3g/owb3+gdJ5qrSc3//f16wfa/bTfXdWH+fsDj+Z9rpjY
+V8u2xX8HDv3eLQv378s8/gGdPUZ/+f20bJu2S5dYaOXr+C7rx3yOxfUZg299
+4Oam17EoFi9MzzTrbsa8jkXPH91T93Pzf1/PYpFzr0qSacb8jkVj778+w/pr
+2TZdLjcWr8Pnel/tzzyPg0PtT8XP/uy8x2GWWe3LhQOY73Hc9xnrrHcD2PmP
+Q3xd+hq9gcz7OFSfTp9zeCDLgzhcWjv8fsFA5n8ceJ2Fy8eZs3yIg8tI6wP3
+zFkfiEPgvqw/zS1YXsTBbGd9gZMF6wdxqM040S/JguVHHJotuZxhbcn6Qhy+
+v+xbfd2S5Ukcgn3HrxIMYv0hDm4Z1Vg/iOVLHCwG9jocO4j1iXjkbVQaDbZi
+eRMPraWL+1+3Yv0iHsPyVvsIB7P8icf+6HZOmwazvhGPat76u0mDWR7FQ7DB
+cfSIIax/xGN7rdGYu0NYPsXD5pjXvdbWrI/EI6Br2La91iyv4jHxRdDNQmvW
+T7j7mbraaupQll/x4NeWmAUPZX0lHrG3hrobDWN5Fo8R+1bYew5j/SUeu93X
+7Pg9jOUbdz35ZK31w1mfScDzHzqy5OEs7xLwZcLX8WNsWL9JQMxJR95TG5Z/
+Cdz+EffsMYL1nQRk9L3qf2YEy8MEVDX28/g9gvWfBEgPR2RvHMnyMQFB8tXn
+MkeyPpSA77d1H9iB5WUCXhVlmrwD60cJGNDibTMzW5afCVi/K3imry3rSwmQ
+uGQ1th7F8jQB+n6m7Y6OYv0pATC/e0o5iuVrItY+mrdm7WjWpxLRwX3MvYzR
+LG8TYTvBadrUMaxfJWLJqryF4WNY/iZi1Qaf74PHsr6ViG8l9+48HMvyOBHu
+m5rn649j/SsRpl5fj3qPY/mciMe/yk61GM/6WCIejXdSHR3P8joRk/RWRDWM
+Z/0sERbmkY1bJrD8TsQ9yzs+ZRNYX0vEkdy/vssmsjxPhIkyS5w+kfW3RFwb
+PDZpxiSW70nYt3WYJHoS63NJ+LXjs9/YySzvk6DSrbz+YTLrd0nIt3jKG2rH
+8j+J60fdo5/bsb6XBJ8Vg3/2n8I8SMKFSTyPB1NY/0vCj+nHT/WyZz4koeWW
+z+W37FkfTMLbO9+CekxlXnCfL7uS6TOV9cMkeC4b6thlGvMjCa0aH6+6PI31
+xSQE5WuF605nniRhk4GVy8XprD8m4XfejMc6M5gvyUgavXiE1wzWJ5Nhun2x
+hc5M5k0yNLccznjNZP0yGTztOVM7zGL+JCM232Gn9yzWN5PxxmkDv9Ns5lEy
+cn961F+ZzfpnMqzjY6d2m8N8Sobb+IGt/OawPpqMbS9eWxrMZV4lY+W+TR/9
+57J+mozAP7Ofms5jfiVjz/3d2o/nsb6ajPiajEgLB+ZZMu6Odal67cD6awq+
+mBzYPWI+8y0FlV2+rvs0n/XZFLy66xQ6aQHzjpvn7z4Yt4D12xSsjyq5NW8h
+8y8FI85EmOUuZH03Bd4TO/ZYu4h5mILvN4p31S5i/TcFQ0YPttqzmPmYAoPc
+1gt4S1gfTkH2gL3FbkuYlyl4I9+TqrOU9eMUSKo6DPRbyvxMgXHJ3FrTZawv
+p2DX09EdXi5jnqZgk1HeTdvlrD+nwrXr4Isxy5mvqZi3167WYQXr06lw6WXy
+pHgF8zYVP9rGpW5byfp1KrQH2q/RWsX8TYWZs//Cs6tY307FVHXu626rmcep
+uHNPsP/hata/U+F+vaP/sDXM51S4lRsM/raG9fFUTL/br/+CtczrVLxVDD9T
+sZb181Rkq+fN2r+O+Z0Kdc6Jwy3Ws77O3X9mgo7veuZ5Gob2sm0zcAPzPA3C
+vynbwjcwz9Oge8/XZs5G5nka8p18Hcs2Ms/ToBeQLXLexDxPQ4z/SlEbR+Z5
+GoZ8G7LpjiPzPA0/9ywfNnQz8zwNjd3KnH5sZp6n4aRJYotVTszzNPRr06ft
+TyfmeRqyZiudPbcwz9NQsXfodJOtzPM0iJvx3D9sZZ6nYZz3TLO525jnaTB4
+ZTWkZhvzPB1HJc/uuW5nnqcjuH/skR47mOfpcEvxCn+zg3mejr5Pmm2cuZN5
+ng677db7q3Yyz9PROsdY4bqLeZ6O7i8zEnruZp6n4+qnJV3e72aep6NfZvBX
+hz3M83QIkxR5yj3M83RknNZZdm4v8zwdygrDCf33Mc/T0SfD1Dt6H/M8HUVT
++tuv3888T0cvm6GbJM7M83S4B8xU+DszzzNgf/FowdgDzPMMTGgXP7ToAPM8
+Axrz8Q3HDjLPM3CyVYW+0SHmeQa+RkU8iTjEPM/AiJM591YfZp5noON+aEuO
+MM8zgJTa+HtHmOcZcEhW8+2OMs8z8CFkqU/1UeZ5BjxjB/h6HmOeZ+DJyi3S
+QceZ5xn4/N00M/U48zwDozau0nV2YZ5nYNWN3iH6rszzTIxKO/jlsyvzPBPv
+jzsN33iCeZ6JK3qCzm1PMs8zsdl49NLXJ5nnmXjdw6rVklPM80wkXS0yFrkx
+zzMh7Tv/bqAb8zwTxzde85jtzjzPxJq/z/N/uzPPM/Hu9EMf/9PM80yc+eIW
+OvUM8zwTqSsW2GvOMM8z4d3DcMyts8zzTESGVd+c4sE8z8T6Dp/Wqz2Y55lw
+rX549ZYn8zwLlkZPB009xzzPwsWrmUN+nmOeZ6HIetCdu+eZ51nYUvNp76wL
+zPMs+D+98EbLi3mehZaHA5c99mKeZ2H2ko7bFl1knmdhmkN2VTNv5nkWfh+W
+xAd7M8+zcEruq7f+EvM8C/N+BCZ3usw8z8Ivm2GqqMvM8yyM3zz98N4rzPMs
+TLqi2d7nKvM8C3N+D4/PvMo8z4Ig2/DymWvM82xYnQyOgg/zPBvdZ4pXyn2Y
+59mAd/u1/teZ59nY+boiycGXeZ4NVY+LgS38mOfZmDuqW02oH/M8G+5ep67s
+vME8z4bySsnjPjeZ59lYmG7TP+8m8zwbDfkXO3rfYp5nY//kXxum3GaeZ0P0
+dFdvwR3meTaGvG07PeQO8zwbFrop+Vv9mefZuL7re7bpXeZ5Du5c5o0tuMs8
+z4HA1lnnWgDzPAdS6wnTZt9jnufgwqxNypb3mec5MHCsF0TdZ57nIG5N1YGj
+D5jnOZjfZ+GKEQ+Z5zkwum/3VPOQeZ4DZEVueBHIPM/Bpoj0s1seMc9zoL/B
+vbvZY+Z5Dk5ml+hWPGae58BzsGpfQBDzPAeFXp8mrX7CPM+Busf8Y4ZPmec5
+XNiEmRQ8ZZ7novcR0ZCbz5jnuRj0feDTZc+Z57moMLf31n/BPM9F7p9VJXkv
+mOe58Dxx9ObNl8zzXCw0exK54hXzPBfuczQORq+Z57lYsnn1nJLXzPNc8Gp4
+7++9YZ7nwndmmsfGYOZ5LhYbKL73D2Ge52Jt5aLd8hDmeS6qx+iffvWWeZ6L
+/t8mtNj/jnmei91GOWq8Z57nYQCvZqroAzvveUjUPdo2+gPzPQ9CI3+c+8jO
+fx5ca5enzwtl3udh3MRPOXphLA/ysESUNK0kjPmfhx5iv36Pw1k+5KG1xYCd
+uz6xPpAH5R4PU0SwvOA+P+HbJOln1g/y8BtVyfGfWX7kQfr17/drX1hfyEPR
+wZYWayJZnuQhYZ8h3zyK9Yc8bMmxG/k7iuVLHt4nniuJ/Mr6RB70zmj9uvCN
+5U0elo+7vX9ZNOsXeYiCyzqzGJY/eZBEPQ37GcP6Rh6mWQw6EfWd5VEepmZ2
+DPb+wfpHHob3XjdvdSzLpzwkuw5cMSiO9ZE8bHR0ThfEs7zKQ/6Cee8T41k/
+ycOrlJiWdxJYfuVBe2vZtx2JrK/kwTf8pXJcEsuzPBRusnXvmMz6Sx7Unb3O
+liezfMvDI+d3f9+msD6TD+/pnzPPprK8y0fj/BDjFWms3+RDa01AllU6y798
+7J18WatZBus7+ehecvlcTgbLw3zs0H/p8TyT9Z98FJVrfp7MYvmYj5fDtyQu
+yWZ9KB8dOpl0tspheZmPnm6mMc1zWT/KR7n/saqCXJaf+dh+ctS+kDzWl/IR
+Oc9p5/l8lqf5qBvdOWdDAetP+eAftXsxppDlaz4M57bTdCtifSofp7X33VcV
+sbzNh1ft2ai4Ytav8vFs1eI5D0tY/ubD5Ydsmmsp61v5SL/m8GZ5GcvjfDwa
+63t2RDnrX/kYNjk2oXMFy+d8aAZrjqsqWB/Lx21fY//ESpbX+Rijt8ryaRXr
+Z/mwXBQ6wKOa5Xc+jKQTrjrWsL7GPU+mcPuUWpbn+fC/JA7pW8f6Wz6Oa893
+ai5j+V6AVmLtC5Uy1ucKINxkaBwjZ3lfgHuGL40fKVi/K0CwXrTXWSXL/wK4
+OGzbtqWe9b0CFCe//jBTxTwowGT/e3ut1Kz/FSA0Z8btThrmQwE0t0OH/9aw
+PliAifr8MXkNzAvu804aBkf8ZP2wANrdLHzv/2J+FOCJwXD52d+sLxagqsbu
+5Y4/zJMCfMraWrrgL+uPBWgxM+TkqEbmSwG2fbC40luLR32yAEevlXVqw+OR
+NwUI2FQu0XDzf/2yADYfR6/J4/PInwK49eEP+irgUd8sQNI0q63PhDzyqADz
+M8q7+4h41D8LsPyQ2TBXMY98KgD+tvyyRcKjPloAB/0rYQulPPKqAP2Cs/pN
+0OZRPy3A4rslEstmPPKrAC9iI2b2aM6jvlqA3iYuLVu04JFnBSi7Z2XdwM3/
+9ddCLF1YlFDSkke+FWLYNL/spFY86rOF2OG3w+FTax55VwiHrdvGPGvDo35b
+CDflXd+bbXnkXyHartTfcK4dj/ou9/951f5H2vPIQ+76el1nbtPhUf8tRLP2
+wZtXduCRj4W4OCb512xdHvXhQvTXO9gwviOPvCzEy67ha4d24lE/LsTVj0Hj
++3XmkZ+FqLg0x7tHFx715ULMHhE+t31XHnnKXW+W8KSkG4/6cyGOnejT5zc3
+/+drIdpfGDNC1p1HfboQi4cuCSvR45G3hQiceOpVVg8e9etCdLia2C1Rn0f+
+FuJE2ynKrz151LcL8eM6b0SYAY88LoSPtUD9xpBH/bsQ50qWGjw14pHPhRj9
+utfH+8Y86uOFGPV5zfdbvXjkdSF6DR5g72PCo35eCK9hHiO9e/PI70KMb+V9
+09OUR329EG00M3e59+GR50WompT8zrUvjzwvAn95v51H+/HI8yI89F/rd9CM
+R54X4ZC79/D9/XnkeREWnouatGcAjzwvwtpRLb/tHMgjz4ugb77j3XZzHnle
+hOW8lj23WfDI8yKsX1Kq3mLJI8+LUNzYbtSWQTzyvAjqe36/nax45HkRbHtf
+77NlMI88L0LJvK7RW4bwyPMi+HXvk7PVmkeeF+HlhvSV24fyyPMi6NgMXbRz
+GI88L8K0q/Mjdw/nkedFeHBlsv8+Gx55XoSeC7qpDozgkedF2CrJDT4ykkee
+c79Pv1XnAh55XoTT7fZcdbPlkedFKOU7vfYYxSPPizBFdHnCxdE88rwIoYcF
+dtfG8MjzIowsCwu7OZZHnhchLKTw4b1xPPK8CJOO7dV+Mp5HnnPPn3Yh4/UE
+HnlehPAlY3qETuSR50UwjbicGjWJR54XwTPijiBhMo88L8ZNkz23M+145Hkx
+xoYZvi6ewiPPi3Fn65uRdfY88rwYI4wnDPs1lUeeF6MoKe++eDqPPC/GDxfv
+M+1m8MjzYlybtLdYbyaPPC/G0pFXn/adxSPPi/HwbDO59WweeV4M762Zd8fP
+4ZHnxfjWRy9u9lweeV6ME82KHFfO45HnxXjqOPLwNgceeV6M9PcjJUfn88jz
+YozbquKfX8Ajz4vxq9nu7bcW8shz7vpdEhyeL+KR58VcPnR+HrGYR54Xo1O3
+JUdTlvDI82LsdXz2pWwpjzwvxnelyeFfy3jkeTGWH4173GoFjzzn7lfxfqbB
+Sh55XowbFvxNg1fxyPNi9BwS9HPyah55zq23KPXv0jU88rwYVUHue3au5ZHn
+xZDPzl3rvo5HnhejTr8o5uZ6HnlejHX2gQFvNvDI82KY95ysid3II89LcLgu
+9kPpJh55XgJ5t+m/Gh155HkJLnXIftTJiUeel+D33FMp5lt45HkJrDau3Wm3
+lUeel6C8/JTb6m088rwEC/cIdA9v55HnJdjxtaTjtR088rwEsdfHe77aySPP
+SxDxyepQwi4eeV4Cp46RRTW7eeR5CcKOtgxrvpdHnpfg2J+uOqb7eOR5Cdaf
+EeWM388jz0ugOz5bb7UzjzwvQZ9Jr1KOHeCR5yWY8uW26PZB5nkJrH+9eRh+
+iHnO3Y+l9teCw8zzEtR9DVgsOMo8L0Gt8b31RseY59x6fOhePe4487wEzh27
+la11YZ6XIDni1QI3V+Z5CZ6v5Y17dIJ5XgJZUOuAuJPM8xIULaw/rDzFPC/B
+CusvCZ3cmecl+KHv7TPiNPO8BL0b9+SsOMM8L0GbmKOXT55lnpci42zkt8ce
+zPNSeC1euDPZk3leCt3FMy//Psc8L0WzsFBLowvM81L8jA6ZMMWLeV6KBbGz
+k3ZcZJ6Xwrvv7fTr3szzUuhND5kXeYl5Xgqnt4+nyi4zz0th8MvrQ9erzPNS
+qB8eCRh/jXleioK9p7S3+TDPS6GjH1Z0/TrzvBTN148Y+s2XeV4Kv/7tJWo/
+5nkppAvmTTW6yTwvhbxQr/XMW8zzUrgkHZx0+DbzvBRbx5z+8/gO87wUjfMW
+9c3xZ56XouMkYWLLAOZ5KWYtvqIccY95zn1e5UDPzfeZ56WY7ZDn7/eAeV4K
+067vreIfMs9LsSQ4C4JHzPNSvIqaHWH1mHnO3W/NsE/rgpjnpcjOv2Pj84R5
+Xoq5a+8NjHvKPC/F8jkL/YTPmedlGHg+8eTQF8zzMgzWMane/JJ5XoYBBRtj
+7rxinnP/v/2bXpmvmedlePaj5++2wczzMtye8nHKpBDmeRm2Jt/tdOQt87wM
+ncJrlga/Y55z13N+ZCB/zzwvQ8OBhmV9PzLPy7BxZnmX1aHM8zKMu3hhul8Y
+87wMOopW/Ixw5nkZJptuG9AhgnnO/X9xUtr0z8zzMixbb/f39BfmeRm0xtT6
+fY1knpfhrlfKe/FX5nkZlFs6OYz9xjwvw5df0ZuPRjPPyzBsg5QfFsM8L8MH
+fnFbrR/M8zIYdN/ri1jmeRnuGGQFHIpjnpeh8Yxx/9B45nkZ9lZuMuclMs/L
+oEj7+nR0EvOcWx/R7KDjyczzMnyzNOwTmcI8L8MWq2kGzdKY52X4Wlt7yT6d
+eV4G7/nd3c9lMM/LcXZ/7a/kTOZ5OTZsOVjRJZt5Xg75qoK5y3KY5+Voe9ly
+1N1c5nk5iha43a/KY56X41ObRg/LAuZ5ORwGPFDuK2Sel+PhyDup4UXM83KY
+p4uGNi9hnpcj62Fpp9mlzPNy9N21Yvf1MuZ5OWyaecwuLWeelyNliusT80rm
+eTkOWS13d65inpfj5A/r4shq5nk59Kx6fWhfyzwvx8Iro3WX1THPyzF7ZEB1
+oIx5Xo5++xzH/pQzz8vR89XjLhOVzPNy3Nh8fIt3PfO8HDMtpeOLVczzcvQP
+mHVtkIZ5zt3P4cNbjjcwz8vR69S9z0k/meflmOxbfNX4N/O8HFFPZtTt+sM8
+L0eHz+IvUX+Z59z6KvS6ddXik+fl2Lv2hdyRxyfPyzFoef6kMD6fPK+A2aDQ
+nh2EfPK8Ag0TNu5bL+KT5xUY0unPrA9iPnleAd9Bno/bS/nkeQVajYLbem0+
+eV6BW/VGpR+b8cnzCoTpLfqs24JPnlfA4nqj0eaWfPK8AqZr+oi/tOKT5xVY
+eky9Tq8NnzyvQNf2R+13t+WT5xWwn1j8PK4dnzyvwLUNNj59dPjkeQW2p9wS
+u3Tgk+cV0PtjqcjV5ZPnFUhc1XzF8E588rwCkffGzrrUmU+eV2DU3l9fFF34
+5HkFAq/ZvZ/ejU+eV+BBxfTBj7vzyfMKGM41sWjRg0+eV2BJYcWTDfp88pxb
+n0evn33tySfPK7C28P4QU0M+eV4B85hsnDLik+cVyAh3ii435pPnFXCzds6Y
+bMInzysw6EUPx8DefPKcu7+EXcda9eGT5xUIGe/bfWtfPnlegd7pz4Yn9eOT
+55XIWRefPaQ/nzyvRE2FrtBnAJ88r0TghhuPtcz55HklPmi7Z6+24JPnlRik
+pfSMtuST55W45KOJMrfik+eV4I195XJ5MJ88r8SAbZMjG4fwyfNKXAxOOLN2
+KJ88r8TWT5vSY4fxyfNKFEwb/MDahk+eV+Knlb3WrRF88rwSSStjM5uDT55X
+4k5Ohs0uWz55zv0+/Ixh/ig+eV6J1mPFnlPG8MnzSix6tOLom7F88rwS5svD
+fhqN55PnlTiZbttwbgKfPK+ELKDxQONEPnleiUc7u51ynMwnz7n1EbzqkmXH
+J88r8bdPpYWdPZ8859YrKyM+ZCqfPK+Eqf4ddZ/pfPKc+/uOa+5cm8Enzysh
++I20FrP45HklJunNuHBwNp88r8SwsjfJdXP45Hkl6jK9/VbO45PnlRB7NZOl
+OPDJ8yq8/GT5bfICPnlehcLBFn0/LuST51VAgrHOoMV88rwKsy/0d7m/hE+e
+V8HXc9PBHsv45HkV7jQ0Nl5czifPq9Cqo3azliv55HkV3ky+53N8FZ88r0JM
+67+vf6/mk+dVSP3ZZ9HOtXzyvApFwdNO1azjk+dVcNM5g3Ub+OQ5d/0qwaGC
+jXzyvArbhidPWOzIJ8+r4NHR4GraZj55XoX+Qc13zd7CJ8+r0MXueWbcVj55
+XoVRU4dF22/nk+dV+GgVPjZ6B588r4LgyqaJk3bxyfMqZJouTInczSfPq+D1
+Iqhm/F4+eV6F1vqnz33ZxyfPq5Dm2O7jeGc+eV4F25BVuyMP8MnzKuyw8Q+Z
+eIhPnlfh0njVyW+H+eR5FdLH7SuYcpRPnlfhbPisyNhjfPK8ClOW+Q+Z5cIn
+z6vQmH3OMtWVT55XQUvX5u3Ck3zyvBqD/375kXeKT55Xw+TenM1r3PnkeTV0
+RzW/WnWaT55Xo1O75jO3n+WT59WwOLzH+6cHnzyvxpYWu9cePccnz6vxd1af
+z80u8Mnzaoxu8yroghefPK+GRnekSXdvPnlejQkLSvoGXOKT59UoKEt4b36F
+T55Xo3ONSfa7q3zyvBq/n2q7TfThk+fc51/xiUi6zifPqzGpl+jMcj8+eV6N
+deq1hTU3+OR5NRKiyiOdb/HJ82rEbg8a1vwOnzyvRmNN9vCr/nzyvBp7pl6N
+Ng3gk+fVKPykXRF8j0+eV+OC74xLkx/wyfNq3LK7lJj5kE+eV6PlXC0/x0d8
+8rwaP9Y8a2h8zCfPq6Eem1h4/gmfPOfuL/nk4l7P+OR5NVTdGtaEPOeT59zz
+2EzWmvaSeV6N5ztumRa9Yp5XQ2rcu3DvG+Z5DRyieWZtQpjnNdgsnCsJeMs8
+r0Hb03bbRr5nntegywjtzSkfmOc18G776ufmUOZ5DXIM9naShjPPa/Dm/t7I
+m5+Y5zXY+jdHYvOZeV6Dn5fj0lO+MM9rIGm7a8S2KOZ5DfrqqS1afWOe10Bx
+aX/Ig2jmeQ2a7eqbNOE787wG0+L6Hy7+wTyvgSrn0YdjcczzGtz9GedhkMA8
+r+E8ClWEJTLPa/BkiX/F8mTmeQ1u/grYwU9lntdAe5rs3O005nkNTs95MHpc
+BvO8Bup+v11LM5nnNVis02apWzbzvAaDNrWONstlntdg9yvD6Pg85nkNQr13
+Ld1VwDyvgWOC+cmuRcxzbj2nHxoXVsw859a7y6lLa0uZ5zUYsmjvwVblzPMa
+LFix7+fLCuZ5LWyuv2q+pIp5Xgt7P4dn4hrmeS2udnevCaplnteiunZP6HwZ
+87wWlW3sewsVzPNaDPa16BWkZJ7X4kza7JAFKuZ5LSoMc4vEGuZ5Lfwlf/yf
+NzDPa3Gxf8afZb+Y57UwW3urqtUf5nktbt4+su39X+Z5LXg/b3ts0hKQ57VY
+ecdqbDe+gDyvxS+tlZ4xAgF5XotR5x12HBAJyPNatGscXddfIiDPaxHfbpow
+Xyogz2vh8v7+kwvNBOR5Lfg6h+vHtxCQ57UQTm9M+NlSQJ7XYk7c7ElBrQXk
+ObdenR47rGorIM+5z0u05nVpLyDPa3Hku8GYOB0BeV6LU7+v6J3QFZDntbDY
+F3NhZCcBeV6Lxa5lt1SdBeR5LUpdu00J6iogz2vxQ3LJY113AXleixlvXR0N
+egjI8zro7utSkqUvoPNeh0ljjjRcMhCQ73WIsKkImGUkoPNfB7Pnx2WtewnI
++zrodTmcEmMioDyow4QWLea5mQrI/zqct3PYPrGvgPKhDuPCvPpKzATUB+pg
+clB26Et/AeVFHfxDfLe4DhRQP6iDKiXmz3gLAeVHHUYsDDSRDhJQX6jDY7Vj
+zVcrAeVJHV4dHz3z9BAB9Yc6dBMsnDVtqIDypQ6GPmWydsMF1Cfq8OZmt/6p
+NgLKmzqcPttb6jNSQP2iDqPEIw8vtxVQ/tTBLfmst8loAfWNOsyRT7GrGSOg
+PKpD5f4Hvi/HCah/1KHL23TPAxMElE91mGfQ0mD8JAH1kTqU2O+e2dpOQHlV
+By2hnUH6FAH1E+75B709d3uqgPKrDgt+/byxebqA+kodDHxGTB82U0B5VodE
+11d+4tkC6i91uDnnikfiHAHlWx2ufu+sf3OegPpMHb7nbJzhNF9AeVeHjXc+
+GY5cKKB+UwfFqjmXWi4WUP7VweH8nMDsJQLqO3Xo9U2z4vEyAeVhHe4nb397
+aIWA+k8dOj349XLGKgHlI/d+1n2eabRGQH2oDo1LxOfVawWUl3WIFiu3R68X
+UD+qwx5xhMZvo4Dysw7tzAP1dzoKqC/VYbdrQeVkJwHlaR1cLa8v6LlVQP2J
+2y/n2zlqtgkoX+tQYbrXMG6HgPpUHeyDJAfv7RJQ3tbhs7De+cgeAfWrOmwb
+tkd/4T4B5W8dVp+NWmflLKC+VYfwTd3ntjkooDzm3r/T47LKQwLqX9x6LHuu
+H3VEQPnM7ZfBq/7eOSagPsY9v27DkaMuAsrrOlyZ9+DhshMC6md16O78ZD9O
+CSi/6xAyZKxcz11Afa0ODZt8WzeeFlCec59vpknMPSug/lYHu3duCPMUUL7L
+8PSUx8zb5wXU52R4PsS2pauXgPJehnaXU5zWewuo38lQEnh6n/1lAeW/DGH3
+fMwsrgqo78mQX2N7qqOPgDyQYVb7F2f+XBdQ/5OhZ+bA4UV+AvJBhr028nPR
+NwXUB2VIX2J5/vltAXkhw/BrA2x8/AXUD2UY5mzg6RIgID9kGPVhwlmn+wLq
+i9zzTMscvOChgDyRoe2Mzm7jHgmoP8pg2WHkSfMgAfkiw4qeruZ6TwXUJ2Vw
+M+vv2vy5gLyRYZXRdteGFwLqlzLcNDxvUfZKQP7IoOsc5Zb6RkB9k3v+p7M8
+IkME5JEMPs5bbd+8E1D/lOFw5FLf+x8E5JMMl54uun8tVEB9lPv7M3eXnw1n
+XslwvHB/5JEIAfVTGWSOXTN3fmF+ydCxe4TPhigB9VUZTnZ42WLZN+aZDHee
+mPWdGyOg/irDN2dHzZQfzDcZnEe82DE2TkB9VoZzlaNu2CQw72RY8HLufqsk
+AfVbGRL+WogHpDD/ZIha3nGUaZqA+q4M0sdj+xllMA9lOF3+K7JHloD6rww3
+ph/U6ZbDfOT219yW7TrnCagPy7DsdkWobgHzUobsTg49OxQJqB/LkPP9kqVO
+CfNThqo2Ver2ZQLqyzKUrr20WaeCeSqDlWfWpQ5VAurPMtQe/Lu9Yw3zVQZt
+Lsy71AmoT8tw9FrxuO5y5q0Mp6LNbXoqBdSvZQj6sq7EWMX8laH1tR9j+2oE
+1Ldl2OcRMM/8J/NYhluG1j2sfwuof8swrs3na/jLfJZh0YQL3ydoCamPywBl
+6YvpfCF5LUPafunMBUIh9XMZvjoP818lFpLfMlyL/fTYSSqkvi5DkWvF5v3N
+hOS5HHtrlcUnWgjJcznOe5rqXGwlJM/l+Nk3tuFWGyF5LsfQD/0uPW0nJM/l
+eHvwVFWojpA8l0OQ1+9nnK6QPJcj2mNJaH4nIXnO/f3uNVB0EZLncgjfnt4t
+6i4kz+W4/rbz+k49hOS5HEs7zNXp11NInsvx8obbXltDIXkux4RtWlfmGAvJ
+czmXH1rbN5oIyXM58tclS46aCslzObKLI+dd6Sskz+WYOd9g5VMzIXkuxwnJ
+gD7fBgjJczl+b7V+VGguJM/l8Jp3quqPpZA8lyP4xaayToOF5Lkcbp/Mbg6y
+FpLncoh+d+w4Y5iQPJejj87uyZtthOS5HP20Lg0/PVJInnPrL/9U8cBWSJ7L
+sWbRZIdvo4XkuRzzq3cdrxgrJM/lqLng7dR8gpA8l+PmAVVns0lC8lyONh2L
+jk2zE5Lncui3ePRom72QPJej90S/S97ThOS5HB1V0tFvZwjJczl8Dls/ypsl
+JM/lmHzeOV08V0iey/G5g1GkmYOQPOfW2+rgrjkLhOS5HPGLM0oPLBKS53KM
+GXqya8ASIXkux7kXqW3jlwnJczlyf3eK/rVCSJ7LMfqwzwST1ULyXI7y6mcn
+Zq0VkudyYPAj98PrheS5HC3ds2Y93igkz+UIWHo+L8tRSJ7LIV2vb9Fii5A8
+l6PhetpEm21C8lwO6yEtjR13CMlz7n0HtYn03SUkz+XoEmE1IH6PkDyXY8CO
+2MXC/ULyXI5XPPNZ1geE5Lkcg2WPWjseEpLncqi1r164dURInsthMHdSbtox
+IXkuR5VBG0VrVyF5LsdDrTGxE04KyXM5GsMH7zjsJiTP5ag7bFsQfFpInsvR
+4uLLzsqzQvJcjlPXK7sMOCckzxVY7WxdsuGCkDxX4Og8+f6Ai0LyXIGIy05Z
+RZeE5LmC+8otlhpeFZLnCnSd3LpxuY+QPFegW2Fu2E1fIXmuwJxBcdMLbgjJ
+cwX2/RkSaHhbSJ4roBjtlLTaX0ieK1Bv/+PrvQAhea7AtcBHp6vuC8lzBbQt
+1nQ3DxSS5wo4q6Y773osJM8V2Dgv8v67J0LyXAFftcFdwXMhea7AuI/vt9q9
+FJLnCrTPkrXwei0kz7n7Deu8JztYSJ4rIO3t+dzknZA8V0DW6snHbR+E5LkC
+z0KSfD6ECslzBfJfzrdr/klIniugF3812uGzkDxXwNBQ2T0gUkieK5AtDR+t
++iokzxU4aLx82PgYIXmuwJkV/UWXfgjJcwV+17reLosTkucKWI+N6jA8UUie
+KzCs2/RFZ5OF5LkC3vuddxekCslz7nqBD9cOyRCS5wp0sbUxO5MlJM8VELU6
+E1WYIyTPFSgf9Gfo8Hwhea7A+C5VRy4UCslzBTw2BN+oKhaS5wpYdP7sPb5M
+SJ4rcHuZ06qbFULyXIH14Z2a/akSkucKGEsMTs6vFZLn3PsaWZXzSiYkz7n9
+9zGtVQelkDxX4F3vSZ12qITkuQKFS/x+JWqE5LkCKWdHBA/6JSTPFdjTz3WG
+9x8hec69P3lmhKZRSJ4r8KroZvtFfBF5roC73fCRoUIRec6dhzfNxxlLROS5
+Ao2C3b3dtUXkuQIv7PPLZM1F5LkCd34/dp3fSkSeK9Dj41h+eBsRea5AmJtk
+Ud/2IvKcWw+fRV4XO4jIcwVG7rn/UKuTiDxXwK981q1NXUTkuQJGgvA96d1E
+5LkCF/QWDJjQQ0SeK5CedfTLy54i8lyJRuPbI42NROS5EkamBpcv9hKR50ps
+WLQ2UWwqIs+VkDtn1O3pKyLPlYg8W1hXaSYiz5VIyapIXDpQRJ4rkaFxuJpk
+ISLPlbB/6z12spWIPFdi3piWiaFDROS5EiEq4/HWw0TkuRIfjkz2fWIjIs+V
+0EstyjSFiDxXonbA0sbbo0TkuRLuzY20e4wVkedK7B7g23B1vIg8V8IuwDq+
+4yQRea6Ed8QSz4t2IvJciTA95yE6U0XkuRL1539/uTBdRJ4r8XPMFOjMEpHn
+SnS8mnrj4hwRea7k8qp5VUcHEXmuxDbz2T2vLRCR50qcu95jVI/FIvJcidHC
+TLs7S0XkuRLjTJSj+qwQkedK8FumGz5dJSLPlViqpZFZrxWR50pc8vwYGLZe
+RJ4r0eqc72y7TSLyXAnjzsKK5M0i8lyJZseXOi7fKiLPlTi9RT+3eruIPFei
+OPQV9u8Skefc76+e99DeKyLPldBaYxR7eb+IPFfi/I+sv70PishzJQaE9+sR
+clhEnithstVl4JRjIvJcCZW9g2Wui4g8V0LQsmPv7SdF5LkSG+9Ytpa6i8hz
+Jd7Z6ZdfPyMiz7l5/7RXgzxF5LkS+jWWu2POi8hzJaZet+23+qKIPFeia0RZ
+8t9LIvJciYPZfjuuXBWR59x+vJMutbouIs+VULZrdiHeT0SeK2G60r+90y0R
+ea6Eb0t995b+IvJciddfaxoCA0TkuRKDz7gus38gIs+VqHRf9LEmUESeK7Fy
+SInuuSARea6Ex8grawc9E5HnSmw9U/k07YWIPFcifMos1YHXIvJciSv5462M
+QkTkuRKtq22cot+JyHMlcu0C72z/KCLPlWiu2yKlW7iIPK/HXt9EQWSEiDyv
+x5lt+/pvixSR5/WInr9nrt43EXlej41zxjlHx4jI83rI/ebf2BsrIs/r8TXQ
+7FPvBBF5Xo8Ek2HFaUki8rweaqVa7JYqIs/r8W5AXm+bDBF5Xo/vfTbZ1WaJ
+yHPufpw6ON3OFZHn9bj+fo6XQ4GIPK/HumYBb1sVi8jzevgfPlb8uVREntej
+6NDqdgcrROR5PaQ+kaOHVIvI83rE+RjtltWKyPN6TD+gDgqUi8jzemzf+LZ6
+Xb2IPK/HtsjKgb00IvK8HtMMhfuKforIc+7vRx/+evuPiDyvh2OnrB6rtMTk
+Obc+Xy8cMBaIyfN6GD4wLCwVicnzeoyykc54KBWT5/VYaf4h0qm5mDyvx/11
+4ROsWonJ83ocrTkX/6uNmDyvR6vf91d/ai8mz+txQnVCeFpXTJ7X4+bm+4/n
+dBaT5/Wo7XF6lX43MXlej5F1j3pV6YnJ83poak7Xv+kpJs/rsXt2QLyrkZg8
+r8fqI/vfzjERk+f1aPP3xHPjPmLyvB6he+1CVP3E5Dm3/t/GxkUNEJPn9ehc
+Ia+/ZiEmz+vR+mdS3y1WYvK8HrYjN2wbZy0mz+vhqmfxretwMXlej+PGgZaK
+EWLynNuPjfOCom3F5Hk9cva/HOE/Rkye16PuxNjcQ+PF5Dm3nhYuXgsniclz
+bv/cVy+2niImz+sRb93NRneamDyvx8NJ2wfUzxCT5/XYs+KAdfJsMXnOnSfj
+t/NezROT5/UwmP7ozOUFYvK8HpNDkjL2LxaT5/VYNOcZli0Tk+fc8/SNfDdu
+pZg8r0fWEq+Z/daIyfN6XO59jaezXkye18M0bdG33xvF5Hk91icseFSyWUye
+qxDiqfswfquYPFfB7EbbiPc7xOS5Cj43vmse7BaT5yrEjYmZdGWfmDxXwXuK
+x+uTB8TkuQo5Zy6P3ntYTJ6rEF++vnLDMTF5rkL5dJdni13F5LkK4rBNl2ec
+EpPnKhwce+v6+NNi8lwFc1lAuI2HmDxXwau0UTLovJg8VyFiRr/N/S6KyXMV
+Tq8Iqje+LCbPVdg6u7mf/jUxec4977rwDd18xeS5CttL5s7vfFNMnquwo7Pd
+xo53xOS5Cqtm9LypGyAmz1V4nbfwl+4DMXmuQmDXA/s6PRKT5ypMnyfp0fWJ
+mDznrl/mXK73XEyeq3DXYFmG4Ssxec493zxLuWmwmDxXoXnSHnPzd2LyXIXv
+Bc8uD/0oJs9VuB+5sveYcDF5roJDaMt8+89i8lyFlgLLT/OjxOS5Civfz4ld
+Ey0mz1WY2F4j2vlDTJ6rUNPdZ+3xeDF5rsKTik9KryQxea6C1j7Zo7upYvJc
+hUkf7l4IzhCT5ypkXV1993u2mDxX4UdBUElBnpg8V6FgnmROQ6GYPFdh9f1q
+WZtSMXmugu72ovemFWLyXIXG4Y7BY6rF5LkKC3dqFy+pE5PnKjjuHTZqv0JM
+nquw1O3Ij8sqMXmuQo/4pWdeN4jJcxUGL5p7MPW3mDxXwV+v5KamUUyeqxBc
+46HpIpCQ5yqUHk86OlIsIc+5/b9v0KiV2hLyXIWukwYOOtVCQp6rMHnixEVP
+WkvIcxVOPPodnNZOQp6rcMTtuz1fV0Keq8CPGdbJrLOEPFfhs3VE5/ndJOS5
+CuO3lM907SEhz7n9Xm4a8cJAQp5zny8Xbi4ylpDnKuwNbJjewVRCnnP30/qE
+44R+EvJcBWVh34h9AyTkuRp7Pq+ZE2QhIc/VsOnxqmexlYQ8VyOj72XTbkMl
+5LkaFQo3x9k2EvJcjYQpLWrOQEKeq+GeeuVh1GgJea7GjsYnd4XjJeS5Gh0b
+fuSOmiQhz9X4Fbpl3uEpEvJcjTVd2rcKnSYhz9WwPGsh5M2SkOdqnF9vN2zM
+XAl5rkb2u/QnrvMl5LkaCxfMXxe9SEKeq9E+edzytssk5LkaHoe6+DislJDn
+agRtmNn55hoJea7G1lXr0ivWS8hzNT6qUrKsHCXkuRrD1nQyOrpFQp6rIX16
+Nyh2u4Q8V+PWmV+H9HZLyHM1fNd7Xty8T0Keq+GyLqfu4wEJea7GlRVLzrc7
+IiHP1XhQeHLfmuMS8lyNUtOU+29PSMhzNe4bfdBv5y4hz9Ww2/4md/1ZCXmu
+xs+VNqXh5yTkOfd58tAh3S9KyHM1rCPfxe+5LCHP1Xhodfdl8jUJec7dz3BF
+oaWfhDxX4+2hzosv3JKQ52pcnX62p9JfQp6r4Xj7i/nc+xLyXA15uyFngwMl
+5LkaE3JmDdF7IiHP1fhW6ml2/LmEPFdD/Xz51spXEvJcjTHrhgpmh0jIczX4
+39wK37+XkOdqjB8R1c40TEKeq/Hp08pzFyMk5LkaL3/9WCqIkpDnanzR239w
+W7SEPFdDqZVeXfBDQp6rcaj1/MezEyTkObefp20MjUyWkOdqbFlyyMgmXUKe
+q1HgKMx8miUhz9UIHLe+qHeehDzn9seobqNuFkrIczXSprrLupRKyHM1AmoM
+VRcrJOS5Gt7ms6a1q5GQ52oseOPyx0MmIc/V2PzMhNe6XkKeq9E6+84CD42E
+PFdjxNF1zdr+lpDnanzYnd3Gq1FCnmvQU2/z5k4CKXmuQdTS44a+Yil5rkFt
+0KmBxs2k5LkGIdqlFx+1lJLnGoysFc4e0lZKnmtwZZ3dxnAdKXmuwR++QdbU
+TlLyXIPo2Nq7WV2l5LkGd1d2jdnYQ0qea3A+udmU3wZS8lyDFh8MTc72kpLn
+GpgNjl7cs4+UPOfuN2V13UszKXmuwYXX83LtzKXkuQZTNgv7Fg6Skuca5LWM
+TdxvLSXPNbhu3CWjg42UPNdgSeiEkU8hJc81eL8yWGvqGCl5rsGk1nE9q8ZL
+yXMNPg6vuuk+WUqea2Cb4Xik31Qpea6B16wXoT9mSMlzDdad0Fu2bY6UPNfA
+I7rZso7zpeS5BvaVKaHvF0nJcw18euUdXb1MSp5rsN/82N1Wq6TkObf+lt36
+Ba+VkucaZH4W66zeKCXPNRhff31JOycpea7Bl5E2LcK2SclzDaZ7Du++dZeU
+PNegYkL9OYN9UvJcA7Fl+IbkA1LyXIOqMz8DTh2RkucaGAhUk+AiJc81SHnQ
+fIbqpJQ818Cu2fn3j09LyXPu+drneqzzlJLnGgQYTowy9JKS5xpcEhqszbsk
+Jc81mFoRusn3mpQ812DT9j3pi/2k5LkGR+9de6R3W0qea3D5l3N53l0pea7B
+qwmbz9x5ICXPNXCMC72y/rGUPNdg46jPrQY+k5LnGkgfR1epX0rJcw1yPQ0H
+hQVLyXMNVkd3LXZ/LyXPNTjlz9dyCJOS59zzfTd2Mf4sJc812DI3YYcySkqe
+a9A6ZHZsRIyUPNdgZorGyztOSp5roFuj/WV9kpQ81+DGvYQVI9Ok5Dm3Hm2v
+b9TJkpLnGky79CyvMldKnmuwqOWi8IhCKXmuwZ77+W38SqXkeQOChO4x+yql
+5HkD0rr41c+rlZLnDVg2edXpwQoped4Andn653TVUvK8ARULuJT4KSXPG5BR
+6Fmc8VdKnjfgYfJ3q498bfK8AXF72tXfEWuT5w2w3X3T8HQzbfK8AXOy3oXt
+aKVNnjcgUOdu7JJ22uR5A1rVXLefrKtNnjdg+qWi4UO6aJPnDRh3I/iqsZ42
+ec59fsPCDR0MtMnzBujWaz8U99ImzxtQM5a3uMFUmzxvwOLfBw9Xm2mT5w2Y
+5fGxQ6G5NnneAOeEv90yrLTJ8waM+bXbO2GoNnnOrZ/f6qMxI7TJ8wYMfs3L
+jxylTZ43oM8Vl2cR47TJ8was+WuqDp+kTZ434JSWSVC4vTZ53oChXV5kfJqh
+TZ43YJCJdN+XOdrkeQMcV80/822+NnneAMMt2Tpxi7XJ8wYIJn9tk7pcmzxv
+wIRZM47krtYmzxuQM/X+mvL12uR5A84uF4YpHbXJ8wbot7voydumTZ434Nyk
+M8mtd2mT5w2wnqXn2WOfNnneAF72ntCBB7Vt/w9HjB69
+ "]]}, "Charting`Private`Tag#1"]}}, <|
+ "HighlightElements" -> <|
+ "Label" -> {"XYLabel"}, "Ball" -> {"IndicatedBall"}|>,
+ "LayoutOptions" -> <|
+ "PanelPlotLayout" -> <||>,
+ "PlotRange" -> {{0, 1.6}, {1.934115470166513,
+ 3.1866164242634345`}}, "Frame" -> {{True, True}, {True, True}},
+ "AxesOrigin" -> {0, 1.934115470166513},
+ "ImageSize" -> {360, 360/GoldenRatio}, "Axes" -> {True, True},
+ "LabelStyle" -> {FontFamily -> "Times",
+ GrayLevel[0], FontSize -> 12}, "AspectRatio" ->
+ GoldenRatio^(-1), "DefaultStyle" -> {
+ Directive[
+ PointSize[0.0055000000000000005`],
+ RGBColor[0.368417, 0.506779, 0.709798],
+ AbsoluteThickness[2]]},
+ "HighlightLabelingFunctions" -> <|
+ "CoordinatesToolOptions" -> Identity,
+ "ScalingFunctions" -> {{Identity, Identity}, {
+ Identity, Identity}}|>, "Primitives" -> {}, "GCFlag" ->
+ False|>,
+ "Meta" -> <|
+ "DefaultHighlight" -> {"Dynamic", None}, "Index" -> {}, "Function" ->
+ ListPlot, "GroupHighlight" -> False|>|>]]& )[<|
+ "HighlightElements" -> <|
+ "Label" -> {"XYLabel"}, "Ball" -> {"IndicatedBall"}|>,
+ "LayoutOptions" -> <|
+ "PanelPlotLayout" -> <||>,
+ "PlotRange" -> {{0, 1.6}, {1.934115470166513,
+ 3.1866164242634345`}}, "Frame" -> {{True, True}, {True, True}},
+ "AxesOrigin" -> {0, 1.934115470166513},
+ "ImageSize" -> {360, 360/GoldenRatio}, "Axes" -> {True, True},
+ "LabelStyle" -> {FontFamily -> "Times",
+ GrayLevel[0], FontSize -> 12}, "AspectRatio" -> GoldenRatio^(-1),
+ "DefaultStyle" -> {
+ Directive[
+ PointSize[0.0055000000000000005`],
+ RGBColor[0.368417, 0.506779, 0.709798],
+ AbsoluteThickness[2]]},
+ "HighlightLabelingFunctions" -> <|
+ "CoordinatesToolOptions" -> Identity,
+ "ScalingFunctions" -> {{Identity, Identity}, {
+ Identity, Identity}}|>, "Primitives" -> {}, "GCFlag" ->
+ False|>,
+ "Meta" -> <|
+ "DefaultHighlight" -> {"Dynamic", None}, "Index" -> {}, "Function" ->
+ ListPlot, "GroupHighlight" -> False|>|>],
+ ImageSizeCache->{{4.503599627370496*^15, -4.503599627370496*^15}, {
+ 4.503599627370496*^15, -4.503599627370496*^15}}],
+ Selectable->False]},
+ Annotation[{{
+ Annotation[{
+ Directive[
+ PointSize[0.0055000000000000005`],
+ RGBColor[0.368417, 0.506779, 0.709798],
+ AbsoluteThickness[2]],
+ Point[CompressedData["
+1:eJxd13dcje//B/DOPtkj2UlDQqhEiFf2SPbI3luyZ7ZCoZCslJWMyKasShRF
+e++9xxmdc7L63fq8r+8fv/7xeD/Sfe77uq/r9XydniucZq7ma2lpWYu1tP79
+u1/n8YT8fcfxof/Hfu21tGz//xwyqQW/7wlXpA6+ZNmRm38e3PBux4WTWF7p
+49OVm4e+iNr1wc8Nxw7GrdXn5r3lvcylgafxvpfFRWNufqPnUjnjzVnU6YUb
+9eXm3/dlCfYrPDH37mFdc272idB/sm3dOZzU2rxhCDcPz5125tLm83De6aY/
+kpszG5o+EMdnpFiP+9/9eWF68YznU7i564BsI/GRi6h2+eMx+3/3643Pp9N/
+LOLmBauarogb80qcVv/v/i/j9kSj7Zu5+eqVph/M+HIhbff/nucqTg+3unGE
+m9N/qGcV+l/D+Y7a39z/93w+4P1oPdebmzsL57Yye3YdySmTxt783/P6Yu3j
+116B3Ozw3wWxNXn+hDf/e/4baB4/cFEEN08ZcmrUsuIbeNhnRGLc/9bjJky2
+HArM5uaqGf+ueBMvLDWlFf9bn1sob37PRcPN7ptKf92X3ULwBQ8XMY+t123s
+2xBUqsPNfU/oco9wG/mW0kBDHlu/OxBevppgwc3RN8e9Uvy5g/lj1i4czWPr
+6Y83JZvHz+Tmf6vVSXgXC4Y8u7CCx9b3LtJqzMds5+Zmqbe3jGgWgP7RNbOP
+89h6ByDkbHnURW5+8O9x29zDCC1DvwAeW/97SKu4lhrMzZP/XU73PtrqzdkW
+w2Pv4z7iHac55XJz03J3e4AVz9x/yHns/TzAzqhmnmK+lu2/1YszeIju574/
+78Jn7+sh4mVJQwdws+kij/D63oHYnNTTYCyfvb9AWJm83DSfm79yV+sy4BGi
+szw6O/HZ+3yEkVXPertw87pz1c6weoy/03tcvcZn7/cxipqlOD7jZu7muEcO
+Qn+9tNtf+ex9B+HYhV42+dw8m9s83CtFze7wwQ189v6foCQr8EJbgZbtHW71
+Um8/wbi0kpl9BGw/PMHM41t3jOFm5Z+kPeW9niKk0V6zSMD2x1N4OR7I2cXN
+Y5s2wFOsqNcyOSdg++UpWn9Kj3/IzdzL+/dAqBFr534RsP3zDOH1HlMLuPm/
+23uGF1FO+n8FbD89w+L392d3EWrZWjb9PEdoB1QOFrL99RxTOpkXzeLmY6Hf
+uB30HLmtj2CrkO235/hkN/DPWW5O5N4+tyZ42sO2+yMh238vEFf41C+amw2b
+LvgCL5SuxyuEbD++wKrnodHaIi3b7U0v4CXmuCzbaSpi+/MlNiWtPTKJmz/V
+9+be8EtotU6rXS9i+/UVUgOehbpxc7v/bhBmug2KhyK2f18hMDnw1Hdubrq7
+qFfYsSb2SK2I7efX6Gi/IqutWMv22fXagC92r3Gt3dorg8Rsf7/G/rG5b+Zx
+M7/pgV/j3o6YYfvFbL+/gevQgT38uHnmfxsGCrMWaz6J2f5/A8iWty7j5lv/
+HjfpDQabWHZtKWHnIRid9xw5ZcHN8n+XcwjGLc+pCxwk7HwEQ2Tgc+YgN4/+
+t/0zg1GTv9HQX8LOSwhOuH3sGsPNTdt3SQi2ZFzepZCw8xOCKK8Gy65SLdv8
+ff9eSAh6HymcNUbKztNb3NvokLKRm82bNvhbZBkteOslZefrLVKOVPA/cPOR
+i2O4LfMWJouaPyqVsvP2DnnnPgS31dayjTdoesHwFIlNbbTZ+XuHyb6FP9dw
+c89/6V/9DjcmzB9wXpudx/e4K1v35T03b/13PLa8h9JTJ7Rcm53P9/DXW9JN
+t5mWbdi/t6t4j7mXJ2SObsbO6wf010r87cTNbf47kEhcxD9yvRk7vx+wOzh1
+bTQ3Ny1fwwfEGc952tCMneeP6PbKeXHv5lq2Tbfn/BEGx6Zvmtecne+PsHyQ
+kO3KzVpNP6HobS969qo5O++hWHO+oqyEm+99seNOdCiy7xw/2rEFO/+haP4i
++eBEbp7OnUZuj6JBkZu9twXLg1Dgur/fQ27W/NMnIhT86t4R2S1YPoRCY7TJ
+rk1LLdsbXf4diDCsc99qNaYly4swmGwcfnQXN09sesFh8GsfY/6gJcuPMMSk
+GY/N4ea6gH83GAab9nbB7VqxPAlDe/2R5yZw8+V/d/ctDNrLeTHOrVi+hMHR
+5tL6Z9z8b3NNahEOo+78DWWtWN6EI3Db2O96rbVs/6VJgn04uj5ddmFOa5Y/
+4dCfMf/daW7+t1u4LQNx3MCJEa1ZHoXjaVD54N/c3PS4ceG4s8v15KA2LJ/C
+8TtIe4QjNzddrt0n7KrcOftuG5ZXn7D5/fcfudzcFEezPiHvQ/vAzm1Zfn3C
+mjOTq2Zx83/14RNGRe/wONuW5dknTOtx8eJXbm6Kg9RP0LV6/FfYjuXbJ3x4
+F/7NlpsPNQVOBHQ3Jjc4t2N5F4HzDWXuwdxs0nSAIjC9l9YRVTuWfxHQedE9
+3bK9lm1sU72IgP2GsV5b27M8jED7DrufBXHz7n/HITsC/VzeWNa0Z/kYAYln
+805mOlq2Pf5tZ73P+Nx6+9JNOiwvP8O8UKYdyM2R/7bfss/4Wu3WsUqH5edn
+hHQcdbJfBy1bp6aA/IxC+46LHDuwPP3Mne82Fx5zc8emA/8Z6fcHmNV1YPn6
+BcWhu/tY6GrZNt2e0RcEfql026HL8vYLvD6enfqam9c0/XzBxxcrd/7UZfn7
+BYIXjo0jOmrZ/itPXMJCFRtUdaQjy+MvKOphNuILN/9Lxz3lX5D5sayuWSeW
+z5G4FVcsmc7NS5ouGImw3SZHL3ZieR2Jw7lPlmZys7gpoCJROtjlRs/OLL8j
+8elpwNh13Pzvbeg85q53suuUoM4szyORoil8peLmpnZXG4m9Y4UuI7uwfI/C
+hmeHXrly899/x808CjPPzreL7cLyPgq3e18c06mrlu3df9t5WxQupVj5Le/K
+8j8K1vKRSx5y89T/HhjzM54fru/KPIiCr/yS2Lablq3q3+uoj8K+2zW1bt2Y
+D18xYMFbmxRu9v33uEO+IuEkr7pnd+bFV9jfjdDazM3jmxbwKxb1l+4J6c78
++IpzN2NnSvS0bGuaePiKuS5652brMU++onqlxuIWN3v/i/dfX7E1Zpl1nR7z
+5RsyZi68ObKHlm1TPI/4hp8elY5nejBvvuFIzw6+WdzcFK8Hv+HP/UzzfvrM
+n2/Iixtt6szN/8XfN+wZPfV4jD7z6Bt+BfHGdO+pZdsUL/xoHIpdtnpzT+ZT
+NISLnCo/cnPT8R0TjU0dzJPbGjCvouESet9gFTc3HQ+XaEhMshNfGTC/onGu
+Y2yZtqGW7X/bLxovVh9bvtiQeRaNyvI/I55yc/K/1yuNwc0jow+KjJhvMRjU
+eo7BAm4+0BSAMZDtHdonyIh5F4OujxUXhcZatsZNGzAGFT4nVi8wZv7FwN2m
+4fITbv4e0/QDo5NTBkp6MQ9jkHLIpe8Sbt7ZFKjfEdz7ntvLXszH7yg+/ca+
+pYmWbfemDf0dW96G7Fhtwrz8jk1Rzxrfc/Pnpq9X31EXc6dGtzfz8zt0Sr1G
+beFmx6aA/g750BOar72Zp9/xqPpQeyNTLdumuNL5AccBx84fNGW+/sAK84s7
+07m5KQ7m/kBUn5B3g/owb3+gdJ5qrSc3//f16wfa/bTfXdWH+fsDj+Z9rpjY
+V8u2xX8HDv3eLQv378s8/gGdPUZ/+f20bJu2S5dYaOXr+C7rx3yOxfUZg299
+4Oam17EoFi9MzzTrbsa8jkXPH91T93Pzf1/PYpFzr0qSacb8jkVj778+w/pr
+2TZdLjcWr8Pnel/tzzyPg0PtT8XP/uy8x2GWWe3LhQOY73Hc9xnrrHcD2PmP
+Q3xd+hq9gcz7OFSfTp9zeCDLgzhcWjv8fsFA5n8ceJ2Fy8eZs3yIg8tI6wP3
+zFkfiEPgvqw/zS1YXsTBbGd9gZMF6wdxqM040S/JguVHHJotuZxhbcn6Qhy+
+v+xbfd2S5Ukcgn3HrxIMYv0hDm4Z1Vg/iOVLHCwG9jocO4j1iXjkbVQaDbZi
+eRMPraWL+1+3Yv0iHsPyVvsIB7P8icf+6HZOmwazvhGPat76u0mDWR7FQ7DB
+cfSIIax/xGN7rdGYu0NYPsXD5pjXvdbWrI/EI6Br2La91iyv4jHxRdDNQmvW
+T7j7mbraaupQll/x4NeWmAUPZX0lHrG3hrobDWN5Fo8R+1bYew5j/SUeu93X
+7Pg9jOUbdz35ZK31w1mfScDzHzqy5OEs7xLwZcLX8WNsWL9JQMxJR95TG5Z/
+Cdz+EffsMYL1nQRk9L3qf2YEy8MEVDX28/g9gvWfBEgPR2RvHMnyMQFB8tXn
+MkeyPpSA77d1H9iB5WUCXhVlmrwD60cJGNDibTMzW5afCVi/K3imry3rSwmQ
+uGQ1th7F8jQB+n6m7Y6OYv0pATC/e0o5iuVrItY+mrdm7WjWpxLRwX3MvYzR
+LG8TYTvBadrUMaxfJWLJqryF4WNY/iZi1Qaf74PHsr6ViG8l9+48HMvyOBHu
+m5rn649j/SsRpl5fj3qPY/mciMe/yk61GM/6WCIejXdSHR3P8joRk/RWRDWM
+Z/0sERbmkY1bJrD8TsQ9yzs+ZRNYX0vEkdy/vssmsjxPhIkyS5w+kfW3RFwb
+PDZpxiSW70nYt3WYJHoS63NJ+LXjs9/YySzvk6DSrbz+YTLrd0nIt3jKG2rH
+8j+J60fdo5/bsb6XBJ8Vg3/2n8I8SMKFSTyPB1NY/0vCj+nHT/WyZz4koeWW
+z+W37FkfTMLbO9+CekxlXnCfL7uS6TOV9cMkeC4b6thlGvMjCa0aH6+6PI31
+xSQE5WuF605nniRhk4GVy8XprD8m4XfejMc6M5gvyUgavXiE1wzWJ5Nhun2x
+hc5M5k0yNLccznjNZP0yGTztOVM7zGL+JCM232Gn9yzWN5PxxmkDv9Ns5lEy
+cn961F+ZzfpnMqzjY6d2m8N8Sobb+IGt/OawPpqMbS9eWxrMZV4lY+W+TR/9
+57J+mozAP7Ofms5jfiVjz/3d2o/nsb6ajPiajEgLB+ZZMu6Odal67cD6awq+
+mBzYPWI+8y0FlV2+rvs0n/XZFLy66xQ6aQHzjpvn7z4Yt4D12xSsjyq5NW8h
+8y8FI85EmOUuZH03Bd4TO/ZYu4h5mILvN4p31S5i/TcFQ0YPttqzmPmYAoPc
+1gt4S1gfTkH2gL3FbkuYlyl4I9+TqrOU9eMUSKo6DPRbyvxMgXHJ3FrTZawv
+p2DX09EdXi5jnqZgk1HeTdvlrD+nwrXr4Isxy5mvqZi3167WYQXr06lw6WXy
+pHgF8zYVP9rGpW5byfp1KrQH2q/RWsX8TYWZs//Cs6tY307FVHXu626rmcep
+uHNPsP/hata/U+F+vaP/sDXM51S4lRsM/raG9fFUTL/br/+CtczrVLxVDD9T
+sZb181Rkq+fN2r+O+Z0Kdc6Jwy3Ws77O3X9mgo7veuZ5Gob2sm0zcAPzPA3C
+vynbwjcwz9Oge8/XZs5G5nka8p18Hcs2Ms/ToBeQLXLexDxPQ4z/SlEbR+Z5
+GoZ8G7LpjiPzPA0/9ywfNnQz8zwNjd3KnH5sZp6n4aRJYotVTszzNPRr06ft
+TyfmeRqyZiudPbcwz9NQsXfodJOtzPM0iJvx3D9sZZ6nYZz3TLO525jnaTB4
+ZTWkZhvzPB1HJc/uuW5nnqcjuH/skR47mOfpcEvxCn+zg3mejr5Pmm2cuZN5
+ng677db7q3Yyz9PROsdY4bqLeZ6O7i8zEnruZp6n4+qnJV3e72aep6NfZvBX
+hz3M83QIkxR5yj3M83RknNZZdm4v8zwdygrDCf33Mc/T0SfD1Dt6H/M8HUVT
++tuv3888T0cvm6GbJM7M83S4B8xU+DszzzNgf/FowdgDzPMMTGgXP7ToAPM8
+Axrz8Q3HDjLPM3CyVYW+0SHmeQa+RkU8iTjEPM/AiJM591YfZp5noON+aEuO
+MM8zgJTa+HtHmOcZcEhW8+2OMs8z8CFkqU/1UeZ5BjxjB/h6HmOeZ+DJyi3S
+QceZ5xn4/N00M/U48zwDozau0nV2YZ5nYNWN3iH6rszzTIxKO/jlsyvzPBPv
+jzsN33iCeZ6JK3qCzm1PMs8zsdl49NLXJ5nnmXjdw6rVklPM80wkXS0yFrkx
+zzMh7Tv/bqAb8zwTxzde85jtzjzPxJq/z/N/uzPPM/Hu9EMf/9PM80yc+eIW
+OvUM8zwTqSsW2GvOMM8z4d3DcMyts8zzTESGVd+c4sE8z8T6Dp/Wqz2Y55lw
+rX549ZYn8zwLlkZPB009xzzPwsWrmUN+nmOeZ6HIetCdu+eZ51nYUvNp76wL
+zPMs+D+98EbLi3mehZaHA5c99mKeZ2H2ko7bFl1knmdhmkN2VTNv5nkWfh+W
+xAd7M8+zcEruq7f+EvM8C/N+BCZ3usw8z8Ivm2GqqMvM8yyM3zz98N4rzPMs
+TLqi2d7nKvM8C3N+D4/PvMo8z4Ig2/DymWvM82xYnQyOgg/zPBvdZ4pXyn2Y
+59mAd/u1/teZ59nY+boiycGXeZ4NVY+LgS38mOfZmDuqW02oH/M8G+5ep67s
+vME8z4bySsnjPjeZ59lYmG7TP+8m8zwbDfkXO3rfYp5nY//kXxum3GaeZ0P0
+dFdvwR3meTaGvG07PeQO8zwbFrop+Vv9mefZuL7re7bpXeZ5Du5c5o0tuMs8
+z4HA1lnnWgDzPAdS6wnTZt9jnufgwqxNypb3mec5MHCsF0TdZ57nIG5N1YGj
+D5jnOZjfZ+GKEQ+Z5zkwum/3VPOQeZ4DZEVueBHIPM/Bpoj0s1seMc9zoL/B
+vbvZY+Z5Dk5ml+hWPGae58BzsGpfQBDzPAeFXp8mrX7CPM+Busf8Y4ZPmec5
+XNiEmRQ8ZZ7novcR0ZCbz5jnuRj0feDTZc+Z57moMLf31n/BPM9F7p9VJXkv
+mOe58Dxx9ObNl8zzXCw0exK54hXzPBfuczQORq+Z57lYsnn1nJLXzPNc8Gp4
+7++9YZ7nwndmmsfGYOZ5LhYbKL73D2Ge52Jt5aLd8hDmeS6qx+iffvWWeZ6L
+/t8mtNj/jnmei91GOWq8Z57nYQCvZqroAzvveUjUPdo2+gPzPQ9CI3+c+8jO
+fx5ca5enzwtl3udh3MRPOXphLA/ysESUNK0kjPmfhx5iv36Pw1k+5KG1xYCd
+uz6xPpAH5R4PU0SwvOA+P+HbJOln1g/y8BtVyfGfWX7kQfr17/drX1hfyEPR
+wZYWayJZnuQhYZ8h3zyK9Yc8bMmxG/k7iuVLHt4nniuJ/Mr6RB70zmj9uvCN
+5U0elo+7vX9ZNOsXeYiCyzqzGJY/eZBEPQ37GcP6Rh6mWQw6EfWd5VEepmZ2
+DPb+wfpHHob3XjdvdSzLpzwkuw5cMSiO9ZE8bHR0ThfEs7zKQ/6Cee8T41k/
+ycOrlJiWdxJYfuVBe2vZtx2JrK/kwTf8pXJcEsuzPBRusnXvmMz6Sx7Unb3O
+liezfMvDI+d3f9+msD6TD+/pnzPPprK8y0fj/BDjFWms3+RDa01AllU6y798
+7J18WatZBus7+ehecvlcTgbLw3zs0H/p8TyT9Z98FJVrfp7MYvmYj5fDtyQu
+yWZ9KB8dOpl0tspheZmPnm6mMc1zWT/KR7n/saqCXJaf+dh+ctS+kDzWl/IR
+Oc9p5/l8lqf5qBvdOWdDAetP+eAftXsxppDlaz4M57bTdCtifSofp7X33VcV
+sbzNh1ft2ai4Ytav8vFs1eI5D0tY/ubD5Ydsmmsp61v5SL/m8GZ5GcvjfDwa
+63t2RDnrX/kYNjk2oXMFy+d8aAZrjqsqWB/Lx21fY//ESpbX+Rijt8ryaRXr
+Z/mwXBQ6wKOa5Xc+jKQTrjrWsL7GPU+mcPuUWpbn+fC/JA7pW8f6Wz6Oa893
+ai5j+V6AVmLtC5Uy1ucKINxkaBwjZ3lfgHuGL40fKVi/K0CwXrTXWSXL/wK4
+OGzbtqWe9b0CFCe//jBTxTwowGT/e3ut1Kz/FSA0Z8btThrmQwE0t0OH/9aw
+PliAifr8MXkNzAvu804aBkf8ZP2wANrdLHzv/2J+FOCJwXD52d+sLxagqsbu
+5Y4/zJMCfMraWrrgL+uPBWgxM+TkqEbmSwG2fbC40luLR32yAEevlXVqw+OR
+NwUI2FQu0XDzf/2yADYfR6/J4/PInwK49eEP+irgUd8sQNI0q63PhDzyqADz
+M8q7+4h41D8LsPyQ2TBXMY98KgD+tvyyRcKjPloAB/0rYQulPPKqAP2Cs/pN
+0OZRPy3A4rslEstmPPKrAC9iI2b2aM6jvlqA3iYuLVu04JFnBSi7Z2XdwM3/
+9ddCLF1YlFDSkke+FWLYNL/spFY86rOF2OG3w+FTax55VwiHrdvGPGvDo35b
+CDflXd+bbXnkXyHartTfcK4dj/ou9/951f5H2vPIQ+76el1nbtPhUf8tRLP2
+wZtXduCRj4W4OCb512xdHvXhQvTXO9gwviOPvCzEy67ha4d24lE/LsTVj0Hj
++3XmkZ+FqLg0x7tHFx715ULMHhE+t31XHnnKXW+W8KSkG4/6cyGOnejT5zc3
+/+drIdpfGDNC1p1HfboQi4cuCSvR45G3hQiceOpVVg8e9etCdLia2C1Rn0f+
+FuJE2ynKrz151LcL8eM6b0SYAY88LoSPtUD9xpBH/bsQ50qWGjw14pHPhRj9
+utfH+8Y86uOFGPV5zfdbvXjkdSF6DR5g72PCo35eCK9hHiO9e/PI70KMb+V9
+09OUR329EG00M3e59+GR50WompT8zrUvjzwvAn95v51H+/HI8yI89F/rd9CM
+R54X4ZC79/D9/XnkeREWnouatGcAjzwvwtpRLb/tHMgjz4ugb77j3XZzHnle
+hOW8lj23WfDI8yKsX1Kq3mLJI8+LUNzYbtSWQTzyvAjqe36/nax45HkRbHtf
+77NlMI88L0LJvK7RW4bwyPMi+HXvk7PVmkeeF+HlhvSV24fyyPMi6NgMXbRz
+GI88L8K0q/Mjdw/nkedFeHBlsv8+Gx55XoSeC7qpDozgkedF2CrJDT4ykkee
+c79Pv1XnAh55XoTT7fZcdbPlkedFKOU7vfYYxSPPizBFdHnCxdE88rwIoYcF
+dtfG8MjzIowsCwu7OZZHnhchLKTw4b1xPPK8CJOO7dV+Mp5HnnPPn3Yh4/UE
+HnlehPAlY3qETuSR50UwjbicGjWJR54XwTPijiBhMo88L8ZNkz23M+145Hkx
+xoYZvi6ewiPPi3Fn65uRdfY88rwYI4wnDPs1lUeeF6MoKe++eDqPPC/GDxfv
+M+1m8MjzYlybtLdYbyaPPC/G0pFXn/adxSPPi/HwbDO59WweeV4M762Zd8fP
+4ZHnxfjWRy9u9lweeV6ME82KHFfO45HnxXjqOPLwNgceeV6M9PcjJUfn88jz
+YozbquKfX8Ajz4vxq9nu7bcW8shz7vpdEhyeL+KR58VcPnR+HrGYR54Xo1O3
+JUdTlvDI82LsdXz2pWwpjzwvxnelyeFfy3jkeTGWH4173GoFjzzn7lfxfqbB
+Sh55XowbFvxNg1fxyPNi9BwS9HPyah55zq23KPXv0jU88rwYVUHue3au5ZHn
+xZDPzl3rvo5HnhejTr8o5uZ6HnlejHX2gQFvNvDI82KY95ysid3II89LcLgu
+9kPpJh55XgJ5t+m/Gh155HkJLnXIftTJiUeel+D33FMp5lt45HkJrDau3Wm3
+lUeel6C8/JTb6m088rwEC/cIdA9v55HnJdjxtaTjtR088rwEsdfHe77aySPP
+SxDxyepQwi4eeV4Cp46RRTW7eeR5CcKOtgxrvpdHnpfg2J+uOqb7eOR5Cdaf
+EeWM388jz0ugOz5bb7UzjzwvQZ9Jr1KOHeCR5yWY8uW26PZB5nkJrH+9eRh+
+iHnO3Y+l9teCw8zzEtR9DVgsOMo8L0Gt8b31RseY59x6fOhePe4487wEzh27
+la11YZ6XIDni1QI3V+Z5CZ6v5Y17dIJ5XgJZUOuAuJPM8xIULaw/rDzFPC/B
+CusvCZ3cmecl+KHv7TPiNPO8BL0b9+SsOMM8L0GbmKOXT55lnpci42zkt8ce
+zPNSeC1euDPZk3leCt3FMy//Psc8L0WzsFBLowvM81L8jA6ZMMWLeV6KBbGz
+k3ZcZJ6Xwrvv7fTr3szzUuhND5kXeYl5Xgqnt4+nyi4zz0th8MvrQ9erzPNS
+qB8eCRh/jXleioK9p7S3+TDPS6GjH1Z0/TrzvBTN148Y+s2XeV4Kv/7tJWo/
+5nkppAvmTTW6yTwvhbxQr/XMW8zzUrgkHZx0+DbzvBRbx5z+8/gO87wUjfMW
+9c3xZ56XouMkYWLLAOZ5KWYtvqIccY95zn1e5UDPzfeZ56WY7ZDn7/eAeV4K
+067vreIfMs9LsSQ4C4JHzPNSvIqaHWH1mHnO3W/NsE/rgpjnpcjOv2Pj84R5
+Xoq5a+8NjHvKPC/F8jkL/YTPmedlGHg+8eTQF8zzMgzWMane/JJ5XoYBBRtj
+7rxinnP/v/2bXpmvmedlePaj5++2wczzMtye8nHKpBDmeRm2Jt/tdOQt87wM
+ncJrlga/Y55z13N+ZCB/zzwvQ8OBhmV9PzLPy7BxZnmX1aHM8zKMu3hhul8Y
+87wMOopW/Ixw5nkZJptuG9AhgnnO/X9xUtr0z8zzMixbb/f39BfmeRm0xtT6
+fY1knpfhrlfKe/FX5nkZlFs6OYz9xjwvw5df0ZuPRjPPyzBsg5QfFsM8L8MH
+fnFbrR/M8zIYdN/ri1jmeRnuGGQFHIpjnpeh8Yxx/9B45nkZ9lZuMuclMs/L
+oEj7+nR0EvOcWx/R7KDjyczzMnyzNOwTmcI8L8MWq2kGzdKY52X4Wlt7yT6d
+eV4G7/nd3c9lMM/LcXZ/7a/kTOZ5OTZsOVjRJZt5Xg75qoK5y3KY5+Voe9ly
+1N1c5nk5iha43a/KY56X41ObRg/LAuZ5ORwGPFDuK2Sel+PhyDup4UXM83KY
+p4uGNi9hnpcj62Fpp9mlzPNy9N21Yvf1MuZ5OWyaecwuLWeelyNliusT80rm
+eTkOWS13d65inpfj5A/r4shq5nk59Kx6fWhfyzwvx8Iro3WX1THPyzF7ZEB1
+oIx5Xo5++xzH/pQzz8vR89XjLhOVzPNy3Nh8fIt3PfO8HDMtpeOLVczzcvQP
+mHVtkIZ5zt3P4cNbjjcwz8vR69S9z0k/meflmOxbfNX4N/O8HFFPZtTt+sM8
+L0eHz+IvUX+Z59z6KvS6ddXik+fl2Lv2hdyRxyfPyzFoef6kMD6fPK+A2aDQ
+nh2EfPK8Ag0TNu5bL+KT5xUY0unPrA9iPnleAd9Bno/bS/nkeQVajYLbem0+
+eV6BW/VGpR+b8cnzCoTpLfqs24JPnlfA4nqj0eaWfPK8AqZr+oi/tOKT5xVY
+eky9Tq8NnzyvQNf2R+13t+WT5xWwn1j8PK4dnzyvwLUNNj59dPjkeQW2p9wS
+u3Tgk+cV0PtjqcjV5ZPnFUhc1XzF8E588rwCkffGzrrUmU+eV2DU3l9fFF34
+5HkFAq/ZvZ/ejU+eV+BBxfTBj7vzyfMKGM41sWjRg0+eV2BJYcWTDfp88pxb
+n0evn33tySfPK7C28P4QU0M+eV4B85hsnDLik+cVyAh3ii435pPnFXCzds6Y
+bMInzysw6EUPx8DefPKcu7+EXcda9eGT5xUIGe/bfWtfPnlegd7pz4Yn9eOT
+55XIWRefPaQ/nzyvRE2FrtBnAJ88r0TghhuPtcz55HklPmi7Z6+24JPnlRik
+pfSMtuST55W45KOJMrfik+eV4I195XJ5MJ88r8SAbZMjG4fwyfNKXAxOOLN2
+KJ88r8TWT5vSY4fxyfNKFEwb/MDahk+eV+Knlb3WrRF88rwSSStjM5uDT55X
+4k5Ohs0uWz55zv0+/Ixh/ig+eV6J1mPFnlPG8MnzSix6tOLom7F88rwS5svD
+fhqN55PnlTiZbttwbgKfPK+ELKDxQONEPnleiUc7u51ynMwnz7n1EbzqkmXH
+J88r8bdPpYWdPZ8859YrKyM+ZCqfPK+Eqf4ddZ/pfPKc+/uOa+5cm8Enzysh
++I20FrP45HklJunNuHBwNp88r8SwsjfJdXP45Hkl6jK9/VbO45PnlRB7NZOl
+OPDJ8yq8/GT5bfICPnlehcLBFn0/LuST51VAgrHOoMV88rwKsy/0d7m/hE+e
+V8HXc9PBHsv45HkV7jQ0Nl5czifPq9Cqo3azliv55HkV3ky+53N8FZ88r0JM
+67+vf6/mk+dVSP3ZZ9HOtXzyvApFwdNO1azjk+dVcNM5g3Ub+OQ5d/0qwaGC
+jXzyvArbhidPWOzIJ8+r4NHR4GraZj55XoX+Qc13zd7CJ8+r0MXueWbcVj55
+XoVRU4dF22/nk+dV+GgVPjZ6B588r4LgyqaJk3bxyfMqZJouTInczSfPq+D1
+Iqhm/F4+eV6F1vqnz33ZxyfPq5Dm2O7jeGc+eV4F25BVuyMP8MnzKuyw8Q+Z
+eIhPnlfh0njVyW+H+eR5FdLH7SuYcpRPnlfhbPisyNhjfPK8ClOW+Q+Z5cIn
+z6vQmH3OMtWVT55XQUvX5u3Ck3zyvBqD/375kXeKT55Xw+TenM1r3PnkeTV0
+RzW/WnWaT55Xo1O75jO3n+WT59WwOLzH+6cHnzyvxpYWu9cePccnz6vxd1af
+z80u8Mnzaoxu8yroghefPK+GRnekSXdvPnlejQkLSvoGXOKT59UoKEt4b36F
+T55Xo3ONSfa7q3zyvBq/n2q7TfThk+fc51/xiUi6zifPqzGpl+jMcj8+eV6N
+deq1hTU3+OR5NRKiyiOdb/HJ82rEbg8a1vwOnzyvRmNN9vCr/nzyvBp7pl6N
+Ng3gk+fVKPykXRF8j0+eV+OC74xLkx/wyfNq3LK7lJj5kE+eV6PlXC0/x0d8
+8rwaP9Y8a2h8zCfPq6Eem1h4/gmfPOfuL/nk4l7P+OR5NVTdGtaEPOeT59zz
+2EzWmvaSeV6N5ztumRa9Yp5XQ2rcu3DvG+Z5DRyieWZtQpjnNdgsnCsJeMs8
+r0Hb03bbRr5nntegywjtzSkfmOc18G776ufmUOZ5DXIM9naShjPPa/Dm/t7I
+m5+Y5zXY+jdHYvOZeV6Dn5fj0lO+MM9rIGm7a8S2KOZ5DfrqqS1afWOe10Bx
+aX/Ig2jmeQ2a7eqbNOE787wG0+L6Hy7+wTyvgSrn0YdjcczzGtz9GedhkMA8
+r+E8ClWEJTLPa/BkiX/F8mTmeQ1u/grYwU9lntdAe5rs3O005nkNTs95MHpc
+BvO8Bup+v11LM5nnNVis02apWzbzvAaDNrWONstlntdg9yvD6Pg85nkNQr13
+Ld1VwDyvgWOC+cmuRcxzbj2nHxoXVsw859a7y6lLa0uZ5zUYsmjvwVblzPMa
+LFix7+fLCuZ5LWyuv2q+pIp5Xgt7P4dn4hrmeS2udnevCaplnteiunZP6HwZ
+87wWlW3sewsVzPNaDPa16BWkZJ7X4kza7JAFKuZ5LSoMc4vEGuZ5Lfwlf/yf
+NzDPa3Gxf8afZb+Y57UwW3urqtUf5nktbt4+su39X+Z5LXg/b3ts0hKQ57VY
+ecdqbDe+gDyvxS+tlZ4xAgF5XotR5x12HBAJyPNatGscXddfIiDPaxHfbpow
+Xyogz2vh8v7+kwvNBOR5Lfg6h+vHtxCQ57UQTm9M+NlSQJ7XYk7c7ElBrQXk
+ObdenR47rGorIM+5z0u05nVpLyDPa3Hku8GYOB0BeV6LU7+v6J3QFZDntbDY
+F3NhZCcBeV6Lxa5lt1SdBeR5LUpdu00J6iogz2vxQ3LJY113AXleixlvXR0N
+egjI8zro7utSkqUvoPNeh0ljjjRcMhCQ73WIsKkImGUkoPNfB7Pnx2WtewnI
++zrodTmcEmMioDyow4QWLea5mQrI/zqct3PYPrGvgPKhDuPCvPpKzATUB+pg
+clB26Et/AeVFHfxDfLe4DhRQP6iDKiXmz3gLAeVHHUYsDDSRDhJQX6jDY7Vj
+zVcrAeVJHV4dHz3z9BAB9Yc6dBMsnDVtqIDypQ6GPmWydsMF1Cfq8OZmt/6p
+NgLKmzqcPttb6jNSQP2iDqPEIw8vtxVQ/tTBLfmst8loAfWNOsyRT7GrGSOg
+PKpD5f4Hvi/HCah/1KHL23TPAxMElE91mGfQ0mD8JAH1kTqU2O+e2dpOQHlV
+By2hnUH6FAH1E+75B709d3uqgPKrDgt+/byxebqA+kodDHxGTB82U0B5VodE
+11d+4tkC6i91uDnnikfiHAHlWx2ufu+sf3OegPpMHb7nbJzhNF9AeVeHjXc+
+GY5cKKB+UwfFqjmXWi4WUP7VweH8nMDsJQLqO3Xo9U2z4vEyAeVhHe4nb397
+aIWA+k8dOj349XLGKgHlI/d+1n2eabRGQH2oDo1LxOfVawWUl3WIFiu3R68X
+UD+qwx5xhMZvo4Dysw7tzAP1dzoKqC/VYbdrQeVkJwHlaR1cLa8v6LlVQP2J
+2y/n2zlqtgkoX+tQYbrXMG6HgPpUHeyDJAfv7RJQ3tbhs7De+cgeAfWrOmwb
+tkd/4T4B5W8dVp+NWmflLKC+VYfwTd3ntjkooDzm3r/T47LKQwLqX9x6LHuu
+H3VEQPnM7ZfBq/7eOSagPsY9v27DkaMuAsrrOlyZ9+DhshMC6md16O78ZD9O
+CSi/6xAyZKxcz11Afa0ODZt8WzeeFlCec59vpknMPSug/lYHu3duCPMUUL7L
+8PSUx8zb5wXU52R4PsS2pauXgPJehnaXU5zWewuo38lQEnh6n/1lAeW/DGH3
+fMwsrgqo78mQX2N7qqOPgDyQYVb7F2f+XBdQ/5OhZ+bA4UV+AvJBhr028nPR
+NwXUB2VIX2J5/vltAXkhw/BrA2x8/AXUD2UY5mzg6RIgID9kGPVhwlmn+wLq
+i9zzTMscvOChgDyRoe2Mzm7jHgmoP8pg2WHkSfMgAfkiw4qeruZ6TwXUJ2Vw
+M+vv2vy5gLyRYZXRdteGFwLqlzLcNDxvUfZKQP7IoOsc5Zb6RkB9k3v+p7M8
+IkME5JEMPs5bbd+8E1D/lOFw5FLf+x8E5JMMl54uun8tVEB9lPv7M3eXnw1n
+XslwvHB/5JEIAfVTGWSOXTN3fmF+ydCxe4TPhigB9VUZTnZ42WLZN+aZDHee
+mPWdGyOg/irDN2dHzZQfzDcZnEe82DE2TkB9VoZzlaNu2CQw72RY8HLufqsk
+AfVbGRL+WogHpDD/ZIha3nGUaZqA+q4M0sdj+xllMA9lOF3+K7JHloD6rww3
+ph/U6ZbDfOT219yW7TrnCagPy7DsdkWobgHzUobsTg49OxQJqB/LkPP9kqVO
+CfNThqo2Ver2ZQLqyzKUrr20WaeCeSqDlWfWpQ5VAurPMtQe/Lu9Yw3zVQZt
+Lsy71AmoT8tw9FrxuO5y5q0Mp6LNbXoqBdSvZQj6sq7EWMX8laH1tR9j+2oE
+1Ldl2OcRMM/8J/NYhluG1j2sfwuof8swrs3na/jLfJZh0YQL3ydoCamPywBl
+6YvpfCF5LUPafunMBUIh9XMZvjoP818lFpLfMlyL/fTYSSqkvi5DkWvF5v3N
+hOS5HHtrlcUnWgjJcznOe5rqXGwlJM/l+Nk3tuFWGyF5LsfQD/0uPW0nJM/l
+eHvwVFWojpA8l0OQ1+9nnK6QPJcj2mNJaH4nIXnO/f3uNVB0EZLncgjfnt4t
+6i4kz+W4/rbz+k49hOS5HEs7zNXp11NInsvx8obbXltDIXkux4RtWlfmGAvJ
+czmXH1rbN5oIyXM58tclS46aCslzObKLI+dd6Sskz+WYOd9g5VMzIXkuxwnJ
+gD7fBgjJczl+b7V+VGguJM/l8Jp3quqPpZA8lyP4xaayToOF5Lkcbp/Mbg6y
+FpLncoh+d+w4Y5iQPJejj87uyZtthOS5HP20Lg0/PVJInnPrL/9U8cBWSJ7L
+sWbRZIdvo4XkuRzzq3cdrxgrJM/lqLng7dR8gpA8l+PmAVVns0lC8lyONh2L
+jk2zE5Lncui3ePRom72QPJej90S/S97ThOS5HB1V0tFvZwjJczl8Dls/ypsl
+JM/lmHzeOV08V0iey/G5g1GkmYOQPOfW2+rgrjkLhOS5HPGLM0oPLBKS53KM
+GXqya8ASIXkux7kXqW3jlwnJczlyf3eK/rVCSJ7LMfqwzwST1ULyXI7y6mcn
+Zq0VkudyYPAj98PrheS5HC3ds2Y93igkz+UIWHo+L8tRSJ7LIV2vb9Fii5A8
+l6PhetpEm21C8lwO6yEtjR13CMlz7n0HtYn03SUkz+XoEmE1IH6PkDyXY8CO
+2MXC/ULyXI5XPPNZ1geE5Lkcg2WPWjseEpLncqi1r164dURInsthMHdSbtox
+IXkuR5VBG0VrVyF5LsdDrTGxE04KyXM5GsMH7zjsJiTP5ag7bFsQfFpInsvR
+4uLLzsqzQvJcjlPXK7sMOCckzxVY7WxdsuGCkDxX4Og8+f6Ai0LyXIGIy05Z
+RZeE5LmC+8otlhpeFZLnCnSd3LpxuY+QPFegW2Fu2E1fIXmuwJxBcdMLbgjJ
+cwX2/RkSaHhbSJ4roBjtlLTaX0ieK1Bv/+PrvQAhea7AtcBHp6vuC8lzBbQt
+1nQ3DxSS5wo4q6Y773osJM8V2Dgv8v67J0LyXAFftcFdwXMhea7AuI/vt9q9
+FJLnCrTPkrXwei0kz7n7Deu8JztYSJ4rIO3t+dzknZA8V0DW6snHbR+E5LkC
+z0KSfD6ECslzBfJfzrdr/klIniugF3812uGzkDxXwNBQ2T0gUkieK5AtDR+t
++iokzxU4aLx82PgYIXmuwJkV/UWXfgjJcwV+17reLosTkucKWI+N6jA8UUie
+KzCs2/RFZ5OF5LkC3vuddxekCslz7nqBD9cOyRCS5wp0sbUxO5MlJM8VELU6
+E1WYIyTPFSgf9Gfo8Hwhea7A+C5VRy4UCslzBTw2BN+oKhaS5wpYdP7sPb5M
+SJ4rcHuZ06qbFULyXIH14Z2a/akSkucKGEsMTs6vFZLn3PsaWZXzSiYkz7n9
+9zGtVQelkDxX4F3vSZ12qITkuQKFS/x+JWqE5LkCKWdHBA/6JSTPFdjTz3WG
+9x8hec69P3lmhKZRSJ4r8KroZvtFfBF5roC73fCRoUIRec6dhzfNxxlLROS5
+Ao2C3b3dtUXkuQIv7PPLZM1F5LkCd34/dp3fSkSeK9Dj41h+eBsRea5AmJtk
+Ud/2IvKcWw+fRV4XO4jIcwVG7rn/UKuTiDxXwK981q1NXUTkuQJGgvA96d1E
+5LkCF/QWDJjQQ0SeK5CedfTLy54i8lyJRuPbI42NROS5EkamBpcv9hKR50ps
+WLQ2UWwqIs+VkDtn1O3pKyLPlYg8W1hXaSYiz5VIyapIXDpQRJ4rkaFxuJpk
+ISLPlbB/6z12spWIPFdi3piWiaFDROS5EiEq4/HWw0TkuRIfjkz2fWIjIs+V
+0EstyjSFiDxXonbA0sbbo0TkuRLuzY20e4wVkedK7B7g23B1vIg8V8IuwDq+
+4yQRea6Ed8QSz4t2IvJciTA95yE6U0XkuRL1539/uTBdRJ4r8XPMFOjMEpHn
+SnS8mnrj4hwRea7k8qp5VUcHEXmuxDbz2T2vLRCR50qcu95jVI/FIvJcidHC
+TLs7S0XkuRLjTJSj+qwQkedK8FumGz5dJSLPlViqpZFZrxWR50pc8vwYGLZe
+RJ4r0eqc72y7TSLyXAnjzsKK5M0i8lyJZseXOi7fKiLPlTi9RT+3eruIPFei
+OPQV9u8Skefc76+e99DeKyLPldBaYxR7eb+IPFfi/I+sv70PishzJQaE9+sR
+clhEnithstVl4JRjIvJcCZW9g2Wui4g8V0LQsmPv7SdF5LkSG+9Ytpa6i8hz
+Jd7Z6ZdfPyMiz7l5/7RXgzxF5LkS+jWWu2POi8hzJaZet+23+qKIPFeia0RZ
+8t9LIvJciYPZfjuuXBWR59x+vJMutbouIs+VULZrdiHeT0SeK2G60r+90y0R
+ea6Eb0t995b+IvJciddfaxoCA0TkuRKDz7gus38gIs+VqHRf9LEmUESeK7Fy
+SInuuSARea6Ex8grawc9E5HnSmw9U/k07YWIPFcifMos1YHXIvJciSv5462M
+QkTkuRKtq22cot+JyHMlcu0C72z/KCLPlWiu2yKlW7iIPK/HXt9EQWSEiDyv
+x5lt+/pvixSR5/WInr9nrt43EXlej41zxjlHx4jI83rI/ebf2BsrIs/r8TXQ
+7FPvBBF5Xo8Ek2HFaUki8rweaqVa7JYqIs/r8W5AXm+bDBF5Xo/vfTbZ1WaJ
+yHPufpw6ON3OFZHn9bj+fo6XQ4GIPK/HumYBb1sVi8jzevgfPlb8uVREntej
+6NDqdgcrROR5PaQ+kaOHVIvI83rE+RjtltWKyPN6TD+gDgqUi8jzemzf+LZ6
+Xb2IPK/HtsjKgb00IvK8HtMMhfuKforIc+7vRx/+evuPiDyvh2OnrB6rtMTk
+Obc+Xy8cMBaIyfN6GD4wLCwVicnzeoyykc54KBWT5/VYaf4h0qm5mDyvx/11
+4ROsWonJ83ocrTkX/6uNmDyvR6vf91d/ai8mz+txQnVCeFpXTJ7X4+bm+4/n
+dBaT5/Wo7XF6lX43MXlej5F1j3pV6YnJ83poak7Xv+kpJs/rsXt2QLyrkZg8
+r8fqI/vfzjERk+f1aPP3xHPjPmLyvB6he+1CVP3E5Dm3/t/GxkUNEJPn9ehc
+Ia+/ZiEmz+vR+mdS3y1WYvK8HrYjN2wbZy0mz+vhqmfxretwMXlej+PGgZaK
+EWLynNuPjfOCom3F5Hk9cva/HOE/Rkye16PuxNjcQ+PF5Dm3nhYuXgsniclz
+bv/cVy+2niImz+sRb93NRneamDyvx8NJ2wfUzxCT5/XYs+KAdfJsMXnOnSfj
+t/NezROT5/UwmP7ozOUFYvK8HpNDkjL2LxaT5/VYNOcZli0Tk+fc8/SNfDdu
+pZg8r0fWEq+Z/daIyfN6XO59jaezXkye18M0bdG33xvF5Hk91icseFSyWUye
+qxDiqfswfquYPFfB7EbbiPc7xOS5Cj43vmse7BaT5yrEjYmZdGWfmDxXwXuK
+x+uTB8TkuQo5Zy6P3ntYTJ6rEF++vnLDMTF5rkL5dJdni13F5LkK4rBNl2ec
+EpPnKhwce+v6+NNi8lwFc1lAuI2HmDxXwau0UTLovJg8VyFiRr/N/S6KyXMV
+Tq8Iqje+LCbPVdg6u7mf/jUxec4977rwDd18xeS5CttL5s7vfFNMnquwo7Pd
+xo53xOS5Cqtm9LypGyAmz1V4nbfwl+4DMXmuQmDXA/s6PRKT5ypMnyfp0fWJ
+mDznrl/mXK73XEyeq3DXYFmG4Ssxec493zxLuWmwmDxXoXnSHnPzd2LyXIXv
+Bc8uD/0oJs9VuB+5sveYcDF5roJDaMt8+89i8lyFlgLLT/OjxOS5Civfz4ld
+Ey0mz1WY2F4j2vlDTJ6rUNPdZ+3xeDF5rsKTik9KryQxea6C1j7Zo7upYvJc
+hUkf7l4IzhCT5ypkXV1993u2mDxX4UdBUElBnpg8V6FgnmROQ6GYPFdh9f1q
+WZtSMXmugu72ovemFWLyXIXG4Y7BY6rF5LkKC3dqFy+pE5PnKjjuHTZqv0JM
+nquw1O3Ij8sqMXmuQo/4pWdeN4jJcxUGL5p7MPW3mDxXwV+v5KamUUyeqxBc
+46HpIpCQ5yqUHk86OlIsIc+5/b9v0KiV2hLyXIWukwYOOtVCQp6rMHnixEVP
+WkvIcxVOPPodnNZOQp6rcMTtuz1fV0Keq8CPGdbJrLOEPFfhs3VE5/ndJOS5
+CuO3lM907SEhz7n9Xm4a8cJAQp5zny8Xbi4ylpDnKuwNbJjewVRCnnP30/qE
+44R+EvJcBWVh34h9AyTkuRp7Pq+ZE2QhIc/VsOnxqmexlYQ8VyOj72XTbkMl
+5LkaFQo3x9k2EvJcjYQpLWrOQEKeq+GeeuVh1GgJea7GjsYnd4XjJeS5Gh0b
+fuSOmiQhz9X4Fbpl3uEpEvJcjTVd2rcKnSYhz9WwPGsh5M2SkOdqnF9vN2zM
+XAl5rkb2u/QnrvMl5LkaCxfMXxe9SEKeq9E+edzytssk5LkaHoe6+DislJDn
+agRtmNn55hoJea7G1lXr0ivWS8hzNT6qUrKsHCXkuRrD1nQyOrpFQp6rIX16
+Nyh2u4Q8V+PWmV+H9HZLyHM1fNd7Xty8T0Keq+GyLqfu4wEJea7GlRVLzrc7
+IiHP1XhQeHLfmuMS8lyNUtOU+29PSMhzNe4bfdBv5y4hz9Ww2/4md/1ZCXmu
+xs+VNqXh5yTkOfd58tAh3S9KyHM1rCPfxe+5LCHP1Xhodfdl8jUJec7dz3BF
+oaWfhDxX4+2hzosv3JKQ52pcnX62p9JfQp6r4Xj7i/nc+xLyXA15uyFngwMl
+5LkaE3JmDdF7IiHP1fhW6ml2/LmEPFdD/Xz51spXEvJcjTHrhgpmh0jIczX4
+39wK37+XkOdqjB8R1c40TEKeq/Hp08pzFyMk5LkaL3/9WCqIkpDnanzR239w
+W7SEPFdDqZVeXfBDQp6rcaj1/MezEyTkObefp20MjUyWkOdqbFlyyMgmXUKe
+q1HgKMx8miUhz9UIHLe+qHeehDzn9seobqNuFkrIczXSprrLupRKyHM1AmoM
+VRcrJOS5Gt7ms6a1q5GQ52oseOPyx0MmIc/V2PzMhNe6XkKeq9E6+84CD42E
+PFdjxNF1zdr+lpDnanzYnd3Gq1FCnmvQU2/z5k4CKXmuQdTS44a+Yil5rkFt
+0KmBxs2k5LkGIdqlFx+1lJLnGoysFc4e0lZKnmtwZZ3dxnAdKXmuwR++QdbU
+TlLyXIPo2Nq7WV2l5LkGd1d2jdnYQ0qea3A+udmU3wZS8lyDFh8MTc72kpLn
+GpgNjl7cs4+UPOfuN2V13UszKXmuwYXX83LtzKXkuQZTNgv7Fg6Skuca5LWM
+TdxvLSXPNbhu3CWjg42UPNdgSeiEkU8hJc81eL8yWGvqGCl5rsGk1nE9q8ZL
+yXMNPg6vuuk+WUqea2Cb4Xik31Qpea6B16wXoT9mSMlzDdad0Fu2bY6UPNfA
+I7rZso7zpeS5BvaVKaHvF0nJcw18euUdXb1MSp5rsN/82N1Wq6TkObf+lt36
+Ba+VkucaZH4W66zeKCXPNRhff31JOycpea7Bl5E2LcK2SclzDaZ7Du++dZeU
+PNegYkL9OYN9UvJcA7Fl+IbkA1LyXIOqMz8DTh2RkucaGAhUk+AiJc81SHnQ
+fIbqpJQ818Cu2fn3j09LyXPu+drneqzzlJLnGgQYTowy9JKS5xpcEhqszbsk
+Jc81mFoRusn3mpQ812DT9j3pi/2k5LkGR+9de6R3W0qea3D5l3N53l0pea7B
+qwmbz9x5ICXPNXCMC72y/rGUPNdg46jPrQY+k5LnGkgfR1epX0rJcw1yPQ0H
+hQVLyXMNVkd3LXZ/LyXPNTjlz9dyCJOS59zzfTd2Mf4sJc812DI3YYcySkqe
+a9A6ZHZsRIyUPNdgZorGyztOSp5roFuj/WV9kpQ81+DGvYQVI9Ok5Dm3Hm2v
+b9TJkpLnGky79CyvMldKnmuwqOWi8IhCKXmuwZ77+W38SqXkeQOChO4x+yql
+5HkD0rr41c+rlZLnDVg2edXpwQoped4Andn653TVUvK8ARULuJT4KSXPG5BR
+6Fmc8VdKnjfgYfJ3q498bfK8AXF72tXfEWuT5w2w3X3T8HQzbfK8AXOy3oXt
+aKVNnjcgUOdu7JJ22uR5A1rVXLefrKtNnjdg+qWi4UO6aJPnDRh3I/iqsZ42
+ec59fsPCDR0MtMnzBujWaz8U99ImzxtQM5a3uMFUmzxvwOLfBw9Xm2mT5w2Y
+5fGxQ6G5NnneAOeEv90yrLTJ8waM+bXbO2GoNnnOrZ/f6qMxI7TJ8wYMfs3L
+jxylTZ43oM8Vl2cR47TJ8was+WuqDp+kTZ434JSWSVC4vTZ53oChXV5kfJqh
+TZ43YJCJdN+XOdrkeQMcV80/822+NnneAMMt2Tpxi7XJ8wYIJn9tk7pcmzxv
+wIRZM47krtYmzxuQM/X+mvL12uR5A84uF4YpHbXJ8wbot7voydumTZ434Nyk
+M8mtd2mT5w2wnqXn2WOfNnneAF72ntCBB7Vt/w9HjB69
+ "]]}, "Charting`Private`Tag#1"]}}, <|
+ "HighlightElements" -> <|
+ "Label" -> {"XYLabel"}, "Ball" -> {"IndicatedBall"}|>,
+ "LayoutOptions" -> <|
+ "PanelPlotLayout" -> <||>,
+ "PlotRange" -> {{0, 1.6}, {1.934115470166513, 3.1866164242634345`}},
+ "Frame" -> {{True, True}, {True, True}},
+ "AxesOrigin" -> {0, 1.934115470166513},
+ "ImageSize" -> {360, 360/GoldenRatio}, "Axes" -> {True, True},
+ "LabelStyle" -> {FontFamily -> "Times",
+ GrayLevel[0], FontSize -> 12}, "AspectRatio" -> GoldenRatio^(-1),
+ "DefaultStyle" -> {
+ Directive[
+ PointSize[0.0055000000000000005`],
+ RGBColor[0.368417, 0.506779, 0.709798],
+ AbsoluteThickness[2]]},
+ "HighlightLabelingFunctions" -> <|
+ "CoordinatesToolOptions" -> Identity,
+ "ScalingFunctions" -> {{Identity, Identity}, {
+ Identity, Identity}}|>, "Primitives" -> {}, "GCFlag" -> False|>,
+ "Meta" -> <|
+ "DefaultHighlight" -> {"Dynamic", None}, "Index" -> {}, "Function" ->
+ ListPlot, "GroupHighlight" -> False|>|>,
+ "DynamicHighlight"]], {{}, {}}},
+ AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948],
+ Axes->{True, True},
+ AxesLabel->{None, None},
+ AxesOrigin->{0, 1.934115470166513},
+ DisplayFunction->Identity,
+ Frame->{{True, True}, {True, True}},
+ FrameLabel->{{None, None}, {None, None}},
+ FrameStyle->GrayLevel[0],
+ FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}},
+ GridLines->{None, None},
+ GridLinesStyle->Directive[
+ GrayLevel[0.5, 0.4]],
+ LabelStyle->{FontFamily -> "Times",
+ GrayLevel[0], FontSize -> 12},
+ Method->{
+ "AxisPadding" -> Scaled[0.02], "DefaultBoundaryStyle" -> Automatic,
+ "DefaultGraphicsInteraction" -> {
+ "Version" -> 1.2, "TrackMousePosition" -> {True, False},
+ "Effects" -> {
+ "Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2},
+ "Droplines" -> {
+ "freeformCursorMode" -> True,
+ "placement" -> {"x" -> "All", "y" -> "None"}}}}, "DefaultMeshStyle" ->
+ AbsolutePointSize[6], "DefaultPlotStyle" -> {
+ Directive[
+ RGBColor[0.368417, 0.506779, 0.709798],
+ AbsoluteThickness[2]],
+ Directive[
+ RGBColor[0.880722, 0.611041, 0.142051],
+ AbsoluteThickness[2]],
+ Directive[
+ RGBColor[0.560181, 0.691569, 0.194885],
+ AbsoluteThickness[2]],
+ Directive[
+ RGBColor[0.922526, 0.385626, 0.209179],
+ AbsoluteThickness[2]],
+ Directive[
+ RGBColor[0.528488, 0.470624, 0.701351],
+ AbsoluteThickness[2]],
+ Directive[
+ RGBColor[0.772079, 0.431554, 0.102387],
+ AbsoluteThickness[2]],
+ Directive[
+ RGBColor[0.363898, 0.618501, 0.782349],
+ AbsoluteThickness[2]],
+ Directive[
+ RGBColor[1, 0.75, 0],
+ AbsoluteThickness[2]],
+ Directive[
+ RGBColor[0.647624, 0.37816, 0.614037],
+ AbsoluteThickness[2]],
+ Directive[
+ RGBColor[0.571589, 0.586483, 0.],
+ AbsoluteThickness[2]],
+ Directive[
+ RGBColor[0.915, 0.3325, 0.2125],
+ AbsoluteThickness[2]],
+ Directive[
+ RGBColor[0.40082222609352647`, 0.5220066643438841, 0.85],
+ AbsoluteThickness[2]],
+ Directive[
+ RGBColor[0.9728288904374106, 0.621644452187053, 0.07336199581899142],
+ AbsoluteThickness[2]],
+ Directive[
+ RGBColor[0.736782672705901, 0.358, 0.5030266573755369],
+ AbsoluteThickness[2]],
+ Directive[
+ RGBColor[0.28026441037696703`, 0.715, 0.4292089322474965],
+ AbsoluteThickness[2]]}, "DomainPadding" -> Scaled[0.02],
+ "PointSizeFunction" -> "SmallPointSize", "RangePadding" -> Scaled[0.05],
+ "OptimizePlotMarkers" -> True, "IncludeHighlighting" -> "CurrentPoint",
+ "HighlightStyle" -> Automatic, "OptimizePlotMarkers" -> True,
+ "CoordinatesToolOptions" -> {"DisplayFunction" -> ({
+ Identity[
+ Part[#, 1]],
+ Identity[
+ Part[#, 2]]}& ), "CopiedValueFunction" -> ({
+ Identity[
+ Part[#, 1]],
+ Identity[
+ Part[#, 2]]}& )}},
+ PlotRange->{{0, 1.6}, {1.934115470166513, 3.1866164242634345`}},
+ PlotRangeClipping->True,
+ PlotRangePadding->{{
+ Scaled[0.02],
+ Scaled[0.02]}, {
+ Scaled[0.05],
+ Scaled[0.05]}},
+ Ticks->{Automatic, Automatic}]], "Output",
+ CellChangeTimes->{3.909043955430275*^9, 3.909046701012884*^9,
+ 3.915533054748672*^9, 3.915772001814284*^9, 3.916380445982705*^9,
+ 3.9163872507924776`*^9},
+ CellLabel->
+ "Out[241]=",ExpressionUUID->"471fcd6b-1223-49d9-962f-85e668fab430"]
+}, Open ]],
+
+Cell[BoxData[
+ GraphicsBox[{{},
+ {RGBColor[0.368417, 0.506779, 0.709798], PointSize[0.0055000000000000005`],
+ AbsoluteThickness[1.6], PointBox[CompressedData["
+1:eJxd12VYVN3bBXDO9CCCgmIrJgZ2oKIuRMEERVHswG5Fxe5W7G7FDmxRQhFB
+UBqkQ7prkhnEeI889/5/ePnidV+DZ845e+/1W7R1WzNpkcDAwGCgxMDg37/b
+Gj0blbN1P358fSlpZGBg+/9nvzFGgm6HDqK38QSbpvz8c+fygA1nD2O5mUdS
+S34e9Oarx8ebR1GvsWVKW37eUtKpt+ypJzJd3Gwt+fl96wNlzu9PoKRZZ5Pu
+/PzrkTLe0e0UdrzYPLIvP18LsXjhvvQ0rJa7ZA/iZ5usCccvrj6DiOv+ubb8
+nF5T94VY/+DZuNH/u79z2F/cvcVEfm7RM7ODZM953Aob5Dztf/d7Ac9exFfM
+4+cZC+uuiLRGNYpl/7v/Szi33HvGen6+crnuB2e7K7ru+N/zXEHcj6D5h/g5
+NVo3Oe/eVZwStf97+n/Pdw1TuzYSXufnZqKpxt1fXUdV9vlVD//3vDew+uPD
+YW/4edp/F0S3OY4en/73/LcQOm9/oyh+Hm99ZPi8glvotNKpWdr/3sdtbOr2
+dH8RP5c7/7vibfSacGOq9n/vxwv1j3c8KeQMbI+tLKp9pPSC2S27HqYce193
+cHJ0dd+2/NztkDn/CHfQZPzwW7049v7u4vDGDutt+Tnitr2P+vdd1D9/6+lE
+jr3Pe2i022f8fH7+97aaiu5jZsMlk9059n7vo6jz60/7+Nkw+c7aoYYPIHt6
+9dx5jr3vB5hxoG3MA35+/O9xGzxE8F37tX4ce/8P4fFXtjmKn8f+u5z5IyhO
+rizM5th6PMLfKev8Nfxc97pbPobv1KY6mYCtz2Psu+Z2uRU//3t7se2ewNTa
+2auPgK3XEyyxKWg4mp+7zDr5Wdv5KeKD2xTPFrD1ewplFddxAz9/46/WvKc3
+3uR7fj0qYOvpjRmRQfG3+Xnp6Yrt6P8M7km3R/gK2Po+Q6Z1jxZx/MzfHP/I
+zxHZden0EgFb7+cIrpz4hxMa2Lrwm4dfUlz+WiJvIWTr/wIegn7b+/HzXf7t
+Jd95gdSyXlOchGw/vMDp1JxzS/lZ8zthc0mnlwjtONpmn5Dtj5dQ9Fw0+gY/
+j6zbAC+RO2twgK+Q7ZeX+Gz+7UIiP/OL9++BUD/KNEUpZPvnFa5omu42FhnY
+/nd7r3Bemnmim4jtp1c4cGCeaAw/9637eY3R6rvZi0Vsf71Gs/Qn7Q/w875P
+4fwOeo1jkR5Rd0Rsv73G8VnSH5/5+Tu/+vw7wfKOc6fkitj+e4Nvobv6CsQG
+tu3rLvgGzwuWb24nZvvxDXZateswgp/X1y3AW+jHPhiwUMz251vYVNc+P8DP
+wdrO/Aq/xbfitqceiNl+9cHe3ObJ3/jZ9L8bxIOHxfvLxWz/+iBTfPyyicTA
+tu7uvvqgW7i8cV8J28/vUBs+TzeVn19dr3oQOu4dWuSdtd0mYfv7HT6p7ipu
+8rOg7oHfYV/WeekXCdvv77Ho3NIDpfw86b8Ng0iuzfIGUrb/3+NIK/+3A/jZ
+69/jJrxHQu6wpbOl7Dz4wnnS0z37+Vn173LTfGHkLhY8lbLz4YudjuNLvvOz
+3b/tn+4LT+1e619Sdl78cGT3k/IOMgPbuu07xw/9Db/KnGTs/Pgh8HXasU38
+nLP134L4IfROwcbbMnae/DFdUhYawc+96za4P2qNKnZWy9j58seNyorrbeUG
+tnvOj+C3jD8eFVW1d5Sz8xaAmkHaBlv4Oa5d3QIj08pg0T05O38BaFXfzCKe
+n9v+S/+KAFRb9bL7K2fn8QNa50+PsDI0sF3373is/YAvJ8/4zzBk5/MDzp3J
+MD3Cz0H/Vlf9Ac9cBse9M2Tn9SPejHhWXcjPDf47kAiJH7zPvB47vx+xaWuu
+hwM/172+mo8off8gzqMeO8+BeNvw+NkH/Fx3e9sDoa1/PiClHjvfgRg15PN4
+QyMDnqh/P58Q2avJyCFG7Lx/QpcDF7xW8/PD0HH8if6Eoyl2S28bsfP/Cbdi
+Wp9P4OeJ/Gnk9yi8GnXvIqvP8uATJruu7TCEn/X/9An5hD/jyw6urc/y4RM2
+v7g18R4/32r+70AEoaPd2T1p9VleBEET9qVZA2MD29F1CxwEt/o2zRyMWX4E
+YUeedtd2flY8+HeDQci3qHF8bczyJAhfbo/aV8rPl/7dXTj/+aj8Nu1MWL4E
+4fLPuPYz+Pnf5hpj9Bmx981OnjFhefMZRng6P4Kf/6VJvONnLPO/cVXUgOXP
+Z1xvVjlkGD//2y38loF21nX7zQ1YHn3GrBPP377i57rHjf2MmQGWxysasHz6
+jCa1ssjODQ1s6y5nGoypC6e6L2zI8ioYO5uY7b7Fz3VxNDkYFwbZaTMasvwK
+hqO2MK6ZqYHtf/UhGMqtInNXU5ZnwdhicCPoHD/XxUFyMPYH+STEm7J8C8b0
+v84TGpoZ2O6qC5wQFBus7z3RjOVdCGJMW207yc+WdQcoBK6HJlvFmLH8C8Em
+n2b2Jo0MbGPq6kUIUn+7f5nQiOVhCBI+uXmf4udN/45DZgjWLy3/FdeI5SP/
+/xeYvTFrbGDb5t92bv0FLp3S46c0Znn5BQO6jZp+iZ/D/m2/eV/AqWaMSm/M
+8vMLJhk0v97a3MB2TV1AfsH+nEMz3MxZnn7B004Pd93n5yZ1B/4LbizeaVRm
+zvI1FIqhxlyvJga2dbfXIRTVTjNnb2zC8jYU34Yva+vPz4vrfkIxKsTGkWvK
+8jcUDY8mZY/i53/liU9YnB0/NONEU5bHoeAi1iOJn/+l4+aSUEwP32HYuhnL
+5zAsajx36GJ+nlN3wTAEbm+R8qwZy+swRCf5pOn4WVIXUGGI+tvPfnhzlt9h
+CEu93OQYP/9bjUbPwnB9fIlzYnOW52GQOFhq2rQwsK1rd1VhOOPr+md5C5bv
+X/Hg1s61Pvz8599x6/0VR37eHCtoyfL+K98fAj2d+Pn+v+3s/hXmbXMHXG3J
+8v8rbsjrjSnmZ6f/Hhivrg0L7t+KefAVNdW77+3j5+p/y6H9itrBSVVxrZgP
+39DttJ2XRWsD2xv/Htf6G/IswwPWtGZefMPyvusQyM8OdS/wG1QVNl1N2jA/
+vuHqxR475vJzZR0P37DJw3HgizbMk284knRtJmdhYHvhX7zXfsNXeduiSRbM
+l3C0W/oj7S4/18Xz0HBsnZA6QGfBvAnHi/bmtWPaGtjWxevOcFxzumx5vS3z
+JxxNbJcEKPj5v/gLR/Wq/b4j2zGPwtHQRdv6Mj/XxYsgAsM3fCyvaMd8isDS
+qfntRrQ3sK07viMisPzwiqBL7ZlXERh4Y9rXSn6uOx4HIhDZ+4W1fQfmVwR6
+5HmYXOPn/7ZfBNynvZyg7sA8i0DQ0IX6sR0NbBP/La8sEi725+R3OjLfIrHV
+0mFfLT/vqAvASFz22rnIpRPzLhK9t9m98ObnjnUbMBJp2y4skFoy/yIxfuOu
+XfP5OSqy7gdzhglEAZbMw0jI3rRXmnc2sN1YF6hRWOhb7ODemfkYhbfWU8XR
+/NyqbkNHYX7rdVZduzAvo/DbbVjAQX7+UvfnVRQcuOA3eV2Yn1HoWis0H97V
+wHZVXUBH4cs0SfaNrszTKCztHGP6m5/r4qpRNC7sXPBsZjfmazTqe3x95cfP
+dXEwNRqBPYUWza2Yt9H4Ed+0egs///fnVzSSPY37p1kxf6Mx/XRJxuDuBrZG
+/x04uDR/XnG1O/M4Gr+XLFzym5/rtkvzGER/Mh47twfzOQYn1r0+H8TPdcsx
+Kwbjo1zHdujJvI7Bku7c0kP8/N+fZzE4rnxTWdqT+R2DwF2bfzj1MrCtu1xW
+DCaNdLZ+3Yt5HgvNy5E1TXqz8x6LJ8OnddjRm/kei3T30+9ze7PzHwv7CO3b
+0X2Y97Gol3y05fM+LA9i8abz1PLGfZn/seg6fXbHHX1ZPsTis/R+WH5f1gdi
+MSSt//fx/Vhe8J9vNx39th/rB7FQ3x7eqXV/lh/8/Qi+rTrUn/WFWPyd86y1
+sj/Lk1hM364bOHMA6w+xmGv5OODLAJYvseD6Rj7qZc36RBxebV5gcM2a5U0c
+3FI2fpIOZP0iDscGykvXD2T5E4cuB9vvyB7I+kYcQt6Eb3EcxPIoDus+irL9
+BrH+EYf4O8nPOw9m+RSHVivHlFwYzPpIHJp3nOcptmF5FYdueW0vb7Bh/SQO
+Y4LOmeTbsPyKQ72cj1WTh7C+Eof7y+8PChnC8iwOWk/nin5DWX+Jg/uOUMP7
+Q1m+xWHE5npnmgxjfSYe1p867TsyjOVdPCJutP5RO4z1m3h0XVjjtRos/+LR
+b8mHuBywvhOPneJ1y6fYsjyMx9Q7zVd9s2X9Jx6hTz6lDh3O8jEe508te/Fq
+OOtD8Rgf3kJpacfyMh6DUjKvXrdj/Sge62x9XpiNYPkZj/iTT3oeHcH6UjwM
+Z4Q05UayPI3H2UHSlZtHsv4Ujw8xW7soRrJ8/Y7nIR2dl9qzPvUdi8OM87Lt
+Wd5+x8fjQ7KmO7B+9R1rE97af3dg+fsdLebuMXccxfrWd0B/zzlsFMvj7xi9
+rqtu+GjWv77D06ux9MNols/fMXHF6j0Dx7A+9h3hL20WvxnD8vo7Oi/Y/7bX
+WNbPvuPE+glrvMey/Oa//8eds13Hsb72HZV3D7d7OI7l+Xd0iRO17DSe9bfv
+qHJvs/vueJbvCVh7O8upvSPrcwko3Dr+sJcjy/sEXOywyqqdE+t3CcgJH23j
+5cTyPwF9bhe+aTeB9b0ENMp1vHxnAvMgAVYxB4o7TGT9LwG2L8973Z/IfEiA
+dcr+sM7OrA8moM3VGa5PnJkXCeg9rfWkHpNYP0xA/Ibkdy8nMT8ScGH28cP9
+J7O+mIAxB0eF+E5mniSgdFn9FcNcWH9MwLujhduDXZgviejqnlYzegrrk4kw
+eKnIiZ7CvEnE4Kxe/adMZf0yER2ueanTpzJ/EuF6wrHVAlfWNxPht2DQq1JX
+5lEijsSteuU+jfXPREw/p2pVO435lAjztTGafdNZH02ESS8j6/ozmFeJUN9/
+kX9hBuuniUh5FvLbYibzKxFDu0zc+2Qm66uJaPB3hvuAWcyzRHhbVEQFzWL9
+NQmlB4zPO85mviWhQY+wsNTZrM8mobhNm8WL5zDvkhCwrPVa9RzWb5MwrW1U
+we65zL8kmCzsG2Y8j/XdJARPnd7o+jzmYRIKOo6K6jaf9d8keIjFKr/5zMck
+mPW+unesG+vDSVCVNdyV5sa85O9n97qi5QtYP07CGrvP/rULmJ9JeHDU6Jfn
+QtaXkzDTf9rD1ouYp0mQDHv+6cUi1p+Tkbyvqf2IxczXZLwUX++ftJj16WQM
+GGl/ZtkS5m0yQsOazfy9hPXrZBywaH/q9FLmbzLmFC7r3WkZ69vJkPpWD/Nf
+xjxOhtw2/v3E5ax/J+NDV/HNwuXM52RM73VJuX0F6+PJKDM598JsJfM6GYtO
+cRmPV7J+noxru0vW261ifidjwjuXzWmrWF9PRjez8SXuq5nnKYjZmhJabw3z
+PAWxGYKG99Ywz1Pg3zMhbNha5nkK2rpPKUtZyzxPwenHJ7etX8c8T8G9omOb
+jd2Z5ykQ2k7OfeTOPE/B3PjK9/brmecpOPBlya+c9czzFEwfHfZ05wbmeQoy
+TpuHt9jIPE9Bv5w5Lr4bmecpeLrj0ThXD+Y5f78+f59rPZjnKZDnL99zbhPz
+PAXuizSBfTczz1NR7869Fd83M89T0bn+4f3rtzDPUzG35T3DRluZ56k44Sz5
+82Yr8zwVWf3fzpm6jXmeiogZ/lb6bczzVLSf0W7ple3M81Q0TFI3GLqDeZ6K
+1lsGWWbvYJ6nYmD1r8f7djLPU/FWNvqa5S7meSpcN3SojdjFPE/FFPG1sLW7
+meepmHXqPWe+h3meivOqfY/89zDPU/G4oSxw/l7meRqi0p3sZPuY52nwHeXW
+9/k+5nka/FzGn5m6n3mehpeGTeb+2c88T0PTrZGX7x9gnqfBMMDDbsJB5nka
+7FVtpusPMs/T0GdUfObtQ8zzNBRUXIwdd5h5noZu7bb1rj7MPE/D/s4HDW4f
+YZ6noa9T8NDxR5nnaRhSMqREd5R5nobl034L7h5jnqdhhtDk2ERP5nk6Ns3Y
+vue3J/M8HbLkCYWPjzPP09Gr9qzvtBPM83TonCfXSk4yz9Mxds2lJ29PMs/5
+/69YFb7wFPM8HX+3/HBtdJp5no6f/prJIaeZ5+n4uMr/44YzzPN0NJ049FLH
+s8zzdKRZHchOOss8T0dR0vWLh88xz9Nh3fXMh8Hnmef879dbNaniPPM8HYLl
+g6beusA8T4dwiODb5IvM8wzM2Rv/WHqJeZ6BEIe3tf6XmOcZaHXtrf/ay8zz
+DHje+FHa8QrzPAMe622OpF9hnmfg8JjkC6evMs8zEDDtg9noa8zzDMzN1f/9
+c415noGmvc/P9LnOPM9A+aXrnVbfYJ5nwH5Tq/mdbjLPM6DvY1Ev6ybzPAPj
+h7zscOkW8zwDv40yvJ1vM88zMLLz0/v1vJjnGfjRvLtJqBfzPBMNty0v2n2H
+eZ6Jl8Vreg65yzzPhGX9MUW6u8zzTGy5ypm8ucc8z4TjxHv3195nnmdCqcSz
+7g+Y55lwm5jZsewB8zwTE+yP1H/0kHmeiQ5vJixa8oh5ngmjo0O6d3rMPM/E
+zw8zFxU8Zp5n4sVE3/r3njDPMxE4fn6nRU+Z55m4HDr3eUdv5nkmjmV8eljo
+zTz/gSifU6YPnzHPf2D/ofTyZc+Z5z8QdtTb2uoF8/wHnkjM1JUvmOc/4DCu
+aZtXL5nnP/Dm1Tf/ja+Y5z/Q9nbfb4NeM89/IHa/26g/r5nnP9A6yW1A8Bvm
++Q8cazL8wuG3zPMf+JwoX+Lkwzz/gesPvj1s9I55/gM9exyfmf6Oec7fb6P5
+u7zeM89/4FeDSY2W+zLPf+Bp7srmffyY51kwdvl4+qcf8zwLzwZN3hrszzzP
+wnb3gQmeAczzLEQVbb059QPzPAtLjltmWHxknmfh0PxxR8s+Ms+zkL9S/cgn
+kHmeBf/PVjZ7PzHPs5C0WzTMKYh5noVTMYdeNf/MPM/Cj5zgS0WfmedZcNV+
+UbwJZp5nYdCkq357Q5jnWdg4zrl64hfmeRZeDtPeaRPKPM/GpHPngitD2XnP
+xr7AIVM+hjHfszFsWO20E1/Z+c+G8+XM6DnfmPfZWLJQ6dMznOVBNkyGjWzI
+RTD/s/ElJi8zPoLlQzZ0UZkt70WyPpANYz2iN0WxvMjGlqZNVWOjWT/Ihrdo
+w+HWMSw/stH/+vzTqhjWF7LxNqrSKCyW5Uk21J5daq/Gsf6QjeyMNrPWxbN8
+ycbV8Kyeo76zPsE/7+pNHq0SWN5ko2+5pqcmgfWLbJx1XzwrIpHlTzYybdJq
+vZJY38iG1/E5xtuSWR5lI+U9d25yCusf2fjRLN7TKpXlUzYONP2hF6exPpKN
+Zp37pWSlsbzKxrKw3K5+6ayfZCN2t15xLoPlVzYGl+7rujaT9ZVs9Ll3Nnnc
+D5Zn2cibM0BvmcX6Sza6xm71FGWzfMvGuQ9rzuVksz6Tg7W69g0Cc1je5SB2
++v2/13JZv8nBxUjxgm15LP9ysHOE8+AZ+azv5KDNx4sHBhWwPMzB71HFI5sV
+sv6Tg6N65801hSwfc2CtzmuTVsT6UA42LvG28S9meZmDT6c+RFwrYf0oB099
+2sfuLGX5mYNiq6rR88tYX8qB4+SeA0aWszzNQc559UXLCtafcpC3ctzqepUs
+X3OQNMvBt6qS9akcHKxWb06oYnmbg8bJC7x9Faxf5YB7eG/qTSXL3xz0avNt
+wwEV61s50P3JlK5UszzOQUdzjclkDetfOahn2+L4YC3L5xwcWrhgV7tq1sdy
+YLQ5o9BQx/I6B97bLgSrdayf5aDDjtuNM/Usv3OQdaF+ZmgN62s5kCpKm738
+yfKcf98BYyKv1rL+loNOQwdrDv5i+Z4L98DI0+6/WZ/LRfH1hvfm/GF5n4tK
+NOsx7i/rd7nIbqaxGmjAUf7nooX3q9sdOY76Xi6khxd5mgk48iAXbRxaVXBC
+jvpfLv6cLA1W8PN/PuRiSYsfDbJFHPXBXEx8IkuIEXPkRS5KTLbV/yThqB/m
+4lknhw8vpBz5kYtlaVvzbss46ou5GN6+6+6zco48yUWQZNHZA4Yc9Uf+eheH
+tNpcjyNfctFTF9RqhRFHfTIXpydJzs+pz5E3ubhR0HzfJGOO+mUudtY0KHYw
+4cifXPzOrwm2acBR38zFVaMi894NOfIoFydzS7I7mXLUP3ORXGjWrpUZRz7x
+9/vAI82sEUd9NBebAtsb1mvMkVe5kKdavRSYc9RPc7H5yZ2Yn/z8n1+5sP11
+eZG6CUd9NReFN9quL2/KkWe54DaO1xc046i/5sF+tZU2qzlHvuXh5OHvy9Ja
+cNRn86CMmTw1sSVH3uUhYE6gX2wrjvptHo7O7nwxsjVH/uXBSXi77Gsbjvpu
+Hmaet3n/xYIjD/PgvsTw9+e2HPXfPP7vhTZ+n9px5GMeui44UfWxPUd9OA/J
+25de/9CBIy/zEOjzKTigI0f9OA/rvR+5BXTiyM88DDIasDXAkqO+nIfGxzcb
+fujMkad5SNXvM/vYhaP+nAcryxXnA7ty5GseLv+xPRXUjaM+nYdrG5qKQqw4
+8jYPj4+LlKHdOerXebCb3dQ1vAdH/uZBJ14yILonR307D9t9hSfje3HkcR5e
+vefmJ/fmqH/z8+QNTzP6cORzHjJKVq/L7ctRH89DXonoRXE/jrzOQ1LcmKVV
+/Tnq53no19P5SvUAjvzm1+tGD4c/1hz19TwcjtKukAziyPN8SDb51TMZzJHn
++TBfcqpjUxuOPM+HyZZjvm2HcOR5PoSXAsO6DeXI83x8/Wg7ccAwjjznr6dv
+N3k4OPI8H2PmbI0db8uR5/mQtpz5ddpwjjzPx5sVqYMX2XHkOX+9i/LO7iM4
+8jwfST//ntw1kiPP83Hyb6z7cXuOPM9HqsXp2KsOHHnO/36Jy6PHozjyPB9q
+ba/fvqM58jwfNYpBkd/GcOR5Pppd3G+eNpYjz/NR/aZjRuk4jjzPh69ln1a/
+xnPkeT5aZH5Mre/Ekef58Pie3dBiAkee5yO2mfeXPhM58jwfpTEDtfbOHHme
+j4mdLt+aPokjz/OxZE5e2KrJHHmej83hViv2unDkeT6Co44evTiFI8/z+f5t
+2sl7Kkee56P99rShwa4cec6vzwhdXOo0jjzPR3TKzlzFdI48z8fS6oNrZDM5
+8rwAfxd13GIxiyPPC2AhXPt34GyOPC9AkN92waQ5HHlegEnH5u9dMZcjzwsQ
+sb/frgPzOPK8AIFf69XcnM+R5wVYfPR3lZ8bR54X4JmxxcKkBRx5XgDHp0em
+qBZy5HkBoiImhhgv5sjzAtwoOvai2xKOPC9AB0/n5mOWcuR5AcJc33NLlnHk
+eQFEtUmLDyznyPMCbBsYMubuCo485583/8Lj4JUceV6Ah0WLjuSt4sjzAuQM
+Gl0oXMOR5wXYXOQS1GEtR54X4IXxneYO6zjyvAATsseolrhz5Dn/+c15o4+u
+58jzAiR4/WnpvYEjzwuwdpLN2tiNHHlegD9dethpPDjyvABx7yrPNN3Mkef8
+elw/5zZ0C0eeF6DlCeuXbls58px/HueqnYe3ceQ5/3nw94hn2znyvADK6F8X
+E3dw5HkhBnjszfu1kyPPC6GO3P6sw26OPC/EsZ/CmvF7OPK8EAmDegVv3Ms8
+L0S71Gb1b+5jnhdi9uDUpK/7meeFaPD9oIX6APO8ENusbEpbHWKeF+JBnnG/
+MYeZ54XweNT8z4YjzPNCvLbbNPr2UeZ5ITofHmoWfYx5Xoiniw/OqfVknhdi
+cNbyrl1OMM8L8Vsi2uR6knleiKXSFSMPnmKeF8Khte+Zt6eZ54UIvy51KzjD
+POfvr3zNq8bnmOeFaHOw3n6H88zzQjT+qU7adIF5zr+PCrsnjy4yz/n/39SU
+y7jEPC9EzthtKcZXmOeFqF18qbfdVeZ5ISwW7TPyuMY8L+T7xdRlj68zzwvh
+49xtdNYN5nkh+l5p+ajRLeY5f73NIz3H3maeF2LBxA/K3V7M8yIMuHQ79d0d
+5nkRwjPrjay6yzwvgmmIeW/L+8zzIrwWZt6a+4B5XoRmK7acvfSQeV6Ewz8k
+8vhHzPMi9J92izN6wjwvwpTieTscnjLPi2D9dsH2Pd7M8yJMrg3+E/CMeV4E
+t/rXRTXPmedF2OBieKL/S+Z5EbiJllfdXzHPi2BwwcTqxWvmeRF+xf+wrXzD
+PC9C1/AXqVY+zPMibJ9yu3rFO+Z5Ed4virz45D3zvAjHBU4fynyZ50V4MNZu
+iZU/87wI39Z/Ob8qgHlehMxw9ejnH5jnRTB+U7Jb+ZF5XoSMx8FD+31inheh
+n92NXZuCmOdF2NfhgoP/Z+Z5EaLNvp75G8w857+vZOLCkV+Y50Uov+jofySU
+eV6EY5bpF2PCmOf8577mPxt/Y54XY9bhVrmzwpnnxRibbzTxbgTzvBjTrQUj
+yyOZ58XYJmzxsV8087wYkrwNH3fEMM+LEXW4u31YLPO8GAM+uU1qGM88L8ak
+VX0KZ35nnhfzf0/7GTxIYJ4XI6xfMy9VIvO8GGvOrgwflsw8L8ZZRfyWYynM
+82IYeC9/kZLKPC9GgN2k1Z3SmefFsLB/+HpDBvO8GIp5x3YHZzLPi7F+VvNE
+0yzmeTE8m2x46ZbNPC9G4rF3jV/nMM+L8TpSKBDlMc+LsUG62WNKPvO8GAv3
+9V3/oIB5XozS21P0NYXM82Jc//Fb7FjMPC/Ggphx126VMM+Lsb/DXH9NKfO8
+GOEPXReMKWeeF+PC8CnnblQwz4vxp3KTk6aSeV6MvIis02MVzPNi1Df2nnNb
+yTwvxiiJwVu9inlegk0WNecmapjnJfDLe//noZZ5XoLtqrkqTsc8L8FFQ5O1
+M/XM8xKsFBdtelvDPC/Br2SZYYNa5nkJJGfPd1rxi3legvYLnkWF/maelyDj
+1Ia/7f4yz0sQuVsesMtAQJ6XwPf1CWEmJyDPS/A8tGPSYKGAPC9Bq/WKvpdF
+AvK8BMoTDVrpxQLyvARvjR6edpUKyPMSPKhNOf1OJiDPS5B56EurpoYC8rwE
+s36e7L+lnoA8L0F/3xmpaUYC8rwE90eNlg81FpDnJejtsO3LTRMBeV6CD+7m
+xsKGAvK8BD4Ph+QtNhWQ5yVol9PAPsJMQJ6XIKyPT99ejQXkeQlGxk94ft5c
+QJ7z1zfl3tc2EZDnJbBZUOHo1kxAnvO/7zJw3bfmAvK8BHvOiNv1bikgz0tw
+oWTzvMutBOR5KXxH+FgJ2gjI81JEPco5uMJCQJ6XYs+INmsS2wrI81Kscz1b
+gPYC8rwUI8e5lT7uICDP+f9/58UO804C8rwUncR3bu61FJDnpUjoM2diVWcB
+eV6KfBPpqVldBeR5Kerf/DwnvJuAPC9FjMAnYGB3AXleijM7JI8f9BCQ56X4
+ti61U5NeAvK8FCZuLn0P9RaQ56UYr7wWo+sjIM9LEZubUru0n4A8L8WW5j3e
+p/UXkOf8/V37LHK0FpDnpRh4MiAncKCAPC+F0tpuQt/BAvK8FK5/tjg+sBGQ
+56WoXX40o8VQAXleig+WV36dGiYgz0uh/xvjLbEVkOeluJk9SbF9uIA8L8W8
+lDEhajsBeV6KsCYZXVaMFJDnpZiv7NU2z15AnpciM3XN45mjBOR5Kfos/fQl
+YbSAPC9F4JSx653GCsjzMqzb2f/113EC8rwMBdmPDoxwFJDnZTh2I6b0o5OA
+PC9DRG107uCJAvK8DF3mxa565ywgz8uwZOqvY/0mC8jzMjz13Db0lYuAPC/D
+owSPvb2mCsjzMvi1bzLzuauAPC+D0dkDYT2mC8jzMnyZWxb2bIaAPC9Dp7J1
+s3rOEpDnZXjpZ3fgxWwBeV4Gp82H7PrMFZDnZVivWnbuzTwBeV6GUS0bbbN2
+E5DnZfha/0W13wIBeV4GrXCpFIsE5HkZ78Fi7+DFAvK8DB2fJhaPXiogz8uw
+4Uy2b/QyAXleBpfClxZTVgjI8zL8ubmhVcZKAXlehlOZk18sWC0gz8swIG9r
+atkaAXlehsktGl/esE5AnpfhoblT1W93AXlehu2ezhmHNgjI8zJ8njFunqmH
+gDwvg/3BJduubxKQ52WIHhzfvcsWAXleDseId5vebhWQ5+UQvBo53W67gDwv
+x4NT9+JjdgjI83Jc7iXNn71LQJ6X4+/eC8fLdwvI83Lobu2O2bZXQJ6X42OE
+6lG9/QLyvBzpK5u3unZAQJ6Xw8G8Y5fuhwTkOX/9vbbRHw8LyPNy9Dl/xcj5
+qIA8L8eiGfPz844JyPNy3JUGT9l0XECel+NhbcW8eicF5Hk5vD42kNw6JSDP
+yzFfMMO+/xkBeV6O3V761hFnBeR5OU7fbXF2/nkBeV6O8QNVt/UXBOR5Od6/
+ezLu1CUBeV6OaQ82nep8RUCel2O6z4G1QVcF5Hk5Aj+Ky2dcF5Dn5Tj1xVKo
+vSEgz8shrG3hc/KWgDwvxzM/U3E3LwF5Xo7Xx4YoQu8IyPNylFmEb1pwT0Ce
+l6PF9PKrBg8E5Dk/I2HWjYcC8rwccsPXfkMeC8jzcni08nub/kRAnlfgvLyF
+0zZvAXlegZXHpPtbPBeQ5xUwOP7SNeCFgDyvwMGO477NfiUgz/n/f1mS+ve1
+gDyvgPNM80NebwXkeQW8DL2/278TkOcVmLPx98eS9wLyvALbLg4ec8JPQJ5X
+wO7qRfe+AczzCuxOHWWT+oF5XoG3qTvv7ApknlfAftLaJ52CmOcV8O48cXL0
+Z+Z5BV6tm3TVI4R5XoGz657saxPKPK8Arp00+hbGPOe/73zfAeu/Mc8rYN07
+0qB1BPOcf/71J1Z+i2SeV6De6edbNkYzzytgVLWwc7tY5nkFXrbP3xwTxzyv
+QL9qtxU7vjPPK9BobhMDq0TmeQWcDltbpycxzytwLKqmwbEU5nkFZgWcO26T
+xjyvwNJG8C5PZ55X4E5Yz7U3MpnnFTj083rSxCzmeSXsRUHZwhzmeSV+r449
+8S6XeV4JlU6YsyKfeV6J4JNnky0KmeeVuDHjnXtSEfO8EltfPHjlWcI8r8S4
+Vtcvjihjnldi8PzYtrXlzPNKZKzd6vy6knleiZUbEzqtVDDPK/EnsolXRxXz
+vBL+hjuDs9TM80qY62yPXdEyzyshPXWlZoqOeV6J4fIvxqY1zPNKrIr8GR79
+k3leiYVbPHp4/mKeV8Kt0H3Q2D/M80qMsuhWLjMQkueViFqe5vCVE5LnlQiy
+DRhzWCgkzyth62KkHS0WkueVqDwhGWMoFZLnlehnWmQfKROS55XYZF1adsJQ
+SJ5XwvXUeJtJRkLyvBJFhWP78Y2QPK9E6dB2yWkmQvK8EsZxJh1uNRSS55Ww
+bOzcYrGZkDyvxJr37T9YNRaS51UI8Poi15gLyfMqfNZu4AKaCsnzKjjWX3t3
+f3MheV6F3bu0KseWQvK8CiatRlY0aS0kz6uwS3nlbG4bIXlehfkjBhV6txWS
+51W4cG5OwZb2QvK8Cvu8xp526Cgkz6swffHQUjNLIXleBafGmxQ5nYXkeRUy
+LAbefdFVSJ5XQWgdJN5tJSTPq7DfbnLjiT2E5HkV2q/o+d2il5A8r0JR44tQ
+9RaS51WYWhAxI6SvkDyvgp+vSceL/YXkeRVmv7x7Y7m1kDyvQmTnqLBhg4Tk
+eRXM/SNumdkIyfMqGNvldSkZIiTPq3A0aeqCwGFC8rwKj2KXOV6wFZLnVaj/
+dW7xKjsheV6Fdue293MYKSTPqzBnvKhPGwcheV6Fg6NtcvSjhOR5FUotFtt9
+HyMkz6vw9Nm3Kc/GCcnzKoiMnrQ46igkzxXYfm7CucUThHTeFRhS8CtwhLOQ
+fFdgZKb+RtvJQjr/Cry/fqS3wRQhea9A66PaTVlThZQHCniN3uceOE1I/isw
+6/OWtrdmCCkfFDjX3uLAnllC6gMKSDI+XF8wR0h5oUCHm1dWOMwTUj9QYO7C
+P5Vd3ISUHwosW9K7s/FCIfUFBbZ23t5EvUhIeaLAhZWWH1KWCKk/KJAwdHuz
+wGVCyhcFbpUFW91fIaQ+oYCo3mjd8VVCyhsFyjwmbfFYI6R+ocDyid1fz10n
+pPxRQPy33b0x64XUNxRQ99o5od9GIeWRAkvTj7xqs0lI/UOBzMGno+ttEVI+
+KTDhe9Yd/VYh9REFTq8N6lO4XUh5pcDhTnu3JewUUj9RYIfz6p3Bu4WUXwrM
+vBBv83qvkPqKAn9ya1/f2S+kPFPAY7V10bmDQuov/Pf5xicePCykfFPgx/EW
+u7ccFVKfUWCfwbzClZ5CyjsFNGsqZfNPCKnfKHDwQOPiKaeElH8KbOjfYf+4
+M0LqOwp0DVyWOfyckPKQv3/v/pqBF4TUfxTol5z8tdcllo8KpM+5NbPLFSH1
+IX7/vc562u4ay0sF3p4qDGh5Q0j9iN8ff8WeTW6x/FSgrcvJ5mZeQupLCnTv
+m7DU5C7LUwUaH++0yei+kPqTAlG3UuwNH7J8VeBm7ZBE2WMh9SkF1m+531H2
+lOWtAi3tl1rLngmpXylwJSXRUP6C5a8Cq3/b3TJ8JaS+xb/PSKHe6A3LYwWG
+vlhp2sBHSP2Ln+fHV5m9Z/msQO/SI6ea+gmpj/Hn436xplUAy2sFBtuNbNXh
+o5D6mQJh/ip5t08svxWIcxvr3+ezkPqaAoNSb/e2CWF5rsAIs4mrRoYKqb8p
+kOP6dLXTV5bvSuhsjQdMDxdSn1PC2z8qeGEky3slXslGNF0XLaR+p8SJgNC+
+O2NZ/itREPjS3DNeSH1PiZAJs4OuJDAPlCj/3a7f4yQh9T8lWryctcYvhfmg
+hOu9hesj0oTUB5Xot/K8bWYG80KJThVjkqt+CKkfKhG0KNNamMP8UMJw+RO3
+JnlC6otKBOabTLMqYJ4oca3JkqZ2RULqj/zzXa1/d1oJ84V/nvnzateUCalP
+KhHwMqD14QrmjRKpVruNb1cJqV/y7ytCFuGnZP4okZX9xiVRLaS+qcQ887wn
+Ci3zSAnPtapYI72Q+qcS9R3tQrr8ZD4psWBBn4OjfgmpjyrR90u7Jov/MK+U
+OPJj/aYDBiLqp/z78Dj44J5ARH4p8cnb/0GoSER9VQlnwcbNxRIReabEtPGN
+mteTi6i/KtH2U61nj3oi8o2/n8rjcZPqi6jPKpH8uXvxJhMReadE+qFhcdcb
+iqjfKjE9r/3xEDMR+ce/75ThLcsbi6jvKlH09dfORk1F5KESi9x93w5tLqL+
+q8RnZcanJS1F5KMSoUGRt860FlEf5t+/f+WUjxYi8lKJ500eZZe2E1E/VsJn
+pdvwph1F5KcSvV7u2exgKaK+rITcZvXBjV1E5KkSNYEnV9zrJqL+rETkFKfO
+Sd1F5KsSl91NP0h7iahPK2FcMbLr4D4i8laJe7+c1q7qJ6J+rUTFoCsnbw8Q
+kb/889w4dThpoIj6thKnDl6baWQjIo/5+Vln+YihIurfSogG3Dq9FSLyWYnN
+N1ZrXw0XUR9X4mfE337lI0TkNb9+4k8TOzmIqJ8rMVvTYsz80SLym3/e+7tb
+Xx8ror6uRNTRmXGp40XkuQohHs3dmkwQkecqVNzuFjfFWUSeqzD34e/W5yeL
+yHMVjhz9Oy5xiog85z/3vjXNfJqIPFfhctpE+2kzROS5Crm2u02vzhKR5yo0
+3HDz0485IvJchVmr2kxsP19EnvPXP7YuaOkCEXmuQoez0sbPF4nIcxWeP5s8
+rnqJiDxXIW7114XDlovIcxWOhafMP7RSRJ6rsKCN3i5utYg8V+F07yuylutE
+5LkK/az6vl6yXkSeq+Bx23rEm40i8lyFgKMtfbnNIvJchdjRro0nbhWR5yrU
+uzt72s3tIvJche2R9/ZW7RSR5yqYzrh/znaPiDxX4fP4pBNn9onIcxWeGnmv
+KzggIs9VwHKvoYMOi8hzFebc6KE+flREnquwb2z4mTxPEXmuQtbmypaDT4rI
+cxU2X2t05vRpEXmuwvjTPqqSsyLyXIXV15ww4oKIPFfBYqXr5uuXROS5Csom
+42/or4jIcxUSLR6+dLkuIs/5+1tX9OrlTRF5roLN7INeJl4i8lyFnV7cntV3
+ReS5CruXJjlF3xeR5yqctN1r1PORiDzn77/jPr9TT0TkuQrXdrhOV3uLyHMV
+asx3lkx9ISLP+e/v5rHC/5WIPOfvb3ZglsVbEXmuwqSAVIdD70TkOf/9H+1v
+V/qKyHMVFjvsr5oaICLPVZhwy7zPp48i8lyFqL07l3UNEpHnKnwwHnbhfLCI
+PFdhVEzyey5URJ6rkO0bzW9BEXmugn2P+zkZ4SLyXIUt1TnF46JE5Dl/PQdJ
+sX+MiDxX4fiHi1lW8SLyXIWzC1rE3kgQkef8+3hi7tcwWUSe87/vbnLjQKqI
+PFfB5e+x7T/TReS5CgkCs6lrf4jIcxVSLnbrVpQtIs/VqLGb/WtOnog8V+OY
+qmd4coGIPFdjz59u552LReS5Gi6d02ZHlorIczVKrwR3GF0hIs/VWF26rjSk
+SkSeqzGw0ZrndioRea7GvZ32G4I0IvJcDaV+16DhOhF5roaZ/6O/QTUi8lyN
+k4ucwkb8EpHnakzgfp4K/SMiz9VY9Xfg7LGcmDxXQz7oklWMUEye89eruvvX
+RSImz9UwDy9PSpeJyXM1/qT+frWgnpg8VyPn/OJz5fXF5LkaH9PfbvNoICbP
+1bBTbF3GmYnJczX27bSfc7yxmDxXI+DivRnNm4rJczXEr7vNfdhcTJ6rYeS9
+dKV1KzF5rkZoWMXesDZi8lyNto/H35nWTkyeq/FybpPo0g5i8lyNWdOyhTst
+xeQ5f/2lg+1Nu4rJczV6hL4/88BKTJ6rcb1+VfnQnmLynH9em3Uuib3F5Lka
+215+/7aqn5g8V2NmryeOUmsxea7G1QzP7NuDxOQ5//s2xvuGDhGT52o06ful
+f9owMXmuhko+umbTcDF5rsbexd2jzUeKyXM13jsZvfVxEJPnahy03P7MdYyY
+PFdj/ptG/jXjxOS5GoHmq9OvOYnJczXORlk0GO4sJs/VCHvzZXrhZDF5rsZz
+UfV7z6li8lyNnc7jevSbLibP+c+PzvXLmCkmz9XY+jNy9sE5YvJcjd72PZr1
+ni8mz/nfX9q6ImOBmDxX44X/wLQji8XkuRrWFU1zrJeJyXM18oQzBUUrxOS5
+GqNmXx12cbWYPFdjuLfHhdHrxOS5GiN/HzGsXS8mz9V4/MT96jMPMXmuRu3y
+6DELtojJc/7+htuYN9suJs/V+HnQlYvdKSbP1dAXBtU7vEdMnmtQO6vZgOH7
+xeS5Bv37/95de1BMnmuwrl79Cp8jYvJcg+HhxVvXe4rJcw0sH/fq1vukmDzX
+ILjXgT9Vp8XkuQbKnoe0z8+JyXMNykOSG6y7KCbPNVjt2tS57xUxea7B50ul
+PtXXxOS5Bj/2Kuz8b4rJcw08XCO1u73E5LkG3E2L2FH3xOS5BtGWp+JNHorJ
+cw3+ij7+TnksJs81OHPccdIdbzF5rsHsmbmxq1+IyXMNpGMtttq8FpPnGvze
++MRJ7iMmzzVYatN5Qsp7MXmuQfP+Ntsf+ovJcw022RxJ2vJRTJ5rMH3Buznj
+g8TkuQa/fi1vbBEiJs81iD0zplYTKibPNZhTrG8Q8U1MnmvQtKa1q1ekmDzX
+oLdufvTWGDF5rsGSsUs3ucSLyXMN4k6kTOqZKCbPNbhzdvr8eili8lyD6uln
+7hSniclzDfaadW0elikmzzWY0fbrl/vZYvJcg/umjR4cyhOT5xpMvvP247JC
+MXmuQYifS33HEjF5rsGu5ZfP9i4Xk+caxJR3m9SkSkyea7Dqzpsxf5Ri8lyD
+NuYZWws1YvJcg0nKsYUxOjF5rsEr0WNPv59i8lyDT8O9Vt//LSbPNXDzy/A8
+ayAhz/n9dFNQvEcoIc81sMaH3eskEvJcA0ORj6ubXEKea+DnfmGVi5GEPNeg
+URdZ8CgTCXmuwbyMN9OGmErIcw3iXR169mksIc81MNi2eFSXphLyXAPngYG3
+27aQkOcaLD77c1iL1hLyXIMDNz+3MW8rIc/587cjaKRpBwl5rsGOWbefmVhK
+yHMNDq03mmPcVUKea/BO5D3ZuLuEPOff3/Tup0x6SchzDW4EWjcy7SshzzXo
+dswju/EACXmuRceG57TNB0nIcy2uPxjs0naIhDzX4vKdRr87Q0KeazHDNVLR
+205CnmtxrYFRryH2EvJci+/mO/1HjZaQ51q4PYo86zJOQp5rkfz7tq+bk4Q8
+16L1sIfd3Z0l5LkWLw4eUex1kZDnWgTnVwnOu0rIcy02uxxY9HCGhDzXQhCo
+bvphtoQ81yJSn9/q+zwJea7FrUDBxtIFEvJciy/vq1sLl0jIcy06rFnestVy
+CXmuxSxn6eqBqyTkuRYFzz0aTVkrIc+1aO8/v8H69RLyXIs9e9a5nfGQkOda
+7Khwqvd6i4Q81yIk2Kte4nYJea7FwNuNF+p3SchzLWQ1Exq32ichz7V4bfqz
+zYiDEvJci2aygP3Lj0jIc/77goeOPOspIc+18Prdae6HkxLyXIv7Nm2Sis9I
+yHMtekdFPWp8QUKe8+sRnpo24rKEPOfXo2HpsvXXJOS5Fk8c7rnevSkhz7Xw
+iH55N8lLQp5r4Rjz1tnwvoQ818K/u+tcPJKQ5/zzHrWJ3vhUQp5rkTZcdtP7
+uYQ81yJzsVt84SsJea6FaUjl0rY+EvJcC4sU5wWzfSXkuRaShJ6frwRIyHMt
+Gl+2OpgaKCHPtSj3KXveLFhCnmuxalkD25mhEvJci7cXhlrf+CYhz7VoHtX4
+Qm6khDzXotVwm9mdYyXkuRZLIiYcX/NdQp5r8blQ0+l9koQ816Lhs4iugjQJ
+ea7FuLQNlx0zJeS5Fps+nVp/JVtCnmtxd0Kgb3GehDzXosz41sqBRRLyXIsF
+LeI9j5RKyHMtunbSNM+okJDn/Hlzv9ukl1JCnvPv6/vufQc0EvJcizWPOs3N
+0EnIcy0u5vZ50q9WQp5X4712+NITfyTkeTVMcqsulHBS8rwaSqsUawexlDyv
+xves8+PuyqTkeTWmHgyOFxpJyfNqTLaqjVpoIiXPq1E+M2lomKmUPK/G1RaV
+7bqZS8nzaowqT9txqpmUPK/G9LB+E3QtpeR5NZJbnr0410JKnldja5yn67f2
+UvK8GnFD3p/sZyklz6sxw/KJ7e2uUvK8Gs++/lxu0kNKnlfjxhcbk129peR5
+NRb2EPRQ9JOS59UI3Z4T5jZQSp5XY8KZlZlJNlLyvBpbfPqvGQ8peV6N4nPR
+O4LtpOR5NW7afJUPcZCS59UY3uy1mc8YKXnOX6+29bXejlLyvBqrjK7eeTZR
+Sp5X42H8267dXaTkeTW+dP/d29tVSp5Xw3PKH98eM6XkeTXapdgHv5wjJc/5
+578012mAm5Q8r0azyKSZAYuk5Hk1vH/2Lx+xTEqeV2NwrcQgaqWUPK+GhTr+
+outaKXlejaUu7d7krZeS59Wwztg+Zd0mKXleDfvTy7YbbJOS5/z3f17d5fRO
+KXlejSiR6ez2e6XkeTUM+6Y0eXdASp5Xo+UK+xnjj0jJ82oMrZ/ZIc9TSp5X
+Y4Vf283bTknJ82pwk8+7ND4nJc+r4aJ97/fiopQ8r8bsX0ZPHK9KyfNqzPzT
+oFP5DSl5Xo2DESOsPL2k5Hk1Qla2/9j9vpQ8r8b8dt0zYh9JyfNqRLtlHtzo
+LSXPq7Es9fnHFi+l5Hk17Ba12R/8RkqeV0PV5H7yyvdS8py//34ffJsESMnz
+aqR0z+waEiglz6ux4/6Obu7BUvKc35+rGwe0DZOS5/z+2Nc8Mz5cSp5X4099
+wckD0VLyvBrD3GzjB8VLyfNq6H6PflCVKCXP+fd/6ITxg1Qpea7DlOi9snmZ
+UvJch+ZhF843z5GS5zoEHh/sk5QvJc91aLogc/m5Yil5rsO4pxWvJ5dLyXMd
+BKqU040UUvJch3NZ9cTJail5roOtnar+VZ2UPNdhqUz3dF6tlDzXId52f67l
+Xyl5roOumfC5QiAjz3UYn5Nu6i+Rkec63BB4GB8ylJHnOiyRDvRyMZaR5zoM
+vHAour2pjDzXoaX7t7OaxjLyXId6W+erQpvJyHMdZjx8VXqllYw812GYaZsd
+a9vKyHMdRhVJH4/qKCPPdShdG7XOoouMPNfBzDQm4aeVjDzXwcdhxfekXjLy
+nH/eO39XveknI891ECcW3z07UEae8+txa+/mDUNk5LkOvjmWJVNtZeS5Dtme
+fXSDR8rIcx12PK31shgtI891MHZLL5eOl5HnOlwt6JyomCAjz3U4eGDwrPTJ
+MvJchzn3F+0Nc5WR5zq8/vxn1NuZMvJch5/Lp3vfnSsjz3VYYf/11fkFMvJc
+B1X969MOL5GR5/z+uND55vYVMvJchz8hfgfd18jIcx2mX/QyWb5eRp7rsK5N
+j8ELNsnIcx0sDzyWzNkmI891kEsWbpyxS0ae8/ervXdw2j4Zec7vpwC/wdMO
+ychzHT6klp2efkxGnutQk7vHc9ZJGXmug8u+kK7zz8rIcx2ub/+5cslFGXnO
+r++DZZPXXJWR5/z7U039sfmmjDzX4e9CifH+OzLyXIcBLf1zTz2Qkec6PHZ8
+N+vmExl5zq+fw5Dtz5/LyHMdjFYdHR70Wkae8/tnWM7ThHcy8lyHa5N3fSzx
+l5HnOkTM9PIw+CQjz3UoaXsosWmIjDzn9//RZel9vsrIcx2sz+8/7BQpI8/1
+aDXLNHNFrIw812Ni4/GpRxNk5LkehabLdzxJkZHnengG3/kWlSEjz/Vo+Lrn
+R2W2jDzXQ3V0xMwmBTLyXI9S00a3h5XIyHM9DvVOPLmkQkae6/Gl3NfyjFJG
+nuvxeLlm6UetjDzXo1j5dnJ5jYw812NPaY/iFn9k5LkeHj9OdHIUyMlzPdZs
+FZnslsjJcz1Wn/hw+42hnDznv9+46EepsZw81+O8mXdoOzM5ea5HTfrg6bOa
+yMlzPWZE+l242EJOnuuxbO3UXQlt5OS5Hg+2DTAz6yAnz/XoGb530uTOcvJc
+j6Pz3Yaet5KT53psXFf7PaWXnDzX47PLevPW/eXkuR6WZypFiwbJyXM9WmSe
+uuk9VE6e6/HWfEehbricPNfjmFNi6ggHOXmux8Vgvy2nx8rJcz2aFziGZjvJ
+yXN+/SY/C+w9WU6e67Ez5+ei/a5y8lyPU+ecfVNmyslzPebfj/HtMU9Onuux
+68DpJQcXyslzPeYkvfqctVROnusxaYNTxOBVcvJcjyPuO/dcXCcnz/WQtJpV
+oN0oJ8/18Kr5Wz1lq5w818Po2x6fdzvl5Lke4Yf07Vvsk5PneoxYsxW7D8nJ
+c/79VbeUFx2Tk+d67E7Q7J5wSk6e6/HsT+MHvufk5LkeB56e3dbxspw812OC
+6+4/Z67LyXM9NvtX9BR4yclz/v5Sy03W35eT53q80x2/UfBYTp7r8fN2dvr0
+53LyXI+2T9VhMa/l5Lkey/skuo16LyfP9Xh55czTTwFy8px/3+cH3rMJkpPn
+eqxv8338+y9y8lwPnz2r7gwIl5Pn/HmZbPrIJ1pOnusxYHvE7IHf5eS5HiW9
+vYL8k+XkuR6df99IsM2Qk+c1+Pr+24WwbDl5XoNxZ7vIJhbIyfMa/DX50jmt
+RE6e18BS5qVfVCknz2vQ5OmXTWqVnDyvwdz9/e7v1cnJ8xqUuav2mf2Sk+c1
+6PZG0PC+gSF5XoOB2UscB4sNyfMa6MvaD4qVG5Ln/P10HZiwxNiQPK9BZ8d7
+rTkzQ/K8BlGLVzS91sSQPK9BTumRoIEtDcnzGtx6/rdZsoUheV6DP5XhbTd1
+NCTPaxA/qiSlaVdD8rwGvz66IqCHIXleg5OfTKfM72tIntegxsK8uWygIXnO
+30/r2SdeDDEkz2vwdl7uyxnDDcnzGsh/39wvcTAkz2tweMNJyZuxhuR5DXx8
+HlkvmGBIntdgVruiJo1cDMnzGrw5iAeh0wzJ8xqc6PC4YOtsQ/K8Buuet/re
+y82QPK/BN6dTa4oXG5LnNZDc1PndXmFIntcg9NXot7PWGpLnNdCabZ7TbKMh
+eV4DdcgWn+QthuR5DXyHD/9wcacheV6D2t1B7tP3GZLnNRitLU9qediQPK9B
+rxNvS3I8DW3/D8t6RRQ=
+ "]]}, {{}, {}}},
+ AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948],
+ Axes->{True, True},
+ AxesLabel->{None, None},
+ AxesOrigin->{0, 1.9267741928025102`},
+ DisplayFunction->Identity,
+ Frame->{{False, False}, {False, False}},
+ FrameLabel->{{None, None}, {None, None}},
+ FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}},
+ GridLines->{None, None},
+ GridLinesStyle->Directive[
+ GrayLevel[0.5, 0.4]],
+ Method->{
+ "OptimizePlotMarkers" -> True, "OptimizePlotMarkers" -> True,
+ "CoordinatesToolOptions" -> {"DisplayFunction" -> ({
+ Identity[
+ Part[#, 1]],
+ Identity[
+ Part[#, 2]]}& ), "CopiedValueFunction" -> ({
+ Identity[
+ Part[#, 1]],
+ Identity[
+ Part[#, 2]]}& )}},
+ PlotRange->{{0, 1.6}, {1.9267741928025102`, 3.31879026971162}},
+ PlotRangeClipping->True,
+ PlotRangePadding->{{
+ Scaled[0.02],
+ Scaled[0.02]}, {
+ Scaled[0.05],
+ Scaled[0.05]}},
+ Ticks->{Automatic, Automatic}]], "Input",
+ CellChangeTimes->{{3.915771872450286*^9,
+ 3.9157718738014307`*^9}},ExpressionUUID->"c8acd08e-419d-47df-95d8-\
+cd474e7cf4f4"],
+
+Cell[CellGroupData[{
+
+Cell[BoxData[
+ RowBox[{
+ RowBox[{"e13", "=",
+ RowBox[{
+ RowBox[{"(",
+ RowBox[{"inisol", "\[Function]",
+ RowBox[{"FoldWhileList", "[",
+ RowBox[{
+ RowBox[{"Function", "[",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"sol", ",", "\[Omega]22"}], "}"}], ",",
+ RowBox[{"Join", "[",
+ RowBox[{
+ RowBox[{"Append", "[",
+ RowBox[{
+ RowBox[{"Take", "[",
+ RowBox[{"sol", ",", "4"}], "]"}], ",",
+ RowBox[{"\[Omega]2", "->", "\[Omega]22"}]}], "]"}], ",",
+ RowBox[{"FindRoot", "[",
+ RowBox[{
+ RowBox[{"e11", "/.",
+ RowBox[{"Append", "[",
+ RowBox[{
+ RowBox[{"Take", "[",
+ RowBox[{"sol", ",", "4"}], "]"}], ",",
+ RowBox[{"\[Omega]2", "->", "\[Omega]22"}]}], "]"}]}], ",",
+ RowBox[{
+ RowBox[{"Drop", "[",
+ RowBox[{"sol", ",", "5"}], "]"}], "/.",
+ RowBox[{"Rule", "->", "List"}]}], ",",
+ RowBox[{"WorkingPrecision", "->", "20"}], ",",
+ RowBox[{"MaxIterations", "->", "500"}]}], "]"}]}], "]"}]}],
+ "]"}], ",",
+ RowBox[{"Join", "[",
+ RowBox[{
+ RowBox[{"inisol", "[",
+ RowBox[{"[",
+ RowBox[{"{",
+ RowBox[{"1", ",", "2", ",", "3", ",", "5", ",", "6", ",", "4"}],
+ "}"}], "]"}], "]"}], ",",
+ RowBox[{"inisol", "[",
+ RowBox[{"[",
+ RowBox[{"7", ";;"}], "]"}], "]"}]}], "]"}], ",",
+ RowBox[{"Range", "[",
+ RowBox[{
+ RowBox[{"Rationalize", "[",
+ RowBox[{
+ RowBox[{"\[Omega]2", "/.", "inisol"}], ",",
+ SuperscriptBox["10",
+ RowBox[{"-", "6"}]]}], "]"}], ",",
+ RowBox[{"3", "+",
+ RowBox[{"1", "/", "10"}]}], ",",
+ SuperscriptBox["10",
+ RowBox[{"-", "4"}]]}], "]"}], ",",
+ RowBox[{
+ RowBox[{
+ RowBox[{"\[Omega]2", "<", "\[Omega]1"}], "/.", "#"}], "&"}]}],
+ "]"}]}], ")"}], "/@",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"(",
+ RowBox[{"\[Epsilon]\[Epsilon]", "\[Function]",
+ RowBox[{"SelectFirst", "[",
+ RowBox[{"solzeros", ",",
+ RowBox[{
+ RowBox[{
+ RowBox[{"\[Epsilon]", "==", "\[Epsilon]\[Epsilon]"}], "/.", "#"}],
+ "&"}]}], "]"}]}], ")"}], "/@",
+ RowBox[{"Range", "[",
+ RowBox[{"0.2", ",", "1.6", ",", "0.2"}], "]"}]}], ")"}]}]}],
+ ";"}]], "Input",
+ CellChangeTimes->{{3.908965845707684*^9, 3.908965933284802*^9}, {
+ 3.908966061855267*^9, 3.90896634830872*^9}, {3.908966417734704*^9,
+ 3.908966417829668*^9}, {3.909041956908346*^9, 3.909041957027675*^9}, {
+ 3.90904201242258*^9, 3.909042012604719*^9}, {3.909042831164308*^9,
+ 3.909042875324937*^9}, {3.909042936502192*^9, 3.909042990614989*^9}, {
+ 3.909043033303988*^9, 3.9090430858649387`*^9}, {3.909043120074722*^9,
+ 3.9090431489458647`*^9}, {3.90904317971463*^9, 3.9090432258672523`*^9}, {
+ 3.909043264180773*^9, 3.909043270956205*^9}, {3.909044224006723*^9,
+ 3.909044276911423*^9}, {3.90904459896806*^9, 3.909044606013604*^9},
+ 3.9090448090817537`*^9, {3.909045133487328*^9, 3.909045149072093*^9}, {
+ 3.909045183744899*^9, 3.909045184480734*^9}, {3.909045272674652*^9,
+ 3.909045275818399*^9}, {3.909045363781097*^9, 3.909045364556114*^9},
+ 3.909045705179872*^9, {3.909046708942043*^9, 3.909046709005525*^9}, {
+ 3.916385716465579*^9, 3.9163857237454777`*^9}},
+ CellLabel->
+ "In[242]:=",ExpressionUUID->"0012cb53-2118-4c32-9687-3900486d9017"],
+
+Cell[BoxData[
+ TemplateBox[{
+ "FindRoot", "lstol",
+ "\"The line search decreased the step size to within tolerance specified \
+by AccuracyGoal and PrecisionGoal but was unable to find a sufficient \
+decrease in the merit function. You may need more than \
+\\!\\(\\*RowBox[{\\\"20.`\\\"}]\\) digits of working precision to meet these \
+tolerances.\"", 2, 242, 33, 23804047810745838865, "Local"},
+ "MessageTemplate"]], "Message", "MSG",
+ CellChangeTimes->{3.916386517291394*^9, 3.916387274542672*^9},
+ CellLabel->
+ "During evaluation of \
+In[242]:=",ExpressionUUID->"a407657b-19ae-486f-b6cf-16ca559b3fb6"],
+
+Cell[BoxData[
+ TemplateBox[{
+ "FindRoot", "lstol",
+ "\"The line search decreased the step size to within tolerance specified \
+by AccuracyGoal and PrecisionGoal but was unable to find a sufficient \
+decrease in the merit function. You may need more than \
+\\!\\(\\*RowBox[{\\\"20.`\\\"}]\\) digits of working precision to meet these \
+tolerances.\"", 2, 242, 34, 23804047810745838865, "Local"},
+ "MessageTemplate"]], "Message", "MSG",
+ CellChangeTimes->{3.916386517291394*^9, 3.9163872747219143`*^9},
+ CellLabel->
+ "During evaluation of \
+In[242]:=",ExpressionUUID->"2a251b03-af55-4ee8-b6ee-dc27429eff8a"],
+
+Cell[BoxData[
+ TemplateBox[{
+ "FindRoot", "lstol",
+ "\"The line search decreased the step size to within tolerance specified \
+by AccuracyGoal and PrecisionGoal but was unable to find a sufficient \
+decrease in the merit function. You may need more than \
+\\!\\(\\*RowBox[{\\\"20.`\\\"}]\\) digits of working precision to meet these \
+tolerances.\"", 2, 242, 35, 23804047810745838865, "Local"},
+ "MessageTemplate"]], "Message", "MSG",
+ CellChangeTimes->{3.916386517291394*^9, 3.9163872750673237`*^9},
+ CellLabel->
+ "During evaluation of \
+In[242]:=",ExpressionUUID->"466d17bf-ce0f-47a2-8764-46320b67ac6e"],
+
+Cell[BoxData[
+ TemplateBox[{
+ "General", "stop",
+ "\"Further output of \\!\\(\\*StyleBox[RowBox[{\\\"FindRoot\\\", \
+\\\"::\\\", \\\"lstol\\\"}], \\\"MessageName\\\"]\\) will be suppressed \
+during this calculation.\"", 2, 242, 36, 23804047810745838865, "Local"},
+ "MessageTemplate"]], "Message", "MSG",
+ CellChangeTimes->{3.916386517291394*^9, 3.916387275072584*^9},
+ CellLabel->
+ "During evaluation of \
+In[242]:=",ExpressionUUID->"841bbca7-6ddd-4432-bc00-7d704794b41e"]
+}, Open ]],
+
+Cell[CellGroupData[{
+
+Cell[BoxData[
+ RowBox[{"ListPlot", "[",
+ RowBox[{
+ RowBox[{"Evaluate", "[",
+ RowBox[{"Prepend", "[",
+ RowBox[{
+ RowBox[{
+ RowBox[{
+ RowBox[{"Join", "[",
+ RowBox[{
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"\[Omega]1", ",", "\[Omega]2"}], "}"}], "/.",
+ RowBox[{"Most", "[", "#", "]"}]}], ",",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"\[Omega]2", ",", "\[Omega]1"}], "}"}], "/.",
+ RowBox[{"Reverse", "[",
+ RowBox[{"Most", "[", "#", "]"}], "]"}]}]}], "]"}], "&"}], "/@",
+ "e13"}], ",",
+ RowBox[{"{",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"3.1", ",", "2"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "2"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "3.1"}], "}"}]}], "}"}]}], "]"}], "]"}], ",",
+ RowBox[{"PlotRange", "->",
+ RowBox[{"{",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"1.9", ",", "3.1"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"1.9", ",", "3.1"}], "}"}]}], "}"}]}], ",",
+ RowBox[{"AspectRatio", "->", "1"}], ",",
+ RowBox[{"Joined", "->", "True"}], ",",
+ RowBox[{"FrameLabel", "->",
+ RowBox[{"{",
+ RowBox[{
+ SubscriptBox["\[Omega]", "1"], ",",
+ SubscriptBox["\[Omega]", "2"]}], "}"}]}], ",",
+ RowBox[{"PlotLegends", "->",
+ RowBox[{"LineLegend", "[",
+ RowBox[{
+ RowBox[{"Range", "[",
+ RowBox[{"0", ",", "1.4", ",", "0.2"}], "]"}], ",",
+ RowBox[{"LegendLabel", "->", "\[Epsilon]"}]}], "]"}]}]}],
+ "]"}]], "Input",
+ CellChangeTimes->{{3.909042514190548*^9, 3.909042520941848*^9}, {
+ 3.909043279228549*^9, 3.909043290980391*^9}, {3.909044758712824*^9,
+ 3.909044817697377*^9}, {3.909045206161439*^9, 3.909045253529738*^9}, {
+ 3.909045341508081*^9, 3.909045343371456*^9}, {3.909045626801211*^9,
+ 3.909045676689952*^9}, {3.909046978946875*^9, 3.909047057939874*^9}, {
+ 3.909047460827964*^9, 3.909047525484823*^9}, {3.909047561565816*^9,
+ 3.909047563765341*^9}, {3.915533019222624*^9, 3.915533021933949*^9},
+ 3.915536859762843*^9, {3.916385726520988*^9, 3.916385734889188*^9}},
+ CellLabel->
+ "In[243]:=",ExpressionUUID->"abdd1227-571e-42c2-ba14-b0236a50da8f"],
+
+Cell[BoxData[
+ TemplateBox[{
+ GraphicsBox[{{}, {{{}, {},
+ TagBox[{
+ Hue[0.67, 0.6, 0.6],
+ Directive[
+ PointSize[
+ NCache[
+ Rational[1, 360], 0.002777777777777778]],
+ RGBColor[0.368417, 0.506779, 0.709798],
+ AbsoluteThickness[2]],
+ LineBox[{{3.1, 2.}, {2., 2.}, {2., 3.1}}]},
+ Annotation[#, "Charting`Private`Tag#1"]& ],
+ TagBox[{
+ Hue[0.9060679774997897, 0.6, 0.6],
+ Directive[
+ PointSize[
+ NCache[
+ Rational[1, 360], 0.002777777777777778]],
+ RGBColor[0.880722, 0.611041, 0.142051],
+ AbsoluteThickness[2]],
+ LineBox[CompressedData["
+1:eJx1mXlUj/nbx+/7u1R+oSxlqdREqWxJlkp1lYZR9iVpKC1SpLK3INpEWSJb
+yF5KixZbiDLZSiXTNhgSg1GJkEo8l3PmPc/vPOc8/nFeDvp+7/vzua738pO7
+/6zFEkEQHouC8OP3+yU/filR3PGyWYoDBJp4Y8jsTOYBgc82/+CGNIc5mmlK
+NG9a0jsL5vKeZq3KsUq0c5DvwgBmsVtJYoivEt1pH1l8ijn/9vHr3lOVSHjQ
+Oq6W2XNj1NPy4UpklnwtqZu2QIquL+OzVJVoxYbw3rbMj7tbRSm1KFLq7Mlh
+a5ntdhz1eVipSM8NVZpTmROtDGSqlxVJQ6hc+JS5b9k2w6uHFWl2VUJxLx2B
+HtTsv1K5SZFi0xaZ/cK86FNxivNiRfotTD95PXOA1vPmX+wVqdOpoXcWc672
+0oTEEYo0ekR22EvmEonH1flqiuQnD2zu95NA7/RrAwM7FCjpkaXLNOZJ37Z0
+fqlToKdZ0pIw5o+moeG1dxSoT/Rds4vMUQOLp/U9p0AzXHYmv2WO8dbJyNmv
+QFtN56rp6AoUsmVbe0qoAhX8RyN8DvNrX639bUsUqP3Zs+Zo5gWXU5qPzVAg
+k4tJLteYC86v2pBopkDLtvuWvGfeUNlwtVlXgU56mJjrDxSo6Kz/2H1dFeix
+2ZdkZ+a/zL9t2P5ZTr1V89V2Ms+NlBhVPpPT1L/Cw28yR0zu8WRZsZwir05+
+3/qDKzJoxgU55e9WcR06SKDld9QUNh+X02fvypJFzFsbvr/8GiunEdaHzPcy
+K2YEHCsMlNMSNbczd5lbIzZ/LfeU07G3+urfmJUkxnf0Z8qppqAh3ERPIIuw
+YTWFlnLqcSD7vRdzytpziqeM5DTZL9D1EPNfxpPG3e0jpzA7q/tlzOv00maO
+lMspr7/MQqbP/37fIZtHH2TU0nz3zDhmv/2pHUXPZDT09k715cwL3bWDmktl
+5HlkbsRx5nVv7l2af01GR1ZpfKhk/na8Pl9Ik1Hl5DrX/wwW6MO6uvgXCTLq
+rpN834p5TZ3zZNk2GU387GuxinmMYv07lyAZhZaYpCQzN7W+PtbiLaOLJ76o
+P2b2erI/qMBJRs2B+RGqBgL9YXjp0O1fZGQwPeKDHXNdbtwwuZmM3PTsFwUx
+h14vnR9kKKODHSql6czG1a7TB/aXUcWDSovnzCa7FtlIlGX0nzOHUtQNBdql
+0uml9lVKEza69XFgLlzo1PFro5RC5gyODGVuD15lWfmnlHKNGj/kMEcOVwvY
+VC6lBiFn0Wvmym3ZtQsKpaRXHViqaSTQQB2n33xypeSSbjV+JvP16j0bkpKk
+tC9clhrJ7LnS1bHnQSmVzb/XJ49Z95TyybQYKSka74psYk68M+TK6o1SIgXH
+Ft0hAp0wCmvzWSGlwMcabvOYtf5ouBLjKaWs7LrSGOYW5dketfOk9CY6efwN
+ZpXvu2fPcpCSruvy1I/Mq90DWj5ZScl59Ki+hkMF6jUuPO2miZT2KLdFLmQO
+MB78Nk9fSsV1+S1xzAYhywY86i8l2aUIt1vMOUrSSwNVpDR+h31Z+w82Gz00
+XiqlNZ6qliOGCbTiS+n7IV8klG5elerB3Nesd9jfDRL6S/Vw3wPMe59kOZXV
+SWjAK7eoEua6tsyW2ioJzbs2+KMwXKDf13g+7FIioZ17Gt1GM0d28Qp2KZDQ
+HZ+cMh/mjXGhy6svSEikIMtE5l6XTo5anSYhM3XrsxXMpu+fzTU9IaGVDbJ+
+iiMEmnFrrmufAxJKLbwXZcF8y1/vieYOCdUf2PXRnznpsq+LXYSENPwd3U8x
++4wcu3p7sITm/KxZXsMcnrA6qzVAQrEazy27GQuUldyUGrZEQkXvk8/aMLd8
+tmod5iKhztvL+61ltp1WNLxtjoTGJI7aksrcr0/i23oHCfmtbvv4J7Okz8G7
+jbYSSra/7t5rpEDTPIy91M0l9FQnsnwSs/OO0EULR0qob6u91Xrmo10t5hca
+SGjGfdW0c8xdy5M/2OlIaOvJqn4vmYW+e8pf9JFQQdDhLf1M+Pmstj9wXEVC
+7dPdP01l7tGxpzlYUUKj9A08wpiV05I2B3wXadnXxvILzOcVBn7a3CrSqYoc
+q7fM2sXKnzPeifT4TFCa9iiB5rzON259JZJaqHX/Oczpe5tmOT8TaepceXQ0
+c/d9Cco1NSJFDSn+dJW5+WQX5YAHIuWLcR7vmVXkNyW690RqrXZ8oGcq0Gm7
+6NONhSKNyNC0dmYe0mt6csUVkbwjnqftYE6wt7hWnivSMecz/W8yD1I/eORV
+uki1xn7Rrcyh46u/qyeL1EPR9POQ0QLdi9l82OWYSPZP2jwWMQ/yshiWf1Ck
+sJzrD+KZtf3yfEfvEenK1kjru8xGswrUf4sVqcXVIb3zB1/o/9onSqShY3po
+mIzh+Wsen6i/SSTPrtXRXsxjjrZ9aQsS6cjzw58TmPVkqhfrV4lUdcnds4w5
+1zbuYP1ykbrvNKiQjhVIx2Owe9sSkSYtbrIex9xtiPfDQe4ihVrkpvsymxSV
+n1u8QKRLPYI1jjP7bi7Iv+IoUvMr662VzEfTggr1Z4pkmC9v7TJOoLzQXmFJ
+DiK5xRd7WjHb6236zXyiSAlL4ypWMvetDJ9Zz7ehguZRMvNgefb7oxYiKffR
+ynjEfCLTxy9gjEgTGp9rqJrxeUx/EDdnpEjrb57Zasd8XLdSf8pQkXIP+rUG
+Mk+U6rQ5Dhap0d90cTqz4ymNytW6IulNbK+oY+7m+XbLaS2RXDRvkLo53zd3
+n6ev+4q070Nkhj3zYPuBqVa9RSq746AZyvxp2LyLSSoiKR3tsS2HucvK5iod
+ZZFoTXXrK2aVuxG1aQp8mx2OLNa0EGi/9cxd9hKRsn7yeDiDWXfe2PttnQL9
+3WpgE8lsYJznntfGf17alHGZOb+wY2DsJ4F+PZWr2cQcqpf3wu+9QHuCg7fp
+juf9+3xKkHsj64oZ9MWRudTpxAWvNwLJBit4xTCfHGa5MuSlQJadxQ+vM/e8
+PTLsWB3vpYdxNh9//P3KgdcqnwiUkTIv08CS78/fE9r7/8F7M1RLayFzeO+p
+PQKq+Jw51m+LY/64O+yP3ysEmjc05UsRc9OW9OGTy3ivSPy92pljr/V/VVIs
+0J0a09+HWwlUsfLAE9c7rNsy2208mN1HrW4QiwQyi7yRuZ/Z9nJgU3aBQCt/
+jdIqYZ5b8zZ/Zb5AZ0dOiRGsBZq9KtbM5opA9Yo920yZ64J2mQ+4JJDmn9Ve
+Pswx704kdjnP9zj3yO9HmCd11NlKswXavs3DtoLZ4vtjmXIm65hFhqyaBAq8
+tLtQJ4339ph3WhbMc738ne1S+B50Ox/jz6zRZn92TZJA/vXBbSeZcyYtic89
+KVDyZVpSw/y3g98n4bhAz3YqVHa1Eaj34oAM50Q+p14ltjbMW449P1pwSKCZ
+43efW8OcpngkdfRB1jk9nQakMuu11GRe2Md797VW7J/Mp91HxNnF897Nr2/r
+acufy2m/8dM4gUbtTVkyifm5hWdA1E6Bli3zrwxhvj/GbpT5doFO2YyecI45
+9JjVgvZtrGv7dJx7wezqnl16K1ogtaYbA/pN4HnqNsfvaBTP4d+iYqcyO74c
+ph0RwToyYUr7ZuZs2aGi1WG8twN6el9gNlWaPHHFJtZdE2sq/2Z+U24aFbSR
+dYVW4gRtO/5e41KWbl8vkHeLR9Zs5shllrVpwXzP7hpqRzMvsX54sTpQoNqj
+72KvMn8P2dvQbR2fu7Xn25uZ72p+Xjh9Dd/zKSHeej/zewpP+3BoFZ8zXZuq
++cwFCTlxLSsEuvJFwW4H86AXk3QdA/jclZZkFTLH+b+Muekn0NDTu7VbmX3O
+/3zBYrlAi0Octg+ZyPd/+sKt+csEOjJzQIcrM22Z3+iwVKCqwS+845lvXD5y
+r96b5/q3lKo7zGHBN7pELeFz87u/XSfzl3XRe0y8BNqUOjp75CR+r13fzHjj
+KdClTR3aXsxly74ZpXoI9N6xYHsC8yG3Lspr3AUyHLalo5T5RMjSPya78TmX
+TvWR/sLnetfhMINFPPdre1aPZe5cO7xR1VWgh5k1dr7MXW9dkUpd+N5FJWYf
+Y+6x+EXmtwXsSxZ46lQyV6faPpIyrzcx2tFlskCvzrv69/yV95pSc4cl8+P4
+03ONnAVq/PO8z0rm5ZenrXOYL5D++ZDqJOaSbrOurXESyCXG5udHzKeq7FVT
+5vEcclPMUbEXaMSsX51eOvL3Gntfx475Qp7SBiNmpe57dgQyp3/svjhwLj/H
+F05f05h35hl+Lp0jUFDegKV1zOVR5b2HM2ftelGt5sDnqbTu5N7ZfE+8Un+2
+Z+5cYBYhZx5oGZCzkXl81dD4DbN4nvUa81MOc3DN64zOmQLFv+nY8YpZXSfl
+bCRzyfWCrxpTmGffXqDGLN+3ZekM5o05R3ekzeB55ju1JoL5/plZCg7Ma217
+TbzM7HZ53abm6TzP+tbmNDJ/s36beZj5VVPiT7pTeY7dahs/nVm7yHOnI7Nx
+mU2RIrPTIaPObcxbNyc9LprG82xF89LrzK8SolW2Mt+ddKGm5b9YHLB+osG0
+/2Xzjza5C/7r9//v7/3f/wc/Bz8XnwOfC58TnxvfA98L3xPfG88BzwXPCc8N
+zxHP9d/n/M9zx3vAe8F7wnvDe8R7xXvGe8c5wLnAOcG5wTnCucI5w7nDOcS5
+xDnFucU5xrnGOce5xz3AvcA9wb3BPcK9wj3DvcM9xL3EPcW9xT3GvcY9x73H
+HMBcwJzA3MAcwVzBnMHcwRzCXMKcwtzCHMNcw5zD3MMcxFzEnMTcxBzFXMWc
+xdzFHMZcxpzG3MYcx1zHnMfcxx7AXsCewN7AHsFewZ7B3sEewl7CnsLewh7D
+XsOew97DHsRexJ7E3sQexV7FnsXexR7GXsaext7GHsdex57H3ocOgC6AToBu
+gI6AroDOgO6ADoEugU6BboGOga6BzoHugQ6CLoJOgm6CjoKugs6C7oIOgy6D
+ToNug46DroPOg+6DDoQuhE6EboSOhK6EzoTuhA6FLoVOhW6FjoWuhc6F7oUO
+hi6GToZuho6GrobOhu6GDocuh06HboeOh66Hzofuhw+AL4BPgG+Aj4CvgM+A
+74APgS+BT4FvgY+Br4HPge+BD4Ivgk+Cb4KPgq+Cz4Lvgg+DL4NPg2+Dj4Ov
+g8+D74MPhC+ET4RvhI+Er4TPhO+ED4UvhU+Fb4WPha/91+f+43vhg+GL4ZPh
+m+Gj4avhs+G74cPhy+HT4dvh4+Hr4fPh+5EDIBdAToDcADkCcgXkDMgdkEMg
+l0BOgdwCOQZyDeQcyD2QgyAXQU6C3AQ5CnIV5CzIXZDDIJdBToPcBjkOch3k
+PMh9kAMhF0JOhNwIORJyJeRMyJ2QQyGXQk6F3Ao5FnIt5FzIvZCDIRdDTobc
+DDkacjXkbMjdkMMhl0NOh9wOOR5yPeR8yP2QAyIXRE6I3BA5InLFf3PGf3JH
+5JDIJZFTIrdEjolcEzknck/koMhFkZMiN0WOilwVOStyV+SwyGWR0yK3RY6L
+XBc5L3Jf5MDIhZETIzdGjoxcGTkzcmfk0MilkVMjt0aOjVwbOTdyb+TgyMWR
+kyM3R46OXB05O3J35PDI5ZHTI7dHjo9cHzk/cn/0AOgF0BOgN0CPgF4BPQN6
+B/QQ6CXQU6C3QI+BXgM9B3oP9CDoRdCToDdBj4JeBT0Lehf0MOhl0NOgt0GP
+g17n357nn94HPRB6IfRE6I3QI6FXQs+E3gk9FHop9FTordBjoddCz4XeCz0Y
+ejH0ZOjN0KOhV0PPht4NPRx6OfR06O3Q46HXQ8+H3g89IHpB9IToDdEjoldE
+z4jeET0kekn0lOgt0WOi10TPid4TPSh6UfSk6E3Ro6JXRc+K3hU9LHpZ9LTo
+bf8HizOqdg==
+ "]]}, Annotation[#, "Charting`Private`Tag#2"]& ],
+ TagBox[{
+ Hue[0.1421359549995791, 0.6, 0.6],
+ Directive[
+ PointSize[
+ NCache[
+ Rational[1, 360], 0.002777777777777778]],
+ RGBColor[0.560181, 0.691569, 0.194885],
+ AbsoluteThickness[2]],
+ LineBox[CompressedData["
+1:eJxNnXlcjW33t/d17akkUaQQMiSERBHSMiUNigoZM1QohCgkQ1HGyhxpREUD
+lXnOUClDyFiZMhaZQkLvunfP9/d5n398jsd9u1N7r+s81/quYxvOWDDWU5RI
+JIYKieS/X28W/fc/NZLd//b8e6CEbvwqG1XCHGTUNPU/7jT57JOXV9Xo+J8S
+3a7LJGTUaf+uX+fU6OPdfaFTmCdsVC7WPa5GRqnTv0YxPyqJ9ByUrkZTV3Xx
+uM4c2vfFzLkH1Wi328ebv5mjd2TNjN+vRne6Zw/stVxCh4PvTCzfqUZq4rLU
+mcy11S2tO21VoyGPBrfcw2xhHqBYtF6NlmXI1hUxR1/7eCgvWI2yQm98layQ
+0OS2m3U7B6jRh4mRHubMUbGL7TcuUKOOvcfdmsPsOvPBwJ/eajRJ2WZQLLN7
+p59lPh5qtKPsRepd5ntNuxq/m6BGRdnJLZVBEspJu93Ud4wayTfOWzeQ2TZj
+6tafo9TIyqPPtwXMBqXuuzcOVaOlFrUeB5idK107dB6oRhmNL956xNx+6rfO
+eX3U6O3L0EGaKyX0bMa7PX4matTutN3hIcy9s38sNOysRhMimuotZY5d/Dn5
+sYEaRXo+WHeYeanOyd7RumpUMDDmWzmzosdAhYeWGonaM6brBEtIzyuoTU81
+NRrwrsvtkcxXnTf4SAU1Wnzh46Ag5kiHVR+e1SrpyI7sw0eZn3pvjLzyVUkV
+c5fpvWbePuS1a0alktoMsV6vv0pC5pWPesZXKMmtpfy7I7NB4bkW0WVK2vLx
+xvS1zM1X/ZBEP1DS9SuRt08w97lY+zbutpL+RY+zqmSWD7HNTc9XUj+/Nkfa
+rZbQ570Lw3IvK2mBzUs9V+YPXXR6lZ9RUkqblPXhzAsqHx6V5Cjp+dd5388x
+n1oSKOuWriT9gj4zvjBb558xnHhISWPiam93XiOhZQMWSaLilLRxyUWricwv
+p67ac2uPknLt1x3Zyjzg3e0X2tuUVGdor3+FWSti6v0pm5TU51fTsJ/Ma3+a
+zc4MVZLvrQffu6+VkP3u6TuVwUo6eCBmhgfzn30arl4BSipbPuPODua1xVNj
+Cv2UpDvGeHAB89vwnV795ippdJdPR/4yj1z143DqTCWF/c3WNwuRkOa1+9M7
+TFHSxXvLwryYPQ5GhCSMU9KvVOuavcz3tmxT6+KsJNPV8pm3mR1+uL7PGqWk
+OeMK70hD+fUyamLbEcOUlGASNbg/86LC3vFlg5T0RByf5st8Yd1S7yALJWk/
+btMqgfmAyW1fQ1Ml2We+DCthfqv+KaWoq5JC1qXUqK/j338d2Ty4o5LOTZo/
+czDz6erVKeYGSvreu2/xIua5qdumfNNVUg+134OTmfvcPmhysqmSPMsvpj1l
+vjf0YJM1jZQUm7OuVdP1EgqrWf/HWaakhxvtw4czB961rzb6pyCt6c1+BDJ7
+pNY/E38pyLbfw5npzJP1T+dVfFHQas39xS+YP6+IjiuqVNDpVzOsdcMkNPhO
+kceZ1wr6cto43Y55zqENsoxnCuoW+anVKuZeGs1Ckx8raIZXTng28+HFGY8O
+3VPQvkHLf7xltkk9WXfkpoLuadOsNuH8eji++c2JPAU1fi+/68zc9s7ubXmX
+FTT8YqH1OuanIx1ry84qaOXOqPTTzBWLujf/fVxBx33Gt/7EfDn6TGnrowr6
+NMRgQ4cNEjpbsdlh2GEFGem9+jGOWXPU4Cl+BxQ07VPKrE3MFkv91ZJiFbT7
+6vy7F5lXXSkf+XSPgu7s7UvfmQ8bWLTQ364gtYW/04038vvz+6C5k7coaMjI
+S62nMBt3u0gHwxS03GD9hijm1H9R276tUVDWN/uf15jLJTvcRwYpqLKgmedv
+5vi6tIj4pQrqGP/wbs9NEkqpuNmz3k9Bk5fup5nMEwo/m870UdAOh5kZu5mT
+8/QiizwVdLND1zZFzP3fj7EZ6KEgee2nDZLNEtpldMwxc6KCBt/O+dmXOcLB
+Nd7YTUFLDy73nMN86eP0/slOCspcQff2Mw8Yq960u52C3o5RDLnL7Oq91jBn
+uILaGxdlKLZIKCZT03uotYIm/ItqM5D5o9n3JyWWCoq6P37jAua0+WEB8/sq
+qOCwwa8k5vY2hv0a91KQuOaV5yPmmq8dm2d2VdCA8an3Gm+VUFlNrdr4Tgpa
+3GPBkCHMY5W6TWXtFHREap65hHmF2reOJ/QVVPH4d5vDzBbfdaznNVeQwdFL
+G8uZB92RTu6qpSC39et/aUdIyDvWbckHdQVtnezgNZK5w+gD647KFHTdTPv+
+CuY36dvCVtTLqV7t0ZCjzB8nFy6x/y2nfs/2Z1Ywfz4nsW9fIye/4zMN9CMl
+1KyiSvhdLaeUTV03OTK/2Dpm56MPcnoxvfrXGubV2r/qz76Wk37/414n/vv9
+0ccGHXgup7FNVtz/wNwpwc0m6qmcNlbQ0HZREmr14GrLkAdyunJGcdSF+XGb
+N0eWFcupLrLIIJx5UW3yX/8iOfX13rbpHPONfhK1JXly8rWaUPuZeW155bVl
+uXI6qNPWu/M2Cal3WGAWcl5OZe9f3XdnvjR+p23UKTnpXkodupV50Hs/6YFs
+OTntWnA0lzllZOupZzPkFOZr3vYn88BnOS4PU+V0aWjdpu7bJVTUyPPZzwNy
++qV3uXYac4hy4p828XLqXb3eewfz/nf5B232yWnONYeSfGaXTR8f+O+SU+I+
+7WF/mUs2NtqUHCWnJwsfHe29g+tD3znnyzfLScc2tq0Xs8cK9zmtwuVk33bW
+5r3Mjz723jgxRE6h37v+vsWckOLUOi5YTuduVHtLd0rom72u3rtlcqqJP17S
+j/l7dfUK8yVy6hGwYpgvs4e+49AwPzl5OQ45Fs88OuOAV5mPnGI7KtuVMIuV
+iyv6ecvpYW3RZvVdXA/GDT65a4actO5s+23FvPb0lie1U+Rke2jC7EXMWVpf
+R013l9PqoLYPDjFfWS0IN13ldHpsxbCnzDdcJtQNcpbTV+PDx7R28/Pw9Z6+
+x+zl1K1+QbvhzM77fFK6jpTTzBLzLYHMx8qCxx4aKqd9R+p+pzGL6mE9uwyW
+0/01l2e/YI7zHNw/zVJOjSeEPWixR0JWBp4+5uZyGtHTcbgdc57p5Su5pnJa
+KdPJCmYeP7+tlauJnE48edQum3mY9+h777vI6dPR2C1vmQd6Ga8N6SinLmGz
+6lpHS2iN54YRhu3kNG1KtznOzD3lrvpXWslpT5/PD0KZt6/xq52tK6c76ieG
+n2Y+lFr0QltbTurPV2R9ZF5XMunWJU05DTkxpH2HvRLSKdM9u0hdTss3K7eO
+Y45u8ifJWC6nrBk36zYyb+mste6lRE6V/bfPucg8eYj7xPg/Muqk5f7wG7ND
+6bt2M37JaPLrtiOM9/H5J7e4uMt3Ge08W5E1mblArYfvl2oZ3Yw63D6KuZNM
+v/JCpYwUs/22XmNeR6ftIt/KaPBgiz+1zEMCLcI8X8kooPmfOT1jJOS26ULM
+4Gcyyvxw+eEM5ryloWGtn8ro3aWwEbuZ9RwuDfvzQEbtdztmFzLnGmfefH5X
+Ru7zdAwl+/l52GO7YcEtGUUNe7y1L/OGgOyBx2/I6IZ+3J/ZzFotJusdvC4j
+8fOsufuZB0nKs/fkymjg9W6Pipnnt4hoFHlBRotjPo9QxErIR+OG3qYzMkpb
+dCJ7APMUn09PNpyQUYVtkOEC5vvhHo6bs2Rk0G5oRBLz02UbfLdlyMitRvn3
+IXNHrYd9Yw7LaGvhzbmN4/j5XXQ2MfWQjPIStj8i5rRnGVlnEmVUH+Bus4Q5
+sbXJ9NuxMuo/ul1OKvPPj9mH3+6VkV+n14blzCUTCjdJd8so9ffhCO14Pt9X
+1kk6bpfRizt+f22Yu5++p7CJkFGrZAufFcw6bq+jfTfJaOzKP48ymQ/n5Z3Y
+FSajTS65NhXMzTfoTrwaIqMrXcNz9BL4ebNs4eqaVTL6U+/YwZHZ+0mQUbcg
+GfV9oBO5hjnW5oXtjEAZzUt7/Pc4s36afcV+fxkdXBvn84E5fPi8mlI/GZVP
+8HzcNpHr4da6wHbzZKTbq/tIF2YXm6M+nnNk5CT/khPGfG3aqBsZnjIKe3qi
+wznmnH/hUXXTZXTpWFDkZ+YEP/ML9lNlVBs29F+nJAl97azvGDdRRr2nqvm6
+M9sfEQf+GCejuX1vPd7C/Cfxaqizi4wSG+0Ymcu86IJ5lwwnGT197n78B/PZ
+k6bttBxkpHOyXcfuBySka79jzmJbGTlseR05jXmT6TDp0+EyCp155N925m0t
+Or0fMURG5y0X+uYz39hlqJdjJaMarX5P/jBnWXbb0nmAjHq++TOy90E+b3mZ
+jthrISOvc7nHPZlvT+9mpd1HRnHbwjvuZS620V60pZeMHs4eHXWL+YPkzXMN
+Exk1tW5eLx7iejoief0WYxnZtnji2485JWKSh3ZnGa2pjHviw1yo29hnr6GM
+Tl/2tI1n7lV0LalzWxl93d39xH1mL5doZU4rGXWb/6WjejL/eX/2bh/RUkYz
+h5+MsmKuu/hy+BMdGcW0Wlm/kDnWfLPeoqYyuv956LxDzAO3ndDQ1JSRZp7a
+0yfMTvGhrY+oy2jE/lu2Win8fjvTZoSDQkbBi3ecGMY8OS9l3WdRRidGTewU
+yDyg97gnu+ulVN2u/bY0ZvdXbjT0j5S6/Hhd/5y5w7DSnOpfUvIoOjKvRaqE
+lN0NzeNrpLQnceHTUcydX0+74PJVSsWB/UYFM3/u/NCxUbWU1J3+nshirlYU
+PL9SKaWhna90esu8XFjhv/qdlJbXhW9rfVhC69+bK+i1lLKLR0ucmQPfjdgu
+vpRSZXLz+aHMisDfevnlUuoU/OTpKebWUw7tiHwqpcmu8aM+MhcmxkknP5LS
+zm5eJw2P8Otrp/XMbiVSuikx6TyO+fu5l0friqWkePhl20Zm58fv3t++JSXr
+9JOSi8y9SnM0kgulFBCycv435ryKNJ01+VI66j6stEuahB4OGFA/5ZqU3vVS
+t5vM/GRUQaFVrpQMFbdPRjIPiSlY2v6ilNxLd3S+xpz5IP2v/JyUtmVN3F7L
+PCq7csqnU1K6Ed5e6JkuIdnfuh2Pj0tJOu3N/BnMkk0T4/OypDTQPK10F/Pn
+getXnsqUkr/GIrtC5uAvkm5paVJKe9HvVD3z9U1OSYmpUnp98m/nvhn896+o
+fbPvkJQMtl7ZPptZUrTx6+4kKY2btUHYz3xPiLyyK15KWwc4LShmtu6zd/ye
+/VLKa9qiTJ7J94OaQWkxe6VU/+aJ3QDm4ZebXEzaLaX+5+NPzWceVJ2yJX2H
+lBZu9zJKYv6QldziTJSUUueY7HjIfFP3sGvBVim9tP4qND4qoca/xtg+3SSl
+VrqnFhDzMHH4p+pwKblUrSzzZx5zpMtw5XopbcodZp/K3KdX8kjDECld3aN+
+uoz55aYFP6xWS+nP/NtG2sf49b3SdPSUlVIyH7Fzhw3z58AYh1XLpTSv9SRx
+BfOyw7OrkwKkdOhLe79MZu1qh76F/lIqz3tT9or5SrFUv2ahlFrGptnrZfH7
+Lcxun+ECKTn5LzrtwHzqw/NTzr5SCrfr32UNc2DghgVr50jpUvt/O44zr7RX
+P3/CS0q1P66IH5jf6BnHfZwppd43N/i1zeb7lslRnS7TpTQ3yal8LHPOzPl6
+M6dKKXFZC4cw5nEmZkcSJknpqdPT02eZnYJvFrycIKXmRgldPjObPG6+yGic
+lBz+eO3slCOh3vQswddFSuvumkjdmQ9aKMYfd5bS+ZSvfluYe53zjJCMltKP
+4FPll5ktR5XajraXUk+3YIcfzC6FdmtibaXk3X34mW7HuR4n7LD4MkJKcUIj
+42nMo6PjvGyGSenRw9s7tzMrP7hoxZKUmmbslOYzLzWL6fnLSkqjQict/MN8
+098z13WglNZMNHxmeoJfzzpx+dn9pXTG9K2DJ/ONogHWLSyk9FWRfiaaefZp
+k07L+kipe9ki41vMmiN9ljwzldLM7P67xJN8HrCoNrXtKaWYDf+k/ZjVd2W7
+ZneX0v1pVxf6MHfNPV7evquUNC02Potjtp5aUxRpJCWbxs6O95lHu/gbSDtJ
+Kfhli7Nqp/jrKbK4FWAopZOnnhpbMb80G1b2qS3Xs60JuxYy25kk2s5uIyVj
+T2/ZIWbFrqlNKvS5ng3ssegJ86W160xmtJRSdLNvz5qcllC7fkYJL5tzPXt7
+ynEY8xGjsXM9taXU6ELw2QDm1M9t1n/Q4nq2Y3jXNGaNKTFfF2pKacXcRruf
+M09yf5de14jrGd2RtTgjofSaVifC1KRUpbtr0Sjm6OnO6roKrmcfJz1fyWz5
+/tDBQ1IpTbliODqLuevXwRssBa5n0W/PvmGO+DUg69Y/kW4tSO/a+izfbzdf
+bOv1RySFzeLdTszujt+K6mtFsm5jKQ9lHvbh35l9P0UK+Ppv0SnmZ60131rW
+iHQ0/+rzKuY2SXZOT76K9D5242jDc/z9sHnzJeizSIZLnM+5MX8oanrT8JNI
+E+11u21kDq//U55fKdI2w9LdF5iHJj7rvOi9SIU/E+TfmF0XV8cZvBVJest7
+cZfz/P439rQvrBBp0IEeLyYxa81dYbTipUj+y7+NjmTec39+rx7PRUp3Pn3u
+KvPlLytnvSgT6bXRqm61zPf6vb+y+6lIbf8O39PjgoR2KL7ZOz8Wady9RooZ
+zLEHnv1u9FCkiNQ7i3cxnxxUcyvvvkh5q3a9uMHc++mK6+vviiQZN9mpntne
+5/yzkXdE6m/S4XyfixLanSPX17gl0kLxXbfZzJ4TEv3uFIqU+ih9T8zF//o1
+Lyt2F4j0MmOxopi5rZee//Q8kVqts/SXX5LQhEG72vS4JpLLpPoXlsyH6Fjp
+71yRNve+5jSf+UnPS1k3Lol0VbnpfCLzpC2t98dcEOlvmXP3h8zJhw32+p0T
+yTxHN1rjMr9e93ZIsTkj0vyNpQpi9jAPv9b2lEiHPBL9/ZkHaGd8/nVcpGcW
+s1+mML8Kq+lSki1SS82ezmXMV1Muz8k+JpLzq2/nm+Xy+ZYCcrZnihR++nR3
+G+ah94IUS9NFuhyxKno5s9aeAVMnHhGp1nOEMpM5d1mrM5QqktkgjSWvmDV1
+wvW6Jos0V7v4ZcsrXP/SPgfoHBQp6d0uZwdm0wFXHtQnivT0wuQLq5m3uPv1
++RQvUvOdHUyOM9eOnru5PFYkB5930e+ZY6Sdn9+JEWndkAxl26v8+pPq9ri2
+V6QLLf2XjGX2Xpaz8OwekX58tHy1nnmp6bK07F0i9bpa73yWud3W8qfpO0Ty
+3nvtQjVzWZTHv9RtIsX7bTLpdI3fj3eDtFMiRXpkM2bvBOaCoCzdlK0iNTNo
+qbaFOdNprfrhzSKN+la65DJz8b7579M3irS2IPFVDfMGqsvJDhfpTNzsMd2u
+89efmj737HqRvi3peXEqc/WtxurXQkXq7vDdZDvzrZ4JW++sFWlWhzN785iD
+bn+vLVstUsyvVWp/mB0Hbh/1MVikklsjlprmSehXsHrQvyCRNA9qVMxi3tLl
+TUSzFSLZrCgeE808h06HGC0TKXjM7os3mS3GNB9nFSDSyS5Teoj5fH+etFE+
+bolI1X877LNgzniSGem3WCTj++/UfJgNLrT6sXmhSNMPZyyNY9b0mdH3yAKR
+olf7V9xjPnmqnV3hPJHujhswVq2A32+fqsw/+ojUqIfk0iBm2yueP5rOFWmY
+9HqPhcw/J3TZaDFbpBWPN+07yNzS6k71FC+RcjLHqD9hPuIpMQqbJVLVupYB
+TW5wfejl3j1rhkidJ5dVDGVeNHnlv3IPkaaYJY0NYB7UrFms5jSRdqnNuXSE
+uereabXBU7ielffs+Zy5fENbK79JIimPf9/XvJB/f8lbywPuXM82nVEfxbzb
+4sLfx+NFCpy+OmAlc/+rjmHNxnE962fz+hhz1wVDS+xcuZ5pNnZ5w/yvbNSb
+dWO5nlUUX2pVxOd9DZ3Tuc5cz87s7unEXDFitIPgJNL2yCkxIcyNu6fHDnHk
+eubVsdEp5tMpLzNC7EWSWb0PqGK+VZu4Im8U1zOdzNftb/L77UCSVNNWpCXv
+/V3cmN8v2zfC1Ybr2cUBlzcwH4kaSvuHi/Rmp6TXBeandmO/vh3K9cz3esxX
+5p+26yb2HSLS+KGbG3W5xeeXRbsD1lpzPdMbGziJuVP1CNu7ViLlf2r5JoJ5
+rJFTYcdBXM+ulblcZXY4v6h+6QCRLPclXf7FHL1z4avC/lzPFs7p1eO2hCYW
+ai7t0E+kwyN77Z/OnJTd6MRyc65nBjWNdjHffWKSeL+PSK2/nwm8wfxNHGBp
+asb17MbqN/+Y9TrULttiyvUs3sa1zx3++3qYzazqyfVsaeNcb2ZbvcxvDj24
+njnc7RXD3LXYsltmd5EsOu7Zf4d585BYuU43rme1UzTkxRLab58aGmgsUvLt
+jsssmevqjA89M+J6dvD9m3nMRuFVs207i6QXlOmayFztcLUwqyPXs7FLch8U
+//c8WnOzbQeRNhgPNNW4y8+zjJ++m9tzPfsnibVmHnGuNqWurUi/71/X8Gc+
++mzyal8DrmdHNi9LYXbt+PNLeWuRfNaMfVvKvDwz7s/YVlzPxuu5NbvHr5f8
+nnH5eiKV9ijPHcFcdHvlI+uWXM9kB0yXM8+08k4+1UIkxydzYjOY3ZKuN+rT
+nOvZ0V6NX/33z6cGCpnaXM/W1yxreZ9fT00mbTRpxvVs8tm39sz/4h0OHNHi
+etZnjdtq5hMjeow2aSLSbPWRV3L++/3qsvUZjbmePWvc+z3zi0RyNNMQ6fHx
+u7EGJVz/F/SPP6nO9WzznsZjmYctSg0erCaS3Yypy9czd7gf+Pa6gutZ/07v
+zjCvur75sbNcpLNNPrhVM7cMKXIplXI9q8i80vEB1ye79m5zRJFMzi7pPYE5
+f/rC0p8SrmdRA+M2M0t1Dr8Lqxdov7egeZm5MvV4oP4/gUqs8pbXMAcsXr0p
+7Y9ATZpvedf1oYRGnvvZbkidQDYfxo6byjzktrr5w1qBVl3Su7qN2eT7wYL5
+vwQ6uau8dx6z2/xzpcqfAn32PRBXx9xzxeB5iTUCGQ+bq2n6iM/3zm2XD/4u
+0HR90xWzmMnASSz9KlB0dc27Pcwl0muyFV8Eunvt7LibzG0Mlqxu/VkgjZg1
+V4XH/Hz0d/M//0ng79NIMwvmv2pTnnl8FCjIVjN+LvPnvJBL8iqBctre04xj
+jo3I1U37INDH73tW3GP+2l3nhct7gToXTn2vfCKhTW5+bf++FWhqQqfxg5jn
+HS25mfxGoF0BH676MWfesP7k8lqg245HzQ4yd2+dFixUCKTstDT+MXMviX7w
+0ZcC0e+BTZo8lZDZhXWVHi8ECrwjBA1lXh389Zr2c4GOHcp7v5T5l6NH4+vl
+Ar0P2jL+CPPJ1sXnl5cJ1MHF5doz5ocnRz42LRVoYlf9Ps1L+e9/N2/KuycC
+ba8vj7dlPvHLzS7hsUCFJQearGSu3vVz/6RHAsnS5gYdY676ljW+5UOBBq01
+/fCaeUbviKX3SwRaMuHH+FZlfH+w21G77b5AGT3PXRvNfL1Z4bOx9wR6I1vb
+J4Q5vLeVcfO7ArV7OjLhJHOFcU3xgzsCjT+mqVXFPMP+39O9twWKDLsX1L5c
+QqEXZ43wuCVQ/pToD67/8UpzzS43BRL6TpuwgbnF6GCz6kKBLBt1vn6e2bDA
+MefUDYEWPf/Q5yvzOtfsqJACgQ6fOJpg9ExCjztcLHDKF+jV5qVak5i7mq2d
+ZJAnUOuZg1ZGMJ+3a2JTdU0gV0ux8gpzyd8l4eeuCrRZK3/CL2afA0WGW68I
+dO31lusmzyX0e4pRs+m5Av0969J3OvMgrT1u5pcFstimn7iT+ZNHv0+NLgk0
+f/YzrRvMURdaPXlxQaDkwQdX/mPu7eaud+a8QM+b+1SaveB6pq2Rsv2cQHqV
+pu7ezCUJtuHzzwo05vKP6/uYA+d3P2V3RqANu8/1vcNcFnvTwvi0QLnz1ibK
+XvLrpYWdVHlKoN/DbJtaMmfNO9fm7QmB+rRqEjyPeetfWpt/XCCfz/cqE/7j
+4u9mR3IEOnA92v0B86u0mh4R2QKVxkzLa/SK66dyxiL/LIFaLO5sbs1c1cS9
+fuIxgRxHVSYuZn4d//ve0KMCrW93rGkKs/Vo7+rumQJdqFkaXMocO/6Ss26G
+QD8LB1U1reDze1qXn0K6QL0SxYkjmIM/XHzx6YhAswPz85Yx609K0yo7LFD8
+6K3mGczzvjVdXZQq0ONOrkkvmZeM1TY7nyJQszr9Zi1f89d3saRTZrJAdsXP
+gu2Za7utGZ94SKCQ5INVq5jVuw4s2HVQoLMrfSbmMC/53m3Z5gMCfXfpnf+O
+eZRPoFdIkkAm3X6aG7yRkKSJQ+SKRIE8JeeTxjBb/btV45/A9ezB2mbrmTf8
+7bZrQbxAD9JsV51hVvfd6OcTx/UspMnHT8yWI/VCZ8cKNNL9/sSOb/n+bSy5
+47Wf61mvvfnjmfcPn+/iFSPQKbmHxWbmqtkRmt77uJ497XzgEvOWusi/s/cK
+1DWrslkN86Ta+A6+0VzPwo+t6vpOQoXfP67w2yPQ3qkBH6cwb2+erLZ0N9ez
+vlaTtjF7aP/JC9rF9UxDWnCdea2lwenQnVzPXuRb1DFHew58umUH17OTWw/0
+es8/LyG8x57tAh3f4qo9i/mYzDwzaRvXs5mtVu9hXv7df9rRKIGMBjz/WMTc
+4vlyqwuRXM+aHpokfOD7lcdy25sRAu1+41Ngzjxkd/Kqsq1cz8717jeX2dqk
+38tPWwRS2/7zQCyzsePUBQIzzTmvfY857chYoxabBVpmHbJaWSmhLkF2im6b
+uJ61GPVpIPMg/6AmtFGgD5VNJvsxzy1oN3j8Bq5nufcLDjAn9fLdsSBcoEl7
+9vZ7zFzyMLrphjCuZ/M9DmpWSShk/otjSesFKhpupDOU2bZVUMDFdVzPWlet
+Xso8e3mSR2moQFZfjn06zOx8MMr3dwjXs7yAyc+Y23VZs1efOWO/1Q2dj/z+
+lKS/t1zL9WyxtL8ts2eSs/ukNVzP7AoOBjHLapLfrVwt0IT2ETrHmO/ZVu9K
+WMX17IfrmtfM2R4zZ14PFqigqFW1/icJ6fgMcaxayfUs6fnk0cyuQp6LDvOA
+ZYdurGUeaGS2dGAQ1zMn3/4nmV2GX86etUKgI53NDlX+xybZGhHLuZ7V/dRp
+X833CZ2RK88sE7iun1/jyvw16pzybSDXs5SQ6nBm/QSXw82ZtwSPmnKeuSLa
+YdawAK5nrlqFX5g79XnXd/FSgf51K+lv9Jm/n6u8Wx9YwvVM2HdoIvOMjxot
+H/gLtOChR/MI5jdDWnZRZ05ON1p7hXne3kI7q8Vcz0Kqqn8yG8/xWbNoEdez
+iVlTTL5IKHGx5Y2UhVzPTAMLPZir7gR2eu7H9Uwx2HIn8423vhF6zLml0uQC
+5ru+7o3GLhCoLqug+T/mCI+1OzbP53q2IWKt2Vd+/Wma9MifJ5DvNLfPXsw7
+FfvuyZgPmLeeuo95QafmYUN9BSrTeFF4m9kstNRmjQ/Xs5eHLGXf+HmxzlL7
+8lyBRp/yTe7PnH7d753AvH6rWYt5zHOM8vOHzRHo4qxfaxOYf59fl7V+Ntez
+ARc+l/zHz6sP3PAWyLRZ6NRG3/m83soxTot59ttRRYOZL5tUxLt5CZRwXmvA
+YmYXjT8pMZ5cz7aXJCczh5Q+PVExSyDtuftalDKPq7lR0IPZjqaHNK2RUNzD
+pi8CZnI90+3yZThzZq+autwZXM+qqqYuY5bfvaivxfw9N6sonbn61CnLydMF
+6hEdOOAlc1fReNJhD65nCwan6P7g51eV28raaQLFjpDp2jP/ur8xbhTzg9Y3
+QlYxG5hrXd47VSCtrxFfsplT47q/qJrC9Szfbdo75qkXjOutmVfHtr7Z5qeE
+Jjg5tdoxmeuZ/4sBY5g9O7zr/X6SQF/sklPWMU/WHTTCmrmr4TzdM8yzdHe4
+7Joo0IyfZqGfmM1aWk7+5M717OavLx1+cb1o7j91JPO9pAvTxjN/abzVPWEC
+17PloTc3MZ8V7jj8GS/QcGe7gZeYTb+s7TeBWZWHY9YsqdY7Pk5oyMPVcj2O
+m/ZZm1mVh2POsWh9fqGb0JCHYw7x9wkudhUa8nDM4e2j+5gxq/JwzGM+VT3d
+7iI05OF+831zWebSH2OFhjwc8/jhXaUTmVV5OOYTRxNXXxgjNOThmL0lsz51
+ZFbl4eokdN/puP1GZ6EhD8dcva189xcnoSEPx5wc1eWuO7MqD8fsXPGwNne0
+0JCHY66vtmjSg1mVh/vDz/+Xm5rscRQa8nDMM48a/JYyq/JwzFs0+9zxcxAa
+8nDM0nnakeX2QkMejrlHnWDpyKzKw/3l+8LekTfO2QkNeTjmtuXGw3owq/Jw
+f//Ld1Qmxo4SGvJwzKtk9941ZVbl4ZhzZnRuHmorNOTh/knogqtRp18jhYY8
+HHOTVH29ecyqPBzz+utDq1/aCA15OGb1lIoUd2ZVHo5Z8WjI8OIRQkMerp6f
+9z4xl0Yxq/JwzFvrzQ2uDBca8nDMm446uVsxq/JwzBv0u/mfGiY05OGYgxzl
+8/oyq/JwEoHu320/7NhQoSEPx7w/9mxNT2ZVHo45Sqt5aPoQoSEPx9zpvfdH
+E2ZVHo45YPR303QSGvJwgkAjztc49mRW5eGY89VShh21FhrycMzrXW2a9WFW
+5eGYW2tpnDgxWGjIwzH/qOrVeyCzKg8nCtTo1cc1l6yEhjwc81LDlck2zKo8
+HHPHJi0Sbg4SGvJwzG7WVfPcmFV5OGarpf01ywcKDXk4Kb9PonsGezOr8nDM
+8ZnipS8DhIY8HHPM47fFQcyqPByztWPTbDVmVR5OxnXDKX3GTkuhIQ/HHN6r
++lkHZlUejvm9tbzbsf5CQx6OedBdAyJmVR6O+Yupl+GdfkJDHk7O/150o5se
+zKo8HHNCf4uhXy2Ehjwcs6WhzupQZlUejnmS3Y11LZlVeThmjfCQsUfMhYY8
+nILrzHrP19bMqjwcs+LKTquSvkJDHo5Ze2P/iT7Mqjwcc8QnvwEisyoPxzzp
+ukdZdB+hIQ+nFKj4gPFQM2ZVHo75VMlb70IzoSEPx+wy4ZyjJ7MqD8cc+iT3
+a31voSEPx9wiR3fcPmZVHk6NXzcvi5f2Y1bl4ZgDRE3X+6ZCQx6OebvTs6qF
+zKo8HLNxzFRqyqzKwzHbOMU5ZvYSGvJw6gKt8cjRcWJW5eGYXV0zo6p7Cg15
+OObj/eOvRzKr8nDMrxN2HjNjVuXhmBclx4wp6SE05OEa8evzxaWDgcyqPBzz
+HK/G6W2YVXk4Ztf8MK/LJkJDHo45VGdAsRezKg/HHF9kXNWYWZWH0xDIu3r8
+iezuQkMejvncx4Kek5hVeTjmPxmrXKXMqjwc88mIQKO0bkJDHq4xn0umZyW5
+MavycMwnfbsW1ncVGvJwzNnzH+07zKzKwzHn7D/VfByzKg/HbJZ6ua/IrMrD
+afLr+dz73xnGQkMejrnx6s5ek5lVeTjmD21nL2nErMrDMZ8emdTldBehIQ/H
+/KR33orZzKo8XBP+9xJy/fSYVXk45qqqtfICI6EhD8dsLHzvv5xZlYdj3jlb
+0siEWZWHY5aMiQoo7yw05OG0BIrbtnV1FLMqD8e8+mR5xxHMqjwc8zqpt0dt
+J6EhD8dcFqRhnsGsysMxa9RkxM9kVuXhmgo0T7tPoj6zKg/H7DwxsP+djkJD
+Ho45dODUGWHMqjwc8yL9K22tmVV5OObT40N9f3YQGvJwzfhc4hVsd5RZlYdj
+ltzafHIOsyoPx3zSamNWR2ZVHo754W7nAeWGQkMejnm85LRjNLMqD6fNP5/K
+fZWuzKo8HPOo7sXazZhVeTjmNME092Z7oSEPx2zXI+LXRmZVHo753++rObbM
+qjycDp/L3JJrFMyqPByz/yONM9faCQ15OObbpXmSdcyqPBxz4daj+cOZVXk4
+5u5/9zaVM6vycM0FCu4++eG1tkJDHo65Q6eC1mHMqjwc8/xGJ0ttmVV5OGb1
+HnV6GsyqPFwLgdz1fG7fNBAa8nDM6qml/yKZVXk45oS2RodcmVV5OObOPdte
+1WNW5eGYU5vHjC9rIzTk4XT5fZ8aMC2RWZWHY365aMMTb2ZVHo5ZI+dwXg9m
+VR6OuSTkeOfvrYWGPBzzudLQb2eYVXm4lgINzfzeay2zKg/X8r/39YvHo5hV
+eTjmjLPdPjdjVuXhmP2GZSx80kpoyMMxF4qOU5KYVXk4PT7Xnn93zJdZlYdj
+Hrdz1nwLZlUejnmf7sEoCbMqD8c8wj6yVaG+0JCHY56br6m2i1mVh+Nffc8r
+3Kfzr6o83P/3K/5//HP49/Dn4M/Ffwf/XXwd+LrwdeLrxt8Dfy/8PfH3xvcB
+3xd8n/B9w/cR31d8n/F9x88BPxf8nPBzw88RP1f8nPFzx+sArwu8TvC6wesI
+ryu8zvC6w+sQr0u8TvG6xesYr2u8zvG6x/sA7wu8T/C+wfsI7yu8z/C+w/sQ
+70u8T/G+xfsY72u8z/G+Rx1AXUCdQN1AHUFdQZ1B3UEdQl1CnULdQh1DXUOd
+Q91DHURdRJ1E3UQdRV1FnUXdRR1GXUadRt1GHUddR51H3cdzAM8FPCfw3MBz
+BM8VPGfw3MFzCM8lPKfw3MJzDM81POfw3MNzEM9FPCfx3MRzFM9VPGfx3MVz
+GM9lPKfx3MZzHM91POfx3Mc5AOcCnBNwbsA5AucKnDNw7sA5BOcSnFNwbsE5
+BucanHNw7sE5COcinJNwbsI5CucqnLNw7sI5DOcynNNwbsM5Duc6nPNw7sM5
+EOdCnBNxbsQ5EudKnDNx7sQ5FOdSnFNxbsU5FudanHNx7sU5GOdinJNxbsY5
+GudqnLNx7sY5HOdynNNxbsc5Hud6nPNx7sc9APcC3BNwb8A9AvcK3DNw78A9
+BPcS3FNwb8E9Bvca3HNw78E9CPci3JNwb8I9Cvcq3LNw78I9DPcy3NNwb8M9
+Dvc63PNw78M9EPdC3BNxb8Q9EvdK3DNx78Q9FPdS3FNxb8U9Fvda3HNx78U9
+GPdi3JNxb8Y9Gvdq3LNx78Y9HPdy3NNxb8c9Hvd63PNx70cfAH0B9AnQN0Af
+AX0F9BnQd0AfAn0J9CnQt0AfA30N9DnQ90AfBH0R9EnQN0EfBX0V9FnQd0Ef
+Bn0Z9GnQt0EfB30d9HnQ90EfCH0h9InQN0IfCX0l9JnQd0IfCn0p9KnQt0If
+C30t9LnQ90IfDH0x9MnQN0MfDX019NnQd0MfDn059OnQt0MfD3099PnQ90Mf
+EH1B9AnRN0QfEX1F9BnRd0QfEn1J9CnRt0QfE31N9DnR90QfFH1R9EnRN0Uf
+FX1V9FnRd0UfFn1Z9GnRt0UfF31d9HnR90UfGH1h9InRN0YfGX1l9JnRd0Yf
+Gn1p9KnRt0YfG33t/+tz/6/vjT44+uLok6Nvjj46+uros6Pvjj48+vLo06Nv
+jz4++vro86PvjzkA5gKYE2BugDkC5gqYM2DugDkE5hKYU2BugTkG5hqYc2Du
+gTkI5iKYk2BugjkK5iqYs2DugjkM5jKY02BugzkO5jr/N+f539wHcyDMhTAn
+wtwIcyTMlTBnwtwJcyjMpTCnwtwKcyzMtTDnwtwLczDMxTAnw9wMczTM1TBn
+w9wNczjM5TCnw9wOczzM9TDnw9wPc0DMBTEnxNwQc0TMFTFnxNwRc0jMJTGn
+xNwSc0zMNTHnxNwTc1DMRTEnxdwUc1TMVTFnxdwVc1jMZTGnxdwWc1zMdTHn
+xdwXc2DMhTEnxtwYc2TMlTFnxtwZc2jMpTGnxtwac2zMtTHnxtwbc3DMxTEn
+x9wcc3TM1TFnx9wdc3jM5TGnx9wec3zM9THnx9wfOQDkApATQG4AOQLkCpAz
+QO4AOQTkEpBTQG4BOQbkGpBzQO4BOQjkIpCTQG4COQrkKv4vZ/G/3AVyGMhl
+IKeB3AZyHMh1IOeB3AdyIMiFICeC3AhyJMiVIGeC3AlyKMilIKeC3ApyLMi1
+IOeC3AtyMMjFICeD3AxyNMjVIGeD3A1yOMjlIKeD3A5yPMj1IOeD3M//5YD+
+lwtCTgi5IeSIkCtCzgi5I+SQkEtCTgm5JeSYkGtCzgm5J+SgkItCTgq5KeSo
+kKtCzgq5K+SwkMtCTgu5LeS4kOtCzgu5L+TAkAtDTgy5MeTIkCtDzgy5M+TQ
+kEtDTg25NeTYkGtDzg25N+TgkItDTg65OeTokKtDzg65O+TwkMtDTg+5PeT4
+kOtDzg+5P+QAkQtEThC5QeQIkStEzhC5Q+QQkUtEThG5ReQYkWtEzhG5R+Qg
+kYtEThK5SeQokatEzhK5S+QwkctEThO5TeQ4ketEzhO5T+RAkQtFThS5UeRI
+kStFzhS5U+RQkUtFThW5VeRYkWtFzhW5V+RgkYtFTha5WeRokatFzha5W+Rw
+kctFThe5XeR4ketFzhe5X+SAkQtGThi5YeSIkStGzhi5Y+SQkUtGThm5ZeSY
+kWtGzhm5Z+SgkYtGThq5aeSokatGzhq5a+SwkctGThu5beS4ketGzhu5b+TA
+kQtHThy5ceTIkStHzhy5c+TQkUtHTh25deTYkWtHzh25d+TgkYtHTh65eeTo
+katHzh65e+TwkctHTh+5feT4ketHzh+5f+wBYC8AewLYG8AeAfYKsGeAvQPs
+IWAvAXsK2FvAHgP2GrDngL0H7EFgLwJ7EtibwB4F9iqwZ4G9C+xhYC8DexrY
+28AeB/Y6sOeBvQ/sgWAvBHsi2BvBHgn2SrBngr0T7KFgLwV7KthbwR4L9lqw
+54K9F+zBYC8GezLYm8EeDfZqsGeDvRvs4WAvB3s62NvBHg/2erDng70f7AFh
+Lwh7Qtgbwh4R9oqwZ4S9I+whYS8Je0rYW8IeE/aasOeEvSfsQWEvCntS2JvC
+HhX2qrBnhb0r7GFhLwt7Wtjbwh4X9rqw54W9L+yBYS8Me2LYG8MeGfbKsGeG
+vTPsoWEvDXtq2FvDHhv22rDnhr037MFhLw57ctibwx4d9uqwZ4e9O+zhYS8P
+e3rY28MeH/b6sOeHvT/sAWIvEHuC2BvEHiH2CrFniL1D7CFiLxF7ithbxB4j
+9hqx54i9R+xBYi8Se5LYm8QeJfYqsWeJvUvsYWIvE3ua2NvEHif2OrHnib1P
+7IFiLxR7otgbxR4p9kqxZ4q9U+yhYi8Ve6rYW8UeK/ZaseeKvVfswWIvFnuy
+2JvFHi32arFni71b7OFiLxd7utjbxR4v9nqx54u9X+wBYy8Ye8LYG8YeMfaK
+sWeMvWPsIWMvGXvK2FvGHjP2mrHnjL1n7EFjLxp70tibxh419qqxZ429a+xh
+Yy8be9rY28YeN/a6seeNvW/sgWMvHHvi2BvHHjn2yrFnjr1z7KFjLx176thb
+xx479tqx5469d+zBYy8ee/LYm8cePfbqsWePvXvs4WMvH3v62NvHHj/2+rHn
+j71/eADgBYAnAN4AeATgFYBnAN4BeAjgJYCnAN4CeAzgNYDnAN4DeBDgRYAn
+Ad4EeBTgVYBnAd4FeBjgZYCnAd4GeBzgdYDnAd4HeCDghYAnAt4IeCTglYBn
+At4JeCjgpYCnAt4KeCzgtYDnAt4LeDDgxYAnA94MeDTg1YBnA94NeDjg5YCn
+A94OeDzg9YDnA94PeEDgBYEnBN4QeETgFYFnBN4ReEjgJYGnBN4SeEzgNYHn
+BN4TeFDgRYEnBd4UeFTgVYFnBd4VeFjgZYGnBd4WeFzgdYHnBd4XeGDghYEn
+Bt4YeGTglYFnBt4ZeGjgpYGnBt4aeGzgtYHnBt4beHDgxYEnB94ceHTg1YFn
+B94deHjg5YGnB94eeHzg9YHnB94feIDgBYInCN4geITgFYJnCN4heIjgJYKn
+CN4ieIzgNYLnCN4jeJDgRYInCd4keJTgVYJnCd4leJjgZYKnCd4meJzgdYLn
+Cd4neKDghYInCt4oeKTglYJnCt4peKjgpYKnCt4qeKzgtYLnCt4reLDgxYIn
+C94seLTg1YJnC94teLjg5YKnC94ueLzg9YLnC94veMDgBYMnDN4weMTgFYNn
+DN4xeMjgJYOnDN4yeMzgNYPnDN4zeNDgRYMnDd40eNTgVYNnDd41eNjgZYOn
+Dd42eNzgdYPnDd43eODghYMnDt44eOTglYNnDt45eOjgpYOnDt46eOzgtYPn
+Dt47ePDgxYMnD948ePTg1YNnD949ePjg5YOnD94+ePzg9YPnD94/eADhBYQn
+EN5AeAThFYRnEN5BeAjhJYSnEN5CeAzhNYTnEN5DeBDhRYQnEd5EeBThVYRn
+Ed5FeBjhZYSnEd5GeBzhdYTnEd5HeCDhhYQnEt5IeCThlYRnEt5JeCjhpYSn
+Et5KeCzhtYTnEt5LeDDhxYQnE95MeDTh1YRnE95NeDjh5YSnE95OeDzh9YTn
+E95PeEDhBYUnFN5QeEThFYVnFN5ReEjhJYWnFN5SeEzhNYXnFN5TeFDhRYUn
+Fd5UeFThVYVnFd5VeFjhZYWnFd5WeFzhdYXnFd5XeGDhhYUnFt5YeGThlYVn
+Ft5ZeGjhpYWnFt5aeGzhtYXnFt5beHDhxYUnF95ceHTh1YVnF95deHjh5YWn
+F95eeHzh9YXnF95feIDhBYYnGN5geIThFYZnGN5heIjhJYanGN5ieIzhNYbn
+GN5jeJDhRYYnGd5keJThVYZnGd5leJjhZYanGd5meJzhdYbnGd5neKDhhYYn
+Gt5oeKThlYZnGt5peKjhpYanGt5qeKzhtYbnGt5reLDhxYYnG95seLTh1YZn
+G95teLjh5YanG95ueLzh9YbnG95veMDhBYcnHN5weMThFYdnHN5xeMjhJYen
+HN5yeMzhNYfnHN5zeNDhRYcnHd50eNThVYdnHd51eNjhZYenHd52eNzhdYfn
+Hd53eODhhYcnHt54eOThlYdnHt55eOjhpYenHt56eOzhtYfnHt57ePDhxYcn
+H958ePTh1YdnH959ePjh5YenH95+ePzh9YfnH95/fA4APhcAnxOAzw3A5wjg
+cwXwOQP43AF8DgE+lwCfU4DPLcDnGOBzDfA5B/jcA3wOAj4XAZ+TgM9NwOco
+4HMV8DkL+NwFfA4DPpcBn9OAz23A5zjgcx0urW/64r/PecDnQPw/PvMxTQ==
+
+ "]]}, Annotation[#, "Charting`Private`Tag#3"]& ],
+ TagBox[{
+ Hue[0.37820393249936934`, 0.6, 0.6],
+ Directive[
+ PointSize[
+ NCache[
+ Rational[1, 360], 0.002777777777777778]],
+ RGBColor[0.922526, 0.385626, 0.209179],
+ AbsoluteThickness[2]],
+ LineBox[CompressedData["
+1:eJxEnAlYTl3bhnv2fqYUGaIkisg8FRWhRQiRQpJE5iQUmSJChpI50SBCCmWe
+QqKQEkmGEqISKipzpv7r3cv9/f/xHcd3nN//vtTz7H2vte513lfraQvGzBQ0
+NDTy6mlo/Pff97L/+z81myD7ELemiYzdXSrm5YGt1jSx+o8Lhnx2889UM1+X
+grjzYEUbx2VtbqvZ0a77m5SDU8ZZtc9OU7NiceaaVroyFpGbNXtpqpoZPOtU
+NQZ80qJ9n7ZX1WzsqepJG8E/7s6LfHhJzTZvuJB1BXx8bWrI2vNqdnPSSqtq
+8MEv/TV7nVGz32aDjrRtKmNnp2s1fXtCzXprqnVdwXrJI5KijqvZvKJ7a7aA
+s4KMcp0S1OzI+V1VN8BVv5NWa8ap2cvNru7fwN3+GFxKi1UzvWlGdzs1kzFj
+ZejygBg1G231xmoKOKlf+/Q+UWq2qcHxI7vAfnOahH3fo2bXS31074DNfiyt
+uBCmZrWXLdb+Bpt+X3ln6Q41M9vxu6qHnoytaGbfqe9WNfOaneY+E5wUr9Xw
+b4iaHeq/6W4E+Hv0u2XpG9WssIlDn/vg85u0Z4QEqZlueZN4QV/GHkcffDBm
+jZqNvF6gawm2PvYkxXCVmq0P3792LriX8eNO7/zVLMV7ZvV+8HOtu83OL1Wz
+b4M6T34E3qxXFrjOT826Na+5q24uY3Yh4zzH+qrZ7KoLffqDO9sNyW47X832
+31oZ7wt+kf32+HcvNcuPGtT0CPhrL29l9mw1a7hQve4ZeIm5WBg7Q82GD7tf
+3cBAxiybveywfKqarWkVNtkW7HyzW5XTZDW7/MU1eyn4WEr7rl3c1OxTllHf
+RHAfg9+vVRPUrHPsm/hX4CPBRdpvxqnZ9KXHmzZtIWOHxiiT0p3ULHqU77rh
+4Hlj4m4cclCzxyaWNQHgPr9rhq+3V7P6P39PPgNOnNBmiOcwNRv6IC27DDxW
+Me/MyCFqturIpr4tDPE89NLcYTZIzS6udEgYDT53rNur5jZqhoevWRDYPK3p
+fqGfmnXo+GzdJfCUWd+zK63UzKNuf00l2LZp/Tn5vdUs4vHMKa1bylj0y+0L
+b5mpWe7xzvecwROnp7w7213N6q2t6RsC1n98L+tQFzUbNOFiwjXw7q9/9HZ3
+VLMV3QKafQb3bhaSs9FUzc7KbYPat8LnqXeyeoWJmlU+U39yAy/2PObva6xm
+bU/fn7IdPEt52duzpZq5bwy7dxPceKXhbQ8DNdvtPtG6FjzxdcMNE/XU7L65
+8dGuRjJ2+tmT4866aqaqV9ZsGjhm7wmLMY3UzObV8aBwcP+n+e0cG6jZsgu+
++EpkLPVF+LLRWmp2KtTSow5cEdCpm6Nazd5P+3PP3FjG9jV5MmSMQs1a90m3
+9gQ7BT2/5iyo2USd4KPR4OgBa/ZOrFOxnW8c9HLB5/uoH3r8VrG7V3TXK1rj
++f5y3suzVsXEnc8+9QF7Ls2Z6vtNxfp5HvCYD7YeHXlhxWcV8xsw6/5BsPOO
+SZ4bq1UsSbdLv6fggvxJS8I+qNib8pqjWm1kLH5ocdHBchVrdeOiHgO/C+x1
++MxbFRu/J2C9H3jnmai09FIV2zbP9nMC+GuIR98nr1Usw1Zz6guwTf/seuUv
+VUzDIOd+IxMZUwV2MK8rVDGr6rB+Q8H5oalnmhaomO/ticf8wZeMnm/q+kTF
+jkUb658En1uSeW5onooVLyxbXwKe55TXe+oDFWsxPPGzXlsZi60eohVwT8XG
+Gi2cOhJ8oen8XpFZKhb61TInEDxKiDh1KUPFbt790+88OGOp7ur8myr2Jzb9
+2Hvw0wvd9tfeULHey4L1W7WTsYarLRoapqrYfIfRG8aAfRusyLW5qmIofl82
+gH8YjyyekaxiRT+fTb0C7lJdO3DzBRXTyz2QUwU+a/a46sxZFXOMn9W/rSne
+7xbdKwpPqdimgC7HJ4At3VzNlSdU7MbYT/pbwEaGRzJ6Hlex2o6XNtwAOyk8
+4ycnqJiZxqovX8ErrD7lhsapmNcT22md2svYQ6e9Q68eVLFDiZoPJoNjZ5+Q
+f9ivYs/X5vTfBX6lGaxltE/FdF13H88AZwwMmDgmUsVGdXdr/hs8dcer6g17
+VAwPy8YeHWTM5LP6/tUwFbtWWPZlBnhNwciazztU7NvpxGkR4LXdxIldtqlY
+900LH9wDTxi7TjUrVMVmT7YaIHTE82bUrvZAsIod6PX3uAX4WDHr9mKDiuXX
+u9l8LjhxSvcjBkEq1uh18Mb94LQHwz1c16jY8Iujv+aBc0rfu0WsUrG1W5pO
+V3eSsfmpc/Y+W6Fil6cXPugH3v7DpGnL5Sr2uU/sAF9wg+hFuR5LVKxzw9mJ
+ceARHc9lxy1SsRllXbDEyditnQOVlT4qFn3108YGnWXsav9lAebzVezxzktf
+B4FvyM73XDlXxerPWTV9Kdi9g3Ob254qNtRmMEoM1jvvCw6NZqnY6qb1bF6B
+H/60uOA+XcUuVuQk6nbB872g94TjHipWfWO3wXDw8oKGvX66q1iHvW74imXs
+/rkOw0e4qdjU+a2/nQZrVj0Pj5qgYhGD304vA68s3WL40VnFHhok5Rp0lTFX
+j+iCgWNVrF7NQpvRYKfoOffCHVXMNsMqaR3YjLl8rxylYiv2/TW4BN48NWP8
+YHsVO7fo5qZKsN06w4roYSpWOTzkm3E31OPdyWe/DVGxdsaOM5zB1l9kp5xs
+VQyL78NgcI6na1ESU7Hw7EKba+Db7dsO1BqgYvcPxiZ9Ak/Mvf1ojrWKqZbP
+btG+u4x99jkSkWmlYvjhgt3At1Z22NbJQsWWtfv8bRvY7/GZc6HmKnbq16UZ
+N8FXbh3XrO6hYu9zVz38Aa4v+G8Z103F2iQMZl17yFi/hCCby51VbOKqeiem
+glvYmBu17qhiu8Y9aBEObn/hQ+dgU9SzTuHBWeAuMw1nfjJRMbls0ve/4Hda
+HbImtUY9e9p6pnlP1Ivc5RPvtFKxxUlvH84G9x6yomlvQ9SzdUksGvzWLfzn
+weYqVua66MQDcLFvb83GeqhnPfoYKsywHgxPZ2t1VcxFWRfcB5xb7/iBz41Q
+z57f/D4PnGg7ocMsHRW7cyZk5kHwlzKLpwXaqGfBjnlPwPNHnk10qKdifaY0
+G6hljnrbo2/CTRXqWe/nJ2zA7metMq0VqGdaBw39wIddDXXOCahnr2eHJID1
+tMYu76qBenap64/n4LTG9qqEP0o2buvnmY16yVhwq0WXTH4pWeiM5Lwh4PwB
+fUMP/FCyW31XD/QHO5TprG31Tcn+NBxy8gTY6/30iH2flczibb2WJWCLVUdy
+W9Yo2fyUByF6vWXsm/WwTvs/Kln8rvAf9uBcg8sHW1cqWdGcSbMCwRsXzesb
+917J9FmbR+fAenV51R3fKpljs3cD34N9n0y5dbJUyYIrk062tJCxtgvXXbQo
+VrIbaYtajgE3OHb69rUiJfu5t8/mDWDN8+6f7F4omdmCuh+XwTEdfvV5+EzJ
+5g65NasKfPrHn2j3fCU71GLzIxNL/LxLnxmUP1ay5zWOgyaAC8cqzi7NUzJs
+/rBkYv2M+jxDmatko2Ket7wBNkk26BF+X8nW+x3c/BXcdFF1k/bZSnZthGdt
+RysZ6/ShXCc5U8m+G3dDyQLHB5qMzFCy7t8/P9oJzljZweHVTSXzvJc8KANs
+H+e6bXGakh04tPrUL/Dos5vLtK4rWcHyIXhkZGxBmMXYQylK1shRK3QG+Pv2
+h4+sryjZCNPc2r3g/fb5Xo8vKdna3+Gz74H73riu63NBya48nPRY1hfPyzDF
+Q61zSobF0tYCPHOH0cGE00rWZfW7U17g9XHBQUNPKtkM5xOt9oPbvU1Z9iZR
+yfZ19gvNAw9qZLlq/TElwx/2U2WN593SJ8w0Qcka5NfN7gf2ull6+U6ckg09
+ceuxD1h3ZcOauYeUbHXQZts48PtlCywaxirZxYlOpwvAj7qsCjkfo2TVPfSM
+GvSTsRMeyZVu0UrWUfUidBD4h3nMJDFSyaa+OPhzCXib4bGC43uULPKsp+dx
+8OyyidOddysZisuTIvDgs91q63YqmZbHF1vd/vi8fh6KPL5dyWwtLp8eBl60
+qY/dhK1KtlI70CgA/HTV/L+KUCU7Vzxky2lw7ti01HPBSvbhktavN2D1w3Mh
+MzYqWbttuZ4GA1Dv9W9PbrpeySbP3PPEATwkYol1xlolC7d2H7wObNfCztg/
+UMlyGpmcuQj+dPGSdrdVSqZ6986oEvy3cKRGyQolY9dObDG2wflk6Pqfe5cr
+2bIwv1/jwI/qlf4cvVTJTnv1nRMMFkIrNNSLlew903iaAs4NbKV9Y6GStdG7
+PfgTeHxNXYsVPko28cPmM6YM74Nlkx4W85VsV7qTsRtY/qfQ7tNcJcuO0Nu6
+DXxxwMtpJ+comdznxa908KlhMYHzZitZ/6GH5vwAP7p44ECXmUq22HDO0y4D
+ZcxquVda5TQlO/Gp25Cp4OeZgW+SPJSs7M6XM7vBPhZzNH0mK5nR/svGWWCt
+qKNdzScpmcviwK1/wdVt7jh9d1Wy7fZDcYSTsZHD7BdfdVGyO621vWaDP+Ul
+71nrrGSyH7lPo8DGLyIvDR+rZH3u7xnyANwvc/HTRk5KtvCwO7bQMhZm//Dz
+Mwclw2atdR+w8Uyr+nEjlazE8f3WeeCBM3qY+IxQshbtT/6OBW8oHdS73zDU
+sz9+2MJgf33/xyDNoahneX3z6w1GfXAptH9qi3p2VANLMD4vDb/RRwYq2d/V
+t88uAhvvGTlqiQ3q2fjQ1glgPYuqwXb9lWxBlzHbnoNdB5X1bm6NeiboowTK
+2APvq0aVVkr2Kv+F1xBw7OnfsusWqGcnD+UvB39wMXse1kvJnNbPGXoCHFnz
+LsnLDPXMrTseQRlr5Ja4ZGAPJUvr+bW13lD8PFfUFs27oZ6prmyzB/daG1JR
+01nJzF8G/lkN7jH3Wvjdjqhn54biP9jP+fe0PNJeyQ6HaBe8A6/97ZO9ph3q
+mcfDoS3tUC821Rs/2UTJmlruPecEFus251m3Rj2rP7nNBvDDDesGGxgp2YYS
+k+2XwbIdqxNqDVHPkt//+Qie+qRBXYEB6tm2k3NNhsnYNZfrdlf0Uc9mLS5w
+AR9yN1m7rxnqWT9ru1Bwu2UZSYG6ShbbWHb+OvjIqn5ZMxqjnr273eYrOHpb
+46fDGypZ49TQ7R2HY/1v+CyvewPUs91j/rqDHyWaXG+mrWTr5up77wTPdQmM
++quJejbwZcFt8Mlha2a+VSnZF73Ddr/A3eoutsxVoJ59nHO++wh8XjYX0q+I
+SjbzZneTGeDIxg1c4mWoZ5Fft+8Fh9xxerqrTsGe+Fz5mw22/9pk8Jo/CtbA
+bo23zB7v/8K30Qt+KZhdS7tnvcGRk6a8nlyrYKs/aw/zAjvo6TQa/V3BLmU+
+PB8DPjcspDP7qmDV+/ea5IFnFc7oYfZZwToumbxDNRLv7x8zo3Y1CobDQp01
+WKNN8Hf9KgWLbFPu7QOe9efXpfofFOzhj5PPDoOPbjKeLlYomFbO4mEF4Hl1
+m7/WvlOwwXHWF+qPkrGWr/IW1JQp2MoVsraDwJcrtuS+L1Ww804ZO5aA97dz
+NCgpVrAP7bfUHQOPzzs1/MUrBTP9O2ZeEdht5dAp+S8VbPIj/cImDqhH7+Mn
+PnquYHuOvRw2DPzS1Ns695mC5QQevrAS7LC6kywnX8HULl5tT4NDA/2P33ui
+YNhc4UiI/cGPz33uPVKw5eK3uuajZazn926J9x4q2OmCK/McwCZ302U5DxSs
+/OSawrXgXXL7vrn3FQwPH7bkMrZlkbvzo2wFc5tU/2IFWLdD2Jj8LAXbZZbX
+1tgR64fvpp4v7ihYtjpi5zjw1Fd5NcW3FUxeNBlbIhnrOqjhrvc3Faz/+bbz
+U8Cd4p7q1qQp2JLN5YU1YPPxN5fUXlewE1NPDTd1wn7ulc8lIVXB3louwZKE
+eqGzrEA7RcGwGLXbBk4s9yvQu6JgE0plKKn495OFSybJCrb9cobGD3Bt3VW/
+HhcVLHP7lvldxqCerrHRGXBewWSzxz73+I8HmG4ceVbB+vZvjkca+1e/+s/d
+TivYwiZFFzPBf2N21Pc+qWDH3x9u9xe8dvHoFgFJClaS6rXLbCzqy4cS+bbj
+CmaIzels8BCryszYowo2zvvb/Cjw5psKr/PxCrZl0NXnOeA7/e6XZsYp2C39
+tSPk47Cf21jSp+iQgv39aHfJCmx5p8Tza6yCWdyqbzoPfGrSPF/tAwq2ICpv
+Vyx4TFGrsW1jFCzeN0L2BHym3Z76/aMV7JXdlAX1nGXsAFt8YHykgjVv1e7F
+ALB85QQt370K5vSlfMQi8KHJr0aFhitYSNapS/HguqOJsxPCFCztwBLT52DD
+ie4Tbu1UsF9L+oU1HC9jHnE7jUq2K5j5KEEYAnb9XXlVtk3BvE3uLFgOjtKs
+36P1FgU7XLvlRRI49PSuZQM3K9iLnLH2xeC+jduETwtWsKZHmic3c8H3v851
+U9BGBXNYWWRqD+6/u9Ahfr2CbRgTF7YaPLPxiPdZ6xQstcNc4Rw47M9Ql6o1
+CobNvc878Iadfnt1AxWsx+NvLwwn4P8/ZHFi31UK5nn8qr0TOCS9YufUlQoW
+u2Zt8nrwyhp/+2B/BUPxa38ZHFV56/HpZQrWuFuD3R/B6no+PQuXKJi9/JFg
+4orz6RPDyYrFCrbuWYSPC1iu5+PWY5GCXT015eVmsGZG/Y6TfBUMh/2R18Gf
+mkfe3rRAwbq6VyR/Aev6J5tfmKdgM81Pt+848b/+YUOf0rkKFqO5dLc7+HXL
+wSuaeKGeFfUTd4Jth9WOs/VUMJ0Lgu9tcO3Ix78XzUI9C73z8ifYKz5gYdwM
+BQuctnVkdzfUE829559OQz2zGnd5OniHa9atelMVrKaBAY6YMtbwwuWDA6ag
+nr0p2p0N3uKrM3KRu4JNuxInyiZhf6674EaCG+rZjrm+vcErJwUKRa4Klje7
+J7b4Mra7X3mDZhNQzwZ8HxkDPvJ8bNmo8ahnuimXH4IXRszYtGEc6ln52g4q
+dxnzlt/8kjoG9ez6MGyxcB4vad75p6OCfQxvIPcB9+3ZoHPv0ahn8x75HgbL
+DId/8RmlYFNsI4vywZuVizYk2aOeNffAEofz0cZer8uHK9iDqnZXBoIrPC3k
+HYehnt2u6LAEXJfQumr2UAUbGH06/BhYtXx/bPxg1LOFS1FisN70d23xbpCC
+nRnWf2GTKTJ2d+sPt44DUc9aiXhFZKyzZfvpc20UzOTrnVErwSt7betxoj/q
+2d2tV06B9S8+S6+xVrCw2HEd34Dftj5naNEX9WypAX5EnD/q3e67wkrBFA6v
+5A7g7ZZXWt6wQD1re2ThWnDUoQG3VL1Rz37OfXUBXLX8V4/R5qhnD3o6VIA/
+6e3z2NMT9ezI9ytGU3G+0c4Z+6q7ghkHpHQcB07R71+vUzfFf32UPZvAQrdd
+6/y6KNiOjsMVKeD4BQGpqZ1Qz+oaLKoBl/RMSNHqqGDCk0ev2k3D/q82NWBC
+e9SzxEiHieC1Ab51ce0UbNFaj6tbwZ6H5gz6YoJ6NsG0Uzr44FrnobZtFKy0
+W+We7+B904rr7TJGPVOcUXSZjs/7csq2klYK5ly4dJEHeI357ke9WqKene7/
+OgycdahZwYYWCnZ7ozg6E2zfpDq6oDnqmXvm1T9gw+Qco676CmbZa1snsxky
+VvBr+tQ1zVDP6jnvnQVe6es29YmugiW8MlBGgQcUzTDq0gT17MKrRTlg7z7d
+o9Y2Qj3bcuS1OFPGRh2a86hAB/VsuvdoK/C3+elZPRugnvUxS/EGd29ZGRCi
+rWDpOj86xYKHu+/6UFIP9exNyt7HYFn9Oc0HaCpYr6vrlPVmoZ5ZtZRFqFDP
+dg73GwBe1tzj8BeFgsV56hQvBG/QLxac5KhnAx6PjgdvuTvW8ISgYM2aRqUU
+gsd8m1mtJUM9q/Do3HA29jMhmau86uRs4w3TiMHgBke6Z2T+kbPUPZXK5eBG
+4cMzO/6Wsx/zzvglgQ/n3QkK+SlnPQYvw5FfxphiSm3FDzmbYzDAsZkn/vy/
+KaYO3+UstlrEkVXGmqfu0T79Vc6e3c7svBoc6BdzTPeLnDXety3iLFi+LEhj
++Sc5s1/krHoH3jL6d/2X1XK2bngLHBlkzDHp0kPbKjm7avS62BF8YoG3w7EP
+cvbl6xHH9eBGsVmBjSrlrGu297VkcM7SDXOWl8vZrINm2LLhzx8/Vl38Ts5i
+lv2IaOMlY8szSyfZv5Wzpw7XVC7ggM0fZ51/I2c67YIWbwbfCWxralwqZ8N+
+DceSif1jct/IzcVyFpir4/QF7ObzJu37KzlLjn98rcNcGfulVbB/RpGc1QRE
+dXEHj2uZ1ePhCznrNG4qShbWV495i9lzOZvWqb36NtjtytJ5J5/JWZTGh8U/
+wQk2MfpGBXKW9+RMSTdv1PMO4Uu2PZUz7aRleGTw/j/X3ajxRM5wGEzdA25V
+njN84SM5C3CV41eWsSDtgGulD+XsfPesSI15eJ7bPyx1yZWzj4rt6t7g7sPW
+X72bI2dYLJfMAcccGTmE3ZezKWdalO4Dhx16uep8tpzt3fTa6SF4TWaNZ+e7
+cvZgcnyqcr6MdcjuJx7MlDPN3vO6WoPXbVoyqvkdORuoZR61AHxQPt5ux205
+83/9Q30YvGXBzmrNW3J25uK1Jfn//futS4atS5ezii1BpdoLsN5E1o3+c0PO
+sHkeMxC8fd1+xbLrcjapb8Pri8HuJ/3nfL4mZ2ENn3Q9Bt6nN3zFghQ5u1cW
+FfUSfOVlWt/KK3KG4qLZxAfn49EH4udclrMBu9ovtQM/L4y48faSnC2Z86F0
+BVhu5Llp1kU5O2lzdswpsH5h+q835+XsbdPl10vBJj9ntph1Ts6MKwd0a+4r
+Y7e3qN6WnZGzCWny6FFgw5ypkz1Py9mOvVmaa8ERrbqtKT8pZ5nzty+9AP4s
+mo6ed0LOsNl4Uw7W6CbeqU6UM+sWhmONFuI8snB1hd9xOVtU8/r6WPDW++OS
+a4/KWWJGfLdN4Nkz+/dcnSBn+DKir4K91nweo4iXs5Z+5vVqwN67erYKjZMz
+5xG1S9stQr01O7OzyWE522qc+sYVrGjZ41TUQTm7/S1o7FZwN4tZS9rGylld
+9ogbaeAhm3TeJO2XM8tDDbt/B3vYvv1lGSNnPsufRHf2k7HVKQmX06LlLGF0
+dD0PsN9CndYOUXL2ut20ZWHgDPFpt2cRctb8d/uyO+A9VldKZu2VszEPP4z9
+A173Z6nNl3A5C0k4e6PnYqyPMzIHrt0tZ+mrluMIh/3B4bnlDcPk7Nc4m32R
+YNaiRZ8DO+WsV2cFjiBYr4aFde2xQ87mye4uE5fgPPZoV8b1bXIW93R7mSXY
+JPiJcsxWOXuZNH6cN7iDS/OKklA5axZkiC0g9p9jm/st2SxnoycWd38Mjrqw
+K1YzBPWsR8I+zaWoZ0VDFu3bJGfXlfO1BoAPOHx413Mj6tlzcyzB+H6O2wkZ
+6+Ws59nasiNg3+uNUycFoZ4Fp44rBO9coW30ea2cHZyyPk1nmYxNq/rUOmQN
+6llve5RAGWs6JiijdaCcNdFuFLMMHPFnlc7lVahnxU+0ksD+C2JrxwTIWdCl
+6OWvwZnDjq2vXIF6tnUaHkE8nw4Tzm7wl7OvMzo4jwDXzvJa23o56pn1x7RV
+4JMx+z9dXYp61uhcj7PgkSYXRdclqGdvl+M/+OeH+Jz/6od6lmKjbegvY9n+
+Iapdi+SsYZjC3xF8csKt2h4LUc+87r4NAttGvNqc4yNna9gO52Rwpn50yvwF
+qGfNXNI/gDWfXNzaYL6cfao07NlmhYxZf/r894Q36ll6ccx4cPmphg0c58rZ
+9IgE7c3gF0vvX6mZg3q2YL5/Krju/gdVmKecPRrS691nsJ1H908Ws1HPDH86
+d1iJ7+f7WP9nM+VsyKfU9EnglLWGB1bNQD27s77nDnD3RiOmm0yXswsx9vtv
+gVs82pd+ZyrqmV+j+j/B/VsVXJ/vIWft7Z/6dwtAvZ6eMrHpFNSz1vveTQM7
+9NXecdUd9ez7tPF7wEcnbJw+YxLq2b0ON++CS8Orc7XdUM8Of+ypsUrGjD9q
+Pj/vinrmf25/L/CqZbvXTJmAeuboX38OWO3rnKbpImdnTdmKfeBwc+2Yc86o
+Z78V73PBl/ut1PUYJ2dt8+6OV67G/rOjZzvtsahnR3fc7Atudmnng0tOcrZ7
+tYvZArDl7WtNZzminjm3PHAIvH3MyS9NRsuZsktJ/Xxw5Yr289JGoZ4JR1do
+B8rYwDXlq3xHytnS/PnvGXjvjSsdW9ujnp3o5bIY/OvK5Hm5w+XsXdDPm0fB
+zjp7hq8dhnrmdt3sJXiGf4dr5nZy5tpzw4HGa1BPC59kvRmCeqYa2cAOrNdz
+1oK9g+Us60WjlSvAvnsjj9vbop6de/r+JPi6g9XquoGoZyH7XErBS06J5WcZ
+6pnHdBwJZWxEnxsVnjaoZxYdzUeB2wb1Dmo1QM7eaFcdWAOW27c7+6gf6lnJ
+uQYXwFWznJdttpaz8cn+2JLLWF5OSN6gvqhn27DlXYf1OTrk5k8rOcuYqcSW
+EucrwcD+rCXqmXX2rY3gO85/Z3lbyJlV453mV8GzNP/omfZGPXvnElsNXn2i
+0P2VuZwdvdYSSzqery9TrKLMUM/CSla6gg2OjY4f31PODOYeLd8Czr7sc6xx
+D9SzgQsmpIF79AwemNNNzjbr9UZJxX639xTv0K6oZx9+mndeL2MXGyR3GtFF
+zn6nX4+dAt5i7L5S3Rn1LHKDThh49IdGUzM6op75jMQjLWO5ujH5Gzqgng1t
+XPH7v39+3J3ioe1RzwzzJ/TcgHq50WW1yhT17PO+2zPBo440PnGnLepZ5nT8
+kXi+bl+fH2IiZ5v2dzx4H6w07HhjZBvUs8VVOuJGGYv91jhOp7Wc1dqfD7AE
+G98cYpBnhHrWZkXFXHB7nWDjPa3kzOsHcz0Adl59+KJbS9Sz+8qMR+DuBVOK
+jA3lrPBwdi/NTTKm/XftnjID1LMVOw/2B/+teFyU2FzORjpNaLgQnJpifGmR
+PupZ+1arjoCjj3U2ttaTs5Q/JRXPwB7KVD2xGepZ3lFXnWAZsxl4KOaurpx1
+O7YgwxZ86+2Bc2FNUM8Ce/deBr5yMNB1cmM52z/+18FEsJ6l1pYOjVDPutxo
++Br8fr3m6M86qGfixlVNQ2RsUOjg/dcaoJ4VjKwcDjaZvj4gpD7q2cnGE1eB
+59jsfj9eW84ur8/POAO+6Nu/xEQL9cwtpvdb8PRZdl41mnLW2WzGoRabZWxq
+3MpVqWrUM3WnRo5gs4dHjLaq5Cz6ZdWqIHD28W2j3JWoZ+fOV14Cb9SWqbsq
+5Kz+5hUTP4Drl990+COink0deKd1KN5X57jW9wU5W2WpshgP7u7vHbhfhnpW
+/96hEPC3/aVevhpyVlWys1Eq+EKH/Fe2dSLDYX/1Z/CKHY2Km/0Vmcf2Vh/a
+b8H+b6Hb/PLfIts7q3TiJPDCgMD1136JLLffsTvbwUmB9u13/RQZNkMWt8AF
+0zeO9awV2aD3vQ/XggM61mkO+CEy/9Rfjbptxff1MWCE7neRnd19Y/U0cGT5
+fd2KryLDw/IhHNx9QYpn2heRtR00CkdMGRv7Tndo5GeRues3yawDmz4/kLjw
+k8h2f8y36LVNxt6Ud4m2rxHZ/Zsxhz3BOfeDdNtViwyHI2zxsf+f5Ne07qPI
+bHw7BeaCHwdmxBR8ENlSu+oPiu0yVjZ4xKlzlSI71fKCW19waead4dsrRIbF
+A1ssGWtirzPXu1xkrbMGWh4CD29Z3mT4exEPswpbBBl7daLdYNN3Itu55F5j
+7R3Yj27c+kt8K7KskbsCGfjssJo+xW9EJpq4fvQDr080qLteKjLr2lYo0Xie
+NzwdcaBEZH45pZkvwD1vfjEMLBZZYtwxy8Y78f552Sz2eC2yNyt84oaCB0QE
+jR34SmQtx1jgFcF+buOOi22KRDa+w+/Ak+DxG8xj5S9Ftu3vjY8l4Pp1lg3f
+PhcZXrZJ+rvw+y3ylmcVikzj+Cj8iDJ2anVMQNIzkftw4ILHUSt2FIjchwOP
+GGT2d3G+yH048JSj3RVuT0Xuw4Xh81ZN286eiNyHAx9YuGe/6WOR+3BgHb0Y
+s/qPRO7Dgdf3HTz8y0OR+3DgVX0nlBTmityH243nJTRB4+YDkftw4O8pYmxi
+jsh9OLCtn9XN3fdF7sOBN3k39Vp9T+Q+HPj4ijk752SL3IcLx+e1Vew/7q7I
+fTjw/IQzc2yyRO7DgWveDNHvnClyHw78Y3noML07IvfhwM1POv8UM0Tuw+3B
+/vGtT9eaWyL34cD7opJev7wpch8OvHtSYbN76SL34cAncjOzr6SJ3Ifbi98v
+eZh4/IbIfThw5Pv2lyOvi9yHAwc7WNaEpIrchwOfqBiasOKayH04sEWhaZF3
+ish9uAjsLx3id0++KnIfDpy5ee9dxysi9+HAez9lBdpeFrkPF/Ff/7rBeYtk
+kftw4Ftte3t2uiRyHy4S+yvDBpGtLorchwNv2eM1oskFkftw4JJpLZarz4vc
+hwOPnV7T7u9Zkftw4Dm7Uhy/nBG5DxeF84zoVFt+WuQ+HLh+4Uqj4lMi9+HA
+j5wbpxecFLkPB951u7gk94TIfTjw7t2pa7KSRO7DRePvZ/7R6Yki9+HAfSaV
+mqccF7kPB/66Pcfu4jGR+3BgWUz9/NNHRe7DgbNcfEoTE0Tuw+1DfUvI9E6I
+F7kPB568tcLn8BGR+3Dgj60Sqg/EidyHAx9cl1ux77DIfTiw768+06IOidyH
+i0F9fHZ2bMRBkftw4DvBja7viRW5DwfevbFdfPgBkftw4MpZaerw/SL34cCX
+cy6X7o4RuQ+3H/Vh1eu+4ftE7sOBlwzR1NoTLXIfDqxVT+G8N0rkPhzYLiNe
+PzJS5D4ceF3oTefoCJH7cAdwfgropr1/r8h9OPDdh5esD+4RuQ8HvpVvURoX
+LnIfDhxQvUJxbLfIfbhYGeu4zW3/iTCR+3DgHgOOnj67S+Q+HLhllFW/5J0i
+9+HAm1xeDEjdIXIfDly/z9zkW9tF7sMdxP6++YXj2dtE7sOB177Z0fTRVpH7
+cGDT/Q+/FW4RuQ8H7uY2cnRpqMh9OLDLoLxWHzaL3Ic79N/9nvXMbyEi9+HA
+Jntc22iAJR8ObH1JNr5esMh9OHDfuWqNpptE7sOBA/oOMjbeKHIf7jDW7/R1
+FzpvELkPB35zMTbNcr3IfThwv0KfwYODRO7DgY0Ut62d1onchwOrjZckTF4r
+ch8uDr9fx/Eh3mtE7sOBm5hZv/YPFLkPB+7m/jMxeLXIfTiw6WvPD3tXidyH
+AxurJh1MCBC5D3cE+6NOR+9eWilyHw484Uq7OZkrRO7DgWf1ifd/5i9yHw78
+zUrUqFwuch8O7OahU/tnmch9uHgZm+QZO7MhWPLhwB0Ntw0xWSpyHw480vXE
+XoslIvfhwOE6jyePWCxyHw6sO7Bgz2Q/kftwCTKmIeywXbRI5D4c+OSyh1M3
+LRS5Dwde/2LRp32+IvfhwO/97b+e9RG5D3cU+4Gk7l5ZC0Tuw4G3F39zfD1f
+5D4cWC9q6dEf80Tuw4F3e25a1BAs+XDgnR/rTnTwFrkPdwznt+JzbgPnityH
+A0+pt2r5RC+R+3DgETZmar85IvfhwDleCaqtniL34cCdN11cmjBb5D7ccZx/
+D1lMSJ8lch8O3OH574SXM0Xuw4HLprye83OGyH04cPiCK5HNwJIPB74xaZq1
++XSR+3CJMqYISbJ3nCZyHw6sPdfv7rypIvfhwEuCtl7e7CFyHw78cG6e/rEp
+IvfhwJszDMruTBa5D5ckY88c+rV55y5yHw6ckqlzTwWWfDhwUcN5Ze0nidyH
+A4fV7zJ/mJvIfThwenLbGXMmityHOyFjz4263wlxFbkPB86caBKZOEHkPhz4
+5e6CgvsuIvfhwPe1O22sGS9yHw4cofUhVhcs+XAnZSzw48+OVs4i9+HAta27
+GE0aJ3IfDryvjeuawLEi9+HABgETHePGiNyHA3e4rw7NchK5D3dKxvzT+vWq
+dhS5DwdOapYzrBlY8uHAA/bszew3WuQ+HHiZ8cIL0x1E7sOB58b00tk8SuQ+
+3GkZy9dOzjszUuQ+HLjD0nyx0F7kPhzY7cfc/SJY8uHAvy6PPNJlhMh9uDPY
+/9SO1R8/XOQ+HFj798Svq4eJ3IcD3zS07n/MTuQ+HHhq+r2qR0NF7sOBR86u
+1NYASz7cWZyntvmEdR4ich8OfPWB+QaXwSL34cDVD3SK19mK3IcDn7V9GX9q
+kMh9OPD3imVPXwwUuQ93DvvxqGQfLbDkw4Fnm/sv6sNE7sOBqw+GFc22EbkP
+B458V3wufIDIfTjw6kY2n2/1F7kPdx7n5T7rIr/2E7kPBz4dEnysHVjy4cCu
+A7qYjLcWuQ8HzosaIt/YV+Q+HFi79uSoS31E7sNdwH728pC691Yi9+HAU8a8
+1jcESz4cuNUg90gHS5H7cBf+6yeFrVtjIXIfDnxzkcejc71F7sNdxH7ob3To
+u14i9+HAxQvbJhqCJR8ObLs318zJXOQ+HNh18GrjDWYi9+HAxyaqF1/pKXIf
+7hKez2y7HjU9RO7DgWdH6I9pD5Z8OLDGfedn7t1F7sOBddc/uxPWTeQ+HPh7
+2ZqW2V1F7sMloz50bJ8vgiUfDjxne9wP6y4i9+HAs73zV/l1FrkPB/7RIsor
+qZPIfbjL2N/Xy7xS1lHkPhx45Jn+C43Bkg8HDt/7aMvEDiL34cDTnOY02N1e
+5D4cOCDg6eccU5H7cFdkLDfrZ38tsOTDgd2/nKgc2k7kPhy4VVpO3dq2Ivfh
+wFqafZammojchwNrHL895ncbkftwV7Geho/b2Qcs+XDg8xnXei9tLXIfDtx/
+6Ot+541F7sOBh7bfG//ZSOQ+HNgrNHWxGVjy4VJQ3w6Zx/u2ErkPB3ZMeGB9
+uqXIfTiw8HqheY2hyH048I7Yb1t6giUfDiwbYWW/sIXIfbhrMnZ0qO7cswYi
+9+HArRvO/vCluch9OHD/zvUfWoAlHw78o0OJ/nJ9kftw4LlHbt24oidyHy5V
+xq6M3JH9t5nIfThwo9w2fQaBJR8OvPHLeNWGpiL34cBGQfUss3RF7sOBT08w
+uNMALPlw1/G8jp9+eWwTkftw4MYL0upHNBa5Dwces0837WUjkftw//F7i6dt
+wZIPB3abpRw1t6HIfbgbMmZl7mFyRkfkPhy4h3/ribUNRO7D3fjPV25fw8CS
+DwfeOWH0u031Re7DgecGLLHJ1Ra5D5eGn9/S/1tzsOTDgTe+s6w/XUvkPhx4
+f13ousR6IvfhwIFfx7t+0xS5D5eO59Vh0VYGlnw4cPuI1Dab1SL34cAmPs2b
+PVGJ3IcDWy6b7NkaLPlw4C5TvZvPU4rch7uJ/e4b447JCpH7cOBbWa57FGDJ
+hwOfevVl+hi5yH04cJXswdb9osh9OHBSk0y9D4LIfbhb+PMU1/72BUs+HPhB
+bqhtsEzkPhy4eGWTsqcaIvfhwGea9igzBUs+HHjh+eu2S+oE7sPdxnln9aG/
+t/4K3IcDX4i90KwZWPLhwAfH5m+e9UfgPhy4x9My94u/Be7DgQcvux6qBks+
+XAbOD6G2+hN/CdyHA0/2c9BI/ClwHw78ZG/q4L+1AvfhwNHzFr9xBEs+HLhy
+gUPxoR8C9+HuyFiyaUfr798F7sOBI9uUVo0ASz4c+NYfd4393wTuw4G/uS32
+/vxV4D4c2Ltc3WsYWPLhMnHem/J9/L4vAvfhwP1XGj3+9FngPlzmf/XD48Qw
+sOTDgcvz9xTHfBK4DwdOyYjz/VojcB8uC/uVy55uI8GSDweO2J+6/1C1wH04
+sOb84AG/qgTuw4FbmcZZjgVLPtxdGauXWxNy/KPAfTjwq0AHKzlY8uHAWxwj
+bdw/CNyHu/tfv//cgQuVAvfhwLK3K9wagiUfLhv7b50HC7wqBO7DgTcbbH9x
+s1zgPhy43CHqsBFY8uHAI349uOn/XuA+HPjzkoYDnrwTuA93D/W6dZ+GZmDJ
+hwMPmN7JeutbgftwYJaYfq28TOA+HLjH4tJIO7Dkw4EfDPDOOfxG4D7cfRnO
+bX0nCWDJhwNfr+s20KNU4D4cWGjdcdW1EoH7cOCUcHWTlmDJhwPf1UyqW1Es
+cB8uB897p2+2ha8F7sOBg86kF/UFSz4cuMbj68PIVwL34cAGf71a/ioSuA+X
+85+PI091A0s+3AMZWzEi9uLVlwL34cBBJ1urWoElHw58b/7MpNUvBO7DgYsX
+jzz2+rnAfThwQvKFP7ZgyYfLRf2zCIo/UihwHw48uiosXhMs+XBgm6o7f7yf
+CdyHA5fYaRx7UCBwHw6s07hFYi+w5MM9/O99qRUj8gXuw4Fd16w4/eepwH04
+8B//NeemgSUfDmywrUL7zhOB+3BgzdqIy13Bkg+Xh/PkT++UXY8F7sOB/V4M
+bvrzkcB9OHDLalmaB1jy4cBPNwWlZ+QJ3Id7hOdZntS8O1jy4cDFN91uhj8U
+uA8HXtrLN/1vrsB9OHBI2r1ms8GSDwdu/MbpWs4Dgftwj/F86b9MtgJLPhx4
+zssxmgdzBO7DgRtc356oBZZ8OPA5+2WHFt8XuA8HLm5a/qHonsB9uCdY75Jv
+bx4Blnw4cMzjjyvPZwvchwNfamR7wxgs+XBg5+aHJ4TeFbgPB24T82nQjyyB
++3BPZWyRi07gDLDkw4F7C4U6uZkC9+HAJR4Wn/qDJR8O7GMttD9+R+A+HNhm
+itEJfbDkw+Xj59s/f+OGDIH7cOCvDx+c+XJb4D4ceEC+aY/pYMmHA8/f4VSX
+e0vgPhy4W1lP44FgyYcrkLG+6Qk7T90UuA8HHmOwZ7wxWPLhwN2LX8zdni5w
+Hw68qNnkhxpgyYcDh1/8EeybJnAf7hnOU1lbdxbfELgPB7afKKscC5Z8OHCw
+X8/wW9cF7sOBS7po7LAESz4cuGeUw/OjqQL34QplLLvwz1JDsOTDgQN1qqZv
+uyZwHw68xE08IIAlHw7c432LLktSBO7DPZexBWXN1eVXBe7DgTuvf2k+GSz5
+cOCgXyNOPrwicB8OfHId87cDSz4c+J3bgbCrlwXuw72QMc/b9n97giUfDjxK
+s+3F+GSB+3Dg3fPrpbYESz4cWDX4VdOwSwL34cDtCzdcqQeWfLiXOJ8FF51c
+c1HgPhz4+ZG7n35cELgPBz68vUuQD1jy4cBTj5RMf3de4D4c2NP+4Q4PsOTD
+FeH7LiuoX3BO4D4cOOB14VMnsOTDgUuOJldlnRW4Dwduc2qc82Cw5MOBS2dv
+VV87I3Af7pWMvbcbpmkFlnw48M/M6S5nTgvchwM/9Ur71AUs+XDgTseGFMaf
+ErgPB/avl9PQBCz5cK9lrFkjtivmpMB9OLDWUP9pBmDJhwPr9pqyKvyEwH04
+cLDng7LGYMmHAzstOhm1LUngPlwxzmNlL6K1wZIPBy5z6V8enChwHw6c7n5y
+nQos+XDgbzuazll/XOA+HHj0dqdIESz5cCVYf74N1lt7TOA+HDh2Zm6RBljy
+4cCy1fmfVx8VuA8H7v3WemxdgsB9OLD/4Bd/VoElH64Uf9+AmM9/4wXuw4GP
+Bnr0Wg2WfDiw23nF9bojAvfhwGEhC8IDwZIP9+a/9WT1RRlY8uHAvx7pmayL
+E7gPB3ZJal4gB0s+HHhJ5ayCDYcF7sOBD9u9NtEESz5cGfbDi70ubT4kcB8O
+bNOtNLwBWPLhwDWdeqTuOChwHw5sbNqjZ1Ow5MOBvQtvVe6NFbgP9xb7BVVe
+jSFY8uHAlp59WOwBgftw4I5Xnz1tB5Z8OHBd2t5Lx/YL3IcDm/d3Lu4Olny4
+d6jXlTXjzscI3IcDh+1wbGgNlnw48NLqMbo39gnchwNrZT/zsANLPhy497vM
+r/eiBe7DvcfnqynkjQNLPhzY5cuMH4VRAvfhwF7zH82cDpZ8OHCn/mYtKiIF
+7sOB/Uw99BeBJR+uHO9ftY37rwiB+3Bg86ln368DSz4ceJhNdIo2WPLhwA2c
+nufv3itwHw5cPcnZ2ggs+XAVqI8d35cm7BG4DweesnL5YzOw5MOBBxq+004J
+F7gPB86632yzHVjy4cChrm9HP9wtcB+uUsZurrF2cwdLPhx4uPbXxHdhAvfh
+Kv/zl74O9gNLPhx4hKuRiQZY8uE+4Px7aKxd6C6B+3BgV3e/0/pgyYcDzxgx
+fWrcToH7cODFnQUXM7Dkw4Fb3TDbmbpD4D7cRxnTv/uk8Siw5MOBB6gf5D/b
+LnAfDrzCQqPUEyz5cOArjYf3+r5N4D4cuGRCaOZ6sOTDVcnY1fTjh3TBkg8H
+/qAdnHZoq8B9OPD7SoWpOVjy4cDFBvL7aVsE7sOBr4+ceXkMWPLhqmWsvqVW
+RXGowH048IfQp1MWgSUfDtxYI1FfDpZ8OHAC82q6e7PAfTiw05/PzqZgyYer
+wT9f0unZxRCB+3DgYfuqY4eDJR+u5r/9hGlSYbDAfTjwb/OTv+aBJR8OHDB5
+7hYNsOTDfcLnXdtv2q5NAvfhwNrxCn9TsOTDgYtU8Y+SNwrchwMPvywsHAWW
+fDhw4sSfTq83CNyH+4z1fd0Cv8VgyYcDz8i2LdAESz4c+NXdCYEx6wXuw4E3
+NN0+xxws+XDgx33vht0JErgP90XGarMqZJPBkg8HvjUm79TndQL34cCHJk2P
+DQZLPhw41Ccgzwgs+XDg301EuwtrBe7DfZWxt5mPf40ESz4c+FTjpzUlawTu
+w4ENvN91WAGWfDiwrVPFgcZgyYf7hvW37w3XY4EC9+HA1/bZjx0Elnw4cPyH
+uVuerRa4DweeFSmqF4ElHw5s2ehLmhZY8uG+4/2/2ura4VUC9+HA68WZtf3B
+kg8HLhqR4Pc0QOA+HPjT58zuvmDJhwO3dz/eSQss+XA/sF697jozbqXAfThw
+12dmRTZgyYcDj4iK2vtshcB9OHDDpcN3LAZLPhy429WWmQ3Bkg9Xi/X0Qq1N
+or/AfTjwl8RrX+3Akg8HPvhmVHnJcoH7cOCE2E0tA8GSDwfuYuS4zRAs+XA/
+Zaxq73qb5GUC9+HAdkPrdRsPlnw4cGO31ImflwrchwNfUG24tR0s+XBg3eU2
+87uBJR/uF9av/Oxx2UsE7sOBH9jrLPcCSz4cuMvXt8/UYMmHA3f9bOkfv1jg
+Phw40+PV+KFgyYf7LWMjndN83vgJ3IcDu5ReywgCSz4c+FHLi25twZIPB66t
+H9rl5iKB+3Bg65RWfWeAJR/uj4w59nAMkoMlHw5s6inTilsocB8OXDS1yf0h
+YMmHA+c0m32vzFfgPtxf1L+VL9SbwJIPB14Z5BLYESz5cOCThhfM7/oI3IcD
+a3R/1mYeWPLhwAGxh0fpgCUfrg77kfHfzp5eIHAfDpzc+ZTzOLDkw4Gb/j5j
+9n2+wH048IN9RSMiwZIPB/YqaRbTHyz5cBo410X16fJ6nsB9OPDG7R2+BoEl
+Hw48Lvjmjw5gyYcD7xj20eKet8B9OLCwZcNJX7Dkw8lQhxrNn9YMLPlw4JTQ
+9aOvzBW4Dwe+cTppiQdY8uHAc7tnPFWAJR8OfPbUmYXHvQTuwwn4nJ872jmB
+JR8O3Gn8WufvcwTuw4HXXG2/bx9Y8uHAGcdatxoMlnw4cK9LjvnlngL34US8
+R8t2390Blnw48I3lD75bgSUfDnx+WPGkV7MF7sOB/b2P/9wIlnw48BVP7dzu
+YMmHk+N7TXlT9HSWwH048Pc3eu0DwZIPB66auO5IB7Dkw4FnbFdPzp0pcB8O
+nP5t4yh/sOTDKVAnf772MwFLPhy4Qv49L3uGwH048H7/eK8lYMmHAxuk5FkZ
+gyUfDvy746QBWdMF7sMpBWbWovUKP7Dkw4HryoSqVmDJh/uPi15HZE4TuA8H
+7uUcs8IPLPlwKqyDO/XDjMCSDwce/bJHSdZUgftw4BmrMjyXgCUfDqx39mrb
+NmDJhwNnJFc3u+8hcB9OLTCPbFsbf7Dkw4Hntw7fZwqWfDhwq8qMnnlTBO7D
+ge0nJf9aDZZ8OPDGmBG/uoAlH05TYB2eu/V4NlngPhx4lPW9yI1gyYcDV71c
+1bc3WPLhwG/LHHVK3AXuw4F/LzBpvgMs+XD1UAd2PXGxAUs+HHjdnBF3P0wS
+uA8H3iWfsigaLPlw4MZLvoy2B0s+HLhNdrnHTzeB+3BaAmvRuM2Ro2DJhwNH
+O/obuYIlHw4csSUvWw2WfDjw7Oz6Jy5NFLgPB86ur5nuCZZ8OG2BNXCM02oO
+lnw4sGxb2sZMV4H7cGD9m8zSHyz5cOCFZXXNO4MlHw5cXV7U/fkEgftw9XFO
+u3l92Raw5MOBy6at/TIALPlwYM/z8kPVLgL34cAsoX3QQbDkw4E1TO/uGQeW
+fLgGApusl/NCCZZ8OPCw6U3GJ48XuA8H/vpxqYY3WPLhwL/2PX/eCiz5cOAp
+Y1pX5DoL3IfTEdixynad14MlHw780z4r2gos+XBgQ4ePNpXjBO7DgaNzfHUP
+gCUfrqHACo73MhgHlnw4cKuUZk5qsOTDgc89/37p6liB+3Dg2uKLTr5gyYcD
++8VbtDAFSz5cI3x+GuOaFo4RuA8HDr1VZbMdLPlw4KdZ7yOHgCUfDlz2prXp
+LyeB+3Bgz4qlr0+BJR+uscDSTt7NngWWfDhwO9Wft4ZgyYcDx9+qMMtzFLgP
+B3ZNXZoUDJZ8OPCMO4EuDCz5cE3w+50v6/F9tMB9OHD7icF9ToB5Phyem9Bh
+vjPBPB8O72lreb4hmOfDgaui5j1yEP7lwwnM9l5Vz1Awz4cTWKOdRW0Hg3k+
+HP68ZvZDf48S/uXDoZ6YNw4/B+b5cPh9bunqzgPzfDg8p3Fm19uBeT4cnrMz
+9pEvRwr/8uHwc9+1ObgHzPPh8Dzd//jUEczz4XBOj7Gyrgfm+XD4PYz+3E23
+F/7lw+F9szAMCQDzfDiBNc1avNgSzPPh8L3ffL+lZoTwLx9OYBMbT8g7Dub5
+cPg+DxwYMgvM8+FQpzwOlRqDeT6cwIwGs1OFw4V/+XB4Lga5JISDeT4c3v9x
+d7KdwDwfTmDL/Ra1rA/m+XBYBw5aRd4ZJvzLh8P7X/R9UBCY58Ph7++5Q4+B
+eT4cnt8DpXq/7YR/+XACu9bnoe0lMM+HQ53R7hvlB+b5cPicOv9u2RPM8+EE
+Fnzqx90PQ4V/+XCob+d14o6BeT4cnttJrY/OBvN8OJxTM+rntwXzfDiB5Rid
+71k8RPiXDyew8F3fz+8H83w4rN/jzs9wB/N8OJzbI+73bwHm+XD4efeZDCwY
+LPzLhxNYvUNh8/eAeT6cwOyqZLedwTwfDu/1fXs7XTDPhxOYy/Yxnx7aCv/y
+4fDfod9u7wDzfDj8+8b6txzBPB9OYKmJeyp1wDwfDt97pHP/nEHCv3w4gb2a
+YHZxK5jnw6F+Tmow0QHM8+EEtswoq10DMM+Hw+/dbqjB/YHCv3w47GO/TrPc
+Cub5cPg8jGUBDmCeD4f1s5+sogGY58OhrpTZrslhwr98OHyv6UdttoN5Phze
+49VNTJ3APB9OYH/uT+3VGMzz4QT23HuxV56N8C8fDvs+w+53wsA8H05g+xIW
+jBoP5vlw+L5K9X7qgXk+HM6Zier7BQOEf/lwOJcUt8mMAvN8ONQnP7sKdzDP
+h8N7Md6llzGY58MJ7M4G88PF/YV/+XBYj+ql9I0D83w4rMefHn2fDeb5cP+t
+s5MKO4F5Phw+Z9debz70E/7lw+F7azeg6Wkwz4cT2IeqiXP9wDwfDr//97lv
+LcE8H05geevHBP+yFv7lw6EuVVQ5poJ5PhzqyYZ2A9aBeT4czpEpjxztwDwf
+Ds+jRtEmLTDPh8N7fLddWU5f4V8+HM5JcSGeYWCeD4f3xahKxxXM8+Hw8zzq
+9bwlmOfDoR7M63+vuI/wLx8O71NEeXE8mOfDoc7pt2o5D8zz4bDvOpu8wgzM
+8+EEFttv/9/vVsK/fDh8j7tPxaWAeT4cnqNjOT7rwDwfDp+378spw8E8Hw6f
+d/W1hTpgng+H+m8x9uhjS+FfPhye/ykBYjSY58NhvdlttGYamOfDYf+qbdim
+I5jnw+H3UjmXVVkI//Lh8B49Trx3Aczz4fA95SryA8A8Hw7v6YxBiiFgng+H
+uiMf4qwN5vlwAjvTuzojr7fwLx8O799GU/coMM+Hw345Ikt3Opjnw+H3bpb6
+sROY58Nhf3axrPxTL+FfPhy+56FtNa+AeT6cwLaHTxy+Dszz4cCh3sftwTwf
+DnXPoH93XTDPh8N7ZHPy0XNz4V8+HD6fekei4sA8Hw7ff4Q8aD6Y58Ph79E/
+scUSzPPh8N5cX39JA8zz4fB8PZ8vzzIT/uXDCSwzfaTvLjDPh8Nz8VKomwTm
++XA4dx72SzIF83w4/HmR61dW9xT+5cPh5x3f3PsymOfDoW6tbLIyCMzz4QQW
+kuaS6ADm+XA4t1dm/tYH83w4/O/3Rs0r6SH8y4fDvmRExp8kMM+Hw+/nYnBi
+GZjnw6Hu/+i0yhbM8+Hw8wx8Ma8BmOfDoS6NbxpQ0F34lw+H/cm8i8cPg3k+
+HD7vu/G1C8A8Hw7nwNtZs6zBPB/u//+b/nf65+jfoz+H/lz6e+jvpZ+Dfi76
+Oennpt+Dfi/6Pen3ps+BPhf6nOhzo8+RPlf6nOlzp++Bvhf6nuh7o++Rvlf6
+nul7p+eAngt6Tui5oeeInit6zui5o+eQnkt6Tum5peeYnmt6zum5p/eA3ov/
+vSf/3ht6j+i9oveM3jt6D+m9pPeU3lt6j+m9pvec3nuqA1QXqE5Q3aA6QnWF
+6gzVHapDVJeoTlHdojpGdY3qHNU9qoNUF6lOUt2kOkp1leos1V2qw1SXqU5T
+3aY6TnWd6jzVfVoHaF2gdYLWDVpHaF2hdYbWHVqHaF2idYrWLVrHaF2jdY7W
+PVoHaV2kdZLWTVpHaV2ldZbWXVqHaV2mdZrWbVrHaV2ndZ7WfdoH0L6A9gm0
+b6B9BO0raJ9B+w7ah9C+hPYptG+hfQzta2ifQ/se2gfRvoj2SbRvon0U7ato
+n0X7LtqH0b6M9mm0b6N9HO3raJ9H+z7aB9K+kPaJtG+kfSTtK2mfSftO2ofS
+vpT2qbRvpX0s7Wtpn0v7XtoH076Y9sm0b6Z9NO2raZ9N+27ah9O+nPbptG+n
+fTzt62mfT/t+OgfQuYDOCXRuoHMEnSvonEHnDjqH0LmEzil0bqFzDJ1r6JxD
+5x46B9G5iM5JdG6icxSdq+icRecuOofRuYzOaXRuo3McnevonEfnPjoH0rmQ
+zol0bqRzJJ0r6ZxJ5046h9K5lM6pdG6lcyyda+mcS+deOgfTuZjOyXRupnM0
+navpnE3nbjqH07mczul0bqdzPJ3r6ZxP537qA1BfgPoE1DegPgL1FajPQH2H
+//Uh/vUlqE9BfQvqY1Bfg/oc1PegPgj1RahPQn0T6qNQX4X6LNR3oT4M9WWo
+T0N9G+rjUF+H+jzU96E+EPWFqE9EfSPqI1FfifpM1HeiPhT1pahPRX0r6mNR
+X4v6XNT3oj4Y9cWoT0Z9M+qjUV+N+mzUd6M+HPXlqE9HfTvq41Ffj/p81Pej
+PiD1BalPSH1D6iNSX5H6jNR3pD4k9SWpT0l9S+pjUl+T+pzU96Q+KPVFqU9K
+fVPqo1Jflfqs1HelPiz1ZalPS31b6uNSX5f6vNT3pT4w9YWpT0x9Y+ojU1+Z
++szUd6Y+NPWlqU9NfWvqY1Nfm/rc1PemPjj1xalPTn1z6qNTX5367NR3pz48
+9eWpT099e+rjU1+f+vzU96d7ALoXoHsCujegewS6V6B7Brp3oHsIupf43z3F
+v3sLusegew2656B7D7oHoXsRuiehexO6R6F7FbpnoXsXuoehexm6p6F7G7rH
+oXsduuehex+6B6J7IbononsjukeieyW6Z6J7J7qHonspuqeieyu6x6J7Lbrn
+onsvugejezG6J6N7M7pHo3s1umejeze6h6N7Obqno3s7usejez2656N7P7oH
+pHtBuieke0O6R6R7RbpnpHtHuoeke0m6p6R7S7rHpHtNuueke0+6B6V7Ubon
+pXtTukele1W6Z6V7V7qHpXtZuqele1u6x6V7XbrnpXtfugeme2G6J6Z7Y7pH
+pntlumeme2e6h6Z7abqnpntruseme22656Z7b7oHp3txuiene3O6R6d7dbpn
+p3t3uoene3m6p6d7e7rHp3t9uuene3/yAMgLIE+AvAHyCMgrIM+AvAPyEMhL
+IE+BvAXyGMhrIM+BvAfyIMiLIE+CvAnyKMirIM+CvAvyMMjLIE+DvA3yOMjr
+IM+DvA/yQMgLIU+EvBHySMgrIc+EvBPyUMhLIU+FvBXyWMhrIc+FvBfyYMiL
+IU+GvBnyaMirIc+GvBvycMjLIU+HvB3yeMjrIc+HvB/ygMgLIk+IvCHyiMgr
+Is+IvCPykMhLIk+JvCXymMhrIs+JvCfyoMiLIk+KvCnyqMirIs+KvCvysMjL
+Ik+LvC3yuMjrIs+LvC/ywMgLI0+MvDHyyMgrI8+MvDPy0MhLI0+NvDXy2Mhr
+I8+NvDfy4MiLI0+OvDny6MirI8+OvDvy8MjLI0+PvD3y+MjrI8+PvD/yAMkL
+JE+QvEHyCMkrJM+QvEPyEMlLJE+RvEXyGMlrJM+RvEfyIMmLJE+SvEnyKMmr
+JM+SvEvyMMnLJE+TvE3yOMnrJM+TvE/yQMkLJU+UvFHySMkrJc+UvFPyUMlL
+JU+VvFXyWMlrJc+VvFfyYMmLJU+WvFnyaMmrJc+WvFvycMnLJU+XvF3yeMnr
+Jc+XvF/ygMkLJk+YvGHyiMkrJs+YvGPykMlLJk+ZvGXymMlrJs+ZvGfyoMmL
+Jk+avGnyqMmrJs+avGvysMnLJk+bvG3yuMnrJs+bvG/ywMkLJ0+cvHHyyMkr
+J8+cvHPy0MlLJ0+dvHXy2MlrJ8+dvHfy4MmLJ0+evHny6MmrJ8+evHvy8MnL
+J0+fvH3y+MnrJ8+fvH+aA6C5AJoToLkBmiOguQKaM6C5A5pDoLkEmlOguQWa
+Y6C5BppzoLkHmoOguQiak6C5CZqjoLkKmrOguQuaw6C5DJrToLkNmuOguQ6a
+86C5D5oDobkQmhOhuRGaI6G5EpozobkTmkOhuRSaU6G5FZpjobkWmnOhuRea
+g6G5GJqTobkZmqOhuRqas6G5G5rDobkcmtOhuR2a46G5HprzobkfmgOiuSCa
+E6K5IZojorkimjOiuSOaQ6K5JJpTorklmmOiuSaac6K5J5qDorkompOiuSma
+o6K5KpqzorkrmsOiuSya06K5LZrjorkumvOiuS+aA6O5MJoTo7kxmiOjuTKa
+M6O5M5pDo7k0mlOjuTWaY6O5Nppzo7k3moOjuTiak6O5OZqjo7k6mrOjuTua
+w6O5PJrTo7k9muOjuT6a86O5P5oDpLlAmhOkuUGaI6S5QpozpLlDmkOkuUSa
+U6S5RZpjpLlGmnOkuUeag6S5SJqTpLlJmqOkuUqas6S5S5rDpLlMmtOkuU2a
+46S5TprzpLlPmgOluVCaE6W5UZojpblSmjOluVOaQ6W5VJpTpblVmmOluVaa
+c6W5V5qDpblYmpOluVmao6W5WpqzpblbmsOluVya06W5XZrjpblemvOluV+a
+A6a5YJoTprlhmiOmuWKaM6a5Y5pDprlkmlOmuWWaY6a5ZppzprlnmoOmuWia
+k6a5aZqjprlqmrOmuWuaw6a5bJrTprltmuOmuW6a86a5b5oDp7lwmhOnuXGa
+I6e5cpozp7lzmkOnuXSaU6e5dZpjp7l2mnOnuXeag6e5eJqTp7l5mqOnuXqa
+s6e5e5rDp7l8mtOnuX2a46e5fprzp7l/ygGgXADKCaDcAMoRoFwByhmg3AHK
+IaBcAsopoNwCyjGgXAPKOaDcA8pBoFwEykmg3ATKUaBcBcpZoNwFymGgXAbK
+aaDcBspxoFwHynmg3AfKgaBcCMqJoNwIypGgXAnKmaDcCcqhoFwKyqmg3ArK
+saBcC8q5oNwLysGgXAzKyaDcjP/laPzL1aCcDcrdoBwOyuWgnA7K7aAcD8r1
+oJwPyv2gHBDKBaGcEMoNoRwRyhWhnBHKHaEcEsoloZwSyi2hHBPKNaGcE8o9
+oRwUykWhnBTKTaEcFcpVoZwVyl2hHBbKZaGcFsptoRwXynWhnBfKfaEcGMqF
+oZwYyo2hHBnKlaGcGcqdoRwayqWhnBrKraEcG8q1oZwbyr2hHBzKxaGcHMrN
+oRwdytWhnB3K3aEcHsrloZweyu2hHB/K9aGcH8r9oRwgygWinCDKDaIcIcoV
+opwhyh2iHCLKJaKcIsotohwjyjWinCPKPaIcJMpFopwkyk2iHCXKVaKcJcpd
+ohwmymWinCbKbaIcJ8p1opwnyn2iHCjKhaKcKMqNohwpypWinCnKnaIcKsql
+opwqyq2iHCvKtaKcK8q9ohwsysWinCzKzaIcLcrVopwtyt2iHC7K5aKcLsrt
+ohwvyvWinC/K/aIcMMoFo5wwyg2jHDHKFaOcMcodoxwyyiWjnDLKLaMcM8o1
+o5wzyj2jHDTKRaOcNMpNoxw1ylWjnDXKXaMcNsplo5w2ym2jHDfKdaOcN8p9
+oxw4yoWjnDjKjaMcOcqVo5w5yp2jHDrKpaOcOsqtoxw7yrWjnDvKvaMcPMrF
+o5w8ys2jHD3K1aOcPcrdoxw+yuWjnD7K7aMcP8r1o5w/yv2jHEDKBaScQMoN
+pBxByhWknEHKHaQcQsolpJxCyi2kHEPKNaScQ8o9pBxEykWknETKTaQcRcpV
+pJxFyl2kHEbKZaScRsptpBxHynWknEfKfaQcSMqFpJxIyo2kHEnKlaScScqd
+pBxKyqWknErKraQcS8q1pJxLyr2kHEzKxaScTMrNpBxNytWknE3K3aQcTsrl
+pJxOyu2kHE/K9aScT8r9pBxQygWlnFDKDaUcUcoVpZxRyh2lHFLKJaWcUsot
+pRxTyjWlnFPKPaUcVMpFpZxUyk2lHFXKVaWcVcpdpRxWymWlnFbKbaUcV8p1
+pZxXyn2lHFjKhaWcWMqNpRxZypWlnFnKnaUcWsqlpZxayq2lHFvKtaWcW8q9
+pRxcysWlnFzKzf2/ms47rsf1/+NuXNd1JyOEgwjZI9FA1m1ElJGslnGs7JIt
+VHb4GicrHfObOspWso49T0Zm9jy2LxmHHPR793tfr/Pf63HMT/fnuj93no/n
+Ex5deHXh2YV3Fx5eeHnh6YW3Fx5feH3h+YX3Fx5geIHhCYY3GB5heIXhGYZ3
+GB5ieInhKYa3GB5jeI3hOYb3GB5keJHhSYY3GR5leJXhWYZ3GR5meJnhaYa3
+GR5neJ3heYb3GR5oeKHhiYY3Gh5peKXhmYZ3Gh5qeKnhqYa3Gh5reK3huYb3
+Gh5seLHhyYY3Gx5teLXh2YZ3Gx5ueLnh6Ya3Gx5veL3h+Yb3Gx5weMHhCYc3
+HB5xeMXhGYd3HB5yeMnhKYe3HB5zeM3hOYf3HB50eNHhSYc3HR51eNXhWYd3
+HR52eNnhaYe3HR53eN3heYf3HR54eOHhiYc3Hh55eOXhmYd3Hh56eOnhqYe3
+Hh57eO3huYf3Hh58ePHhyYc3Hx59ePXh2Yd3Hx5+ePnh6Ye3Hx5/eP3h+Yf3
+Hx0AdAHQCUA3AB0BdAXQGUB3AB0CdAnQKUC3AB0DdA3QOUD3AB0EdBHQSUA3
+AR0FdBXQWUB3AR0GdBnQaUC3AR0HdB3QeUD3AR0IdCHQiUA3Ah0JdCXQmUB3
+Ah0KdCnQqUC3Ah0LdC3QuUD3Ah0MdDHQyUA3Ax0NdDXQ2UB3Ax0OdDnQ6UC3
+Ax0PdD3Q+UD3Ax0QdEHQCUE3BB0RdEXQGUF3BB0SdEnQKUG3BB0TdE3QOUH3
+BB0UdFHQSUE3BR0VdFXQWUF3BR0WdFnQaUG3BR0XdF3QeUH3BR0YdGHQiUE3
+Bh0ZdGXQmUF3Bh0adGnQqUG3Bh0bdG3QuUH3Bh0cdHHQyUE3Bx0ddHXQ2UF3
+Bx0edHnQ6UG3Bx0fdH3Q+UH3Bx0gdIHQCUI3CB0hdIXQGUJ3CB0idInQKUK3
+CB0jdI3QOUL3CB0kdJHQSUI3CR0ldJXQWUJ3CR0mdJnQaUK3CR0ndJ3QeUL3
+CR0odKHQiUI3Ch0pdKXQmUJ3Ch0qdKnQqUK3Ch0rdK3QuUL3Ch0sdLHQyUI3
+Cx0tdLXQ2UJ3Cx0udLnQ6UK3Cx0vdL3Q+UL3Cx0wdMHQCUM3DB0xdMXQGUN3
+DB0ydMnQKUO3DB0zdM3QOUP3DB00dNHQSUM3DR01dNXQWUN3DR02dNnQaUO3
+DR03dN3QeUP3DR04dOHQiUM3Dh05dOXQmUN3Dh06dOnQqUO3Dh07dO3QuUP3
+Dh08dPHQyUM3Dx09dPXQ2UN3Dx0+dPnQ6UO3Dx0/dP3Q+UP3Dx1AdAHRCUQ3
+EB1BdAXRGUR3EB1CdAnRKUS3EB1DdA3ROUT3EB1EdBHRSUQ3ER1FdBXRWUR3
+ER1GdBnRaUS3ER1HdB3ReUT3ER1IdCHRiUQ3Eh1JdCXRmUR3Eh1KdCnRqUS3
+Eh1LdC3RuUT3Eh1MdDHRyUQ3Ex1NdDXR2UR3Ex1OdDnR6US3Ex1PdD3R+UT3
+Ex1QdEHRCUU3FB1RdEXRGUV3FB1SdEnRKUW3FB1TdE3ROUX3FB1UdFHRSUU3
+FR1VdFXRWUV3FR1WdFnRaUW3FR1XdF3ReUX3FR1YdGHRiUU3Fh1ZdGXRmUV3
+Fh1adGnRqUW3Fh1bdG3RuUX3Fh1cdHHRyUU3Fx1ddHXR2UV3Fx1edHnR6UW3
+Fx1fdH3R+UX3Fx1gdIHRCUY3GB1hdIXRGUZ3GB1idInRKUa3GB1jdI3ROUb3
+GB1kdJHRSUY3GR1ldJXRWUZ3GR1mdJnRaUa3GR1ndJ3ReUb3GR1odKHRiUY3
+Gh1pdKXRmUZ3Gh1qdKnRqUa3Gh1rdK3RuUb3Gh1sdLHRyUY3Gx1tdLXR2UZ3
+Gx1udLnR6Ua3Gx1vdL3R+Ub3Gx1wdMHRCUc3HB1xdMXRGUd3HB1ydMnRKUe3
+HB1zdM3ROUf3HB10dNHRSUc3HR11dNXRWUd3HR12dNnRaUe3HR13dN3ReUf3
+HR14dOHRiUc3Hh15dOXRmUd3Hh16dOnRqUe3Hh17dO3RuUf3/v95uH6Gpaas
+35jUXjAPRzsvueq7YR0E83C0X4d6FK7jLZiHox06z+3Rq06CeTjaC2XE3G0+
+gnm4ELr+HDp9CusimIej7dmoeD33boJ5ONpLn5Sv9627YB6O9qjCJz8d6SGY
+h6M9bs3g+XN7Cubhgunz513/Z116C+bhaK9o8ap42b6CeTjakcFRBR8ECObh
+aIfbjz2WHCSYh6O9OLyEb0SIYB4uyLDs0g9satVfMA8XlM/jnD9VZKBgHo52
+JZvVaTd/FczD0R6RNH1c4mDBPFwgfT7wvf49YqhgHo52O+/cnu1CBfNwtB9V
+aj+t9AjBPBzttPl2YU9HCubhaNtP3e+aPlowDxdA10v5+NPzxwrm4WjbnClW
+JzhcMA9Hu3C5sCCXCME8HO2tNxz6iQmCeTjaZpGwRncmCubh+tL19ebU9V2T
+BfNwtCNzpvosmCqYh6Mde+L18oGRgnk42nFeE1I9Zwjm4WjPXT5+tX2UYB6u
+D/3/Hx36vIsWzMPRHlKq88vzswTzcLRbrrjTNWmOYB6OdoNZAfNnzxPMw9H2
+LFVt5a8LBPNwvQ1r0a7fJrdZKJiHo73WpphL1cWCeTjaAd/fHDKWCObhaA9I
+XO74ZKlgHo62Q2BI31PLBfNwveh6/SN1WHKcYB6O9uZ+D7ssWimYh6NdOLKv
+bfhqwTwc7Q3WhA294wXzcLR311hVrGWCYB6uJ53HDyr7V18nmIejvTN4dHjR
+DYJ5ONpNzj4J/bxRMA9H+/i8J80ebBbMw9E+2+Li03OJgnk4f3p/nBQj0pIE
+83C0vZq+ObfxD8E8HO2At08KL0kRzMPRjpnQreL0bYJ5uB6G9XPdsmKjdgjm
+4WifGl/sbtAuwTwc7Z2tas7z3SOYh8vf0a1LtEoTzMPRzs07NN5ln2Aezs+w
+XPcXzHDaL5iHo536avytcgcF83C055aYfKvoYcE8HO0XD8MyCh4RzMPl//ze
+JyfmHhXMw3U3rLqJN+1zjgvm4Wg3aGv328uTgnk42gMfXs15fFowD0f7Zfj8
+RvfOCubhaNvXjuuRfV4wD9eN3q8RIb2uZQrm4Wj/VtjHM+uiYB6OttNfJ4xL
+lwXzcN3yv3/tnHrhimAejnb214/NLlwTzMN1pestamrKhRuCeTjaXWfWNS5l
+C+bhaN+vOap51m3BPBztdy+TAq/dFczD0Q6K7NA/+75gHq6LYfW+urPTvYeC
+eTja62t0r/DksWAejvaB14uzXj4VzMPRrvTw6ticZ4J5ONqj8xZ+zn0hmIfz
+pefd+VUGFXotmIejPfTHvxnF3grm4WgXqLbgyy/vBPNwtLN+NHaskSOYh8v/
+8XcGuzT+KJiH8zGsvd6x9azPgnk42l3LlSjZ7YtgHo52fHD/R/1yBfNwtM1x
+zxPG/iuYh6Pt87l0++gfgnm4znRenPW7+VueYB6Odnyp4n2SDMk8HG231ukn
+DhaSzMPRds7bVylLSObhOtH9xjt6yHMlmYejPbJP1NqfNpJ5ONrXUp2Oli0q
+mYejHWh3+2rD4pJ5ONoJS0rd7GQnmYfzpvvBjBbnB5eSzMPRrjH5zLYoe8k8
+HO3NIU4xv5eVzMPR/rPP0Y4Hf5HMw9EeeKN43q0Kknm4jvn/vjczOddBMg9H
++8rcWe0rOErm4WgXylt4tXlVyTwc7S/zi/Tu5ySZh6Md8z0sM7qGZB6ug2E5
+Tm3UZEstyTwcbZeRf678q45kHo62W0zs65x6knk42oUPmh7lnSXzcLRLBqVO
+bOMimYfzotc758W2EY0l83C03/ZpfDfOTTIPR3vjru/GUQ/JPBzty6MOOb5p
+KpmHox3Q9pl7+eaSebj2hlXO4137ji0l83C0q6zy7TKxtWQejnbhAuO7bWkj
+mYejbdPnjs/NdpJ5ONpDL35ta9NBMg/Xjs6Lp23dW3hL5uFotxns4hTWWTIP
+R7vKkKbFEn0l83C043yufLzdVTIPR7vFuQk3S/pJ5uHa0o+/F5/RyV8yD0f7
+w9X9q2J6SebhaPt6+0w41EcyD0f7fbWzfl8CJPNwbQzLdu0fDVyDJfNwtMM8
+htuE9ZPMw9G+ey7q720DJPNwtJtOGXH8za+SeTja1/Zt2FB/iGQezqLz1Htd
+1Ohhknk42vta3f91x3DJPBztwj/udPwwUjIPR7t6k9IuHmMk83C0e+fkVZwW
+JpmHa03v36jKRY+Nk8zD0S646HUBc4JkHo72tSJPv3WbJJmHo/2uw5xvq6dI
+5uFo/7zjW+DJNMk8XCt6ffZlFHWeIZmHo92xYscqU6Mk83C0vdZMbH4mRjIP
+R7vzL6f7lZkjmYejbV7ZGzt4nmQeriX9+fyPH9m7QDIPR/vmjDE/xSLJPBzt
+iPnNOvb9j2QejvbYb5vjU5ZK5uFot9/jnJu3XDIP18Kwhj0LHNRrhWQejvYS
+h623UlZJ5uFof3VdF1woXjIPR3v7gP1vghIk83C0r9WfEZu2TjIP15zuH5PH
+ethtlMzD0baPtMsZuVkyD0d7xMmnB84mSubhaLs3CYurmSyZh6PdtmSTGXO2
+SubhPOn8eH548t+pknk42nMSF8zusEMyD0d7yDLHTcm7JPNwtMd4iyu2eyXz
+cLQ9jx21D0uXzMM1o/uBT/aI6xmSeTjaX5Zeudb8oGQejvbYOA//zYcl83C0
+u+1Z+Mz2qGQerimdv4kBSyYcl8zD0T4TWbvrw5OSeTjadZOinHzPSObh8vfb
+VyX2n5PMw9EuE/G+dK1MyTxcE7pf7q/gsvKiZB6O9pG1HwfLLMk8HO07/mLP
+pKuSeTjaHpNuV3h1XTIPR3vX1x8JIdmSeTgPw1pX+99mV25L5uFo26SFfOh4
+TzIPR7v41l2n/3wgmYejXX3crH0ejyXzcLTDb/Q/teOpZB7Onc6jvKvv6zyX
+zMPRnhcx2jPxpWQejnZWhQObqr6RzMPR/qe5d931/5PMw9H2mLElq1KOZB7O
+jb7+Lwet+f2jZB6OdtdnJWIq/yOZh6Od3cpz0Yavknk42gsqR2Q4/SuZh6N9
+vJSPSv4hmYdzpT+frf+UBgUU83C0/xvgUGJvQcU8HO2QPU3PNReKeTjaoS6e
+ySeVYh6O9hjfPaldiyjm4Rob1qdnHjdvFVXMw9FObde39tASink42llFUjZ8
+LKmYh6M9sdMJK8ZeMQ9H+3G4u02pcop5uEb0fBi08tum8op5ONruXtPKuDso
+5uFoZ2RNCTxbWTEPR/uFbe3zwVUV83AuhlV/iMOQD06KeTjatdLf1ltQUzEP
+R7tia1fHqnUU83C0WyTPbn2gnmIejnaxglMX93RWzMM1NKyDp1Js3rso5uFo
+j7++e+8iV8U8HO1TkbWX1PVQzMM1zOeVt6w511QxD0c7MOv0teHNlfbDGdbp
+WtXb2LZS2g9nWJdCAx5ss5T2wxlW80/GTr92SvvhDMt/xf49/3gp7Yej83CW
+w+sEb6X9cPR5fOCZ3u19lPbDGVZjq8+XN12U9sMZll/C8Asruyvth6P754CE
+W238lfbD0fPU08UO/+ultB+Orv93d1eu7au0H86wLu6t3alzkNJ+OMOacsvO
+7VuI0n44w/o81r1vygCl/XD0eeObR3rIIKX9cIa1aVR615JDlfbD0fVVu1e1
+06FK++EM65iR1ihypNJ+OMM61HLydNcxSvvh6PVd3ka+CVPaD0fnfZ29mYkR
+Svvh6P2ZEJE1YKLSfjh6Hv/qVKbSFKX9cHS9Hhm++vY0pf1w9Ho/fRm0ZobS
+fjh6f1zuNCAgWmk/HF2//RtuqTBbaT8cPZ8+tpzvzVXaD0fnn2ON3A0LlPbD
+GfnfR1FDFynth6PPT86FAusvUdoPZ1jRt3xzPi5T2g9H59dH8+KhOKX9cPT5
+bdnD93NXKe2Ho/OxzfTAHvFK++EM66HNAlvH35X2w9Hno2HbC79dr7Qfjl5v
+v9UdDm1S2g9nWNOafshalKi0H46+/iI0qV+y0n44+jznsOVMoxSl/XD0/BcU
+4Cq3K+2HM6x7FRu+vrNTaT+cYe1pfP3d7j1K++Ho/fU+t83CdKX9cHS/q+L7
+ePB+pf1wdB4Wn5bV+pDSfjjDspvpYedwRGk/HN1/053X5x5T2g9Hf99J9jOz
+TyrthzOsLgXX7Mw4o7QfzrDSy4xxiz+vtB+O/v7vvWynX1DaD0fPH35X3Qde
+VtoPR88LE8/t7XBVaT8cnReOd+c3uKG0H47Oy0VHdpe5pbQfzrBUVG3XvDtK
+++EMq3XLzCKv7ivth6PrO3aA541HSvvhDGv57rXHTzxV2g9H50+U2393P1fa
+D2dYSR0eP9j0Smk/nGHdyg6eGPdWaT+cYfVaFhw6773Sfjh6v3eLT5/2UWk/
+HJ23ky4NDP9HaT8cXW+f0kaE5irthzOstGbmlQHflfbD0fNEq+jVgXlK++Ho
+6z377p+9CpraD2dYv5e+4dVDmNoPZ1ivp9d17m6a2g9H9897Kyd3szW1H86w
+Wt7MrtG9uKn9cHR/XL3do0dJU/vh6P55+0ZKL3tT++HofHtkNzewnKn9cIZV
+KtLh9IAKpvbD0edreWBUaCVT++EMa0Lo1qnhVUzth6P7Qbkd76c5mdoPR+d9
+2dhL82qa2g9nWCs+/yi3oo6p/XCG9cv1C+c31ze1H45+/0GHX+xpaGo/HL0e
+95eOO9XY1H44w2pXptjwbHdT++EMq//QL5lvmpraD0fP/8fLrC/YwtR+OLp+
+tjo/LN/a1H44ul+62Sxr3NbUfjg6j8Xo3b5epvbD0XnRt5pXqLep/XCG1ex7
+Tqc5Pqb2w9H12SPx2OaupvbD0fNcD7nthJ+p/XD0/LfgQdG/e5raD0c/v8L3
+R6qvqf1wdP4crtWgfpCp/XB0/Zx0fufXz9R+OHr/lr1fe8pAU/vh6PV0LXRn
+42BT++Ho+nUbJTOHmdoPR+/vzOcpX0aY2g9nWPU6emVWH2NqPxzdX2J7hvqH
+m9oPR/eXcs+iZo03tR+Onjds/yqbNsnUfjh6/qtyve6Lqab2w9H1vPXGYYcZ
+pvbDGdb1hE2Xe0Sb2g+X//3DooNjZ5vaD0fXd8KLySfmmdoPZ1jbkmztfsaa
+2g9H51lZn7qe/zG1H86wan6JPDtpman9cHS/+zrpdXqcqf1wdH8eXjruyypT
+++Ho12tR60Sztab2w9HzmFw0Zfo6U/vh6Pn+R4WM4xtN7Yej55Pv22baJJra
+D2dY52c7Zvklm9oPR9fD/s7b1qaY2g9H5+Mg2zLPt5vaD0f3u08tbdx2m9oP
+Z1gpMUdiY9JM7Yej8/Kv0fFXMkzthzOsHR61mlU/ZGo/nGGtyTo/bNIRU/vh
+DOtwz6a1Mo+b2g9nWKJa98nVTpvaD0fni9fHoKnnTMspVW6Jpn0hM/8/0/o/
+JQihhg==
+ "]]}, Annotation[#, "Charting`Private`Tag#4"]& ],
+ TagBox[{
+ Hue[0.6142719099991583, 0.6, 0.6],
+ Directive[
+ PointSize[
+ NCache[
+ Rational[1, 360], 0.002777777777777778]],
+ RGBColor[0.528488, 0.470624, 0.701351],
+ AbsoluteThickness[2]],
+ LineBox[CompressedData["
+1:eJws3Hk4lG0fxnHmXmbaREqSNgrtiShUF4VE0mIrWmhRSUVaRZIkFFKyFBWl
+RYVC2rRIqEhIJSVFJSmEtHjO577m/ec9Pm/1VMz8ZuY9vs85zGXD/JUiGRmZ
+QDkZmf//+8nj//8jIWN2rJ/Z2SxLpn3+ePQJnKYdNuZ/v9Az6NmnSEK+iBfE
+jmuRJRdMRv+xK5AQtWpliStcGHl4VXy+hCy+Wu0dDdfcnGP5Pk9CDh9Iqi2C
+x63SPa/1QEIeL1s7T6ZVlmyfoRaw4Z6EsPoT7ujCcgOayzNzJWRqr7Yxa+Cr
+Ob6n/t2WEO/aG7HH4ZM9Tn8yuyUhl677S0rhbf+mpBy6ISF1h8y38D9lieGR
+wTWV1yVkyKpeHwzgWTWjD6tlS4i90fN5G2BrZupt90wJCe8Tc+c0PHP0WJes
+qxJS8GnJ2Ep4xbEXvqIMCZG9MzyuZ5ssGRbTv691moQYHPkiMYaHhjwaFntZ
+QjzXXdniDY95nXe2LlVCLhhv+XAO1ucaknUuSkhtf6P51fCsKEVV//MSovpN
+NrdPO/68agO7F6dIyMIH+WPN4a8ObzYMOishYbFhcTvhR02T5rgnS0jexgXd
+rsBjLsmcunFaQv6ZDdj6AdZcO8CjxykJ0Rv09oNyhyzJlDilLU6UkA0tSfPn
+wNd2Ja27eEJCzhaszfWHq4qexv+Nl5B3CRPGZf7/42zWzLlxEqK8pS3uC3xk
+1hTXkzESMs/qZrchv2RJ1EPtjpZoCQlW27N1Abzvpg9jflRC7nWYfwyCm7e0
+7Y2NkpDOp70W3IR7ztvp8y1SQnSSn+d+hy9erf9sEiEh7jtjxo3olCWmKspP
+og9JSNK8pfGOcI3k84jGMAl5ozmi+0FYSUm/1SRUQvr9+7L1Hiyqq9aPOSAh
+1mVXPrbB00ff+t60X0L2nd+yYPRvWVJ95tJg8yAJubPb6O5SeJlW+N0TgRLS
+bicaHwVfDJv2si1AQiaMfRT/CO55/+jKuXskxI052P0vPPS+96qU3RJy8uWC
+bdp/ZMnLo9mvZf0k5OXlAXUrYS9bo7zFuySkz763C2LhdcOr1TJ3Sshsp+S7
+T+Gd+jtb5XdISMDEdeOZv7IktOT7FPdtEnJDon1cH86ertqSv0VCWqvburvD
+hrWvhgz3xvPp2s1tibCHZvfc3V4SsjJkT10ZnLsv6PmbTRJyYvmshd3+yZIr
+wRMWGW6UkAp9uXtT4XsP3y+I8ZCQ3nJl4z3hXe935ra7S4j5h5jjZ+Clh14m
+2K2TkN05S3u8hivCXv64tkZCssNHbO/dhefvRcfMfm4S8mNVQ90MuPShfqP3
+KgkZOTVt4TY4NX/e0YoVEuKiuPXeRTjnTGCavquExH42mlADZ65JmxazXEKe
+3xGd6CcjIsOGZ0z9vVRCehx91GM2PLXd7ZLzEgmZ6X5wuy8s6pMWnuskIT4m
+C+vT4QFpaz6oL5aQa8oqtvVw5eBN54IcJaTx29t7A2VFRDcj+W2DvYRo5CVP
+sIFzn3/cZ2MnIUvi1p3YC59u6Z1wbaGERG/S7nkdjjws0hq4QEKKzdu3N8JF
+xvHD/OdJiGTwrfphIhERx94IqZ8rIcate2zt4F2m01dZW0vI9sJZ9w/Azzu5
+tGtWEpKeKKd9B1bx/bZukCXu2ZayEy3wo8QXRwMtJER9TmxPLUZErhgnan8z
+xz1TX7bDCf5jpWlkbyYhUb9GfAqHR9y0zMydiXtW3GCbBzcc+ZowaoaEcGfS
+7v+C53/71BFljHvms1V7HCsi0XVD7nZNl5At86cmuMDjUjd2rJ2Ge6bF9IqG
+r+3KOVFhJCH1/x7tKIJbE6syTAxxz8oPfuqCi90z9S9PkRCHCwvtdDkRMZ+p
+OUp1Mu6Zv8oDN9g9Wi4kWA/3zP6d9nHYudZyUbsu7tm4MwnPYMP029ErdXDP
+WPdePC8imnFmM8q0JcTrlfZOA3iKyX2nGRNwz660f/KAdzr0/ZA+TkI+7Ltl
+dxp+FzfgpdpY3DPngAcvYPIi3fDwaAmx1bGY2FMsInPf3+nBjsI969Y7kcCx
+J4daeGtJyMO3Zb284R38tZY6Ddyza7E7z8FKvZ17OI6QEP3QZZ/fwAsfdhwq
+Usc9c9Gw7yMRkVcz3PynqUlIyuSvD8xg2Yshb9OG4p7JpU/cCT8fP+P8iCES
+MuDj1sTLsKjXhpqYQbhnN6bKfYA/hjXtlVOVkAMRjI9yNxFZ1y05KkAF92x1
+wWcrWLV2g/wvZQn5PfWQvT8sFzKhw6M/7llf27xr8Ltd+ZYf++GefVHR+QJf
+ndmvh1Nf3LPcd4mDu+P779056Xkf3LOjZ+QWwBZp9o9nK0iI0np3nyD45Nle
+T+/1xj2bMfHLDXiA4l8DQzkJCRrQYf8d7srhFa/2xD1rupU3vIeI/PXsYTe2
+h4R05AXoOMJKA78yZ7vhnsVbnAyDYxOCVYdJJGSNZ+/e92C1Xw8S4njcs1nl
+Pm3wwTF+YUqchLwaHPdlVE8R6Zgd8zGCwT37ucxhKZy+qfVsL5GEWBZpPDwM
+TyvcVBYsg3t28qvOI9jyQPNavktMbm5NP/kHPt9ivy7gr5i0ztnWW7sXfnxh
+QLnMHzEZO3zarpWwPm93zrdTTFZ2Mg0xcNCGtLo/HWJyoqTA4Sm8XLQ1bGe7
+mFScOfRQJCcizUb7j3f+FJPeu2x19eGV5x4q7WgVk1kLBp5aB799o/jrV7OY
+7B5Z0zsR3uEzb+aOH2JyvevMrjLYUGd5R2eTmPwod2+Q9BYRhZvD+/l8E5NR
+Fyc6ToULq3bF/v0qJi57Oh5ughVXW+/3axCTOIfbumfgdZO3Vct+EZPn4/ae
+egWrG7yJ3/tJTHpys+V7y4vIguVL74vrxWTm696+M+BXl97NC/koJrvSyhu2
+wvPHz5jV+4OYXAuKc7wI9/7tdubwezH55rw8/x3cV0/XXblGTDR0NSf1U8Dv
+Lx8Uc/ytmCzt3njKAnZ5MGOcerWYRL9Ll/eFO2KsRp2rEpOSzG2+6bBbbUDY
++NdiIgmb9rUOrvhXZJ/5UkyMXdlFA/vg59uKg6dWisn2KYX5c+EeS5SH5VWI
+SXrv8El74WfRNUPmlItJw0fb09nw/kOmgeXPxUT95kCFRvhDlca8JaVi4hRZ
+4ztMUUTk1d0C6kvEJMrt7FdbOF7+68BNxWLyZNr6RQfgwKVHVH4/EROun86j
+2/DwcjO/wMdiMq2hY1ILPMGk1kK+SEy23L19WrOviGTsmbMjrkBMLkfvVXCC
+xb5u8pqPxKR+/Wy/cPiZRv+eGQ/FZOhM+cYH8K8dRuun54mJg0rFol/w2YAb
+Oo/vi0nE97hHY/vhHtluXep4T0wKHi7Xc4FNey/4XpcrJqLjmklH4QNV2nWb
+74iJgVejQhHc0txGmNti4mWR4df1/48fDpSJvCkmF4Zsb9RREpHt3e8OH3ZD
+TD78nLbYDZa5HJp65bqYqD5mC+LhjbVFsSRbTGxPFeo9g0f2c/lakikmB7eF
+J3H9RST85sRTy6+JyUNruz4GcA/nYTebM8Ska7jqbg/4714Fg73pYqL/u6bx
+FHznSd1ApTQx2fjs7OIXcNzrvctTLotJytn1BT2UReShc3F3w0tiUrNLR5/A
+i+TO9396UUwGLPyVtBm2Te8IWn5BTOaPutPnHBw2IGHxz3NickAmcPcb+NJg
+/8jgFDG5XzH7m8IAPB/P7hkz+KyY/L4o72QGe5wOGpmRLCa6ARUFO2AXuc3B
+s5LExN0xXv8yXNM42qr6lJgkj3dJroW95h/etPmkmLzhtBSVVUTE3v7gr+6J
+YqJU1bjbCvZRk/1w8oSYWKdnfNsN7/xQPGHKcTEJ2r/d6Rp8uLL6bUmcmOQu
+mV74GU6a2eeHW6yYdOhykwcPFBGt7dYrZGPERLtHUfJ8WPvZ1imx0WKypiZc
+MQheku65UeeomJzKsvO/Ab8JVe/2JEpMXoWpNjXBS197MKsPi4niivdOw1VF
+RFl9ylLZSDGxNEgpdICzWlapxoeLyV55j8lhsEt9lYH+IdyzOp0zd+FLp/xy
+SsPE5OfNX4ptcEKZTpxHKO7Z4Tv+owbBetVV3UPEZNWawKYl8LZQV7+zwbhn
+0y2dD8MLk1L2zNwvJi/6KRTlw+l2kXU1+3DPvlZM/gOv3Mdd8AvEPbsXf2bC
+YBEJGVpfPGgv7tkxl74r4TBVVdube3DPPLT2xMD9fIINFvvjns381vQE7mXZ
+d3enH+7ZwKvOoiEicjTh5IhYXzFx/bG9SG/I/+9vlEYb7MI9y58+ZR38YYVD
++KudYlJ2nDubAFfrWtnu3IF7trmobxn8cNaL7arbxcR0dsQeyVARifhc/ffW
+VtyzofbfjWDrtbNqlm4Rk8w21SWb4GFav9RF3rhnj98XJcPkQEVekpeYaJ5O
+mfIK/ir78KG5J+7Zdo+zcsPw+OqeqtGwUUyOzdXtNwOWH7np48ENuGcjOvds
+hQc2tot0PMSk25873y/AT5s0/F64456VBi55BzuX1Tr6rBOTHSmWj/uqicgX
+876Hh63FPfNVMLCAd8ueGJXvhnu28MXZXbDCvVVD16/GPRt9vF867L5w4WbF
+Vbhnsq4BdbBRmJVGzgoxOfJC64eKOt4PWE7SW+6Ke5b6bclcuM+W1tMSFzHh
+9159HAAfkNm44coy3LNFOwyy4fl1YccclorJ1gkk5SusOFZ3iOwS3DOeVxo2
+HO9XP8xizjuJyaeqogBb+OXw9JkLFuOeZUT8CIbLFexq/ziKiWOw/dLb8OUX
+Km/POOCeLR30pBk+drFOf569mBROqjXQHCEiq0oSGn/b4p71PJeyGI4MHSNz
+dqGYGL73UAqHJ+p6bZi/APcsW3fvA7hFfZHhv3licvFg548OuP+9fNfzNrhn
+K3KXjtUQkfW+pz7ZzRWTQYb7niyHbUpLChhr3DMFK8OjcAKZIk6zwj2rVzhX
+COfY3ktcYol7duuFUhfse3b+0Z6zcc8OH9+ro4nvf3lJfc4sMZm81rV5NZwX
+pH5kjTnuGRm5LB6esUn7hLKZmJxTanpSAi+aUyN6NBP37OtVQ05LRHrWDLi/
+dYaYqNzfcW4KfLvzbrWmCe5ZDOnvAWt75tpWEjEJ2cAHnoJ3af3RDJ6Oe2b6
+uLkC7iFxsjWYJiZ/BkYu6zFSRI6w+W8ajHDPmu2fTocHDRx+97ihmKx/NMho
+M/xl3qKuuQa4Zydqz6XAgdk2x0RTxKR687n+b+D01d9CrunjnlluCFQYhcev
+v8orNz0xmTtsUospXD/h5h7VSbhn7Z3LdsA+53MCS3Rwz57kPr0EXx399/3e
+ibhnp/cZ1cLTfq+NnaKNe7bD6nz/0SLyya3hwrfxuGc2fZSt4MQnK/snjcM9
+06gM3A2vCblb5ThWTF7/Od5yFV7cq+537zG4Z89dl3/+/+fn52x+OEpMrM6N
+LB40RkTW6mua7xqJe+bXZDQfbn3fx0tXS0xu2V47vw/e7riyo0ED92z0TuUb
+sJ4O/+L0CDEZJzLe1wQ7K7yRcxqOe1bJt6qPxfvPE88S+qqLScKlx8sd4L2h
+RcFPhuGe7Y0sDoWTj6U/3jdUTOQXO0y9C68P8nAjQ3DPtAdf+AmnatQ7dQ4S
+E3/xB+VR4/D5aQ57/qoq7tmbc/uWwDNepc7dMFBMmjM2tEbCoZlFc0ap4J4d
+mOSSD497bpr0URn3bNnv4t+w9ih2wcn+uGd6d6dOGI/7efubo7MS7lnPoAsr
+4OVxjdkD+olJr1qrATGwX/mnDRWKuGfX+wQ9gSuCH/ke7iMmvocqW2Un4PlZ
+vfmjjQLu2coTLnrwENmK03LyYtJkuKJkLfxkZNn1x3K4Z31GTUuAhx6z1wzp
+JSbLPjVdeA6fipr11aIn7tntawMk2iISsPGQpFsPMXkWtTPICI4M7OvzqBvu
+2TrjnxthA71cs/0SMTExFrsmw76NO9xmiXHP+j8peQm3Dh5bI+HFJKMxcprc
+RBG5b3bnSgGLe3bf4aIJHP95wIsDjJgMjx2sshXOihqx0EqEe7bxQ9AF+Nmb
+Qk05Wdwzs/M/38Jqrs3zSrp48kR1o2tfHby+Fe0tjfzHE75l0rNZ8K28teds
+//JkWsHvabvgZ93CKpT/8GRrwt2LaXCqfZljVSdPrngHqdTBj7aO1En8xZNP
+lnP2q+ji85Wht8uKDp4MU1Nss4bjdiTWa7XzxLGj0jUA1lWOutf4kyeRT088
+y4Lz/05uSW/lSWHSiulf4aRB27Zva+EJs3NU6tBJIrLB08B2WjNPDOd9V7GF
+B3S57WN/8GSzZub+YLjq6deeRU08ufh3Z9steOrPS58ivvHk43PjFc3wv7Bj
+AxwbeTLovLhUQw/vP29FJgz9yhO73U+mL4a/XNq349MXnhy0O5x6CH4Y7Xz+
+ymee5I9xHPgAXnJVZvz2TzzpEg0J7oCDLBwlJvU8mfzyQ9sYfdy3JBu9HnU8
+2Xj5/Irl8JUBJdllH3hyLnBj6RF4qPjuoRO1PHm/WI8Uwp3Pet5we88TlYl/
+Uv/BufXxBjo1PFkguTdQZzLu3e1Fcv/e8iSkOih4NRxWOl6voJonD67OaY+D
+ZS5w6VFvePLngOLKEnhseZ7/siqeTFr+spSdgs+rdY7JY17zZL0+LjX8Z9cF
+1V8veXKm18pL62EzklSfV8mT6tpRqqfgw6/H8odf8KR/zvfgCjiVm7htWQVP
+5oZntnc3wOdxn9ip48p5sn+Vz8rpsBY3z+7Pc57kGpk894Kfr59+r7CUJ7/6
+SIxT4NKQuf4xz3ii/fnJpSo43GjdYbcSnqy9c1hVwRDvR1f6dOgX8+TUEccD
+prBVi/sV8VOevF43pGM77P1a48aLxzxRNPm48hJ8TiVKOaWIJ1bKF56/hyOv
+nXi0rZAngd82Gvc3EpEL2ROKLAp4cuuB3mVLWH+y7tCBj3jSFvtHdTdsYnM4
+/+tDnozbdO/AVTh++OS7t/N4stp8f8cn+Pm7nr0iHvAkYZD1qkFT8XqZ/fu8
+632eVLYols2Db3/8Fqt3jyfyhS+N98FjL5ZUdbvLE4vEhMs58GfbkI1v7vDE
+f8vKQU1w90nd7NJu8yTHanSI+jS8PzqtGxZ4iyfNaj867GFVUUe/RTd5MvpX
+5qpQeFfO1O/jbvDEtdinLBceMPX7QDaHJ/HJJiY/YW1R57GX2Twp2ym5MnI6
+Xn+DTVdfzuJJr/lPBy2Bny26tS8wkyemWlEhkfBD1qp98TWe+P5z/PUQFg+u
+yp54lSdZZUNW/4ZTZjoUdcvgSdP5j2XjiYgYD74wriaNJ1r+F0xWwN/s77zP
+vsKTZfabrhyDZ53xqw+/zJOYsfqDn8AueRVGay7x5BnzN0TWGL/ftsvvjVN5
+0v3VvV+TYK+Q1kqVizwxubJ/9Vr4RXH4kNbzPNm5z7r8BPxkyIbMJ+d4kuHU
+d8Zz+JjTjuNnU3jydeKrK2ITfJ7wOF7mf5Ynw7slDjaCM8zuL3Y6wxPntytD
+N8JbXldM1E/myZFrozuT4KbR9x37JPHkaciP1S/hydO8ShpP4Z65ZJX3miEi
+d4eUHi04yZPpk3fNMIEtPhZeTE7EPZObkbYFrjo/q8+eBNyzD5IhF+Diw3r5
+S07gnuU8DX0L3y70KzI8jnsWEdWpOFNE9vn3HjIgnieLVi9ymwWb/ii52xaL
+ezZ1aIUPvGDR5YyyGJ4UKdbNSIOns0db04/hnn25kPYRLp66cW9ENE+McjcN
+UTHFPXAa6brxKO7ZUf0wa7j29sXwuUd4kur+t3MP/DL/Y8/xUbhnJvfdsmCb
+2jsv5A7zZPCA4IoG+EOAxo9vEbhnTdYzh5qJiKU651gczpNDeX3TF8LOJua9
+rxzCPYt7NSQY7ramUjHiIE9kPBPDbsELNZJWeYbhns1a9fsHbC9/VLwwlCeb
+Bo9Zo2GOz88PYtomheCetf6oWASPqYvVUT6Ae1aYNfMQvGFY4O3O/bhnJ3el
+34eJ1szoN0G4Z1tnDO2AP2bcv5W7D/dsTreDY2aJyIm9TdpJgbhn6sW/l8Hn
+lme0BO3lyd9fUWuOwIYDfovcA3DPSha9KIB9d6cvtdnDE48zQ03/wWFeed0m
++eOe+dSlT7TA5+3yIbIqu3nydv7Foath1fBU0y5f3LORngfj4PVRi1582MUT
+my79P8Ww2qs+mYU+uGflf9ews0Xk9dJ7NVd28uTuhfsvJsP9R9suit6Be+Yf
+bLoeHjcra4jvdp5MdJibcRKeV1imvXIb7tm4fsMq4ICimHCrrTw5zb4+2N0S
+j2f3ZkPdLbhnrxL/TIN1ygt1VL150jdt1VovOFen9zZ2M+5Z0JjKs/CmWxck
+jZ64Z87NplXwtEuhH8s34Z7pZGfIW+Hz2KwTcnc24p518x1mCj+seByQsoEn
+49/NOLQdHp7CmkZ64J5ldvubCr9TnDjfZz1PEkOL176HD281vrDKHffM5Uil
+0hwR2a8/xGbeOp4oTFlsZglfu51FjNbinvUedtUPvu3b7qO5hid7PtYNuwp/
+bSpkFd1wz25cPPQJHhsxuPLfKp60RHj+VbXG581P1W1fVuKeuU1eNw/O2d2x
+7MUKnqyY9q8yEO5stFd64Ip71veBWQ48quCzUpoLT8q/BF/9Bk9Nj3U5sRz3
+7O5cNfW5IpI51/5XyDKemEX3C7eHz1r3fL19Ke7Z+td/Q+ALLmfEbktwz2ac
+XJcLfzLt42fnjHs2YPXLVpi/bmRs6oR79n2M+UgbEZkQ0MdadzHu2cPmq85w
+b8/dyeqLcM/is9Ui4UeOXuaKjjwp9fQNfwh39K3UYRxwzyxm/uuEM/bGrW2x
+48mMId3dx8/DvQ4/31Bri3v2s/ilKzxbozmzbCFPrhYdMT8G7zRY+jhvAe7Z
+ycXXHsOv8qtHZ83nyYhtw9Rl54tIdLFzeco83DPr+vBJsKljwaNYG54cHZ76
+bw1c4SnHh83FPev0dD8Bx09QCfOz5on42eRXpTBJfensOQf37Ow/c/ECEXnQ
+zWDbSiuebNv14JohvGu9VpWDJe7ZggPqG2EFPjLYajZPPo+0iUiCt4hX7CYW
+uGcySl2VcMOFkFzdWbhnFa/dey0UkXadNouR5rhnF0++Mobd6sJVB5vhnu1Z
+PWsLbCVvMVnRlCes49jM83Az2/O4ZCbu2fgW9bfwh0H5s/+Z8MSbux6haCsi
+dTmrjVuNcc9e+3aZw83Gr3d/ITypS5u53gfWG9K7W8103LP93V9fgeXzvr98
+MY0n9ktKZn2Eu19c3/J0Ku6Z7tHMAXa41/O9bB8a8eRRd6fh1rDrtKauW4a4
+ZzXDIvfAp349bb5mwJMpWfVdmfCtfjLjLk3BPQtLXd8At4/cmHZmMk/Ou3q9
+HmIvImnPe+5K0Mc9mzLFYiHsmnk//JgeTwbKd2Xuh+N27vkaMQn3rO7B8Fvw
+31K98BBdnoTePBD5AzbwfLozUAf3LNJGRsNBRPr107/sNxH3zE3JYxHssGvJ
+qB3auGfTq14fhMs9JzZunoB71u+UxX149f3E9g3jeXK2YXVWO1xvEm2xbhzu
+2d2xI8Y4isj4IqZ21VieKB9riVwG9zcqu+8yBvfM47rMEXj9zraGJaN5EjzT
+z6MA/rXZYfHiUbhnKqZVf+EtKp8UHEbypPN799kTF4lIhOvh3rZauGf5JVmr
+4I9zZi2cr8mTdcePjoiD26ta387VwD3zcjpcDOurBKXPGcGTKgs1WXYxns99
+G4ssh+OeDf3kMRne9r7vmNnqPJnTllrlDhcd/1o6Sw337LHX7JPw59UuuebD
+eHL71JTscvjU6hWtZkNxz7Z1jejuJCInC955mA3BPZubd3ga7JqbN95sMO7Z
+iBBZL9hwr6y+2SDcs982G87Csxfs2Wuminv2TOnNa9hnk56y+UDcs5Sq2fLO
+IhKi1bPZXIUns31PZc+E2/J/KFgMwD1b6KaxHWaSy7fOVubJjVHjolLhLJUz
+6lb9cc9kWmXfwy+D5/WzVuLJmBfXNygtwf1zeGhl0w/3LNXvzWx4TGtzwfy+
+PDkeYGrpB4c+yQu1VcQ9c+xxPQPOdBp7xKEPT+QmPNP4BIuGKNcuVsA946Oj
+VJeKyI7ozVuWyvPEr8pJNA8us9ae69ob9yxdbWMg7PHcaP1qOZ583//pzXXY
++npgybpeuGdLL1l+gwfHdm7b2JMnyydtvq62DH+efgdWeffAPethoGkPLytW
+i9nRHfespisqBJ7plSG/uxvuWXaeKBduvzLqSaAE9+xgyMZWWHva1qchYp74
+rJhXrbUcrz8VQX0jedwzg/5WzvCfKZYJxzieNMq/uR4BV46/4pHA4p7Vn9J8
+CBcFJO85w/BkyS23I52wg1jldaoI9+zwOGa8C15vIv5svSbLk+I1rRtd4YZ/
+ho63ZHDPSE51NByune+b18URorTb6jEsVgj79OQfR7Z9Nc2RcRURpwM+Ryv+
+ciTtXg+tSbBS+N79b/9w5POxZ0fWwBNVom5/+s0RtQ3RzAlYXSN2cnMnRxaZ
+Om8qhZ9kBrb9/sWRwwPV3/IrRCSwzLSDg4t+fLIyhHuGFUyV7+AI++hSzgb4
+YEvXQ5V2jhid2KyVBCcMrTw8oo0j3psNjlbCkycaJ034yZHU2TJsr5X4fluO
+6jBs5Ujd0IebjOHnR/YcMm/hyJD2kLfe8PlpU9YuaOaI/ZN5c87DV7ZP3b/0
+B0fCT/e/UQ2n+fl+XvedI4+2v9FSXIXPTwcbwrY1cUTW5vRRczj4i5d34DeO
+TNFYw/rAJ17ziZGNHPH8M87zCqx55XCvxK8cOV/a+vYDvO9Gt9upDRypTcmZ
+M2C1iKyyc0i78YUjA/1235gD51R71Bd85shCW7ORe+CsLKNllZ84Ejq6Z3Qm
+XGGRNrC+niN5sqVsA1wsujmgrY4jf19Eew5xE5EjtlaLOFjvkvO7BbB9zrw3
+fT9yxGOvuvV+2OfSjVPDP3Dk7KLPN27CJ65uP69by5G3Ey6P/AEfXLizdeZ7
+jiiLvaNHrMHni4FXdtvWcGTeGwNuEdwZK5676h1HgjNkvA7Cf9ZuWrr1LUfu
+BT98dw8u1nyTtr+aI51LQ63bYRUvA7PYNxzR0Zt/c/RafL5p2aZ6sYoj63oq
+j1oGr7Ldr3v7NUeS3r+JjoKXWTgcLHnFkars01wBfDuwcmTtS470O7TG6y/8
+IK+Db6vkyJyV42u014nI44KUEd3gfYY/rVfBZvaVgaovOHJb4cbNWDhj8lbN
+CRUcaa/fPaoYTpnq3X1mOUfG3zY7xrjj/ZrBvXEOZRxxi+rJT4azu1lHuT/n
+SOLaUi93WC9YYuhfypGX5FhNIvwnvkbt6DOOKPRfMrccLhxbYHmhhCOzG9Vv
+dVsvIitHXr6WW8yRPfc/j5oGH9wTsKziKUduxFw+5glz2npWX59wpHWDN38W
+3qedtU0EjzEz3PwavhfY9lH5MUdWqsq+7+2Be6v74fD4Io4cb344dybMWWzc
+Y1bIkYpHobe2wXplB9KcCzgilzB/dCq8uUF9mPcjjph7K8fUwBrnRj8LzeeI
+n2U1r7QB93xM5N2khxzJHpa0eTY8JNa8+WYeR763r3nvC99TMXItf8CRkU/H
+22TAoVVL+367z5HlST9v1cMufU5zYjh2x43RqhtxD1p/6g29x5FSG/8YG1jl
+9qyUKXc50kPTXBwIK6aHOC7I5ciMvz29r8PGSpdnr7/DEZ/npe8b4cJJp3cG
+3ebI1XPHbNQ2iciZZQ5fT97iSKPfktt2cFzD7fibNzmiYTd8TAhsPCE/9MUN
+jiwZ8yXmDvwrdPnN5hyORIuuiFvhbyt8R8vBxZXe3lqeItJnqNyrkdc5Irls
+WOsEq46WfWSajXsWKDsvAg5qN/+5PIsj2xfn386DQ3+XLvfN5GgPB6ulR/aK
+u8bRHs5LRP7Fbu3IusrRHg4ONfBUK8/gaA8Hfx/gFdKcztEeDhblr9WRh4Ue
+bjNeL8osVMalcbSHg3u/lCFWVzjaw8HjN+1OWnuZoz0cbDL1unnwJY72cHDQ
++7iRKakc7eG88X6u+4DZ+Rc52sP97xXDztVd4GgPB189nWzGw0IPB6v5HVXT
+OM/RHg6OyfhgZHaOoz3cFvy4yP/IqhSO9nDwkglOY4LOcrSHg4Mkq2VTznC0
+h4PXOUb2LUjmaA8Hu7c9XfkliaM93Fa8387q9bMHLPRwsMr26ffGnuZoDwfb
+qto+mXuKoz0cnLdvupLnSY72cPD+U03xUYkc7eG24fVyid3yrASO9nCwWuoK
+11cnONrDwYX7epz+e5yjPRy8ut5w6DBY6OHgE8V1r2bGc7SH2473WzP/lrrF
+cbSHgyvnbpSExXK0h4P3dk3YmRbD0R4OVl41YXTFMY72cHBI7FLl39Ec7eF2
+iMiM7MsmQ2Ghh4P7vlU4b3qUoz0cbKSz1XrdEY72cPCKNyXjI6I42sPB8d3l
+rbMOc7SH2ykii76OOPcmkqM9HLw5mzFmYaGHg9XPxfYbHcHRHg7u+vNaY344
+R3s4uLMte/P2Qxzt4Xzw+1WrdSUe5GgPB7//1/3hozCO9nDwphSXgu+hHO3h
+4GXjB3YbAAs93C58vv46ItA4hKM9HKxvtHnq2gMc7eFgm93t2oeDOdrDwZqD
+T7rc3M/RHg4O93Mp/hjE0R7OF8/3PmO39YaFHg4utGh2mrKPoz0cfCLu9C7X
+QI72cLA4YOKrsL0c7eFgLb9wz+wAjvZwfvjzKl42q93D0R4Otsz3s5ODhR4O
+ztFoPTnFn6M9HJx596/Wyt0c7eFgvzEHG8L9ONrD7RaRgK6jn2/6crSHg11e
+dFP/vIujPRz8ZWFldD9Y6OHg/oNazU18ONrDwT1fWuts2MnRHs4fnz/0XjnG
+7+BoDwcnfQy6UbCdoz0cPPe4hUP7No72cPATJYUJI2Chh4PbepeYLNjK0R5u
+D14fZ28L99/C0R4O1gv7rXzFm6M9HBx00rKqejNHezi4xXbRq16w0MPBz3wG
+KE714mgPF4B79nXHPndPjvZw8HG/jbrxmzjaw8GRfb+qPt7I0R4Olj34dvqf
+DRzt4eDwUqPjY2Chh9uLzxePf+o6e3C0h4PvrfvDH1zP0R4OLjtponjHnaM9
+HFy1Msfx+zqO9nBwdLrtq2Gw0MMF4tfv448sWMvRHg4e8PF2cOAajvZw8Nyy
+jdlZbhzt4WDFpXLDvqzmaA+3T0R6RQXfV4WFHg4uDyxLmLuKoz0c/Gd2zbU9
+Kznaw8Ey/05ymSs42sPBc29JDn125WgPFyQi5hfE8wfBQg8Hj/sWbj3PhaM9
+HKx75ejewOUc7eFgzyE9Wq8v42gPB39c/y7+21KO9nD78XnxmcRPHRZ6OPhJ
+wJZYhyUc7eHg5HsDm8KcOdrDwVuKv/jcd+JoDwfHNJXP+LWYoz1cMF4/3Itn
+jIeFHg72jSzwWbmIoz0cPDYj81ucI0d7OJhVD44pdeBoDweHGOjs6gYLPdwB
+3D+7szHEnqM9HFxS/uLbVjuO9nDw6UFZPpdtOdrDwVZH9GfUL+RoDwfPSbE0
+GQILPVwIXi/zPm63X8DRHg4myzs+H5rP0R4OlvvhHfloHkd7OPhLk42XLCz0
+cPDQqp2hBjYc7eFCReSW/uc3XnM52sPBgftDVqdac7SHg9vsbUfWz+FoDweb
+6kxRHwYLPRzsfGGk7WIrjvZwYXg9WDjgzhFLjvZwMP+oc1nJbI72cPCHxFyD
+HrDQw8ED/ZytzCw42sMdxPODf3DEfxZHezj4SFWd0i1zjvZwsF9qdnGHGUd7
+OLi75phcXVjo4WDN3zqfNppytIc7JCJr3t4zT53J0R4Olgkrqv48g6M9HHwn
+l6RqwEIPB/cx7JfhasLRHu7/n59r+D3RmKM9XDjuZ/+zK6oJR3s4+H6P2fKq
+sNDDwbHu/Vscp3O0h4N79hT1OjaNoz0c3D33j3PFVI72cBEiouDS+bEvLPRw
+8NjixqQFRhzt4eD2+oLYSEOO9nBweLh//jMDjvZwcOIV8WgFWOjhIvF5VWdu
+ns0UjvZw8Fqx5dHwyRzt4eAeQ74dL9HnaA8Ht2wYXSUPCz0cbNfy02aeHkd7
+uMN4viWTPxGTONrDwY+D/r0p1eVoDwenx6u1KcJCD/e/GxJm2upwtIeDl/mt
+KTg6kaM9XJSI3F3pubdSm6M9HGx9JdVbBRZ6OLjRS+640wSO9nBw66OgzhPj
+OdrDwZpFPQ/WjONoD3cEnzdjwu2Hw0IPB2vZ8/arx3K0h4MPjFween4MR3s4
+WM8gqr1xNEd7OLjlWuQxbVjo4Y6KSN3juRu8R3G0h4OPpt/eeX0kR3s4uP54
+6a2/Whzt4WDlAt9JJrDQw0Xj/dimzPf7NDnaw8HvKt3zijQ42sPBGSZH3sjD
+Qg8HV7WpjbYbwdEeDp5Dul2KG87RHu6YiMxeb7iqRp2jPRy8svjiAk1Y6OFg
+3xs2W9arcbSHg+8HqzzNGMbRHg4+f+Tvos6hHO3hYvD3ndqoagwLPRx8+kOV
+4v4hHO3hYK7pzvTiwRzt4eCUvOBEJVjo4WCnsrF6SwZxtIeLxfvvAwkyZ1Q5
+2sPBHo6lXY0DOdrDwaezruvowUIPB0cOsoj3VeFoDwfriTdPyR/A0R4uDn/+
+lrE95GGhh4NPrVyr4KjM0R4Odn+vanWqP0d7OPh78+QbDUoc7eHg0erpSybB
+Qg8Xj8/jIh89v34c7eHgBLUDJgV9OdrDwWkDSvYowkIPB4/cbdzurMjRHg5+
+/eNZQkofjvZwx/H+oZe3T4sCR3s4uNF7cNg0WOjh4DPFd58Fy3O0h4PN7s+f
+Xd6boz0cbPHnQdtQWOjhTsAje75wl+NoDwd3/h7YkN2Loz0cPHLkp4kcLPRw
+8A23FZfm9eRoD5cgIhe89zqf6MHRHg6WyBmRhu4c7eHg1mZfu8mw0MPBpz+R
+xMBuHO3h4IWZ3oOeSzjawyXifmgoPB0KCz0cLOHF6R5ijvZwcOEIy4KbPEd7
+OLi74zPFHrDQw8FGW8IiHDmO9nAn8Xpg52WSwnK0h4MXvdii0c5wtIeDp70I
+mWoGCz0cLJpyJuiIiKM9HDz0/XX2oyxHe7hT+Px3I+eqLiz0cLDJ5fjovTIc
+7eFg9dQFqWVdLO3h4H5nnv8cDgs9HLzxoPwm738s7eFOi4i/87/BD/+ytIeD
+9/aK6FKChR4OvhB3s4/bH5b2cLCCxNvh+m+W9nDwA9tLJd1hoYdLEpHrB5x2
+OnWytIeDSy97OVz6xdIeDq4sqV8tAws9HLzjz8Vz8ztY2sPBc2ZmDUpuZ2kP
+lywiRTc777e3sbSHgy13rYufDQs9HCxJ/Hvm+E+W9nCwikly7fdWlvZw8JYA
+u/kzYaGHOyMiDfu4lugWlvZwsJrnmbyGZpb2cPDx9WMLp8NCDwenJx2UifrB
+0h4ODjW97fbpO0t7uLMiMsr/imgqLPRw8OIQx6cRTSzt4eBbsalFdd9Y2sPB
+tz8ldhrCQg+Xgtf3NM3FEY0s7eFgc129xrqvLO3h4IT03CtGsNDDwRM33UiO
+bGBpDwc7Zqk8/vSFpT3cORHRLi5Vnw4LPRwcw1VePPKZpT0crHt+8Oqvn1ja
+w8FLe8fNnwELPRxscMB4Q2w9S3u48/h6ePK3ftSxtIeDB6pXG1rAQg8Hi37d
+bEj8yNIeDl64MPpxxweW9nBwUfTyahtY6OEu4PGgJT/sXC1Lezj4wIboKFlY
+6OHgexUNkxe9Z2kPB3cUycpl1LC0h4Md7jxR7AkLPdxF3AP1mbNXvmNpDwef
+8nBMu/2WpT0cPFlZZKEMCz0cPDduooJnNUt7OHiJ99tuj9+wtIdLxfsrjb8T
+NWChh4M3au8O3V3F0h4OPjTQWen1a5b2cHCl+/6SSbDQw8F1l9tywl+xtIe7
+JCLfNsWXN7xkaQ8H3zPxGGoOCz0cXHB1WdypSpb2cDDr7Gb27wVLezi42/Pt
+wxbBQg93Ge8P04LHZFawtIeDUw6Hru4DCz0cbKmytdSjnKU9HJxXN3V9URlL
+e7grIrL7eLm+Fiz0cLDnx4kTA5+ztIeDVdxmO70vZWkP9//PfyafOR0WejhY
+v2TH9OPPWNrDpYnI/H67OjpLWNrDwesX9qxxgIUeDk6aMehXZjFLezj4SFwS
+6QcLPRzs3D86y+spS3u4dHx+2/zZufQJS3s42MkrXEcbFno4eGrF7snhj1na
+w8HmLpfdm4pY2sPBf6rlS6xhoYfLEBF7pViXS4Us7eHgvLLpw+VgoYeDR35u
+6+tRwNIeDi4bflX36SOW9nDwgcXuAeNgoYe7KiI7XfvKHspnaQ8Hm/U7mdr0
+kKU9HNxqKQ62gYUeDv71wfBwWh5Lezh4fK7O4z6w0MNdE5GXd2p1Nj9gaQ8H
+JzwiheX3WdrDwSF3px/Sh4UeDu4eVb4n5h5Lezi4YXR70u+7LO3hMnEPtsb8
+dIaFHg5+uyptc24uS3s42LVRR00dFno4WENG6V/gHZb2cPC9o1aSz7dZ2sNl
+4f3mhcfEChZ6ODh+SsjZy7dY2sPBt8guI0VY6OHgbXeju7bcZGkPB/e6U/z9
+1Q2W9nDZ+PNPV5GfDgs9HDzHwt35dA5LezhY5lNOpRgWejg4VvO3v/t1lvZw
+1/H1UlJzfJbN0h4Ozns4fIkeLPRwcOrsjvC4LJb2cPCI7IgfMrDQw8EizTq/
+VZks7eFy8P487Yvh42ss7eHgGK+oERNhoYeDTUMrjY5dZWkPB09Vvej/L4Ol
+PRwcZca2roCFHu4GHr8TKg4XpbO0h4NLZPsvnwgLPRz8p/bG4pg0lvZwsAKT
+EyADCz0cPCWMf7n6Ckt7uJsi8jz96OLiyyzt4eD1Z5b20IeFHg5+GG/36cQl
+lvZw8NPHG5t5WOjh4MQNp0duSGVpD3dLRAJya8NeXGRpDwd//qMxhMBCDwev
+X+HyJuUCS3s4uHRyyCMFWOjh4K5bR9/tOM/SHu427pHBjhEfzrG0h4MlP0dF
+z4GFHg5eMeXEpKwUlvZw8L4FBTLDYKGHg7siTnYcOMvSHu4Onl+mqoN+nmFp
+Dwffzx3nsRQWejg42+FpQ0EyS3s42G7F9yO6sNDDwVeMDrgnJLG0h8vF+1Oj
+iA3dYaGHgy3vdZ7wPs3SHg5WHnOz890plvZwcObrwj1WsNDD3cW90lXVzz7J
+0h4O1o1P7j8cFno4eOgOp+HhiSzt4eDv+nrOfxJY2sPBZsZa99xgoYe7h+8P
+o7Wg/ARLezh4ctMoeRNY6OHgqd4avy4dZ2kPBx/rJi+nCgs9HCxRe2MdHM/S
+Hu4+Pj/qBdxoi2NpDwePym1fsAIWejh4seEE5dJYlvZw8IkRahICCz0cnPLv
+nvqlGJb2cA/+76Mk61RhoYeDXwXWvzlwjKU9HDxnqp3Pr2iW9nDwsDYLMzdY
+6OHg91OyDV8cZWkPlyci8lFHncxgoYeDB0W+Srl2hKU9HLzu/vahI2Chh4Nn
+X19zPyqKpT0c3MEnRrCw0MM9xOPZuE/I5sMs7eFgO5nMyx8iWdrDwQOqdnct
+hIUeDn6ywW1HXgRLeziYOLgM1YOFHi4ff37dFT/OhLO0h4P5JNfG/rDQw8Er
+Ztv1DT7E0h4OPlykvarzIEt7OLjwScP7dbDQwz3C3+/X9gNvwljaw8E+7c+c
+5sJCDwdf3fzZ8W4oS3s4eN3gTH8dWOjh/v/1SWPLkkNY2sMV4PGVZTpPGRZ6
+OPh499aOAwdY2sPBUQvGFf0NZmkPB1fM+pK/ERZ6uEIRYU4Paqrdz9IeDj6k
+epvYw0IPB+dsunuzMIilPRwcuWyQ6zRY6OHg7yn5Oun7WNrDFYnI9p6Z4zRg
+oYeDj1lXL4gNZGkPBwfo6p2Wg4UeDtYNzFAN2MvSHq7o/3/f1iq3PYClPdxj
+fD4P+RnmDgs9HKxXmRxYs4elPRzc79b8s3aw0MPBPbo3Nxf5s7SHg4+Hb3cz
+hoUe7gmeH8PfirN2s7SHgy1ilJ+NgYUeDlbMH/jglB9Lezj4eWD1O2VY6OHg
+S5ftNA/5srSHeyoivkN3RHOw0MPBJdemafvsYmkPB9dZx7Y2+7C0h4MzHu+p
+WQMLPRz8WuFb+7udLO3hinGfRKX6DrDQw8ETAoefLN7B0h4O7u7/WsccFno4
+OOrt16bb21naw8FPQ6zL9WChhysRkeWebbWXtrG0h4OP+78aqAkLPRy87dx3
+n4StLO3h4AOvx4mVYaGHgxV6hOSEb2FpD/cMrwdjfh/tBgs9HByh7x2/x5ul
+PRysod5U+HszS3s42OXzEjVvWOjhSkUkLjDn1DcvlvZw8IPWdks3WOjh4FWT
+eg1+78nSHg5ONv+u7AQLPRxsODbaqGITS3u45yKy9XP7fhtY6OHgaf6Sf4Ub
+WdrDwdzv23GmsNDDweVLFFxyN7C0h4PNMn/aGMJCD1eG9/c9XdwyPVjaw8H6
+HlYp2rDQw8GXPp+XT13P0h4OvnLQ66QWLPRwcJRH/KIkd5b2cOW43/EDjYbC
+Qg8Hi8bUm8avY2kPB1fr/NyqDAs9HGxQZFgatZalPRzco0faQgVY6OEq8H6m
+l2VX2BqW9nDwkqauZ91hoYeDLZ/kPQ5yY2kPB/s9jGxiYaGHg9f8djLYs5ql
+PdwLEWkLU0ntWsXSHg4OPnnXfBcs9HCwaPGs7r9XsrSHgzPfJbVug4UeDt64
+6AnfvoKlPVyliGz+kUW8YaGH+98li061uLK0h4Nj1C+O9oSFHg7eqXyq6rsL
+S3s4WL164rUNsNDDvcTzNXnhtW/LWdrDwXIJf6vWw0IPB+/rUh/TuIylPRw8
+5vetU+6w0MPBIx7dJV+XsrSHe4X3E8dH8O6w0MPBl669bW5YwtIeDg61qOPd
+YaGHgxcdGW/y1ZmlPdxrfD8r0pLcYaGHgy/Odh3X6MTSHg6On2jwdj0s9HCw
+ZfGYrG+LWdrDwUtctTM3wEIPV4XPExOnVX1fxNIeDu4eYDHSExZ6ODgr1uJ4
+iyNLezj4613dyd6w0MPBvU1kO9scWNrDvcHr68rk99tgoYeDt2/v39xpz9Ie
+Dp5aOEdrFyz0cPDXM9MCu+xY2sPBUUvfSfbAQg9XDZuOzGBhoYeDj1/ovTfI
+lqU9HHzxY/DO7rDQw8HdLQ7GhC1kaQ8HzxujWC0PCz3cWxFZWi9nEbWApT0c
+vPz51lf9YaGHg4tmz4yMm8/SHg62Pbd24xBY6OFgWauazafnsbSHeycifSNO
+JGjCQg8HK1Ue+37BhqU9HPzc/+HqCbDQw8F23wdx1+aytId79///33Pk0RRY
+6OFq8Pp6Xj39tjVLezj42p3bd2fAQg8HZ49zbn80h6U9HLxi6c/51rDQw8F6
+N3aVPbdiaQ/3Hs/vi193OsJCDwfPSpxs8daSpT0cfETkYLQSFno4WNXE2LZh
+Nkt7uFoRWf30y+FNsNDD1f7/71NZdrRbsLSHgz0jHPb4wkIPB5ukdpvIwUIP
+B7e8XSgOncXSHu6DiLAJE0SKsNDDwcOWH1aLNWdpDwcPPeHlNgwWerj/f35x
+/vMUM5b2cHDn+n0rJsBCD/cRn5/bklWyTVnaw8HRH1TbpsNCDwc7Z9a05c9k
+aQ8He375omoDCz0cfFdmvFvlDJb2cHV4P7ojqXIZLPRw8MaXxh6fTVjaw8Hz
+T/7V8oSFHg72snsq+W3M0h4OdvU932svLPRw9Xg9Ttiv3wsWejg4wGTpvqOE
+pT0c7NI0vHMILPRwsPuEkshz01naw8HZ4fY2OrDQw33C62V82sRb01jaw8E/
+3pVNMYeFHg7e/TVr5bOpLO3h4GjreZmLYaGHg69HR4+uM2JpD/cZ7x8c/fM2
+wkIPBx/U4Pb+NmRpDwefihyweh8s9HDwnonXPBRgoYeDRfFPY+MNWNrDfRER
+8SqnBk1Y6OFgPy3bZRlTWNrDwSt8Lv+aBgs9HJzze3lW4WSW9nBwqLFrjB0s
+9HANItL0+VzCe32W9nDwv4gxhR6w0MPBL1/UKP/WY2kPBycvyg0JgoUe7ive
+T+TcVusLCz0cnHHs+ZvESSzt4eA50T9vjoWFHg4OdByYm6PL0h4O3hdgWG8O
+Cz1cI14vcqwmluuwtIeDQ5NMT7rAQg8HV31S1f0+kaU93P8/Pr7gyy5Y6OHg
+a8OM83rAQg/3Da+Ha3bej9FmaQ8HX03z+KgJCz0cHHNGYXTmBJb2cLDcz0VR
+M2Ghh4MZS+Nhz8eztIdrwuuF/Y1ny2Ghh4PrC+4kfx/H0h4O9lxgetwPFno4
++GqySbYcLPRwsK3XpbbjY1naw33H13+Dn8NYWOjhYLHNxTc3x7C0h4P7FIze
+ZwULPRy8MaJ1XtVolvZwsPuyv8QdFnq4H7j/34wW/BnF0h4OZlrP7Q+FhR4O
+zhttWKMKCz0cvNmm3il1JEt7OPjjoOTfU2Ghh2vG5wmbdbeearG0h4Przkw4
+tRQWejg4rrrh3HdNlvZwsFPW4TJ/mO7D4fn7Y7CaIkz34USkm/XeyCQNVroP
+h8+rh3JG6MF0H05Ecrdmv84fwUr34fB5pGjzVUeY7sPh/dzcussNw1npPhzu
+zyPm6S6Y7sPhPv+9LycP0304vL+4NsjzlDor3YcTkQ9Z4g5dmO7D4fX36bbE
+fDVWug8nIsb3V69bBNN9OLxeLCtyaBzGSvfhROTGxli33TDdhxORZXeLYhVh
+ug+H9yND7JrODGWl+3D4/Go/YZUBTPfh8HgzmNf1ZAgr3YeDj17OWQ7TfTh8
+/YxMjv0czEr34fD5529XdDBM9+Hwfvr82+uDYLoPh++3cuXftEGsdB8Ory8D
+3rmawXQfDp9//b81vFJlpftwIhKk2XlkA0z34UTE6t2v5SxM9+Hw/n/Ph7kx
+A1npPhxeX+quLB0H0304fN79YBtxX4WV7sPh/YNt4QcHmO7Dich0RW7RtwGs
+dB9ORHZ1/PkeANN9OPz6dynnBsB0Hw73OaUr4LIyK92Hw+vnmA4/U5juw+Gf
+Nzv4+Ov+rHQfTkSevTtXtQmm+3AiYlpsM1UC0304EUn6ufnOCSVWug+He6zb
+y3USTPfhRKSnh7zW436sdB/u/3/fzlvOFab7cHh8OeoodfZlpftwIvLzGZke
+AdN9OBFZXxoVrAXTfTgR+TJd4+cdRVa6D4f3PzJf/e1hug+He9ZZNb6pDyvd
+h8P97Pf93z6Y7sPh3k5RbRoM0304vH+0cZDJUmCl+3C4FyZxE+fCdB9ORDQ7
+XwfWy7PSfTgRKXVR6PSD6T4cPg+5TTykDNN9ODwe2yaZpvVmpftweL/a2Ud1
+Nkz34URkhkuuYq0cK92Hwz1XnTTGB6b7cHh/p+y2sh9M9+HweczU5s6lXqx0
+Hw6vZ1EfpsyC6T6ciLxoG1he05OV7sMxxHhJY/hOmO7DMWTNrbnr+8F0H44h
+8WKDtZd7sNJ9OIY8n3A6yAKm+3AMSR+7J6+2Oyvdh2PIgZYn6r4w3YdjiOO2
+XaeUYboPx5AH6UHGGd1Y6T4cQwbF1spYw3QfjiHOGvvffZKw0n04hmjZuL8L
+gOk+HEMK5INkhsB0H44hE12KSY6Yle7DMeTvNKOTtjDdh2PIulMPhv3gWek+
+HENc9i+9FwrTfTj8eCMToAXTfTiGXH+a4vqAY6X7cAwZPMp0xTKY7sMxRPFf
+8d4/LCvdh8Pf34LkHYPpPhx+fc+wEZNgug/HkCDz1ORnDCvdh8Pf93e0qQdM
+9+EYojpyJtcDpvtwDHn4POXDWREr3YdjyL+/N2tnwnQfjiGmF7aK3suy0n04
+htx8W0z8YLoPx5ChiTdPqMJ0H44hT3/oqubIsNJ9OIbkvhp/3R6m+3AMObg8
+yftnFyPdh2PI2rDgeYdhug/HkOGrKqy0YboPxxDNVv/Vxf8Y6T4cQ7aRgJPr
+YboPx5Dshc86e8B0H44haoauXuf/MtJ9ODw+/o3vYQHTfTiGLDk/7l79H0a6
+D8eQpNl2x/bBdB+OIX8ajoeNgOk+HB6PcX9OPvjNSPfhGLJw9ZpyV5juwzFk
+v/NrTQam+3D4c4RZxJzqZKT7cAxp5i6MNIHpPhxDPrxoq6z5xUj34RhSpDj8
+rD9M9+HwzykcGTUMpvtweHz27kq428FI9+Hw92qJLVwO0304hsw40Kooguk+
+HEP86kU+p9oZ6T4cQxYPuSWaAdN9OIYkm6mk1LYx0n04htzwVHDfC9N9OIYc
+uh5jPQKm+3D4+drn5z78yUj34RjSt3nKhtUw3YdjyJ4+JFUC0304PH8uZHQ7
+38pI9+EY8qwsZK8lTPfhGFKRcmdQYwsj3YdjiLqxWflBmO7D4fmVrXRhAkz3
+4RjSe6RWQmkzI92Hw9f/8qa0zTDdh2PI6NVfapRgug/HkDnrgydc/8FI9+EY
+wrw1Pb4Ypvtw+P1eKWn9+85I9+EYorCrpSQRpvtwDLlfVxo9A6b7cAzJ0rvo
+U9fESPfhGNIVusUvGKb7cAzR6z4ycQxM9+EYsq84p7r4GyPdh2PI2X9qhl4w
+3YfD9/m6wzUlmO7DMeSX+oI5OY2MdB+OIQ7LujFLYLoPx5C6SM8KWZjuw+Fx
++i4wP/krI92HY0iLu0GFBUz34RjCLg0SfWtgpPtwDFlV5WoVCdN9ODwfe+Rn
+6MF0Hw7P774pk19/YaT7cPjvQf9e+cF0Hw7PA5vc2OEw3YdjSFvZx60Fnxnp
+PhxDROUrPT1gug+HP+cO/QOKMN2HY8jepnl3sj8x0n04hngtvaiwBKb7cPj6
+/pzqz8B0H44hbtV/e52rZ6T7cHg8mdVmWcN0Hw5/jkUffVvrGOk+HB6Xs367
+xMJ0Hw7fj2mqKwhM9+Hw/Fk3fU/dR0a6D8eQt/8W3wqF6T4cHmdaa/rpwHQf
+jiH8gCUHXn5gpPtweHzITlTdDdN9OIaQPlWFGjDdh8PzxnfB0Se1jHQfjiGP
+tx3y3QzTfTiG1OoEBQyE6T4cvk612sn33jPSfTiGKN/cV7sGpvtwDNFu9pmm
+ANN9OIaMv9EjM7uGke7DMeSL1ajZy2C6D8eQ/DfFnWKY7sPh65nUkn/5HSPd
+h8MdehmaZg/TfTiGmGREZnW9ZaT7cPi6r/vz8ixM9+EY0mhwV9kGpvtwDLFZ
+XOnVUc1I9+HwuOenNCTCdB+OIVO2vfK1gOk+HL7vXzLGNb9hpPtweL2LvdkZ
+C9N9OPx+9xvez4DpPhy+Pqcm13+tYqT7cLhTW2LFR2G6D4c7tVMyczpM9+EY
+MvLH9vhPrxnpPhy+nkp18pEw3YdjyLLRM08awnQfDq9HG0LmfHzFSPfh8Lga
+ntHvEEz34fB4DUn/NRmm+3D4/n3c/ev9S0a6D8eQTVv69QuD6T4cQ+x3r7bS
+h+k+HEP6m3sk1FQy0n04hryUGyYXCtN9OIbYqW49pgfTfTjcsaurp9W8YKT7
+cPj7Dv7SFQLTfTj8/id+VunBdB+OIWd2+ZfXVDDSfTiGmIkCP4fCdB+OIY82
+tytPhuk+HENeDypxrS1npPtwDLllxhcehOk+HO7AlAhLA5juw+H1Z7rbp49l
+jHQfDo+T5D2JETDdh8Ovu/bCaypM9+EYMvDmEpfPzxnpPhxDxvG93Y/AdB8O
+3893b8ONYboPh69P7KOSxlJGug/HEMPduaNjYboPh6/n+9snzWC6D8cQsfyN
+iS3PGOk+HEP8HS9WJ8B0Hw6vT70PJFvBdB8O3/8Ay6BfJYx0Hw6vx+JPAWdg
+ug/HEJlvdnELYLoPx5ARBw49kYHpPhy+r+ODVS4VM9J9OPzvOoZ7FsN0Hw73
+73M82w2m+3B4HJ1NPpn5lJHuw+H5+MDKcQVM9+HwOIoOHt0HpvtweB3ZskA5
+9wkj3YfD9zvn5BAPmO7D4U7cWGesCtN9OIb0ep6yq/AxI92Hw+vhYpuybTDd
+h2PI1EuOppow3YfD40TzZkl5ESPdh2NId7UNW/bCdB8Oz8PONXo6MN2Hw+NG
+Lkn+fSEj3YfD3bvRl4uA6T4cQ44vyVAkMN2HY8hd+61GTQWMdB8Or7e8g98J
+mO7D4etbaFU1B6b7cPjzs3MW/H3ESPfh8Ov72Xy4CNN9ONyR5XMOOcF0Hw7v
+1yyMFvaE6T4cQ5om9NW5mc9I9+FwV3wej3aH6T4cQzrDnaapwnQfjiEWz2+s
+ffyQke7DMSTmXM0VH5juw+FxviNPfixM9+Fwx1OXHHiTx0j34RhSfD5p0EGY
+7sPh+fLqYOE0mO7D4Xlxpm9E0wNGug+H96fbx25KhOk+HO7bzZK182C6D4f3
+R1U/d4lgug+Hx8XMqPMZ9xnpPhxDri4//X0FTPfhGNJ+UsVGCab7cPg6ef14
+lH+Pke7DMWTRzCGLt8N0Hw4/f28cPxqm+3B4f5fsXFR1l5Huw+Hxr+R87iBM
+9+Hwejg7IpHAdB+OIeXpP6405zLSfTiGhN73fpUE0304PB6+9x1kD/9X1FmG
+V5FsXZjTTXU37h7cXQLBoXB3Qgju7jI4wYIHgkNwdwnuOrgOg+vgLoM735rU
+Xve7f+ZZdxhycrqralfV2u8yfDjUCeuP9Y8Bbfhw+D57jHi154AtfDi81xtL
+D+oGbfhwqD/vfUyfHtrw4Ww9bci8e3/vt4UPh7/3R47do6ENH87W9a7MXlsU
+2vDh8B6F3t72cp8tfDjUMaFvry2ENnw4rOe1TiauB234cJi/WjTv6EAbPhze
+k4A1V3bttYUPh89VfXGTrtCGD4fxnLHE93TQhg9n60VFem2+tMcWPhzW89jF
+R4yFNnw4fN9pJ3UqAW34cPi9PrTq/Ha3LXw4W6ePFTlqGbThw2F8PO2+vSG0
+4cOhvos7K1ocaMOHw/sePU3rQ7ts4cNhnq3x43ZfaMOHs/Wz7tl75oA2fDjU
+5+/n+d3daQsfDt9Xi5r/TIM2fDiMy1KF9laGNnw4WxdKVmXTzx228OFsXaLv
+8L2boQ0fztahDy7/0x7a8OFs7XtdMnVqaMOHw/4qfWTPi9tt4cPhPY6V9c4Y
+aMOHw76l2KxWJaENHw6/f6mvv95ts4UPh/l1Rfktq6ANHw51rt0zpBm04cPh
+/X/at3ViaMOHQz32pGrzU1tt4cPhuU1/0msYtOHDYV0cVW5BALThw2Fdqdrg
+3ssttvDhbL0hJFmJpdCGD4d5btfQDcHQhg+Hei18ZJH40IYPh993fuobxzbb
+wodDvT6g/LQh0IYPB33wTeuC0IYPh3EXJ1n1F5G28OHw3v2MrLYE2vDh8P3m
+3tkqGNrw4fD3FE8/JT604cNhHjn+8MrxTbbw4fA8e37zD4E2fDjMZzeCVwVA
+Gz6crQct/+b/eqMtfDjMb30uXVkObfhw+Pkv7oQ3hTZ8OFvv3pigVRJow4fD
+P9u3qXp2gy18OIzPneeqhEIbPpytf1ar3KIktOHD2frlyRNhH9fbwofDe3ir
+0sX10IYPZ+v9ufflbgdt+HBYpzqlW5QG2vDhoEt1zH51nS18OLw/QZNPToY2
+fDjM423GD6sMbfhwmB+T1q3pgzZ8OLyHqe4U2L3WFj4cxnPWLHl6Qxs+HOrN
+l+l1LmjDh7P1+jQnOzxaYwsfDuOtV6JVC6ANHw77pvlffgZBGz4c5pkGPTol
+gDZ8OMwjDXq9OrXaFj4c6pnAT6NHQRs+HMZNnA8BpaANHw7rarHWPz+vsoUP
+h+93VvEbkdCGD4e/736fs52hDR8OdeB152pmaMOHw7xU/Nmnuytt4cNhH3My
+Ue4IaMOHw7+vMHRAfWjDh0M91DPdrbjQhg+HejH+u/onV9jCh8Pzevr8wUho
+w4ez9bgD1rhS0IYPh5/bOH/5r8tt4cPZek1otyRboQ0fDu+js/lHN2jDh8Nz
+X/3+a3Zow4fDelAkZ5xHy2zhw+G/G147YBG04cPZulvdxn0bQxs+HMbfgHKn
+kkIbPtx/dWW0QheX2sKHs/XIOBO2hUEbPpytb6W+Ua0KtOHDoV468+hzdGjD
+h8NzeLV818EltvDh8PsHJZwyGNrw4Wyd5n6GoUWgDR8O83ub88M+LLaFD4f1
+Zle8OZugDR8O6/Sem8e6QBs+HNbLCjljZoc2fDjMQ4U+tXq0yBY+HOavTgX/
+Wgxt+HBYBw7frt8M2vDhMH+ne/4qJbThw+G5t6kz7+pCW/hw2J/0jtVi+kJb
++HAYf/niF60DbfhwmN9HBGWNC234cJjPal/PcXqBLXw4fN6RYeXGQhs+HOor
+u0vPCtCGD2fr8D1dtlrQhg9n67ezx8Q+ON8WPhzq4bFbBwyBNnw4rOcDXnwv
+Bm34cFg3GmWa9mWeLXw47PPSBJXeDm34cJhvdw6K1gfa8OEwT6UcfyU/tOHD
+4b0oNvDQm7m28OEw3uOVP7Qe2vDhbF1jyt3LnaENHw6fc1f539mhDR8O39fw
+ziWfRtjCh0Nd8bha+Apow4fD/PDo9uc20IYPh3E7OEWfjNCGD4e6fu2n6Pfn
+2MKHw7zcp+uaRdCGD4d9w42+bZpDGz4c9gn3XP800IYPZ+uLYamS3p5tCx/O
+1m2frIozD9rw4bBefFqZojG04cNh//9n/GIpoQ0fDu9p45vdrs+yhQ+HeuLU
+7x2zoQ0fDnVB6j+SNIQ2fDjUoa0DxiSDNnw4PP8NReJcnWkLHw7PJX7flTOh
+DR/uv/XpQWADaMOHwz6/w+DkSaENH87W5ccXfnN5hi18OLz3KeLcmAFt+HC2
+3pnv47VAaMOHw/7k2ZMXSaANH87WR1veTnhlui18OIyz7WdrzIQ2fDjsy5zI
+eQ2gDR/O1lV7h/xOCm34cHhP0ub/4+o0W/hweH9y7482G9rw4fD7/ZlmYUNo
+w4fD+IxZrU4KaMOHw/4qW/FkN6bawofDe17xydsIaMOHw7o0pdKdxtCGD4fn
+HFD/rh+04cPhc7VWH25PsYUPZ+s/KtfzWwht+HC2Tp4soGELaMOHw3O2VqxM
+D234cBj3pefGfBBuCx8O4zV63OHLoA0fzta9xn6K2Q7a8OGwXqsaq7JCGz4c
+xvGOGMHPJtvCh8PnvZYp9Vpow4fD/7965ocu0IYPh+fQIehuHmjDh8N8ENT8
+9ttJtvDh8PvtWvF6M7Thw+H7+Ttzor7Qhg+Hz/38UtXC0IYPZ+uildbN+Bpm
+Cx8O48N/2fs90IYPhz//dWubodCGD4d58vGVpxra8OEwH1SxhtnQhg+H979n
+3hzHJtrCh8P3sKnBk7HQhg+H96dRjx3VoA0fDuv+n30i4kIbPhzmqwpNwv+a
+YAsfDutnwbRzpkMbPpytI19u2xoEbfhw/61/yR+khDZ8OMwH2XWmO+Nt4cPh
+uXbK1H8xtOHD4Xm93nenDbThw+HzJlMNs0EbPhzGfZV3D16Ms4UPh3H7YsiI
+jdCGD4d6ru0i/97Qhg+HuiJd3c8B0IYPh/lw9ISz38bawoezdQq3wvb90IYP
+h/kpXr/IEdCGD2frlvFTHqgIbfhw+JyDs9yNCW34cLZudnx6gvNjbOHD2bpm
++6YNpkEbPpytT/7df30QtOHDYTyNvpvUD9rw4bAf/Tpu6j+jbeHD2Xr82h7p
+lkMbPhz+npQTD3aENnw4W3c4dqlXHmjDh8OfL1Cu8PtQW/hwqBvun4+zE9rw
+4fB5mvb+NBja8OEwDrNn+bcMtOHDYR6/+M9PB9rw4fDPe3P9zoyyhQ+H9/JR
+rRpToA0fDrrrx8kNoA0fDuMgZujDVNCGD4d9bK3PVe+NtIUPh/n7QvkjK6AN
+H87W/pnb1egCbfhwtu7yqN6z/NCGD2frA2udWZ9H2MKHw/eWuF+DfdCGD2fr
+BfvmZx0JbfhweB6VesesAm34cNi/1Hv7Ky604cPhPRkdR10ebgsfztZDRh3x
+mwtt+HCoSz/FrNgS2vDhML+F3hqWFdrw4fDf38l39tUwW/hweP/XRcu5Fdrw
+4VD/LywfMRDa8OGwbnb8mLIMtOHDYV+4L9Z6F9rw4TBf1B5W+1yILXw4vG/X
+q6kZ0IYPh/ctQfvTjaENHw7Pe8upJRmgDR8O39fg7hOeDbWFD4ffP2fN0E3Q
+hg+Hfebw5uH9oA0fDvOOnreuFLThw2H+y/PzuoI2fDiM4wSDkp8dYgsfDp9n
+c9wO06ENHw7j6NamE42hDR8On6tJo2IZoQ0fDj8/WvR9zwfbwofDvDFnRe3N
+0IYPZ+u634t9HABt+HCYT77uWlMG2vDh8HM6+/WMAW34cKi/cjSu/NcgW/hw
+WB8TdM83B9rw4Wy963vt7C2hDR8O9eLJrwWyQxs+HD5Pk1Y1/h1oCx8O78XM
+kf13QRs+nK2PNWmwdTi04cPhe5/5d7Sq0IYPh/oi94emCaENH87WAXEiT98Y
+YAsfDvNHervqUmjDh0O92/jBtc7Qhg+Hffzaqv0LQhs+HL5/VSDbz/628OGw
+/2k29elRaMOHw7jZ2GbXJGjDh8O88+/iiCBow4fD35uu3MR00IYPh/m5aJlJ
+z/rZwof7795lxqLN0IYPh8+fr8iRQdCGD4e6PXHGT+WhDR8O3+vbmkXjQhs+
+HN77s1snXv3DFj4c6tOtNd4ugjZ8OMwrWxO26QRt+HBYJ27+eOIPbfhw+Gcx
+NfhnX1v4cBh/DzOlOw5t+HC2zvem/qVwaMOHw+fsOWl2I2jDh7N1qdGnumSC
+Nnw4vCeVrTqv+9jCh8P7ejlPhZ3Qhg+HcVyjSpUR0IYPZ+svf1dtWh3a8OHw
+vCfmGp4U2vDhUD/Nf7L1n9628OH+u7fo+2UNtOHD2Tq427lqfaENHw7v4eiX
+G0pDGz4c9isrT6SPCW34cKibrCbLLvWyhQ+H9eP0woCF0IYPh3q8cNi1jtCG
+D4d1IiT1+ILQhg+H9fB2lWq/e9rCh8N4nhTL7xS04cPh9zzf+Md0aMOHw3z6
+wP9lc2jDh7P1qVhhL3JAGz4c1sdJLb597GELHw7jZ/PK5IegDR8O9dLhxhUn
+Qhs+HD5fjD9GBkEbPhzesytvzmeANnw4jJP+h3O+7m4LHw77onJPZu6CNnw4
+PO+JQQlCoQ0fDvuY1bHn1sY/DR/u///J/59/jv8d/x7+vfw5/Ln8HPxc/Jz8
+3Pw9+Hvx9+Tvze+B3wu/J35v/B75vfJ75vfO58DnwufE58bnyOfK58znzveA
+7wXfE743fI/4XvE943vH95DvJd9Tvrd8j/le8z3ne89xwHHBccJxw3HEccVx
+xnHHcchxyXHKcctxzHHNcc5xz3mA8wLnCc4bnEc4r3Ce4bzDeYjzEucpzluc
+xzivcZ7jvMd5kPMi50nOm5xHOa9ynuW8y3mY8zLnac7bnMc5r3Oe57zPdYDr
+AtcJrhtcR7iucJ3husN1iOsS1ymuW1zHuK5xneO6x3WQ6yLXSa6bXEe5rnKd
+5brLdZjrMtdprttcx7muc53nus86gHUB6wTWDawjWFewzmDdwTqEdQnrFNYt
+rGNY17DOYd3DOoh1Eesk1k2so1hXsc5i3cU6jHUZ6zTWbazjWNexzmPdxzqQ
+dSHrRNaNrCNZV7LOZN3JOpR1KetU1q2sY1nXss5l3cs6mHUx62TWzayjWVez
+zmbdzTqcdTnrdNbtrONZ17POZ93PfQD3BdwncN/wv32E7Cu4z+C+g/sQ7ku4
+T+G+hfsY7mu4z+G+h/sg7ou4T+K+ifso7qu4z+K+i/sw7su4T+O+jfs47uu4
+z+O+j/tA7gu5T+S+kftI7iu5z+S+k/tQ7ku5T+W+lftY7mu5z+W+l/tg7ou5
+T+a+mfto7qu5z+a+m/tw7su5T+e+nft47uu5z+e+n+cAPBfgOQHPDXiOwHMF
+njPw3IHnEDyX4DkFzy14jsFzDZ5z8NyD5yA8F+E5Cc9NeI7CcxWes/Dchecw
+PJfhOQ3PbXiOw3MdnvPw3IfnQDwX4jkRz414jsRzJZ4z8dyJ51A8l+I5Fc+t
+eI7Fcy2ec/Hci+dgPBfjORnPzXiOxnM1nrPx3I3ncDyX4zkdz+14jsdzPZ7z
+8dyP54A8F+Q5Ic8NeY7Ic0WeM/LckeeQPJfkOSXPLXmOyXNNnnPy3JPnoDwX
+5Tkpz015jspzVZ6z8tyV57A8l+U5Lc9teY7Lc12e8/Lcl+fAPBfmOTHPjXmO
+zHNlnjPz3Jnn0DyX5jk1z615js1zbZ5z89yb5+A8F+c5Oc/NeY7Oc3Wes/Pc
+nefwPJfnOT3P7XmOz3N9nvPz3J/3ALwX4D0B7w14j8B7Bd4z8N6B9xC8l+A9
+Be8teI/Bew3ec/Deg/cgvBfhPQnvTXiPwnsV3rPw3oX3MLyX4T0N7214j8N7
+Hd7z8N6H90C8F+I9Ee+NeI/EeyXeM/HeifdQvJfiPRXvrXiPxXst3nPx3ov3
+YLwX4z0Z7814j8Z7Nd6z8d6N93C8l+M9He/teI/Hez3e8/Hej/eAvBfkPSHv
+DXmPyHtF3jPy3pH3kLyX5D0l7y15j8l7Td5z8t6T96C8F+U9Ke9NeY/Ke1Xe
+s/LelfewvJflPS3vbXmPy3td3vPy3pf3wLwX5j0x7415j8x7Zd4z896Z99C8
+l+Y9Ne+teY/Ne23ec/Pem/fgvBfnPTnvzXmPznt13rPz3p338LyX5z097+15
+j897fd7z896fPgD6AugToG/gfz4C8RXQZ0DfAX0I9CXQp0DfAn0M9DXQ50Df
+A30Q9EXQJ0HfBH0U9FXQZ0HfBX0Y9GXQp0HfBn0c9HXQ50HfB30g9IXQJ0Lf
+CH0k9JXQZ0LfCX0o9KX8z6civhX6WOhroc+Fvhf6YOiLoU+Gvhn6aOiroc+G
+vhv6cOjLoU+Hvh36eOjroc+Hvh/6gOgLok+IviH6iOgros+IviP6kOhLok+J
+viX6mOhros+Jvif6oOiLok+Kvin6qOiros+Kviv6sOjLok+Lvi36uOjros+L
+vi/6wOgLo0+MvjH6yOgro8+MvjP60OhLo0+NvjX62Ohro8+Nvjf64OiLo0+O
+vjn66Oiro8+Ovjv68OjLo0+Pvj36+Ojro8+Pvj/6AOkLpE+QvkH6COkrpM+Q
+vkP6EOlLpE+RvkX6GOlrpM+Rvkf6IOmLpE+Svkn6KOmrpM+Svkv6MOnLpE+T
+vk36OOnrpM+Tvk/6QOkLpU+UvlH6SOkrpc+UvlP6UOlLpU+VvlX6WOlrpc+V
+vlf6YOmLpU+Wvln6aOmrpc+Wvlv6cOnLpU+Xvl36eOnrpc+Xvl/6gOkLpk+Y
+vmH6iOkrps+YvmP6kOlLpk+ZvmX6mOlrps+Zvmf6oOmLpk+avmn6qOmrps+a
+vmv6sOnLpk+bvm36uOnrps+bvm/6wOkLp0+cvnH6yOkrp8+cvnP60OlLp0+d
+vnX62Olrp8+dvnf64OmLp0+evnn66Omrp8+evnv68OnLp0+fvn36+Onrp8+f
+vn/2AbAvgH0C7BtgHwH7CthnwL4D9iGwL4F9CuxbYB8D+xrY58C+B/ZBsC+C
+fRLsm2AfBfsq2GfBvgv2YbAvg30a7NtgHwf7Otjnwb4P9oGwL4R9IuwbYR8J
++0rYZ8K+E/ahsC+FfSrsW2EfC/ta2OfCvhf2wbAvhn0y7JthHw37athnw74b
+9uGwL4d9OuzbYR8P+3rY58O+H/YBsS+IfULsG2IfEfuK2GfEviP2IbEviX1K
+7FtiHxP7mtjnxL4n9kGxL4p9UuybYh8V+6rYZ8W+K/ZhsS+LfVrs22IfF/u6
+2OfFvi/2gbEvjH1i7BtjHxn7ythnxr4z9qGxL419auxbYx8b+9rY58a+N/bB
+sS+OfXLsm2MfHfvq2GfHvjv24bEvj3167NtjHx/7+tjnx74/9gGyL5B9guwb
+ZB8h+wrZZ8i+Q/Yhsi+RfYrsW2QfI/sa2efIvkf2QbIvkn2S7JtkHyX7Ktln
+yb5L9mGyL5N9muzbZB8n+zrZ58m+T/aBsi+UfaLsG2UfKftK2WfKvlP2obIv
+lX2q7FtlHyv7Wtnnyr5X9sGyL5Z9suybZR8t+2rZZ8u+W/bhsi+Xfbrs22Uf
+L/t62efLvl/2AbMvmH3C7BtmHzH7itlnzL5j9iGzL5l9yuxbZh8z+5rZ58y+
+Z/ZBsy+afdLsm2YfNfuq2WfNvmv2YbMvm33a7NtmHzf7utnnzb5v9oGzL5x9
+4uwbZx85+8rZZ86+c/ahsy+dfersW2cfO/va2efOvnf2wbMvnn3y7JtnHz37
+6tlnz7579uGzL599+uzbZx8/+/rZ58++f3IAyAUgJ4DcAHIEyBUgZ4DcAXII
+yCUgp4DcAnIMyDUg54DcA3IQyEUgJ4HcBHIUyFUgZ4HcBXIYyGUgp4HcBnIc
+yHUg54HcB3IgyIUgJ4LcCHIkyJUgZ4LcCXIoyKUgp4LcCnIsyLUg54LcC3Iw
+yMUgJ4PcDHI0yNUgZ4PcDXI4yOUgp4PcDnI8yPUg54PcD3JAyAUhJ4TcEHJE
+yBUhZ4TcEXJIyCUhp4TcEnJMyDUh54TcE3JQyEUhJ4XcFHJUyFUhZ4XcFXJY
+yGUhp4XcFnJcyHUh54XcF3JgyIUhJ4bcGHJkyJUhZ4bcGXJoyKUhp4bcGnJs
+yLUh54bcG3JwyMUhJ4fcHHJ0yNUhZ4fcHXJ4yOUhp4fcHnJ8yPUh54fcH3KA
+yAUiJ4jcIHKEyBUiZ4jcIXKIyCUip4jcInKMyDUi54jcI3KQyEUiJ4ncJHKU
+yFUiZ4ncJXKYyGX6H6dJuE3kOJHrRM4TuU/kQJELRU4UuVHkSJErRc4UuVPk
+UJFLRU4VuVXkWJFrRc4VuVfkYJGLRU4WuVnkaJGrRc4WuVvkcJHLRU4XuV3k
+eJHrRc4XuV/kgJELRk4YuWHkiJErRs4YuWPkkJFLRk4ZuWXkmJFrRs4ZuWfk
+oJGLRk4auWnkqJGrRs4auWvksJHLRk4buW3kuJHrRs4buW/kwJELR04cuXHk
+yJErR84cuXPk0JFLR04duXXk2JFrR84duXfk4JGLR04euXnk6JGrR84euXvk
+8JHLR04fuX3k+JHrR84fuX/kAJILSE4guYHkCJIrSM4guYPkEJJLSE4huYXk
+GJJrSM4huYfkIJKLSE4iuYnkKJKrSM4iuYvkMJLLSE4juY3kOJLrSM4juY/k
+QJILSU4kuZHkSJIrSc4kuZPkUJJLSU4luZXkWJJrSc4luZfkYJKLSU4muZnk
+aJKrSc4muZvkcJLLSU4nuZ3keJLrSc4nuZ/kgJILSk4ouaHkiJIrSs4ouaPk
+kJJLSk4puaXkmJJrSs4puafkoJKLSk4quankqJKrSs4quavksJLLSk4rua3k
+uJLrSs4rua/kwJILS04subHkyJIrS84subPk0JJLS04tubXk2JJrS84tubfk
+4JKLS04uubnk6JKrS84uubvk8JLLS04vub3k+JLrS84vub/kAJMLTE4wucHk
+CJMrTM4wucPkEJNL/D9OsXCLyTEm15icY3KPyUEmF5mcZHKTyVEmV5mcZXKX
+yWEml5mcZnKbyXEm15mcZ3KfyYEmF5qcaHKjyZEmV5qcaXKnyaEml5qcanKr
+ybEm15qca3KvycEmF5ucbHKzydEmV5ucbXK3yeEml5ucbnK7yfEm15ucb3K/
+yQEnF/x/nHDhhpMjTq44OePkjpNDTi45OeXklpNjTq45OefknpODTi46Oenk
+ppOjTq46OevkrpPDTi47Oe3ktpPjTq47Oe/kvpMDTy48OfHkxpMjT648OfPk
+zpNDTy49OfXk1pNjT649Offk3pODTy4+Ofnk5pOjT64+Ofvk7pPDTy4/Of3k
+9pPjT64/Of/k/jMHgLkAzAlgbgBzBJgrwJwB5g4wh4C5BMwpYG4BcwyYa8Cc
+A+YeMAeBuQjMSWBuAnMUmKvAnAXmLjCHgbkMzGlgbgNzHJjrwJwH5j4wB4K5
+EMyJYG4EcySYK8GcCeZOMIeCuRTMqWBuBXMsmGvBnAvmXjAHg7kYzMlgbgZz
+NJirwZwN5m4wh4O5HMzpYG4HczyY68GcD+Z+MAeEuSDMCWFuCHNEmCvCnBHm
+jjCHhLkkzClhbglzTJhrwpwT5p4wB4W5KMxJYW4Kc1SYq8KcFeauMIeFuSzM
+aWFuC3NcmOvCnBfmvjAHhrkwzIlhbgxzZJgrw5wZ5s4wh4a5NMypYW4Nc2yY
+a8OcG+beMAeHuTjMyWFuDnN0mKvDnB3m7jCHh7k8zOlhbg9zfJjrw5wf5v4w
+B4i5QMwJYm4Qc4SYK8ScIeYOMYeIuUTMKWJuEXOMmGvEnCPmHjEHiblIzEli
+bhJzlJirxJwl5i4xh4m5TMxpYm4Tc5yY68ScJ+Y+MQeKuVDMiWJuFHOkmCvF
+nCnmTjGHirlUzKlibhVzrJhrxZwr5l4xB4u5WMzJYm4Wc7SYq8WcLeZuMYeL
+uVzM6WJuF3O8mOvFnC/mfjEHjLlgzAljbhhzxJgrxpwx5o4xh4y5ZMwpY24Z
+c8yYa8acM+aeMQeNuWjMSWNuGnPUmKvGnDXmrjGHjblszGljbhtz3Jjrxpw3
+5r4xB465cMyJY24cc+SYK8ecOebOMYeOuXTMqWNuHXPsmGvHnDvm3jEHj7l4
+zMljbh5z9Jirx5w95u4xh4+5fMzpY24fc/yY68ecP+b+MQeQuYDMCWRuIHME
+mSvInEHmDjKHkLmEzClkbiFzDJlryJxD5h4yB5G5iMxJZG4icxSZq8icReYu
+MoeRuYzMaWRuI3McmevInEfmPjIHkrmQzIlkbiRzJJkryZxJ5k4yh5K5lMyp
+ZG4lcyyZa8mcS+ZeMgeTuZjMyWRuJnM0mavJnE3mbjKHk7mczOlkbidzPJnr
+yZxP5n4yB5S5oMwJZW4oc0SZK8qcUeaOMoeUuaTMKWVuKXNMmWvKnFPmnjIH
+lbmozEllbipzVJmrypxV5q4yh5W5rMxpZW4rc1yZ68qcV+a+MgeWubDMiWVu
+LHNkmSvLnFnmzjKHlrm0zKllbi1zbJlry5xb5t4yB5e5uMzJZW4uc3SZq8uc
+XebuMoeXubzM6WVuL3N8mevLnF/m/jIHmLnAzAlmbjBzhJkrzJxh5g4zh5i5
+xMwpZm4xc4yZa8ycY+YeMweZucjMSWZuMnOUmavMnGXmLjOHmbnMzGlmbjNz
+nJnrzJxn5j4zB5q50MyJZm40c6SZK82caeZOM4eaudTMqWZuNXOsmWvNnGvm
+XjMHm7nYzMlmbjZztJmrzZxt5m4zh5u53MzpZm43c7yZ682cb+Z+MwecueDM
+CWduOHPEmSvOnHHmjjOHnLnkzClnbjlzzJlrzpxz5p4zB5256MxJZ246c9SZ
+q86cdeauM4eduezMaWduO3PcmevOnHfmvjMHnrnwzIlnbjxz5Jkrz5x55s4z
+h5659MypZ249c+yZa8+ce+beR/nhoNf2HdV0QSxl/HDQezq02VAntjJ+uAVY
+X7I/LaDiKOOHg/72PdWLndBRfjjoKtljX+0SVxk/3H/6x5+f0sVTxg83H+vb
+kbpVL0NH+eGgV5w/9Ne4+Mr44aBf9U0TViqBMn446P1x+g5+Dx3lh4O++e9f
+C1clVMYPNw+fZ1iZz00TKeOHg45McWFEosTK+OGgF2YYX/YkdJQfDrqyNTgg
+JIkyfjjonBk3NyuUVBk/3FzU4++K7HkBHeWHg+5y36/6kmTK+OGgl7TtlCA4
+uTJ+OOgj73PHip9CGT8cdIDbp+hx6Cg/XAT2p6mrzBuaUhk/HPTSHbv8A1Ip
+44eD7hZ88fcr6Cg/HHTe8QujrfBTxg8H3eRS7oBmqZXxw83B+nR03KKkaZTx
+w0GrNwdKn4eO8sNBL314K9HYtMr44aDfl3zlVyadMn446DUzfjb6Bh3lh5uN
+zz8u5bkt6ZXxw0EP3VP7j64ZlPHDQbc9v65e1ozK+OGgq3Yt3u4edJQfDrqG
+jrFhbiZl/HCzLH3rU4acDTIr44eD3lJ2xu34WZTxw0H/c63L0dPQUX446KM9
+t98fnVUZPxx08pNDC5XNpowfbqaln8y/uO8ndJQfDnrm5v2DdmVXxg8H/fhM
+re59cyjjh4N+v23q7Pw5lfHDzcDzKDb98yvoKD8c9PjsLSeuyaWMHw46W5AT
+1D63Mn446Mg54UGZ8ijjh4POejr2pHvQUX646Rg/J8Z8W5BXGT8c9Kvecec3
+yaeMHw665qb1fVPmV8YPB32oba9R16Cj/HDQLUI6npxZQBk/3DTM5y8Wlg/0
+V8YP95+el+FTooLK+OGgz4z5dfsidJQfDvrRcv1jSiFl/HDQDd5/rF0nQBk/
+3FT8/t1z3opfWBk/HHSstK/nX4CO8sNBd3KrzQwvoowfDrqhf62jtYsq44eD
+XrTJzZmgmDJ+uCmWDg8ffvwv6Cg/HPTnJycjphZXxg8Hnfv8q2X1Sijjh4NO
+0Orbo8QllfHDQcc8+KPpFegoP1y4pWPHtuLMLqWMHw46okuy98GllfHDQR+J
+VTW+n1bGDwedLdnKNnego/xw0NEOFn+7qIwyfrjJlk5YPMmW1mWV8cNBHzio
+12cpp4wfDjpa2Ok7z6Cj/HDQHe8errS+vDJ+OOis3/2f9qigjB9uEj5v1lwH
+C1ZUxg8HHbJ+5/kv0FF+OOgZtx4n3VdJGT8ctM/5c8bwysr44aBThTStXrGK
+Mn64MEs/XHSwWKyqyvjhoJ0T31pcgI7yw0Ffq5/iwIxqyvjhoJuuzR7YuLoy
+friJ2O/5F82YvoYyfjjoT0GB2Z9AR/nhoEPHTmi/vqYyfjjofYWf3e5dSxk/
+HHS6W4MmFqutjB9ugqWfv6nd21dHGT8cdNx/+049AR3lh4PWLb88m1xXGT8c
+9NujjwYE1VPGDwddY1W1smnrK+OHG2/p6jMKl3sCHeWHg16aesfgjYHK+OGg
+L1y++rpfA2X8cNDJG6yco4OU8cNBTyjmPyRGQ2X8cONQT2ccN+cidJQfDjr3
+lu2v5wYr44eDHjr15OC2jZTxw0GX7XK+XN7GyvjhoOe8uVzuK3SUH24s6p3z
+zwcfaaKMHw56+eFUb8KaKuOHgz478o+Ihs2U8cNBd/3LC8nYXBk/HPSjrv/M
+ew0d5Ycbg/1F2lgfdrVQxg8HXXDTzFGhLZXxw0HneR1es04rZfxw0JXWunVT
+t1bGDwdda583+Rl0lB9uNN7PX4vV9jbK+OGgf1S9t21EW2X8cNCXQy8trNVO
+GT8cdJzp4474tVfGDwedqHnc9M+ho/xwofj7L/XYuaODMn446BSP9o8L7aiM
+Hw768GhnRr1OyvjhoGdtDryRvrMyfrhRmL/b7g5+Cx3lh4O+tLhsogNdlPHD
+QR/u/MOZ1FUZPxz0szMfCzbtpowfDjr8Yon5ubor44cbifEx6W7pH9BRfjjo
+qYlf+p3poYwfDnp+SI+C83oq44eDnvhy4OguvZTxw0H/NThFopK9lfHDjcD8
+FtjoRpw+yvjhoMcsrnbrDnSUHw46IOx78k19lfHDQe+v2j98+B/K+OGgP8W7
+ULZeP2X8cMPx/JMmyJe5vzJ+OOha86s0/Awd5YeDXvZozJ6TA5Txw0EnCbgR
+PG+gMn446NjXa/p3H6SMH26YpZOl/lCp7GBl/HDQz+tfm5VkiDJ+OOhWV2Nk
+fAYd5YeDHvl75rO9Q5Xxw0GH5Jr0IjxEGT9ciKW3H/qZre0wZfxw0LuzfFhc
+dLgyfjjoasdDGsQdoYwfDrpFoo0VH0BH+eGgs4WE99o5Uhk/3FBLuyML3Agb
+pYwfDnrB3KVDWocq44eDPlXlXZOio5Xxw0GvSJi7f7wxyvjhoMNDWp1/BB3l
+hxuC+TPN4lZ7xyrjh4OuPexz/mnjlPHDQRcu0adkp/HK+OGg67zMHFpmgjJ+
+OOgWeVPFSDFRGT/cYEv3XNXq5FvoKD8c9P1fMY+dCFPGDwfd5k6G34smKeOH
+g/72aWefAZOV8cMNsvTvHzez1A1Xxg8HnXF1RJKcU5Txw0H32WmXiT5VGT8c
+dKOXmVffho7yw0HPixm/5o5pyvjhBuLn3b6Qd8p0Zfxw0CX8+9XsPEMZPxx0
+4rsJ1lSYqYwfDrrczo1l081Sxg8HPSGiefLv0FF+uAGY/9rly3lltjJ+OOhR
+v/MNipyjjB8O+lqtHl5YhDJ+OOgp5X9e7DBXGT8c9ILzj2+Un6eMH66/pds/
+KZ4u/Xxl/HDQp0bHWvoTOsoPB51hfZvWNxYo44eDLt+sQcsdC5Xxw0GPXfJm
+3vRFyvjh+qEeG106aa/FyvjhoAP9As/WWqKMHw465YDSh3MvVcYPBz1oR5yP
+sZYp44eD7vLpXNvn0FF+uD8s3Tl4auKTy5Xxw0GP8dr7Vq1Qxg8H3Sxfk1xj
+Virjh4POYA2f0W6VMn446DlbHpaouFoZP1xf/PuQmRmyrFHGDwe9denyis5a
+Zfxw0A/bpF/9GDrKD/efjpmi6vF1yvjhoMfcn5t91Xpl/HB9sH6U3FVp3AZl
+/HDQeXsOW9ZpozJ+OOh416Pp6puU8cNB17xUJWWeSGX8cNDW8U7+8Tcr44fr
+jfUyRe8J76Cj/HDQE4v1ynB5izJ+OOhfEf2+7NiqjB8OOsPmqXHmblPGD9cL
+f/77xZZDtyvjh4Me87nSx5Y7lPHDQfvl9J2osFMZPxx0wnRxb2TfpYwfDvp1
+m6E54+5Wxg/X09JfJ7bc+w46yg8HXSbf8YlX9yjjh4Oe+2L/vL17lfHDQa9o
+0fDl4n3K+OGgTxVaOmjMfmX8cD3w3yfdWLXrAWX8cNCJNk8IrndQGT8cdMr9
+lVcVPaSMHw7a/fAxIN1hZfxw0K0SLlXuEWX8cN3x+95qnvg1dJQfDvpwyhKt
+L/+pjB8OOm1EpXd7jyrhw1l6ca6ph5YdU8KHs3SW1Tn/mnhcCR8O4/tFxvR9
+Tyjhw2E9uDQ+sulJJXw47Jeq9BhR8ZQSPpylWxd8OC3vaSV8OPz80E+Pkp9R
+woez9Oj8O/pbZ5Xw4fDf5w+o/hLa8OEsPWnEyBZXzinhw2G/lH3jtoPnlfDh
+8P3lPllt7QUlfDis7/PuZZj5lxI+HD7fOK/48ItK+HCW3hmj5vQufyvhw1n6
+WLHDeRpeUsKHw/6vZN+Y5S8r4cNhf1WkX9Z8V5Tw4bC/DroW6ndVCR8O+4eT
+qzLHuKaED2fpP49+cT5BGz4c1sfQa9kfXFfCh8N8XKXhpAs3lPDhLN0ucGzB
+/TeV8OHw89/391t3SwkfDs+7d7GKEbeV8OEsfT7r7cixd5Tw4fD7durZvN9d
+JXw4zNcRbq12/yjhw2E/nmrTsMB7Svhw+D7rD/pQ/r4SPhzmu60D1hR8oIQP
+Z+nBG/YsyfRQCR/O0kG769xO/EgJHw71eWD1RuqxEj4cPo+1N8UnaMOHs/SV
+KpGpnjxRwoez9I4dJVpce6qED4f19U63JyefKeHD4fdv0DByz3MlfDi8D3ti
+7F//QgkfDuvfpmlxFr1UwofD573pLJr6SgkfztLjnvfuG/paCR/O0hcnvQjr
+/0YJHw77zZChzzq/VcKHs/SmASXHNv9XCR8O+/VSRTvVe6eED2fpv2eMmFzp
+vRI+HOqDajm+FP+ghA9n6SIFyizL91EJH87SC9Ndm5b5kxI+HL7f97+Ppfys
+hA+H+iXsZMn4X5Tw4bCfuFThi/qqhA+H+mh76Kfv0IYPh/U0S0SRd9+U8OEs
+XSDl9P1Pvyvhw1k6afiosXd/KOHDWbrJ+MEzr/xUwofDfJAg7OnZX0r4cKgn
+8h8fevS3Ej6cpV/8Kh68L5ojfDisT1N+9Nvmc4QPh/2qm/LmessRPpylT49c
+PmKF7QgfDutn3k3dFkZ3hA+H969otYWzlSN8OEuXujIm8VTHET6cpfOX6ndu
+gusIHw772005zoZ6jvDhsF723hJ/WAxH+HAYH+czzBkY0xE+nKVzJRnfrm8s
+R/hwlk4T8a1/j9iO8OGwXuwKvdA5jiN8OEt3+7tE1/ZxHeHDob6umb9W63iO
+8OEsPXBWnz+ax3eED4f1JW3yB40TOMKHw/NukntGw4SO8OEwf549OjEwkSN8
+OHyeD+9O1k3sCB/O0i8bHqteO4kjfDhLXx9XJ0nNpI7w4fD+p1yRsXoyR/hw
+lraXX+5XNbkjfDjUy8f/TVAlhSN8ONQz2WK/q5TSET4cxmPPgOSVUjnCh7N0
+1XojRlX0c4QPZ+nio3yFK6Z2hA+H+fbg0bwV0zjCh8N8fvKfbhXTOsKHs/SS
+9m0+VEznCB8O+4v2rQ5WSu8IHw7Pe/7Li5UzOMKHs3T/+4lzVc3oCB8O80vi
+V6erZXKED4f6M+WYzTUyO8KHw/O99eFurSyO8OGwv6tRuX7drI7w4VBvtZ4W
+LzCbI3w47B9TPk3QMLsjfDisp30aNm6cwxE+HPaLgz69aJbTET4c6v8Sl460
+yuUIHw71xGn7QbvcjvDhLP2k7KwqnfM4wodD/XZk0efueR3hw2G/16vAqz75
+HOHD4X0f0izHwPyO8OGw/0hSeGNIAUf4cJYu1uvcoFB/R/hwlv55MSB8QkFH
++HBY3weNeDmlkCN8OHz/24+Ezw5whA+H+efv2EMWFnaED4fvJ3uPyBVFHOHD
+WXpfkmh5NhR1hA+H5/P13LttxRzhw+HvK/Xm977ijvDhsH+s2zvwWAlH+HCW
+jrmu6/tzJR3hw1k6/tG316+WcoQPh/UvbbwY90o7woez9LsyN4c9147w4Sz9
+eHf7Mh/KOMKHQz2X+njVX2Ud4cPhz0ePPd8r7wgfztLV41cpkqiCI3w4S3d4
+HO6XpqIjfDj8fv6fqmSv5AgfDvPN2gkHC1Z2hA+H5+22GaarOMKHs3QCZ+q4
+6lUd4cNZekjXbLcaVnOED4f1NEax/m2rO8KHs7Ref71prxqO8OGwn8iXMiyk
+piN8OKw/veI6YbUc4cNZukLwyRMRtR3hw2E/fr7p5VV1HOHDWfrG8Ts5d9R1
+hA+HertY8zNH6znCh8N4y/Ju+6X6jvDh8PnC17x4EOgIHw71wai5nd43cIQP
+Z+kvia/52w0d4cNZ+kRw70qJgh3hw6He7TVsecZGjvDhLJ1vZMKaBRs7woez
+tLOrRJkKTRzhw1n6aYWEIQ2aOsKHs/TaVivcDs0c4cNZemXN2DcHNHeED4f5
+q1bQ1wktHOHDWbrk5ohWC1o6woezdI6Tz5JGtnKED4fx/Coo6Z+tHeHDYX0e
+9qXF1TaO8OEsHefpnU/P2zrCh7N07ilprv1q5wgfDvPfm1PRE3VwhA+Hemfo
+58FZOzrCh7P0tv07dIlOjvDhsN4UTlu7TmdH+HCWntavzNp2XRzhw1n6n0QF
+6g7u6ggfztKZVkWvMLWbI3w41GtXzoxc1d0RPpyl71ReEPdAD0f4cFh/Nkx8
+dLmnI3w47Hf3rfVe9XKED2fpg/7x+kfv4wgfztL+l0/5+/V1hA9n6dld3hUv
++IcjfDhLjzw9J7x6P0f4cNhfn7qUv21/R/hw//mjdqQdOsARPhzmp5yBjWYN
+dIQPZ+mbzQ/f2zTIET4c9iM3Em4/NdgRPhzmt+mNrj4c4ggfDvuP8PUVfg91
+hA9n6R6X0/pSDnOED2fpsN5HYxQa7ggfztJDh21uXnuEI3w4rAcpvltdRjrC
+h7P06pZb3o8Z5QgfDvXTqDf5l4U6wofD/LzlyL6Dox3hw2F8ZSs/6/YYR/hw
+lu6ePnT/t7GO8OGw/j2O8E8+3hE+nKWL/jnnU6EJjvDhUC/Gn+nWn+gIH87S
+9bMsa9crzBE+nKVjdLyWaMokR/hwlm5atlK8TZMd4cNZulpGFXw+3BE+3H/9
+dln+fT3FET6cpWs/OHA17jRH+HBYb48/ip13uiN8OEs/2L8uvNYMR/hweL+b
+ZG/dY6YjfDjUqyV7jJoyyxE+nKVLR5/5YfNsR/hwlq7XaOOWS3Mc4cNh/vj3
+wqFPEY7w4VCfDo+XNsU8R/hweN9PhZwuPt8RPhz+/mkBx5stcIQPh/l6TeWE
+IxY6woezdJVHp9YtX+QIH87Sh9JenHlysSN8ONSXpXpfeLXEET6cpd/kPBKc
+cJkjfDjMnzevFCi83BE+HOafikcaN1nhCB/O0ve6zb80fKUjfDi8z00Gzl+5
+yhE+HOrNtN23n13tCB/O0lfPh6f9sMYRPpyle0/4cC3lOkf4cBhv/TfeL7Pe
+ET4c9pdHr5TouMERPhz2FytCnoRvdIQPh/1x0IH7Ozc5wofDfjbN2jz3Ih3h
+w2F/U77h6RhbHOHDoV5Nc2tnga2O8OHw86JX/9x4myN8OEv/1Wjf6NDtjvDh
+UG+Pq9B+4w5H+HCoL61vs6/vdIQPZ+kUJd+mir7bET4c5uvdJd/m2eMIHw7j
+y/qSpNFeR/hwqB+XFgwL3ecIHw7raaEYDSL3O8KHQ30UOKHH7QOO8OEw/627
+cCvGIUf4cHj+j15HBBx2hA+Hen3n9zWtjzjCh8N+4p/Ycab86QgfDutVpiKH
+9h91hA9n6bK1px1/ecwRPhzqqSIF06U64QgfDvP9znynq5x0hA9n6anbFpzo
+f8oRPhzGd8rpyVeddoQPZ+m+N7PsuXrGET4c1uv3XTa55xzhw1k6sO3gL4XP
+O8KHw/6gROdpHS44wofD/mlCreFz/nKED4fP37X04VMXHeHDWTqbqtPgx9+O
+8OEsXWtwRMk8lx3hw1l6vSrQv8UVR/hwmN9v5namXXWED4f9s1725Og1R/hw
+2D8MWev39bojfDjMR4+Dl+e66QgfDt/35aPDW9xyhA9n6Whr1ebptx3hw2E+
+vJg34OQdR/hw2G/tbxT3111H+HCY75/MK+Z/zxE+HOaDv2Lv6XDfET6cpdO5
+hyYveOAIHw77wxQXdl566AgfDvPhstoBsR47woez9JgqwV7ZJ47w4SzdbGu0
+vAOeOsKHw/s7q+maTc8c4cNZ+vmG0QOfPneED4f1bN/UheleOsKHs/SvsNkp
+gl85wofDev1xw9Mprx3hw2H+OPcy9uk3jvDh8H7/7jA6+r+O8OEwP/cqFljq
+nSN8OEsvS91/QP/3jvDhLH38Z5H3mz84wof7r59q+uFXHx3hw6F+HbjoSbbP
+jvDhLO0r3rdVmy+O8OFQv/TL7r/oqyN8ODzfoEvBt745wofD+IwRdiX5D0f4
+cKhnj3ZaHfjTET4c5ovToy5O/eUIHw7rX+t3dS78doQPh//+9qmscX2u8OGw
+X5qeuX51yxU+HMbLsxRXx9uu8OEsfaTigU0no7vCh7P0hzS573mOK3w4rIev
+Bnao7LrCh0P9HnCw4ljPFT4cxk9o4sEnYrjCh8P63mOyFyOWK3w41N/TK7+s
+EtsVPhzej9lBWSfEcYUPh/kz+6VdZ+K6woezdFrflaVx47vCh8P3e6fPo9oJ
+XOHDoR4dd2LotISu8OEsHXL5afcriVzhw1m65dxXO1MkcYUPZ+m2+18HN03q
+Ch8O81uO6PUWJ3OFD4d64+8Kyx4ld4UPh/3p9tM1cqR0hQ9n6XI31tfqnsoV
+PpylU9aIvmarnyt8ODy/LE+afEvtCh8O9ceYbh10Wlf4cJZePnvzmdHpXOHD
+WXrUxNPjzqZ3hQ+H92/BXwsTZ3SFD4f1O8HtuE0yucKHw37D37m6NLMrfDhL
+Dwhu++VFFlf4cHhe9xP2LpjNFT6cpTsVzlppSHZX+HCWXnR8d59jOVzhw1m6
+cZzH3+PlcoUPZ+mOEw7dCs7tCh8Of/5s22TL8rjCh0O93OHF2td5XeHDoR78
+3imiaH5X+HCW3prz5/1RBVzhw2F/vWZ36AV/V/hw2D/m2zvCr5ArfDhLdxue
+8kaHAFf4cJbe3P71hG2FXeHDWTp0Z+3ZVlFX+HAY73Ua/a5VzBU+nKVTp8p0
+aH5xV/hwlp4R/fjtFyVc4cNZOpbXJLBYKVf4cFivsv3IOq60K3w4PP9eBwOv
+aVf4cFhvvh26k7WsK3w4zHf3UhzpV84VPpylG9W4Z50o7wofDu9Dz/wLkld0
+hQ9n6aNjMs7oWMkVPhzmt8sXnuyu7AofDuNnZd2Zsau6wofDfiDw8KJm1Vzh
+w2H91UXdyOqu8OFQj128cNKu6QofDu/T0CVPG9RyhQ+Hevjw8dZrarvCh7P0
++4yNiv+q4wofDutlwd7d69ZzhQ+H8TkxV7SV9V3hw1m63YWFr74HusKHQz2z
+7nHhOkGu8OEsvfFqyrsrGrrCh8P+PkGDBz+CXeHDoT7MtLl8vcau8OEwPh9W
+ttc0cYUPZ+lEuQum9TVzhQ9n6bqPw2Y3bO4KH87S46P16L6phSt8OEsn/OPD
+Uq+VK3w4S1vVCgW0bO0KH87SJcKqZ9ndxhU+nKW71K/fJ1E7V/hw2O8ebpeu
+a3tX+HCWHuZbkON4B1f4cHh/KiWelr6TK3w4jK9LD4IHd3aFD2fpc2+yhFzt
+4gofztKpXn22/Lu5wofD/j97z0eTurvCh8P7G3N9lhc9XOHDYb/mO3asUi9X
++HB4/uOvHF3W2xU+nKXTZ/ua0errCh8O9VGnyvea/+EKH87SU57d+bmvnyt8
+OKx3la8O8BvgCh8O+7GC1QMHDXSFD/fffVHD8BuDXOHDod6LSJqz2BBX+HCW
+nrlwceaIoa7w4bDfrJZ42LcQV/hwlk4yeFyxxsNd4cNhvffzC9w7whU+nKUn
+pHtyPvUoV/hwmD9Hq7Uhoa7w4TBeG0x9fG+0K3w47EeWrRpRfqwrfDhL95/Y
+OmTlOFf4cHi/A+7cijnBFT4c9CX/ud0musKHs/SGJSG7L4a5wofD+vbkVrHC
+k13hw2H9et/Ob164K3w4SyfPWLS5b6orfDhLN7/ZzW4/zRU+nKVvT8wY4+x0
+V/hwqCc29+rhP9MVPhzG/1/9ikbMcoUPh/prQM02vjmu8OGw3pdP+G+HCFf4
+cKi3rt25e2GuK3w4Sw96eD5f0fmu8OEw32XwPVy8wBU+HPZrQZO+xlzkCh8O
+9X/daT37LHaFD4f9xKuc1e8scYUPh983bp9xlZe5wofD+7V0TPYty13hw6F+
+XTkiV5qVrvDh8H2lGT513CpX+HB4fikWNv642hU+HOrRzV/GtFzrCh8O81fc
+NcnOrXOFD4f3q+n5mMU3uMKHQ71yc1TLVRtd4cNZ+sDZx6mSRrrCh7P0z1EJ
+io3a7AofDvNr0/R7321xhQ+HendvgSUtt7nCh7N09iStXl7Y7gofDvvtB6cj
+9E5X+HCoNzdOXL9plyt8OKxnMQ9lSr/HFT4c5odpodGm7nWFD4f57d0nbe93
+hQ+Hf38r/+M+B1zhw2E/Ga/e28cHXeHDYf8c2K958GFX+HCWXjlyj/+ZI67w
+4Sz9dWCJrqWPusKHQ72UJVnsLcdc4cNhPA3tED/rCVf4cNgPjqgxcO5JV/hw
+ls5X9kGV+Kdd4cOh/rxcMST0jCt8OKxfzWek/H7WFT4c6q34L1P1PO8KHw7z
+ScYOI59ccIUPh/F8K0udZhdd4cNZeuzkCqGX/3aFD4fPN+te2hqXXeHD4ftv
+ljz90Suu8OEs/SXQHVfymit8ONRHv04Hbb/uCh/O0h0ejAzLe9MVPhz+/Jzq
+OVbfcoUPh/fvz3J5Mt5xhQ+H+Tv+mDnz77rCh7N04oCCXZLfc4UPZ+l43zus
+mHbfFT4c5ve85SrHe+gKH87SNzb8U2fCI1f4cNj/t2x+xH3iCh/O0hmL3Z43
+6qkrfDhLdy7S/47vuSt8OPz89jXHhrxwhQ9n6VO3hkT8fOkKHw7z/d5MSQa/
+doUPZ+ni/i2/fHvjCh/O0gMH1yk/8F9X+HCWvns70dev71zhw2E+W30s6cAP
+rvDhLP2uxNj53z66wodD/Wj1Cxv02RU+HPYn3SMf//jiCh8O49FpsHroN1f4
+cJauVn/k5Wg/XOHDWXrN+6DOI3+6wofDvx//rpPz2xU+HOqnUz0vjYvmCR8O
+82nPDyvjWJ7w4fB8qs55NMX2hA9n6Um5QsKSKk/4cKj3v/65cK7jCR/O0hEL
+x/ml9zzhw1k6aaqX9soYnvDhMH57xWqQO5YnfDhL/97tJNoa2xM+HOrPRD+L
+FY/rCR/O0otXxjl3OJ4nfDhLV4kMOlM1gSd8OEtn7vut0N8JPeHDof4rnyRW
+k8Se8OEs/c+Q49UeJfGED2fpuBPyfemWzBM+nKX9HnSP/zW5J3y4//ptl08f
+mdITPhz2q2FvRsX184QPh3ogTvd7c1J7wofD/jlvuTWZ03rCh8P+at2Eu5Hp
+POHD4f0r12F4qQye8OGwPh37Mvl0Rk/4cPh+4jWNFZzZEz4c3hdn2/vHWTzh
+w+H7XJyuSt9snvDhsB+/fyBW9Bye8OGwvl/dXHxaTk/4cPh956a4niG3J3w4
+rA8NEz/cnMcTPhzmo7JHmpTL5wkfztJZ51Ysdym/J3w4vL+b989q6+8JHw71
+yYNqjT4X9IQPh3pnVtwJ4wI84cNZulL5rDn8injCh7P0+S7bC28s6gkfDvuB
+Rbe2lC3uCR/O0tuG7F5wpYQnfDjsd9b3+NKplCd8OEvPepz20O/SnvDhMJ5f
+P/0yvYwnfDhLv5jxcmGOcp7w4fD891bbfrC8J3w4S/+onrVEUEVP+HDY75dZ
+lP91JU/4cNjvLro6M7SKJ3w47J+Gvu6cuponfDg8z28qclt1T/hwqNcrlG5X
+s6YnfLj/6ps9E57U8oQPZ+nTZealH17HEz4c6ttpVrZU9Tzhw1l66ft4C7fV
+94QPZ+mDfz8aXbuBJ3w41Ktblt99EeQJH87S19L0XD0m2BM+HMZDZMeHGRt7
+wofD+5cwMvxgE0/4cJYu+bnDhqbNPOHDob7LtKXk9+ae8OEsvb1jZKk5LT3h
+w/n07hWhkYVbe8KH8+n1x+vMvNLGEz6cT188VvhV33ae8OF8utS64O1JOnjC
+h/PpK2HX/93W0RM+nE83n3x9YYPOnvDhfHrI/UEHP3fxhA/n04eP3a83p5sn
+fDif3jQuX6PiPTzhw/n0wdFj/r7d0xM+nE93yxrz4LDenvDhfLr4gxtpM/X1
+hA/n0ztL+70//ocnfDifnnjhbdEu/T3hw/n0oMKDPsQf6Akfzqc7Z7qTYfsg
+T/hwPt07sMTRxkM84cP59PWZO2/6Qjzhw/l0uiN9260a5gkfzqdjH5nZttYI
+T/hwPr0urNT1TyM94cP5dIts4YcWhHrCh/PpOys2pKk0xhM+nE+Xzrnv7Zux
+nvDhfNp6fKfwnPGe8OF8OmnSwh/KTvSED+fT97xnmV+FecKH8+kKKZOfnTXZ
+Ez4cfv7WJ8/KTvGED4fPV2fQ4NdTPeHD+fS7Pz6NipjuCR/Op0fvHWxXmukJ
+H86npx/L/+X9LE/4cD49o3LR1ovneMKH8+lt0XeUrzXXEz6cT986fW7ez3me
+8OHw74cs67xugSd8OJ/e7jWJbLzIEz6cT2ftlKJbrCWe8OF8OteGaEv2LPWE
+D+fTJ94UqtFluSd8OJ9+2fB299QrPeHD+XT/DKlinl/lCR/OpytPT+Q3fI0n
+fDifLqxeLPdf5wkfDn//zaMrH6/3hA+H5zfhRPqIjZ7w4Xw6/ZxkiWtGesKH
+8+k2s68OtbZ4wofz6fI5c7fasdUTPpxP17RL7u+y3RM+HH7+vZzTMuz0hA+H
+93FGmnvXdnnCh8Pn/VV01eQ9nvDhfHpxrKVPK+7zhA/n01t3D13ya78nfDif
+jpvi3eXtBz3hw/n0gHIZRnY/7AkfzqfztCu4JtufnvDh8D7srVHt/lFP+HA+
+fWrqtHbzjnvCh/PptWVz/mhw0hM+nE9fDSgWO+FpT+c+1qP8t3c+ffbMf//z
+9P8BSPPCIQ==
+ "]]}, Annotation[#, "Charting`Private`Tag#5"]& ],
+ TagBox[{
+ Hue[0.8503398874989481, 0.6, 0.6],
+ Directive[
+ PointSize[
+ NCache[
+ Rational[1, 360], 0.002777777777777778]],
+ RGBColor[0.772079, 0.431554, 0.102387],
+ AbsoluteThickness[2]],
+ LineBox[CompressedData["
+1:eJws3HlYTW3fxvGy11p7qyQZG6gk0aAQlSEXIYlSEmmgQgMlRSFT0oAiqWQq
+oSSVUlGkSYpQpqhkphBFlKHkPu917fef9/gc9/TcDb+91vN+31PNdb3N6j4S
+EhL6chIS///ve3f//x8RGbJVsblJVUBU9Ue5VMOyqbfcn8OzXnR01N4Rkbnb
+DtQNUBMQT6Yxt65aRHba2JrOheem3z/z7LaIXBmjmLMVvtVwr/z1LRH52vty
+xEVYMemW3IcqERlTlxL5Fk4VFUS1VYqIy4W1f4aOFJB+moeNO2+KyLHg8R4L
+YL1+1oN6KkTk4dKfdbtg9fsfhgtg6XHXTfPhKeHWdlI3RMSUCcn5CPda7L4+
+oFxEtjXOUxmhjr9+it9ihTIRycuWjbKBb64fNkytVES+hD3+Ewa3y6yTHlsi
+IhpOxzyuwf0MVumOLxYR54krn7TDV/v+2m58XUTi+46ePWqUgBTnjfg7s0hE
+al+25iyDFZxr0+dfExHh5RyVKLhbXzJ88VURIZGBUWVw5fILhxwLRWSz6/Tu
+TlhG+mb16gIRyTESeGppCEi0/5wJ66+IyEfZ20+c4Vm31G9tviwiI98fmH0Y
+nj1jaeTufBFZfs32UhX8Vu7pjsg8ETl8SFG1Bz4aeCwpPldE7ri/itIfLSCy
+2Qltpy6JCGOS2r0KHvj71toLOSIyfdA6z6NwyuGRQy9ni8imT+Of3oNby098
+Lb0oIlmlP2f30RSQSXfH/bqTJSLN8dcvTYa7u2p1n2aKiIp3iOpa+Hlk4KE3
+GSKy1NT8QBJ8ukFZve2CiEQr9O95BBtpX3nzO11EbrU/9hSNEZDsB9Pvs7Bk
+5bGn0+CZKmmtA86LiPGJlXM2wPM8vhiMSBMRP7/RuSmwqYDN0DonIunzPqs2
+wg/mNS8yTBWRtyMuHZAdKyBXDkeoz04REaXOwJ5Z8FPyVt36rIjY3pnuFQhP
+vvjF2vmMiEQmC+ovwD9nJGWuPS0iNwNvz3kFO9q1T96SLCJ/Fx7MHaSF78/S
+ui9hp0Rk8qglaubwpQvzHsYmicj6P4oHt8PXrpF3pxNF5Nz9Vz05cPz3PPWc
+kyLyKjXVqxkeUnYiuuSEiAzbvq5eUVtANGLbtWqOi4j14glzreDqF2c7mo6J
+yN6xv3JD4JGD81paj4pI+b/ragXw6sxBUt0JIvKnLuTgZ/i1SrG9FDwxw/yv
+qo6A/Gk+90ThiIis3d1/7RJYd+ftXWPjReTssrr6vXBfd8VlxnEi0jTu+Nxi
+eKJKjKN5rIgMZl3yOuDVWmMO2B8WkYXPRo/U1BWQdf0ef/aMEZGwnM8HHWAN
+q6jNWw+JSHH4pb8H4eDNFuP3R4vIT6fNayvgkEHc0BMHRUTPwKThFzwtO29s
+5gER8ZBizHTHCUhNo6VncZSInHp1O88F9tS4W1cbKSINlw+OjIcXqo9a/3q/
+iMhHLYmuhis9LSd93yci892Uenth3ehZY1g4xPj12ol6AtKi98ts6F4Rudb/
+XIM7vPrdmtixESLy4/06sxOwukVYv2nhIqJTNCH/PpwqsMy1DBOR1TG/RrL6
+ArLtYn6oS6iInPQojjaGTTry9mzcIyJPTPb0esN7N5hmh4fgng2ev+40zNYt
+Ex3fLSJmrf0bn8DOlZ8js4Jxz8rqzKTHC4jZt67p5btEpODI8fwZ8GbBeqUn
+O3HPvF3UN8KZGQs0Pu0QkbGzNQ+lwamJ4Q6923HPFL/0NsEaUUOL5eFjXy+t
+GzBBQL7q/liguQ33rHJz4xy4xmiwaFoQ7tlJk3lb4TB3v/ZFW3HP/JnLWfDr
+TQLBmi24Z+bV6m/hFLXSWUGbRSRfJfrQ0IkCckzrVFZ0IO5Z55J/FvAem+Nz
+UwNEZPRdJe9dsIbTeamiTbhnp1835sHT5Mr/PNgoIkc2n5v3EQ6Z+HzIB3/c
+M0vvy8MNBCQ3usO5109ERBoTR9nAQd9/PxwEk+5fh8Lg8LGtftobRGTLg+J/
+V+FtfYpNZvninp3b490Od1l5TbZfLyKfts9/pj5JQKLet9j7+uCe2cqZL4Pv
+Jow7H+4tIg5aTy5HwoYzJ49KWod7JnFiVBlsVtBVfXmtiNx94hLTCa9rcD9Z
+44V7lqkpoTUZP++7g483e+KehXzxdoY3HZp6s9cD98w+91kM3P0hSnEonKW3
+xbwKrl/re1zPXURa2BlXuuHp/xrN5q3BPWtiNPQNBWT+vpsqLqtFZNml6phV
+cP8uTfWtq3DPIqIljsLRun+sD7uJyG1nO5978LXhBhkZrrhnk5SbJI0EZEP+
+vfGVLiIyRfqN+WR4x/viNy9X4p69PnfFC0489a/49woRuXDFWyMJDnwWXjkQ
+fhs18fAj+ESk1W9dZxFRXvVbQmSMr1eG5dJ5TrhnU0p8psGXJm1/5eooIlFy
+oU2+sPOoR7HbHXDPmufPT4FrAuZtTFguIr1FcgUNsKZu3Y5ce9yzw080ZKfg
+n2e+Ia9mGe6Z54nDs+Cc2kGDPy3FPZvhKhn4v29eOcXCrwaPWX8BnjLRZqma
+He7Z5y9NL+Gvak1G05fgnpXnzh80VUBWnlw4x95WRPYlbCmYB/+5lLht02Lc
+M58Zo7fDcn5VLw7ZiEj3bDY2B65vLVmbZY17pnRHshleN3GX+p1FIrLuW/R6
+xWkCcsNJgvtghXtWZffcEi4MNhrIws9PKluEwKICVYuRlrhnG98UXIHnK+Vk
+zlgoIpbz00Z/hn9XvZ7itAD3TNUnVnU6/v5N6R1bLUSkpGtinyVww2amLmE+
+7tnd3+v3wotKml9fNhcR/TMlz6/DZY/MFerm4Z5tCbXogDufaQR9NxORZCuL
+wtEmAnL4n59QHm7QGKDpACt4jC3Wn4t71vMk9iD8hsxMspqDe/bwRJ8KWOXK
+pXSf2bhnaa6+v+Cm35teRZmKSNGOMS90ZghIj3EIyZyFe2bbZuECT0l/WH13
+pojoaucVxsGjdzru/ExwzyS3albDY9qHOcvAiU9nxPXCQRMk3HVm4J5lsoKJ
+REDGh0gdW2AiIv333PF1h/WG6/9cNx33bPmhF8fhcSaeO6Kmicgu/aUL7sOF
+Gll6WVNxz7jhV5mZ+OODf0rVThGRb01vNI3hIqtpcl+Ncc9y0+K84VWKATMG
+wK57fQSn4c5rJxImGOGerTDY8ASW356mZGsoIo8m/XkhNUtAxqYdurVpMu6Z
+TOmCGXDg3kVJRyaJyOw3oVf9Yan1z5MKDXDPCizGpMGFafrVzybinh0YEN8E
+a0fMGtE7Afds1VPBAFMBebhS+oQqPHrqyQ1z4I/hIaam40VkxQC3l1vgrbZn
+Bq3Rxz1rGbMwC7ZTceu/V09E7l9vu/oGHmZ6bWLGONyz2LwxQ2fjHiqfDa7V
+FZGZXlvjLeB00ZDfHTq4Z4Qwu+ATHn2PDYEvDeH88uC8kwGrpmjjnn2+8/ID
+HCBtt8xZS0TUbxxaOHwO/n2Hntq0eyzu2dGl16zhZ5oLi1LHiEjs+uFjw2Cn
+1CU6dzRxz+a8jb8Kz/6bc7N9tIiwyueZdvhTwvKIQfD0Dh8/9bkCsrbFbKOx
+hogE3DJ4tRROWea313kU7lnin4WRsKHzw6oQddyzjaXXSuGQtSv1zo/EPbMI
+G9sJp3cOKq1Rwz1TW3BkrJmARPp/2PJDVUQO/RzAOsO3nR45KsK37z31i4HL
+xtV4EBUR6XP25KtKONr1wck1I3DPtrpZdsMDAuu6I4eLiP+isUV68/D71Ppw
+d64y7tno9rGr4Gmzyic0KonIu568Iwnw/L/HpSVh5Udb2XvwneRl/cYoisiS
+88Rf0hzPd5e/Glop4J7t5F5Pgr+VO+4PGCYilUvuWnrBd63jhIlDcc+0Y4oS
+4T1tMRk3h4iIYZ9lWo/gnaMtt34ZjHtWPzxBOF9AXkSU+A6G07LestPgwNSX
+B6cPwj3bc97fF64bcO7p6oEiouCw/vVZeNoK2XkH5HHPxk+yaoCTR8m+vjwA
+90zYXdTPAvfwd+Lpl3K4Z89LtWbBdwILI0Vwd25YQgAsOcUuaXx/ETHYt4C7
+ACs9925cLot7tlJ+40v4wL9f0/f0E5GUyfWvBy4QkNCZX29nyuCeySRazYMb
+Zi/Y8VQa71dv3a5vgwdnsg6SsGXhWO0ceJPK4JXaUiISfrA94T38epZ/1JK+
+uGer8znFhfh6lQx7u1MkIr+mBm20hL+Q3pXpQtwz+ZlvdsO3NigL6zgR8fzA
+LboCj5JYV/ePxT0rvnu9FV5w/P0dLbgxNkZb1VJApv4I/rSEwT1bu+yoLRx3
+3Xh8sEBELGaOEO6F0y6wpzL64J4NfbfxOuy98cXkekncsy/n33yDw2qLOgXw
+jxvrF422EhAScLRJTwL37Nik4uVwpLp3q8M/IVnt2619EBbF6o+M6BWSxLll
+R2/AP0KbduX9FZKnyuHCX/DUQk/h6x4h6f99wSadRfh9aL+f3w+ed1v+7Uq4
+sFUqckq3kOxKql8UB//zk9vn/kdICjclFt+Gr1o0Xoz9LSTfLFbp9ML9TFz+
+lv0SEq2RWscmWOO+DUz0a/8pJK6/2oXu8LiEvf2Hw8dr8jcdh30SlB/P7xKS
+R2eD3tbCo99alW7uFBKZoJnWjI2AnJmn/Dj1h5DMthaWGMEPjm3tX/ddSLZr
+3tPxhqdnuvkJ4Py/MceSYfkl93vGdwhJ26Nloiewomdh1spvQjI6fUSA1GK8
+T5YNjTj4VUhW7Hr31gRmjN9FFLcLyRG7dGt/ODp9aM6XNiG5r+Nbcg5O/p4u
+MRzuK5is2wTLf48PXPBFSGY2dB+TsxUQh72PB2/7LCRbL5aJ5sBRCY7PLrQK
+yaXQ8IAtsC0z5tazT0LS6rDwXSb8M0evSRpWnzDQ5g28OGLd0GkfhcRR1FAy
+ZAl+/tY/3bLug5DEvkjUtYBzbDwFJ1uE5F7equM7YU9lpbx7zULC7tfqmweb
+XX2/v/e9kJi4fA34AKsqle/TgwMML79TthOQFXrns1e+E5KL/bbZWMOCj4f/
+HnorJC1vZ5aGwqemBm248UZIVK8Kx139/89XXibT+VpIlkXfO94G9wSr14yG
+D6053Fd9KX7eVz25vOyVkNyeZh+4FD5b7Fm576WQ9Bmo8n4/LNj/pKfohZBM
++fjOphT+Ujl4eftzIfEvSS/9Af/0VX2hBmfE+Y4buwzvo3vbI2ybhOTd2skn
+nOAjA7YtD38mJMNn9fSNgXX6ldhcbRSSJcPKAyvhhl05G740CMmBtvD3f2DG
+f8EVVbiyYuFiPXt8nrRGqNvWC8m/YwPL3GDVHysuhz8VEsMNDeMS/v/jR6rX
+X3siJL5mSSfuwilvyqza64QkbfhqKcnl+Pd/a2KnDr/+rrV5EhxwfkrI0sdC
+olD99b0nPGpu1pP9j4TE5tTlxYmw9t2YRaUPhWRfwLayh3Cd1euvPx4IyY0F
+s/SEDgLyqznmyli4e6To5FS4Pe3UWef7QmLw+56UL5ycJSg4XCsk62oPbz4L
+b5bP/3arRkhSUuyb62HPr5nWvfeE5EWQim0/RwFpXd3ydCI8xOZ92Uz476Hl
+ezzvConVmAt6AbBGnMTSpDtCEt7rezId9jz00KquWkhKH0+WfgkvS7/tIw3/
+Su/ZPNBJQPqwL3Nn3haS8cHlzWbwnypplc23hMRzaYTtNnipknl2VpWQnNa1
+LM+Gc8ZEu7+vFJJGwSD99/BIpcbZyvDAxoaTCs74vFVRnbf4ppBYZCdJW8IT
+3Rw27KsQkj1hq7fshvcNCS0tuyEkRY7aLZfhVV7xk36XC0nnhG+2rbDDoYj7
++rBu3yvlKitw70psD3mUCcmal9v0beFtWj8CT5XinuXPSoyArfuu3FNfgnu2
+XyRzHY6NPXRZDu7vWrPlG2zD7ZY1L8Y9M4pt0VgpIIOOaUUGXxeSYNnlS5av
+/P+/X9mjd7UI9+ydyo0DsM7wvb86rglJx9X3+jfgP/vGt2jDWocuJP6EC4cG
+dq+6KiRu7htkdFzw/MMtnpRYiHs23XDrSnjS8eLYpwVC8njg35ZYeKJyrsIA
+WOZT+ZLb8Nn7YyvmXxGSOaURN/7CSySVY/dcxj2Ltxw/wVVAIn7t3lucLySX
+1w1KWgN3SS47+ysP92xWo8xxuMYr9t0EWFPh1NZaODd4/HzvXNyz9tUfBG4C
+cj1+TN25S0KScFPbzgje0u0X+iYH9+z4txvr4A99pByGw339roxPhrdJtixZ
+lo17Nm97Uh08fKEg4PBF3LMRpv2kVgmI2vRl12qycM9+iIJMYFutlxpScGt1
+zQc/uN3nUP6cTCEZlRxrdw5OWuPhFZyBexa4vOIZvMvHafb1C0ISt1B1gtxq
+AVF+72n6Ox33TL05aTbsqxXuPgnm/lzotwV+l5SVveE87tn9DUGZsFVaw4is
+NCGeMww/voZ/npO89Okc7tm2v3ZD1uDzn1H10oQ/2NyomA9P0BhntioV92zs
+3gk7YV8/DfPkFCGx/2d5Khc2sfu3/sVZ3LO6QbIf4N6p+deU4OoLjUHK7vh6
+RBMd+zO4Z7tPfVwEt5cdK4s/LSRTl61ZGgr/nnE96HEy7tk4nZuF8Omg5OXy
+cAbTMaENdmohzotO4Z41Xjk10kNA2J+xYQeScM9ytssuhZtUjjy6mygkduGm
+2/bDkfVkjjR8wKnvpxJY4+j+Z+YnhaRqYu3SH/CIZ77xESdwz/rG3Rzjic8L
+hU+bqo4LidGr5ROdYO7+1y0c7HtZNfkQ/GLbjtNzjgnJ+chm2Ur4fWJk+56j
+uGeuGdv+wPsuD3KpSBASRWO/T+O88P2aI/dTANv0N1rmBtvXbs4xPSIk+9//
+vXkEtqo3iw6Jxz27dmPiXXhrc8DhG3FC0nNob7LEWgExCP53VQAbeFj1nwQb
+j3/GzY4VEm+Twds94ZRdgsA9h3HPBj37dBL+8WeD9M0Y3LNPp5Y9hCV0VStY
+eEjZmkpuHb5eKcLkuYdwz47oGEyFj3eonQ6Pxj3z7kheDxekelTdOoh7ZlrQ
+/yycs7hOTgr+rbBjez1sFOWyw+IA7tlX01YZb9yTD5xcVJSQeFX2tZ8Jh3QX
+36yJxD07UVu5CQ50DkmSg5/5xRmke/9/HxeetNmPe2bucPoFnLxlaEnsPiFZ
+oKImN9AH7x8ejczTvbhnnc3bzeARA6N9FODrdzJag2BphQk9DhG4Z8l+9tnw
+fYWrmYnhQjJus1HVOzjtslrI6zDcM8teA4X1+H7HuG4bBSeNqji9ENZfFHDU
+PRT37M9eud2wVLxdY/oeIZF7YLXjMmwu9dekLQT37Nzgz5/gBlu3qvFw8PZn
+9iq++HkeEeK/aTfu2eLkqsXwwoF2poXBuGdj3SdFwHnP6yb/3SUk2hK6Z4pg
+P+2ehTNhtycdct9gxQvlEaE7heRERsEOjQ24pzLqLbd34J7t3vHZHlaQHOop
+C/ezn738AGwwNUF28XbcMz2pW+Vwuc+pp0e2CckO9v6kn/CPRWMrmoJwz57F
+ndH2w+d9gs5jNbg9x2HASvhAzxmh+1bcswi1nbFw8+S9zhlbhGSlc8vnW3Cp
+5JP6b5txzwwyl/+Fnw3bE2AIP5DyvzXeX0BmGUcZbg/EPXttNHkNbK3WqnQj
+QEhmXek9cwzOiT6i3hfeGlUxoBZeNi/S0mqTkOS67dsp2Ih7K3XjRNxG3DPj
+RV8M4dpjk2Sb/HHP5IY4rIP7Fj8/PRJ2bH526xTsOCV/uacf7llR8uQ62PBp
+/qTsDUJSE+N+tu8mfF46NUz86Yt75qkrbwKXxissMYFnzPi+0w8us/Q9Groe
+92xw4ZdUuMP6qcQ9HyHJbt3h8Aye6DNv/yD4Q9ns2/0DBCTT77qRo7eQqCVI
+Gc6G7+vp9z27DvfM5/7ZzfDiwGM9rWuFJGZ2vHwmbKDcJW8AVys67noNF3RM
+W7DNS0gE39TaBgfieeC+R1qFJ+5ZVYvDfHhYpL9mP3jjyczbO+CGv3a3l3jg
+nvn7G+bC3D+ZA4nuQvLe3DilBZ7qdXBTyxrcM9V/8sqb8fulVL9TH7brqti1
+CN7X/ipjy2rcs7v72vbA426e6SlfhXt2epFjIfwtSHG9DCyxZUj1F7j4hwlj
+54Z7ZtVkOHKLgNwYIF2U5CokGzROp9jB6y5vjv/ognvW7T5wP+xZFXx4Ivzm
+gW5wCZyqpZq7fSXuWdr3tu+wTdXCzqoVQrJ4R6HjmK34eQlllsvD+213VjvC
+rVYmrx2dhaRCa47RIdhHrnPfOSfcMwnp1Jvw/tyRSzschWTS0/sD/8DnRpfN
+mQ57Z8YHjwsSkDXLqu0iHIQkNcSx3RVONTLa92g57pn9SKcj8O4C5tUIeKj+
+h+o78KLqscu87HHPuCwjiW34/HdJ7shfJiQRTf6pBvB8/9UXJeHSS8aDPGHz
+zvUHFi7FPYv4F3wSfv3i6sGjdrhnK262P4APjiG575fgnk3a78Rtx728+/vX
+ePiMtPWdKbBexeuVO2xxz14PMV4PT+jX8al6sZAMKmhKPQN7nR11ZCi84MDp
+QfXw2gj/1atshCR0lcdumR14vyuoX5JjjXs2ZdxXAmsaWnr0LhKSLrkfTptg
+BbbmhAU8rqXwznl41mib7wlWQuJ+fafxC3h20uO1zZa4Z4fnnJPfid//TVac
+AVzvKT3YDHbOKSoPXoh7Rh7sDoJL7Yck1y4QEvMhR75ehCM32yUPh4M/Ozq/
+g9cMC7yx1kJIrpaPvDtsF94P5/gJr87HPUv4YLwQfiI9y1sEa6/POhcM52x9
+9cPOHPdszsbBl2H1ZLPElHm4Z0pTQj7B1Qc3eP4wwz379u/riGC8/y9bZmcK
+97t103kxrCLbtSpmrpDMTdx/Nxz+XTE77vUc3LON1lOKYKcYkxZ9+Mr8oWlf
+4frI58t3zcY9U30+WGM3/nl3lb7WmgrJmJ+nQ+zh0Z7fU1Xglfc8vkXBndud
+d66fJSRHz4xbUQ4/1li6pWQm7tmWH3e74PHbn8b2h6UWXZ2iHYKfr+SGBysI
+7tnoXWkr4J6cpfrZM4QkqGfOkFhYvcYiWwLOfSi95xZsPDTb2tpESD6nPfjW
+A4dd3DHo9HTcs51HVozfIyBBV3N+dUwTEqclTvdWw3mOpr2mcJy2+tRjcNc1
+XY24qbhnkh/TauBx/7y8m6fgntVnDRGE4vPCsvOJITwja+MeQ1jiUaXLXmMh
+2bxnSsda2ORKQ79nRrhnyyVWnoILRo95pgN/1K+89xhWt8y4vcMQ90wYObVv
+GJ43HFY23J8sJMufW5+fDi/bbiKlDsfkDh3qB897Rxw3TRKSO3uf70mF/cpc
+aqsMcM9WnulohOeYHXdThKdN9lzZPxzP4+dbhnlPxD2T0asxhR2VZ7aXTBCS
+zDc/pm6GJzxJbpaH3xdcPZ8B1/Vj/q0eLyQjDu4a+hr26HYxKtTHPVs9N3Rw
+BN7v6vNjZOCDU2W+m8OhL373W6mHezbg4codcI/5mPTccbhnH47UXIINl051
+F8JGxU7TWuC/prpzHHRxz2LV05X24o9b/TK9qIN75vVx6CL4c0G8mwB+Qy6G
+7oHnlPc5u1RbSJSGbvpeAIdnTmYztHDPvkxx+QIPKdYJl4Ajb0jUqu3D+6nR
+y7FLxuKeHa2cZgebu877cn6MkPxdH5m+D56/2/VBrybu2VybYSXw0leaTxbD
+PsrDwr7Da27GdKeNxj3reP5dcz9+/4JOzuzVEJKXt864OMI/F85KWwwPTfKs
+jYZ/RATpnR8lJIs26U2/CbdsMX3aq457ZtGZ/htetD42yRYuU7s2bFykgNwt
+8IhIH4l79nNXmCvc79zVQxLwhJq5P+LhN/v3XLNTwz07K+N6Bx5/tZTNVMU9
+2/qw9h/8O9TTVwA/W5Qw3SAKn++zt3Tbq+CeaTpf8IA9LT6lZo8QkoV/1RVO
+wuEdl/2EcOijj2EPYFFMg7PzcCEpPn/xB3tAQFxCFqzNV8Y927nJdQqsqCaV
+IAPr2U297wPXVcq8d1PCPdORNDkDz31gaXNNUUhO9am68BQ2TKx+KQ/X10cq
+yBzE80Pk1igvBSEZcNEmnMDaPcscyofhnoUO69wIa1quNFeEdzu8cD0Px7/b
+t9RvKO7Z+LP3n8MpIx+FVg8Rku9CLxP5aAGJWzfx8UhY+4Vexlz4smbqrKDB
+QrIqr1MhCPa5qvHg0SDcs33Xwi/C4yMzdurAdSuDO9/Coewky9CBuGeGZm7D
+DuH9Prpw2gt53LN+/R4sgK3iDSwM4R1vH5oEw+p7Tm2JHoB7VpiQkQ/PqfxZ
+9VFOSL4edFb8BO+rNphsCo9ZMypiRIyAPP1nXXGiv5C4TPvUaQOrPDH365LF
+PZPPdguHXYuHkEXwww+bHlyDs7VyddP74Z6VTJ3xFR55QGEqA5vGSWaOOozv
+v+NsD2cZ3LO1VYr2sIbMuPwCaSHJmxkVEQVryT9QGwh/Hrq4qww2adbM8pYS
+Eo22Yau64KsSustv9cU9q3jxQCsWz7+NjRrqcPyxszNWwJvbtQfsEOGe+Xpl
+HoZPFSoqNwiFRGimr3QL7sxPnmsAzxjeFdED93G9Fn2Qwz37fq1LPw73aZrr
+n08s7tnt4FWr4SMV0SFz4Y9JZg+PwiuCZuqcZnDPAvqRGtjxjc+PvwLcswWP
+MvvE4/Nx28Ame/jwyKNKhnD13bFv8/vgnv1y3rsWzl+W0VceZmpH/UyC76TE
+WflI4p6lfFr1GH465VVetYSQbArKfig6gufBpDBjTTjTOoBMh9WdQp6H/ONI
+s+a0rA3w0L/3T73q5ciIXknlVNhDyitkOrz0cdXeRvivnHnosb8cOZge9VM2
+QUCKTnqk/uzhyK1di1ebwjEmN5ptYYmlCo8CYZ/di+de6uaIse5LkgHP+D3w
+Zn94gyAl6xXcPfGfq/cfjqQ3eCkPPoqf34r+qnd+c+TNRf195jBjQnrGwEph
+XT+3w8Rg/8+wXxxZ7Fi0+tL/ntY64P1PjkRO2P2oGe5tXW5hCt8UzZupdAzv
+742PzyR3ceTvi34XreDopMVKEvDk/EfKe2Dbxw9ynDs54rP/6L4C+JL8fPfr
+PzhyzmXFr89wYuflqcrwS0ONNWrH/38/G6gX9J0jw2RbHy2BPyjYz2zs4Mii
+d9kz98Hq8SF+xvDeqwEXi+FUnajyhG8cKYueNvz78f8/n3zH//rKkT9r+uzX
+PCEgymPHlCyFJ0y/9csBvv8ga+2Vdo6sHXhgTTS8SPHf5KHwmY+LH1fAG1IH
+qgW2caSpRGHWb7iPUsvYp184Mij+5UXdk/jrh2+0NoQXrksZ7gqfXJJ/5Mhn
+joTOWrs/Hh7rldLzs5UjxcPG/66GdZgZu5bBXW1da/7BS+5tG1n4iSN6N4se
+T0zE+5+v/VsF2OP47lke8JWE2vKtHzlyasO87BOwzveG0mcfONJgJjviATxV
+1//5NHjAiMf72SQ8f3fGDUts4cj8H0d/G8Mm3dP8/jVzZHf1CncfWLPd9dNK
++NopjbrT8MHdfYLL33Pke0DrrKdwg/uQyaNgnYU52dKnBGS5zdG+Ye84sko9
+cASBnbpCu1vecuTk72mRG2G1vk+l58N1tX3+pMENJHxKxhuO9nBwlu2hcFmY
+7+GS8fvf097h+5qjPRws3XFy26NXHO3h4NNtcaMmw3wPB/tnPvyU8JKjPRzs
++smytvsFR3u403jecGUfOsN8Dwd/fvi1o+w5R3s4WNQtPUED5ns42OyY9cGI
+Jo72cPCsDUVSn59xtIc78///PcrsrBXM93Dw3nufHXIbOdrDwQX158YPhfke
+DvbU9NcIauBoDwe/22Fu+LKeoz3cWXy9UjTcTWG+h4N/uvTJP/eUoz0cfGNb
+o6oMzPdw8PXitHTfJxzt4eDab+42dXUc7eFSBOTBK/lhU2C+h4NDl57tTnzM
+0R4OThg59K8A5ns4OLX/GmXPRxzt4eAJX/bb1zzkaA+XKiAZ+0LyJsJ8Dwd7
+F5jpHn3A0R4Ovmb26EbvfY72cHCplNrmVTDfw53D5+Nj7fnVtRzt4eApW9qM
+9WG+h4Pj7rmZxddwtIeDt5wL8+u5x9EeDj7x3PqaK8z3cGkCkmRWqnb7Lkd7
+uLT/3+fvpujBfA8Hz1P0M4u/w9EeDs6efIH7W83RHg7e3ub31g3me7jzAlIz
+vOJ59W2O9nBwevLRzvEw38PBPUvbtI7e4mgPB8eqXN8uAfM9HDy6XqLNvYqj
+PVy6gFi45gXVVnK0h4N3Jj0cbQjzPRw80s+uPfEmR3s4ePN1fLdgvoeDU1Zv
+rfep4GgPdwH3z0ru95MbHO3h4L0uPyfPgPkeDu4M1oo5V87RHg5OTTgrJQfz
+PRyseWDlqc1lHO3hMgTkk4X94telHO3h4OlFe9Xnw3wPl/H/++1nudwSjvZw
+8ETX7UrKMN/DwY99J5uGFnO0h8vE+8I7+Yi26xzt4eDV6f0+LYX5Hg6OylXz
+LCviaA8Hv243Z7VhvoeD0xYFF8de42gPl4X331vlsb1XOdrDwd3z+kZ4wHwP
+B6+pskp4WMjRHg6WMDp0cxrM93Dwyuhb/c8VcLSHuyggvyq/BgyA+R4OHvyI
+6Q66wtEeDn6Z8e9482WO9nCw/cIme2uY7+Gy8XyZFWdQlM/RHg7Oqh6townz
+PRz84OQ+EpPH0R4OnjSqaMPfXI72cPBwh8slHjDfw+UIyDmyUevxJY72cHDl
+o685M2C+h4PnDdK0u5DD0R4OftBHfuhQmO/h4OenMn7szuZoD3dJQEq+fmtr
+u8jRHg4+3dnEOsB8DweH5XoYV2VxtIeDZ+pF750I8z0cvNPHsispk6M9XK6A
+lAcm7pSB+R4OdrUJ0tiSwdEeDt7LvWp5f4GjPRxsfLKq0gbmezh4jqpueUk6
+R3u4PHx+HZNu1IH5Hg5uHuIse+w8R3s4eO5plRVCmO/h4ARzi7sb0zjaw8G1
+ik1L3pzjaA+Xj9+HUfe6rWC+h4MbAxSKr6dytIeDs9WKTmjDfA8Hb5icfeRo
+Ckd7OHhs1dcsIcz3cJfxvty8+c2msxzt4eDSNNMJ785wtIeDq9UWJNrAfA8H
+q7hHjS47zdEeDm460OeOHsz3cFcEpPVi6v7EZI72cLDwzUaPfjDfw8GF0z1c
+tp3iaA8H2zUFBbQmcbSHK8DzVX36ueUw38PBeRZff9xO5GgPB2ssNnM2hvke
+Dn4jdeFt2kmO9nDw7OghocNgvocrxPOWZOisiBMc7eHgJdu/Kf06ztEeDs5W
+XzrAA+Z7OFg4OGdk/TGO9nCF///3lX+s5sF8D3dVQIqdxx0tOMrRHg4e2WPW
+Owbmezh4r8+snUcTONrDwT6Nw5SlYL6Hg4esrny89QhHe7hreD81mHu+NZ6j
+PRx8bv3ho44w38PBnMn5lHtxHO3hYNlbu++ZwHwPB7dNVhqQHcvRHq5IQI7n
+efuqwXwPBz9eu6k15jBHezhYMUJ3NwPzPRx8ddIhg4AYjvZw8I3k430+HOJo
+D3ddQGT+mH22h/keDh7vfejbnWiO9nBwnJa/vAnM93Cws+sHy+yDHO3h4IA5
+n1NHwnwPV4znKXarYtwBjvZwsHJd5HkhzPdwsF2Liu3WKI72cPBk33GKXyI5
+2sPB287mdq+A+R6uBJ9Xhem/Hu7naA8HC5plB8yF+R4OPrDy2ezCfRzt4eCB
+LtKxOjDfw8HKqsd6k/ZytIcrxefJk917BsJ8Dwenl5RqhEdwtIeDRYOt3vwJ
+52gPByfKj73qA/M9XBl+vn+YZ74J42gPB3v8yrhmB/M9HBzosPB9dShHezjY
+33G01gyY7+HgtCkT9+Xu4WgPV47nx8nr2TEw38PBqQfrjp8I4WgPBxdHuCwc
+APM9HJzlJqsYtpujPRy82e2pZHcwR3u4G/h9vXOF8YX5Hg5e8jp95PtdHO3h
+YOWPFxyWw3wPB2uOvXyxdidHe7j//aFixByY7+EqBCTC+1Ha1R0c7eFgf8nn
+C/VhvoeD73xu6pe6naM9HDxuS80HJZjv4eCurxkvDm3jaA93E58fSf7tQpjv
+4eCC2uFKO4I42sPBbG2qy4+tHO3hYKdPfW94wXwPBxeunzXj9RaO9nCVuF+Z
+Fk+WwnwPB//5rhpRs5mjPRy8Lua67RyY7+Hg7gblaUWBHO3hYEPlKSYTYb6H
+qxKQtRfkHNIDONrDwfGNx2PUYL6Hg33/PnmXsImjPRy8xuO6tRzM93DwCd/5
+DeEbOdrD3cLzyNotQf/8OdrDwa+z5xgFwnwPB9+IT+/f7sfRHg6O3HRG0h3m
+e7jbeN9L0ZZ9uYGjPRw8Jdhk0lKY7+Hgoy5PA2p9OdrDwbXJ3x6awXwPBzuc
+jDAvXc/RHq4aX4/sI41GMN/DwR8NFcNyfDjaw8Huh6QXaMF8DwfrK7nrnPHm
+aA9X/f/78BhNZZjv4e4IiOm0+dPi1nG0h4OPH761Vhbmezh4yfHE/PC1HO3h
+YIP8KgVJmO/h4HTTGQlbvTjaw93F+9N5ifE/PDnaw8GHLYTvvGG+h4Mdoyxz
+Wjw42sPBax4/SHCB+R4OPhQWeeyZO0d7uHu4z1JbLy+B+R4Onl4V97l2DUd7
+OLh11LNp82G+h4MHRc45V7Gaoz0c3GfNfe0ZMN/D1eB9QTmwunAVR3s4uEBx
+UogBzPdwcMAd1u6iG0d7OLj52LtZWjDfw8F5nXfNU1w52sPV4vfB/KqXKsz3
+cPB6QVrKcReO9nCw3OFDf4bAfA8H+7n7ecas5GgPB5/4OqejH8z3cPfxvpsk
+jNu7gqM9HJz77pI1C/M9HCw50XRMsDNHezi4vid32F8njvZwcHS+hPoWmO/h
+HgiI7oNRZp2OHO3h4OUVSqEbYL6Hg72Z101fHDjaw8GrhL6WXjDfwz0UkPem
+FQ3Nyznaw8HTxzfscIP5Hg5eZZY+/ZU9R3s4uKt3whAnmO/h4CkPfESNyzja
+wz3C55uR/aClMN/DwdpZX4wfL+VoDwenZmlusYb5Hg72zO/zsMaOoz0c3GOy
+dfYCmO/hHuPz/Nbe+7eXcLSHg1/X6gSYwXwPBwc9cp5005ajPRy8wUZJ1hTm
+ezh4910nibLFHO3h6vDzU64mMwPmezhYN891/HUbjvZw8NZRyr5TYb6Hgy3i
+zG8VWnO0h4MP7W02NoL5Hu4J3qf3tFVcXsTRHg4OknbynATzPRw84bSuZp4V
+R3s4OLzGoXcCzPdwcMKQt205lhzt4Z7ivkuW/NKH+R4Ojh/cqpS9kKM9HPzp
+mesyPZjv4eCqJrWsrAUc7eFgv2T14eNgvoerF5CHuW4pmRYc7eHgdYnP5+rC
+fA8Hu3+OlMycz9EeDo4Y612nA/M9HGzwZkt5hjlHe7gG/L6eybqlA/M9HPzs
+D/chYx5Hezi4KGCHqi7M93Dw1xQ5v0wzjvZwjfh8H1rYpAvzPRz8wdF/ZdZc
+jvZwcDA79e84mO/h4GFnpHMvzuFoDwcnVb0K1of5Hu6ZgJxnL3vmzOZoDwe7
+fA3zmgDzPRwco2S1J9eUoz0cfEpJ6ooBzPdwcFRobp/LszjawzXh57ttrrsh
+zPdwsHxbybuCmRzt4eB8BcWgKTDfw8EL+1prFRGO9nDwa9uVHdNhvod7jve9
+ONNHJTM42sPBo9267s6E+R4O/rBs48sbJhzt4eB7coVSc2G+h4Ofa5Ra3prO
+0R7uhYBcmxh6YT7M93Bw8hOB2r1pHO3hYLcLhhetYL6Hg72tlO0eTuVoDweX
+r8wcvATme7iXAvJ3e/OXp1M42sPBNnNvvFgO8z0cvM9+xofnxhzt4WDRMjsp
+F5jv4eDyN4I574w42sO9wvvjcdMEd5jv4eBi9QFMqyFHezj4xQiPCB+Y7+Hg
+P3qzNTomc7SHg3/9OdW4CeZ7uNcCsnjU1rTfkzjaw8FK1ncObIf5Hg7uGh0d
+JQnzPRw8fEHF2VADjvZw8Ap3t8d9Yb6He4M/ruqpfGAiR3s42GrEg23yMN/D
+wduljnTGT+BoDwdXRF0OU4L5Hu6tgNRZa+ufGs/RHg7ukPj2bRTM93DwtzmC
+u+f1OdrDwVPuOhWPg/keDq6a0XMrV4+jPdw7ARm1sLHVCOZ7ONgn+fvo4nEc
+7eHgJZ9Mt5rCfA8HD3tS+f6WLkd7OHjfwM2eljDfw70XEGmbxexjHY72cPDB
+mbaF9jDfw8FHYgJCX2pztIeDJ3fle66G+R4Olhshu6ZVi6M9XDP++UVbt26A
++R4Orgz5mfpzLEd7ODhfc1frdpjv4eB/DnLzGJjv4eCBdWeK9o3haA/XIiCf
+zSabD4D5Hg4e4nXjyxFNjvZwcOq3uekjYL6Hg2fHFe1IGc3RHg4eKaO6Vgfm
+e7gP+LyU9V6fq8HRHg7WXZy0fwrM93DwrthLJWWjONrDwa77T0ubw3wPB1d8
+81p/X52jPdxHvN/uFrYuhfkeDo7+6b/j5UiO9nDwsX4ZY91hvoeD1+y68LlN
+jaM9HJwk41MVAPM93CcB2bG+vbBXlaM9HHxjjXZFGMz3cHBR9vBmWZjv4WAi
+U65yRIWjPVwr3ieMBm1QgfkeDu7o7N94bgRHezh4J5OzXB/mezjYRuN7R8Fw
+jvZw8HeFh6dnwnwP9xnPL2fNvaqVOdrDwSvDl5gvhvkeDn4X+m1GkxJHezg4
+xU3BcjXM93Dwo3e3/NsUOdrDfcHXq6Y7OxDmezi46V0mKwnzPRxc3Na4YZ8C
+R3s4WPHSjs6BMN/DwTc6Y6NPDuNoD9eGn4dgBVNNmO/h4E4lUb+coRzt4eDK
+A45tU2C+h4O3nJZvqRjC0R4O3qU6+qclzPdw7QLy5GHMiIbBHO3h4N8htk5u
+MN/DwZ971+R+GcTRHg426l+puhnmezj40y7vlD4w38N9FZBYVfuZUQM52sPB
+Ftf2/BgK8z0cnD7ic/FpeY72cHDNsP2ndGG+h4PtNzsdLRjA0R7uG37fZVac
+N4X5Hg6+fHb//Ro5jvZwsMOAl7LLYb6Hg6XVl6x635+jPRzclf7xvi/M93Ad
++OdtTbDtkeVoDwdXrXJqD4f5Hg4+MtUgeSDM93Bw4MNhXkn9ONrDwSp/ufna
+MN/Dff+/b/lDrshwtIeDDVa0W5rCfA8HHyWv/WulOdrDwZf73r3oAPM93A8B
+uR19oc8HKY72cPCBjKB1G2G+h4NnGxh9kYD5Hg5O+9e0J6ovR3s4+Gfz6omK
+MN/DdQrIl/KaX6kijvZwcOW6gXUTYb6Hg6cV690qFXK0h4MjDqk8XAjzPRzs
+Wvaio5HjaA/XJSASYz21PGC+h4OHnL26uZPlaA8HP5Wtfb4b5nu4rv/v+2l7
+OZjv4eDY0fqfTzIc7eF+CojHgY1x2jDfw8HxDmuXFAo42sPBN9bJ6ZjBfA8H
+yyWvUKjrw9EeDlautx3uBvM93C/c02+tht8kOdrDwTa1qp47Yb6HgzWs27P7
+wXwPBwvtF/c/IcHRHg7uc3veHi2Y7+F+4/0v5E7/wn8s7eHg+2uf5pjBfA8H
+j1jt4fWkl6U9HLx18Vbj1TDfw8G2Sn1VfvxlaQ/3Bz9PyXJKITDfw8Hn7kTq
+ysN8Dwe77dxil9zD0h4OHnnmYZw+zPdwcMHw2NaSbpb2cN24T08Kl1rBfA8H
+S+fPaHzxh6U9XPf///9oav4+MN/DwatCHUb2/mZpD9cjIIz5x5YomO/hYNsn
+lTeGw3wPB/sN/Zqf+YulPRz8s2tl8XSY7+HgrysGP7/3k6U93F/cw+l95Z1h
+voeDH28zcmrrYmkPB0/om1S8A+Z7OPhLrdHk/jDfw8EexZIVSZ0s7eF68XxR
+3umuD/M9HLytWm5k2Q+W9nCw7k3LDmuY7+Hge8kX6t98Z2kPB/dfpF7nD/M9
+3D88D5XmtDAw38PB0W9s5OI7WNrDwSFpfaw0Yb6Hg4ME188UfGNpDwcHvt8u
+Ox/mezgJhnwiMw8++8rSHg4uEglGe8N8Dweb6Zc87G1naQ8HO1/YEBcN8z0c
+bOozxGckzPdwkgzJ9j7vmNfG0h4Ovp842mUuzPdw8Oyfe4Pqv7C0h4NHeNde
+8IL5Hg5+19XxreczS3u4PgyJ3v914UGY7+HgqJEVJWow38PBRbmeZnmtLO3h
+4HWGz9/NhfkeDnZNVUxo+MTSHk7AkEe/h7usg/keDvbQfjvj30eW9nCw8aQ1
+BjEw38PBDwecMdGA+R4O1i+Kcy74wNIejmFIqd6UWAuY7+FgF4/Ily9aWNrD
+wW6uEcQP5ns4OFxR6woL8z0cy5DeKG/To80s7eFgr6uW73VgvoeDm07ePlH6
+nqU9HPx0cqOnLcz3cPCCPdsWfHjH0h6OY8iJ0IzZ22C+h4OPTVljIwfzPRwc
+eiZl09m3LO3h4H5la7KMYL6Hg61jU3ruvmFpDydk8PzuvNIF5ns4OMc1sqHz
+NUt7ONjAVcdjH8z3cPBM1SkyKjDfw8Gqp3Ju5r5iaQ8nYkjY+wOx82C+h4Pj
+f9zb/PwlS3s4+PUDLz8/mO/h4DW7XYKFMN/DwTHSWSknXrC0h+vLkOn+C16O
+h/keDs4qMRpX9ZylPRyc8NMnxhHmezhYaWSrdEcTS3s4+Obc88fCYb6Hk8LP
+l3eKyXCY7+HghsRnPy89Y2kPBwe9NaucB/M9HJw9u/n8i0aW9nCw2t1LpzfC
+fA8nzZC3IeezpWC+h4MDAiofnWpgaQ8HV2axMoYw38PBY43c7O/Vs7SHg11H
+PLvmBvM9nAy+v96eE/88ZWkPB6+fIFUaDfM9HPx8S6GLJsz3cPBia/9hxU9Y
+2sPBKZUT39nCfA/XjyFDPnRVtNaxtIeDLSsKru6G+R4OXuW16aYCzPdw8OOP
+Y95nP2ZpDyeLnyebWoV5MN/DwbfzVrm9fMTSHg5epva+LADmezh46fkFk2Rh
+voeDFzkfuZ7ykKU9XH+GGNqULZ8O8z0cvPZIpUzdA5b2cHA2OfNoHcz3cPBE
+l8UXGZjv4eD9Mo+STtxnaQ8nx5DLdiNSDGC+h4MVbMeX3K1laQ8HByuI2lbB
+fA8Hqxcljv9bw9IeDj5u/W1vHMz3cAMY0tbe3aUL8z0cHJp5dXPlPZb2cPDE
+5LH9V8B8DwfrvZl99eddlvZwsEKEaGs0zPdw8gz5me5rORbmezh4ktsWw/I7
+LO3h4JTbIyY5wHwPB+/86Wj2o5qlPRzsxun7RMF8DzeQIbZysedHw3wPB1/X
+C/1dcpulPRzsvfOfkz3M93DwMcV/TzpusbSHg18o71oVCfM93CCGGJ3ewY2G
++R4Olq3qKiqpYmkPB49JexduD/M9HJzvOtv9eyVLezh43iB5hyiY7+EGM6S+
+0dxNE+Z7OLj8ccvOspss7eHgCtUP2Q4w38PB7Iu5XZ0VLO3hhjBESkdiUTTM
+93BwmZZcsRbM93Dwlj9+5OYNlvZw8Ptro56ugPkeDlaOVtv9p5ylPdxQ3IeE
+1TPjYL6Hgyf//DxIH+Z7uP9dk9tTXcbSHg6eRi7/Wg3zPRxs6ftVJAnzPdww
+/H4EO+ueKGVpDwcfS+hZbQjzPRx8r77y0sMSlvZw8N81hQN9YL6Hg4d73I/o
+C/M9nAJ+PiVF8inFLO3h4JfLHC8SmO/hYKvY2yubrrO0h4MtGi1Gb4b5Hg7O
+sn75byDM93CK+P6o7fpysYilPRzcu0Gr3QLmezg4wquR+XCNpT0cnDcxctwe
+mO/hYNOuqetUYb6HU8Lv97P314uusrSHgzfJhKnbw3wPB+/IHXays5ClPRx8
+5c9RrRiY7+HgmzLc3XEw38MpMyRzkH3wnQKW9nDwo+kH53vAfA8H/809q8nC
+fA8HW52JG3b6Ckt7uP9t5Dx8Bsz3cMMZ8irpz6Smyyzt4eB5QnfXLTDfw8Fj
+TiSdHgLzPRwcFnmqKzefpT0cXM6tcbaG+R5uBEMSjT83tOWxtIeDp9rqeUbC
+fA8HDwvTltGC+R4OHvivqbwql6U9nAqeN9pnRK2G+R4Ozg9ftFYA8z0c3PFL
+yin5Ekt7OHjzxrWuM2C+h4N7tX2CnuewtIdTZchR6/5pQTDfw8FFQy0+KMB8
+Dwcb5gyfVpDN0h4OnmodcsYOpvtwDLHR3jyi8yIr3odjiKf/r4zDMN2Hw+eT
+k4TVBJjuwzGkv0ok8yCLFe/D4fnw85F762G6D8eQmj8q6bIw3YfD89Au1WOZ
+max4H44hirlxJxfAdB+OIRtuB+W1ZrDifTiGTPlT82IfTPfhcP+27VfWguk+
+HJ4vIjK9b19gxftwDPllO/6hB0z34fCfT2ngfBFM9+EYoj3Qqu5cOiveh8Pv
+R8BrfzOY7sMxpHp7pUbLeVa8D8eQlW5/PoXBdB8On+cuW26Mhuk+HEO25cy4
+WJnGivfhGGJy0DxrDUz34fD8MOlwKQfTfTiGfH45rDn1HCveh8PzZfWTEWYw
+3YfD55n+ba+WVFa8D4fnX6vPt8Nhug/HkFurpk0bA9N9OIakZuSX3Uphxftw
+DNFYbbvcE6b7cAwxvzuIk4LpPhzuver3ivSzrHgfjiHzT7XGW8B0Hw4/b/v+
+BH0+w4r34fD7pqK8MQqm+3D4+UxcsHMcTPfhGHLNLOJk7WlWvA+Hr5fDnRpf
+mO7DMWS7ovxAeZjuw+F5v3KZV24yK96HYwg5dfyxLUz34fA88OmJddcpVrwP
+h+eHZu7NEZjuwzFkfL1mqDFM9+EYslty8tRnSax4Hw6fB6m6zHaY7sMxxLev
+9KsRMN2Hw+f/+uqa0kRWvA+He44D6wrTfTj8fNm9esfAdB+OIXIuejLnTrLi
+fTh8HgZbzzWH6T4cQ2p7Zx1uPcGK9+Hw+zhc4nsUTPfh8LyuEbpaH6b7cPjn
+OdV8enicFe/D4f1Bun73Jpjuw+H3JzBRdxhM9+HwvPZxeOvVY6x4Hw7/vudt
+rjnBdB8O718SxokSMN2Hw/2cfO/wmaOseB8O38846RNzYboPh+dN96+XPyaw
+4n04/P53Br6LhOk+HJ5f9iaO0ofpPhyeb3xWBj46wor34XCvvhY2BcB0Hw6/
+f/bnbBVhug+H55nOUS+vx7PifTiGtPfX2+YC0304hgzqKtNmYboPh+ebHw1f
+0uJY8T4cnleW+pcvgOk+HD4f1+07/zWWFe/D4T7tVjoTC9N9OPz934+8aATT
+fTg8HzSfuNd0mBXvw+Hz+EFo7y6Y7sMx5FlXw0wNmO7D4Xk3Ne7I7RhWvA/H
+kOJx+f+8YboPh/fhVwZb5WG6D4efr34DhFcOseJ9ODzPC+amOsB0H44hh4fc
+XyoB0304hhyIv6CUEs2K9+EYklT3+Js5TPfhGPJRY15j20FWvA+H55MGybrD
+MN2Hw/Pc7N7XRjDdh2PIvgJjyRcHWPE+HN5H9mZPCIHpPhyeV2VWBIyB6T4c
+Q+IOz7x7L4oV78PhfW2jrYE/TPfh8PVhYrOGwXQfjiEnj/RMKY5kxftwDBm1
+Z1+DG0z34fD8qDJlX1+Y7sPhzy8VLry4nxXvw+H983q72hKY7sMxJH1dm6h7
+Hyveh8P905DokwzTfTh8PYhaPzOY7sMx5OwgS60ve1nxPhyen//stj8M0304
+/D6ZFx0zhuk+HEP2OHZ9eRnBivfh8PXar7s4DKb7cAyR0Xeu1oHpPhzeX87u
+WfwonBXvwzEkbdbJti0w3YfD+8Xqs8dVYboPh6+fe/zyqjBWvA/3/1+/XtsH
+pvtwDFkXqCM7GKb7cPjzp93uUxTKivfh8HmxaFZfN5juwzHkjGysmhRM9+EY
+wtVdtcjZw4r34fC+IpEbvgym+3AMqWrbXPcvhBXvw+He/xVNOgfTfTj8Pu5f
+kWoJ0304fP26No/t2s2K9+EYMifRuvgkTPfh8Hn0+v2qOTDdh8PziOqE4V+C
+WfE+HJ6fCye0xMJ0Hw6/L7LvyqfBdB+OIZ07Z2W/28WK9+Hw/OU9/2IkTPfh
+8P2a8qvEAKb7cAwZN3fem6adrHgfDs/73ycPCYXpPhxDNqaUOujCdB+OIUeu
+v75Ut4MV78Ph8zopXmkHTPfhGOKX+SxuNEz34RjyzyJTrXY7K96HY0jJC2FJ
+IEz34XAfbrd4q8J0Hw6fj37m425vY8X7cPh8nDZWwg+m+3B4Po8KeasI0304
+hmTcsa2/EcSK9+EY4u549MU6mO7DMUSUurBrMEz34Rii2t9HpWQrK96Hw/tE
+b5e9B0z34Rhy4dm7lAEw3YfDfelnILi2hRXvw+Ee/321YRVM9+Hw9Rrw4Vs/
+mO7D4f04b07Ilc2seB+OIeELuzRcYLoPx5CCuV0NUjDdh2OIT99ZSXmBrHgf
+DvfoX90mZ5juwzFk4eEsJxFM9+HwPKJ3y+5SACveh2PIBBMVF0eY7sPh+UE7
+exsH0304fJ64Bp7P3sSK9+Hw/bLa0LIcpvtw+H44HZvMwnQfDs8Lf9riL25k
+xftw+LyMWStaDtN9OLwPHJbZz8B0H44h671qRlz0Z8X7cPh+78m8YQ/TfTh8
+v6xTtzAw3YfD87lJPrnox4r34fB5ce3JsOUw3YdjSOBkYR8WpvtweJ9RMe25
+uIEV78Mx5E1zmNABpvtw+PfpqVHnYLoPx5AB94da5/iy4n04hng9cjroCNN9
+OIasCDz5QgjTfTg8f+g+Msldz4r34WD37ovOMN2Hw/vVEfkJUjDdh2OIgf7g
+m/k+rHgfDs8DZ/95uMB0H44hLWtqhveD6T4cvp+t298WeLPifTi8j6dKXV0F
+03043BOpDclyMN2Hw/tXVObRonWseB8Oz0Nnik57wHQfDp+/5ceKBsF0Hw7P
+f86zW0rXsuJ9OIb0tOWP9IbpPhxDvn9o9VGA6T4cft9vvLlz04sV78Ph5+NH
+vLEfTPfhcP+/MwUjYLoPh89r47FmdzxZ8T4cPt+mSrQEwnQfDt9f/7Ajo2C6
+D8eQc/YFyx54sOJ9OIZsXROjtQOm+3B4Phw4oJ82TPfh8H7eoC9R786K9+Fw
+vye0CUJhug/HkBsJc4ZNgOk+HEPuhk2c/nINK96Hw/ttYJ5fJEz34XBP31cU
+GMN0Hw7Prwtc+resZsX7cAzp1gwLiIXpPhxDDv7Qa5sJ0304fL6McwhoX8WK
+9+EYssSG6X8SpvtwDFn9XLNgPkz34fC8sbB8wy83VrwPB6vcn5oK0304hgQ9
+WDjEFqb7cHjfemMo2Qem+3B4X3uwr+eiKyveh8OfP9xU5AzTfTiGOM1xGiUD
+0304hujdrlt01YUV78MxRHrs+SgPmO7D4Xnz/aPGITDdh2PIlx02RjdXsuJ9
+OIY8CFBL9YfpPhxDtlhOHzUSpvtweB4IP33p/gpWvA+Hn8ezC613wnQfDv/+
+mlMlxsF0Hw7PM4fdS5qcWfE+HEMee9Ue2A/TfTg8P41f7zMFpvtwDNFcZ+r8
+0YkV78Phfp+c55wA0304/Pnzg3zMYLoPh+f9X08PdDmy4n043Bdth5IUmO7D
+4fvlJSmxBKb7cHg/M65axMB0H44h31TO5+Q6sOJ9OIacOnNmpBtM9+EYEmmR
+e0Yepvtw+M+f+NigfDkr3ofDXz+KebIBpvtweD5bbRKuBtN9OIYYfdw574E9
+K96HY4ik0U2FYJjuw+F5qFGqWx+m+3D4+y1f+PnVMla8D4fn2Zl7v0TDdB+O
+IYMVrvUSmO7DMWTk2pcq35ay4n04hqwp71iUDNN9OHyenP92yBqm+3AMmZtR
+/0YSpvtwDIlfctb0kh0r3ofD+8l46zxXmO7D4X347jODgTDdh2OI9SVy88YS
+VrwPh+dH322rN8J0H44hy2L3D9aA6T4c3r8ueNXV2bLifTiGnJ81JCUMpvtw
+eN/8uG+PIUz34fC8pHvT/8NiVrwPh/fHxDK/ozDdh8P9uLMteD5M9+EY8tv0
+e1K3DSveh8P394haTQZM9+EYIr+UkXGG6T4cvp7yCfb9YboPh89zh4bLpdas
+eB+OIaNvVKj7wXQfjiF1jXan1GG6D8eQXINInbpFrHgfjiFD3VxuhcF0Hw5/
+v18P/Y1gug/HkE0Rz8d9smLF+3AMuZ+y/fdxmO7DMWTDu4uPFsJ0Hw7Pv/W+
+1/9ZsuJ9ONyLIdcv58B0Hw6/TxMOlbjBdB8Oz3tlH58Ohuk+HL4/y2/8q1rI
+ivfh8PxySNFwK0z34fCf/2/rdh2Y7sMxZNgkg8cvFrDifTg8/9a0Gx+C6T4c
+Q6xclC6awnQfDt+fPbkTuyxY8T4cfh/u51WlwXQfDs/jz5XWOsB0H44h1abv
+h8vCdB+OISNO9HtVOp8V78PhfXznoRx/mO7D4X0iwjtmNEz34fDPX5S4u8Gc
+Fe/D4Xlmg+ruSJjuw+H5K/Rr9AyY7sPheWOs9MWOeax4Hw7Pxz/XNaXAdB8O
+P9/75BXsYboPh6/fzl+rZGC6D4fPP3+l0hIzVrwP9/9/P7FZyx+m+3AMqa2S
+OjsapvtwDAl2u6/TOJcV78MxxNHvZkUUTPfh8NfHNK+dCdN9ODxvuOqP7JzD
+ivfhcM92JbWkwXQfjiG6UfpFjjDdh8P72uhXSXIw3YdjyLYv6TEVs1nxPhzu
+X3BU7GaY7sPhfofsSdGB6T4cQ77GRt58ZcqK9+Hwvmh3+kcsTPfh8L7rWT7B
+HKb7cAwp9f248+8sVrwPh89j2UFNOTDdh2NI4jsTszUw3YfDz8+RNWWKMN2H
+w/PL7fD5tTNZ8T4c7s2IpDchMN2HY0jzlPN7jWC6D4f3rxunZ3whrHgfjiGX
+HCOY0zDdh2NI2wW7ejuY7sPhj9tJXZOG6T4cvv99TmWUzmDF+3AMeWk3KHMT
+TPfhGGL4261IC6b7cPh6RO9v/K+oswyvYtmaMNCTmSFYcEmQ4BLcvSG4e/CD
+Q3CX4B7cIbhbcAvu7u7uEgju9hW7V93v/jlP3XMgO7OnZXXXeut+CS/hw6H+
+OjramQFt+HCWDipRN7AStOHDWfrS0ncT/hb3Ej4c6o0F9Z5vhTZ8OEuPuTa8
+entow4ez9J7PPY+lhjZ8OEsHL89Y5WoxL+HDYf84acaDsdCGD4f3s+m+4Rra
+8OGwv9o9P/+Xol7Ch7P0p9q5vqyBNnw4vE8Xux9tDm34cNhfPmi+NCm04cNh
+PxLwY9LZIl7Ch8P81KLQuOHQhg+H+TlH8hmFoQ0fDvufErPXvS3sJXw4/PmS
+264shzZ8OOy37wd7N4Y2fDi8r2e2VEsAbfhweB4RkxafKOQlfDhLT6n0I8Zg
+aMOHs7Rf4Xfd80MbPhzq59yd30cW9BI+nKWLPOk6aAm04cPh+Uf/nLwBtOHD
+Wfp04a+H40EbPhzWgxI9Bxwr4CV8OMwfB9sFDoQ2fDhL/+h5MVk+aMOHw/fr
+vebXq/xewofDfJ7vQ9RiaMOHs3TllUvf1oc2fDjUv4n3/IkHbfhweB55Cvkd
+z+clfDhL39qcqMIgaMOHs3SFytWG5Yc2fDhLj9z48NTrvF7Ch0P9N+u0/zJo
+w4ez9JMId3QjaMOHw37h8IwfCaANH87Si3t2GXAqj5fw4bDfGzI19jBow4ez
+dPMFP8MLQxs+HD7PyJVB73N7CR8OzydqaoLV0IYPh/Vnyq7bzaANHw7zVUbf
+LcmgDR/O0l/abAq7kMtL+HDYr8QOGR8Kbfhwlo53odtEDW34cJZe1nHGgm85
+vYQPZ+nB8x7u2Qht+HAYDylqv2wHbfhw+PNLnqXzhzZ8OIyPqLCON3N4CR8O
+88meNoenQBs+HNa3E1UyV4I2fDhLpzxXfm4MaMOHw58fV8dvd3Yv4cNh/7Kv
+y5oe0IYPh/1b+pkVAqANHw7z14AjH58EeAkfztJqxNe186ENHw7ryc9sPetB
+Gz4c6o3FTSvGgzZ8OOzXCowPOJHNS/hwlj7ab1PKodCGD2fpgOyn/YpAGz4c
+xlP8a1k+ZvUSPhz2n8/PlVkLbfhw+D67be7UGtrw4fB9dxu4LBW04cNZunt4
+wMvrWbyED2fpp/f2FJ0CbfhwqO8uZZ1XCdrw4bD/rtDD24I2fDhLj/CaNmpv
+Zi/hw2F/f3aUTx9ow4fDz2tTeVUuaMOHw/w6/W7VV5m8hA+HP5+qSPRl0IYP
+h/rsZJNDTaANHw7jvXHZKUmhDR8O+5n5bzpdzOglfDis13Vr1x8HbfhwmO8q
+9ahRFtrw4SxdvGylen8zeAkfDvv9uFeDd0IbPpylrc4+43pAGz4c1pMc33dm
+hzZ8OKwfScd/eZ7eS/hwqM8+H9VL0osfrt+/931pWOP04oeDbhfh/ydJevHD
+QS/IWbzbxXTih4PeeOLD+3HpxA8XYuklVUsOKZdO/HDQN8em9oueTvxw0Omr
+Tj66O6344aC3NZ84oHda8cNBZ5qZpFTutOKH64/6aUeGhK/9xQ8HnXDWjg8r
+/MUPB30o2pn7zf3FDwe960jjW37+4ocbgPd7c9tH19OIHw66wZyXX6emET8c
+dIcq91NUSyN+OOgFs8tWjplG/HDQWWsnH3MktfjhBlp6XaWgK4NTix8OOmet
+XwFFU4sfDjp1Ma9pX1KJHw66zu3O9uZU4oeDjqUKjO6USvxwg/B+jQpKnCWV
++OGg3aIXNj5JKX446Msf5zVYlFL8cNA5Ru2K1zil+OGgmx/PcDlpSvHDDcb+
+cMLtpZf9xA8HPXjdjaGT/MQPB23/Td6psp/44aAX1p/X2vETP9w/PaVxh8O+
+4ocbgvE6NGjQYF/xw0EXij52QVFf8cNBj33x7vTXFOKHg47wGWNvTSF+OOg0
+tatX65pC/HBDLT17jF4akEL8cNBBExt4vUwufjjoP0Vn9VyeXPxwQ//5e768
+a55c/HDQq/70CEmVXPxwwzAfnY4d/3Yy8cNB/1q/d+usZOKHg640enjrOsnE
+DwcdN3ejdPGTiR8O+vqYUlFnk4ofbjh+Xpe8x8YmFT8c9OED2deUTyp+OGjf
+xtnnW0nFDwd9N03OeQeTiB8OelNUzlWDkogfbgQ+7/KAg0WTiB8OunTGtM+/
+JRY/HHS7mnFSRCQWPxx0FzeyQY/E4ocbifU/+44VuRKLHw563uJu0aISiR8O
+elyFRG3XJBI/HPR7a/6tdonEDwcduMttlDGR+OFGoT6qUufF44Tih4NesHDA
+sMUJxQ8HvTlsUJb/EoofDvq4X9Bdv4Tih4PuEV8tuJVA/HCjLb278eAOYQnE
+Dwft8/RE2XoJxA8HXXPKnYBECcQPB32mwvY0l+KLHw662Me6/pPjix8uFPVO
+3205qsUXPxx03EOXKsSOL364f3pHeJdTPuKHgy5ZpsjSUB/xw0GPqDHocTkf
+8cONwXg53iOXl4/44aD/Tk069nA88cNBZ1zY5t3QeOKHgw683qSljid+OOiW
+mX48+hNX/HBjLe01oFCXvXHFDwed5FBid0Bc8cNBv382cV2RuOKHg259Y9F/
+3+OIHw56/YgKqXbEET/cOEv3vTXsZe844oeDvn+iysH8ccQPB92t5NLln2KL
+Hw46IMfwmVtiix8OesDIl9O6xxY/3HhLlypweX7u2OKHgz6du/jWd7HEDwd9
+Izj99Q2xxA8HPffCSLtLLPHDQUfUb1o6Ryzxw03AevM5fOwbb/HDQW+b3e7+
+Wm/xw0EnLjJdd/QWPxz0kVNZ12fzFj/cRLxfOkvmyJjih4N+O3n8+vCY4oeD
+7rmpZqn2McUPB90krNeDLDHFDwddvdjncS9d8cNNQn04/Wzgalf8cNBxw346
+wa744aD/KzngRmZX/HDQu4dV2fbCET8cdIxGwQtWOeKHm2zp0IPnp7VzxA8H
+nXDjgBmZHfHDQd9J02npC1v8cNBT4i7Yu8oWPxx0rZ6xn7SzxQ83xdJbq25L
+ksUWPxz03pkz6r70Ej8c9OvK4YtWe4kfDjpH+3dfg73EDwf9KqpVo6xe4oeb
+aumv163Tryzxw0EvSXe23BpL/HDQ6y/sOtfBEj8cdI17p1oEWOKHg85b5UeM
+N0r8cNPwvqUot2GdEj8c9JaKa9p2VuKHg353K2NATiV+OOh157f9ehtD/HDQ
+D7LUvbkxhvjhpqO+iox+qFsM8cNBn0i2MyJPDPHDQW/d0mf7x+jih4MedqDI
+ka3RxQ8H3Tvw751e0cUPNwP1QKlD0QtGFz8cdMb9Q/J8iyZ+OOiIQwW77Iwm
+fjjohLWebA+JJn64mdhP9Rgeu1g08cNBf8mRoNPvv5bw4TB+x024uQ/a8OEs
+/XnSh5pDoA0fztL5ypW4Vgra8OEsvTKiUxsFbfhw+OergTGO/rGED4f6/XWH
+8FHQhg+HevlovqYVoA0fztJnh1xN6Q1t+HCoJ7NWfnn6tyV8OPzzzNQDE6AN
+H87ScXqtXlod2vDhML/nHD81PrThw+H9jllowuVflvDh8HN9wqfNgDZ8OKxn
+Ne8vD4I2fDhLx7975XByaMOHw3M4MPrN7Z+W8OGwP4j9Oe0CaMOHw3p9IXmr
+ZtCGD4ffz+/jxrTQhg9n6SrRB8V8+sMSPhx+zpTtnVZCGz4cxu/deXeDoQ0f
+DvPnt6wNAqANH87S3z81fRD13RI+nKXbPMvfYxO04cNZuu2DtfF7Qhs+HJ7D
+1wO7C0AbPpylJ5bs0u37N0v4cNjfnduaZw+04cPhv9s58e8gaMOHw+dI+uN6
+KWjDh7P04z8fd1vQhg+H33dUvzXHv1rCh8P8enT0irHQhg+H7+uK77qq0IYP
+h59zOs9+H2jDh0N9dOTknctfLOHDWTry+l2vWdCGD4fPl6ZjkYbQhg+H8bqj
+W0hKaMOHw353d+TRB58t4cNhPgy87rcM2vDhLD28U+7BbaENHw6fo+7X11mh
+DR8O70vyjG2iPlnCh7P0xSu7Xm2CNnw4fJ4Vm0N6QRs+nKV3rPNOUhja8OGw
+XrsH9vz6aAkfDvX81fOdD3y0hA9n6aL5CwaMgDZ8OPy+FT5+Kg9t+HDYb+WI
+fjIWtOHDYVx4N111/oMlfDj8vN/2tGnQhg9n6Z1ZvocGQRs+HMbTptxjfaEN
+H87S13asm3n/vSV8OMwvLdqvXwpt+HD4HFdaXWwLbfhwmL9zz/mbDdrw4fDf
+L3QKv3tnCR/O0mXKhg/c+s4SPhz2Z+UHn+0LbfhwWI/ODs9cHNrw4Syd/+/W
+idGhDR8O773yiXbsrSV8OMxHMaYOGAtt+HD4vdMXsqpDGz6cpVNM/zszIbTh
+w6H+DXma70aUJXw4rLfRnt+dB234cJYOqxV9anNow4fDc5qbu2ZGaMOHw/vs
+1cs38o0lfDhLl9h/4t0GaMOHQz36McvFntCGD4d648KMPYWhDR8On3N4zC1/
+XlvCh7P0i8LDth6GNnw4S69O9/tAKLThw6He6tLnRlVow4fDc68a9SMBtOHD
+WXry66aZb0Rawoez9J5Bx5rNhzZ8OOyX86Vd1gLa8OFQb+kuHzJBGz4c9g+X
+wyu/eWUJHw7zov+lDZuhDR8OP7fJo1R9oQ0fztL+u26EFYc2fDh8Dx03p1TQ
+hg+H32d1x3UnXlrCh7P02hVWhYnQhg+HcR/W501taMOHw7iJODQ/ObThw+H9
+L/i4/v0XlvDh8PNqXku1HNrw4VBPFpv9tj204cNhvObJcjoXtOHDoR5qP3zT
+l+eW8OHw3FMtX7IH2vDhLB07dNyCYdCGD4fx8jDv8grQhg/37z57bkRcaMOH
+s3S2WvsvXXlmCR8O38/9ed/nQBs+HPZXlXNnaw5t+HAY15f7tc0Ebfhwlv6w
+pcf6N08t4cPhvc7mF20rtOHDWTp5366NQ6ANHw6/x81OhzW04cNh/E2In9+B
+Nnw4S1e7Vn/T2SeW8OHwnn3UhaZDGz6cpX+mP36yIbThw+HvXfeitT+04cNZ
+utH5JbFfPLaED4f98JkPe9dDGz4cPu/zq/16QRs+HPaLrSvqYtCGD4fnOKZS
+fAVt+HB4n8KuvT75yBI+HNbb668uTYY2fDjMG+NGHA6CNnw4rJe/Fu1LBW34
+cJae1aX4kacPLeHDYT4KCLqyFtrw4TCf9I+M6gFt+HB4jsu+JiwKbfhw2D+/
+7RsYA9rw4Sw9cGXHgScfWMKHw3qR+MLBydCGD4d6e/gin/rQhg+H51rsdnBq
+aMOHQz0ybuDZZ/ct4cPhOe8bUXQ9tOHDYV1PHbWlF7Thw1m64++IAsWhDR8O
++4Nldw5b0IYP9+85N2505p4lfDjM36F5f0+DNnw4S/dp8d/qRtCGD4fnVuru
+f+mgDR/O0pd7haeJvGsJH87Sx6ofidwMbfhwll6TJvPBEGjDh8PfX+TyotLQ
+hg+H8RJ1aKw3tOHD/bsv+DTo0h1L+HD4/Xu2HjgH2vDh8H69TjCqBbThw2Fe
+qvojLCu04cNhP/YmWcSH25bw4bBvSNPx7i5ow4fDfqLY+7jDoQ0fDuvJ7OWV
+KkMbPhz2TRNGTU4IbfhwWOe6THlw+5YlfDhLR4UdLrIM2vDhUF80T7GwI7Th
+w+F7STstTn5ow4fDvJM/26jfNy3hw+H5fLrvHoM2fDj8vbvXz5gIbfhw2Hc9
+mR4QBG34cJYefXrS2dTQhg+H+ubsvL4vbljCh8M8Vm5n9k3Qhg+HeXH6o9f9
+oA0fDvV/4iQRpaENHw7zUqaaY2JBGz4c3sesU9pcuW4JHw77yoGXq86HNnw4
+1MeDE5dsA234cPj7p9YpkvO6JXw4/P1JJ5b8ds0SPhzmx677qx2ENnw4rKd/
+nrYdC234cPj7M/wdWxva8OEsPaO8u8MP2vDhLH3v5J+op1ct4cPhvfJ5kHMD
+tOHD4ecPXh3SF9rw4fDnB9Y/Xwra8OHwHnR9lT0WtOHDYd7Y23jmlSuW8OEw
+X55d6y6ANnw4rK/2jRFtoQ0fDp/v0m3v3NCGD2fpeGHb5vy4bAkfztLeh1rk
+OwJt+HB4f3c+uD4B2vDhUJ+8DBgZBG34cJZOuadMMX9ow4fDujQ/w+9Xlyzh
+w2Fe+nbm+NZLlvDhLB1SpNC8QdCGD4efe6FVSAVow4fDepmpRosE0IYPh/d3
+/dfady5awofDeLxcv/oKaMOHw3O0u9XpCm34cHgPI4q3LAJt+HB4b2rv6W9B
+Gz4c6prqr+afu2AJHw5/f4qjJ8OgDR8O9VKmSn9bQBs+HNa/l71LZIc2fDi8
+NxcrjP563hI+HOqlOntvHoQ2fDj8uecX84+HNnw47Kd+DZ9bD9rw4SzdP9ZF
+b39ow4dD/RwaMTzynCV8OEsPepXbjoA2fDiMi1V66hBow4fDfrbQg0yVoQ0f
+DuM0UdzjiaENHw7PZcvxLg/OWsKHs/SGSd5p10AbPpylN/pfudsL2vDhMG4e
++y/V0IYPh/1kzffdYkEbPhzG85OSla6dsYQPh3+fIlbAYmjDh8P+rnONpB2h
+DR8O/3+TOLELQhs+HD5vq5LeMaANHw71mXoS/+xpS/hw+P0jvqUNgzZ8OOzn
+/oQUbwlt+HCWPt6gXfMc0IYPh/Wu4r6J309ZwofD71M15OgRaMOHQx3zYrbX
+5FOW8OH+nW+nqN4I2vDhLP3w2ffFGaENHw7ju0b+P+9PWsKHw+dqdKrlXmjD
+h8P+ZmzEpVBow4fD/rTF10p1oA0fDt9j8NgzqaENHw51UvpOQZH4p+HD/f8/
++f/zv+Of49/Dv5c/hz+Xn4Ofi5+Tn5u/B38v/p78vfkc+Fz4nPjc+Bz5XPmc
++dz5PfB74ffE743fI79Xfs/83vke8L3ge8L3hu8R3yu+Z3zv+B7yveR7yveW
+7zHfa77nfO85DjguOE44bjiOOK44zjjuOA45LjlOOW45jjmuOc457jkPcF7g
+PMF5g/MI5xXOM5x3OA9xXuI8xXmL8xjnNc5znPc4D3Je5DzJeZPzKOdVzrOc
+dzkPc17mPM15m/M453XO85z3uQ5wXeA6wXWD6wjXFa4zXHe4DnFd4jrFdYvr
+GNc1rnNc97gOcl3kOsl1k+so11Wus1x3uQ5zXeY6zXWb6zjXda7zXPe5D+C+
+gPsE7hu4j+C+gvsM7ju4D+G+hPsU7lu4j+G+hvsc7nu4D+K+iPsk7pu4j+K+
+ivss7ru4D+O+jPs07tu4j+O+jvs87vu4D+S+kPtE7hu5j+S+kvtM7ju5D+W+
+lPtU7lu5j+W+lvtc7nu5D+a+mPtk7pu5j+a+mvts7ru5D+e+nPt07tu5j+e+
+nvt87vtZB7AuYJ3AuoF1BOsK1hmsO1iHsC5hncK6hXUM6xrWOax7WAexLmKd
+xLqJdRTrKtZZrLtYh7EuY53Guo11HOs61nms+1gHsi5knci6kXUk60rWmaw7
+WYeyLmWdyrqVdSzrWta5rHtZB7MuZp3Mupl1NOtq1tmsu1mHsy5nnc66nXU8
+63rW+az7eQ7AcwGeE/DcgOcIPFfgOQPPHXgOwXMJnlPw3ILnGDzX4DkHzz14
+DsJzEZ6T8NyE5yg8V+E5C89deA7Dcxme0/Dchuc4PNfhOQ/PfXgOxHMhnhPx
+3IjnSDxX4jkTz514DsVzKZ5T8dyK51g81+I5F8+9eA7GczGek/HcjOdoPFfj
+ORvP3XgOx3M5ntPx3I7neDzX4zkfz/14DshzQZ4T8tyQ54g8V+Q5I88deQ7J
+c0meU/LckueYPNfkOSfPPXkOynNRnpPy3JTnqDxX5Tkrz115DstzWZ7T8tyW
+57g81+U5L899eQ7Mc2GeE/PcmOfIPFfmOTPPnXkOzXNpnlPz3Jrn2DzX5jk3
+z715Ds5zcZ6T89yc5+g8V+c5O8/deQ7Pc3me0/Pcnuf4PNfnOT/P/XkPwHsB
+3hPw3oD3CLxX4D0D7x14D8F7Cd5T8N6C9xi81+A9B+89eA/CexHek/DehPco
+vFfhPQvvXXgPw3sZ3tPw3ob3OLzX4T0P7314D8R7Id4T8d6I90i8V+I9E++d
+eA/FeyneU/HeivdYvNfiPRfvvXgPxnsx3pPx3oz3aLxX4z0b7914D8d7Od7T
+8d6O93i81+M9H+/9eA/Ie0HeE/LekPeIvFfkPSPvHXkPyXtJ3lPy3pL3mLzX
+5D0n7z15D8p7Ud6T8t6U96i8V+U9K+9deQ/Le1ne0/Lelve4vNflPS/vfXkP
+zHth3hPz3pj3yLxX5j0z7515D817ad5T896a99i81+Y9N++9eQ/Oe3Hek/Pe
+nPfovFfnPTvv3XkPz3t53tPz3p73+LzX5z0/7/3pA6AvgD4B+gboI6CvgD4D
++g7oQ6AvgT4F+hboY6CvgT4H+h7og6Avgj4J+iboo6Cvgj4L+i7ow6Avgz4N
++jbo46Cvgz4P+j7oA6EvhD4R+kboI6GvhD4T+k7oQ6EvhT4V+lboY6GvhT4X
++l7og6Evhj4Z+mboo6Gvhj4b+m7ow6Evhz4d+nbo46Gvhz4f+n7oA6IviD4h
++oboI6KviD4j+o7oQ6IviT4l+pboY6KviT4n+p7og6Ivij4p+qboo6Kvij4r
++q7ow6Iviz4t+rbo46Kviz4v+r7oA6MvjD4x+sboI6OvjD4z+s7oQ6MvjT41
++tboY6OvjT43+t7og6Mvjj45+ub+56MTXx19dvTd0YdHXx59evTt0cdHXx99
+fvT90QdIXyB9gvQN0kdIXyF9hvQd0odIXyJ9ivQt0sdIXyN9jvQ90gdJXyR9
+kvRN0kdJXyV9lvRd0odJXyZ9mvRt0sdJXyd9nvR90gdKXyh9ovSN0kdKXyl9
+pvSd0odKXyp9qvSt0sdKXyt9rvS90gdLXyx9svTN0kdLXy19tvTd0odLXy59
+uvTt0sdLXy99vvT90gdMXzB9wvQN00dMXzF9xvQd/8+HLL5k+pTpW6aPmb5m
++pzpe6YPmr5o+qTpm6aPmr5q+qzpu6YPm75s+rTp26aPm75u+rzp+6YPnL5w
++sTpG6ePnL5y+szpO6cPnb50+tTpW6ePnb52+tzpe6cPnr54+uTpm6ePnr56
++uzpu6cPn758+vTp26ePn75++vzp+2cfAPsC2CfAvgH2EbCvgH0G7DtgHwL7
+EtinwL4F9jGwr4F9Dux7YB8E+yLYJ8G+CfZRsK+CfRbsu2AfBvsy2KfBvg32
+cbCvg30e7PtgHwj7Qtgnwr4R9pGwr4R9Juw7YR8K+1LYp8K+FfaxsK+FfS7s
+e2EfDPti2CfDvhn20bCvhn027LthHw77ctinw74d9vGwr4d9Puz7YR8Q+4LY
+J8S+IfYRsa+IfUbsO2IfEvuS2KfEviX2MbGviX1O7HtiHxT7otgnxb4p9lGx
+r4p9Vuy7Yh8W+7LYp8W+LfZxsa+LfV7s+2IfGPvC2CfGvjH2kbGvjH1m7Dtj
+Hxr70tinxr419rGxr419bux7Yx8c++LYJ8e+OfbRsa+OfXbsu2MfHvvy2KfH
+vj328bGvj31+7PtjHyD7AtknyL5B9hGyr5B9huw7ZB8i+xLZp8i+RfYxsq+R
+fY7se2QfJPsi2SfJvkn2UbKvkn2W7LtkHyb7Mtmnyb5N9nGyr5N9nuz7ZB8o
++0LZJ8q+UfaRsq+UfabsO2UfKvtS2afKvlX2sbKvlX2u7HtlHyz7Ytkny75Z
+9tGyr5Z9tuy7ZR8u+3LZp8u+Xfbxsq+Xfb7s+2UfMPuC2SfMvmH2EbOvmH3G
+7DtmHzL7ktmnzL5l9jGzr5l9zux7Zh80+6LZJ82+afZRs6+afdbsu2YfNvuy
+2afNvm32cbOvm33e7PtmHzj7wtknzr5x9pGzr5x95uw7Zx86+9LZp86+dfax
+s6+dfe7se2cfPPvi2SfPvnn20bOvnn327LtnHz778tmnz7599vGzr599/uz7
+JweAXAByAsgNIEeAXAFyBsgdIIeAXAJyCsgtIMeAXANyDsg9IAeBXARyEshN
+IEeBXAVyFshdIIeBXAZyGshtIMeBXAdyHsh9IAeCXAhyIsiNIEeCXAlyJsid
+IIeCXApyKsitIMeCXAtyLsi9IAeDXAxyMsjNIEeDXA1yNsjdIIeDXA5yOsjt
+IMeDXA9yPsj9IAeEXBByQsgNIUeEXBFyRsgdIYeEXBJySsgtIceEXBNyTsg9
+IQeFXBRyUshNIUeFXBVyVshdIYeFXBZyWshtIceFXBdyXsh9IQeGXBhyYsiN
+IUeGXBlyZsidIYeGXBpyasitIceGXBtybsi9IQeHXBxycsjNIUeHXB1ydsjd
+IYeHXB5yesjtIceHXB9yfsj9IQeIXCBygsgNIkeIXCFyhsgdIoeIXCJyisgt
+IseIXCNyjsg9IgeJXCRykshNIkeJXCVylshdIoeJXCZymshtIseJXCdynsh9
+IgeKXChyosiNIkeKXClypsidIoeKXCpyqsitIseKXCtyrsi9IgeLXCxyssjN
++h9HS7ha5GyRu0UOF7lc5HSR20WOF7le5HyR+0UOGLlg5ISRG0aOGLli5IyR
+O0YOGblk5JSRW0aOGblm5JyRe0YOGrlo5KSRm0aOGrlq5KyRu0YOG7ls5LSR
+20aOG7lu5LyR+0YOHLlw5MSRG0eOHLly5MyRO0cOHbl05NSRW0eOHbl25NyR
+e0cOHrl45OSRm0eOHrl65OyRu0cOH7l85PSR2/c/jp9w/cj5I/ePHEByAckJ
+JDeQHEFyBckZJHeQHEJyCckpJLeQHENyDck5JPeQHERyEclJJDeRHEVyFclZ
+JHeRHEZyGclpJLeRHEdyHcl5JPeRHEhyIcmJJDeSHElyJcmZJHeSHEpyKcmp
+JLeSHEtyLcm5JPeSHExyMcnJJDeTHE1yNcnZJHeTHE5yOcnpJLeTHE9yPcn5
+JPeTHFByQckJJTeUHFFyRckZJXeUHFJySckpJbeUHFNyTck5JfeUHFRyUclJ
+JTeVHFVyVclZJXeVHFZyWclpJbeVHFdyXcl5JfeVHFhyYcmJJTeWHFlyZcmZ
+JXeWHFpyacmpJbeWHFtybcm5JfeWHFxyccnJJTeXHF1ydcnZJXeXHF5yecnp
+JbeXHF9yfcn5JfeXHGBygckJJjeYHGFyhckZJneYHGJyickpJreYHGNyjck5
+JveYHGRykclJJjeZHGVylclZJneZHGZymclpJreZHGdyncl5JveZHGhyocmJ
+JjeaHGlypcmZJneaHGpyqcmpJreaHGtyrcm5JveaHGxyscnJJjebHG1ytcnZ
+JnebHG5yucnpJrebHG9yvcn5JvebHHBywckJJzecHHFyxckZJ3ecHHJyyckp
+J7ecHHNyzck5J/ecHHRy0clJJzedHHVy1clZJ3edHHZy2clpJ7edHHdy3cl5
+J/edHHhy4cmJJzeeHHly5cmZJ3eeHHpy6cmpJ7eeHHty7cm5J/eeHHxy8cnJ
+JzefHH1y9cnZJ3efHH5y+cnpJ7efHH9y/cn5J/efOQDMBWBOAHMDmCPAXAHm
+DDB3gDkEzCVgTgFzC5hjwFwD5hww94A5CMxFYE4CcxOYo8BcBeYsMHeBOQzM
+ZWBOA3MbmOPAXAfmPDD3gTkQzIVgTgRzI5gjwVwJ5kwwd4I5FMylYE4FcyuY
+Y8FcC+ZcMPeCORjMxWBOBnMzmKPBXA3mbDB3gzkczOVgTgdzO5jjwVwP5nww
+94M5IMwFYU4Ic0OYI8JcEeaMMHeEOSTMJWFOCXNLmGPCXBPmnDD3hDkozEVh
+TgpzU5ijwlwV5qwwd4U5LMxlYU4Lc1uY48JcF+a8MPeFOTDMhWFODHNjmCPD
+XBnmzDB3hjk0zKVhTg1za5hjw1wb5tww94Y5OMzFYU4Oc3OYo8NcHebsMHeH
+OTzM5WFOD3N7mOPDXB/m/DD3hzlAzAViThBzg5gjxFwh5gwxd4g5RMwlYk4R
+c4uYY8Rco//lHEnuEXOQmIvEnCTmJjFHiblKzFli7hJzmJjLxJwm5jYxx4m5
+Tsx5Yu4Tc6CYC8WcKOZGMUeKuVLMmWLuFHOomEvFnCrmVjHHirlWzLli7hVz
+sJiLxZws5mYxR4u5WszZYu4Wc7iYy8WcLuZ2MceLuV7M+WLuF3PAmAvGnDDm
+hv0vR0xyxZgzxtwx5pAxl4w5ZcwtY44Zc82Yc8bcM+agMReNOWnMTWOOGnPV
+mLPG3DXmsDGXjTltzG1jjhtz3Zjzxtw35sAxF445ccyNY44cc+WYM8fcOebQ
+MZeOOXXMrWOOHXPtmHPH3Dvm4DEXjzl5zM1jjh5z9Zizx9w95vAxl485fczt
+Y44fc/2Y88fcP+YAMheQOYHMDWSOIHMFmTPI3EHmEDKXkDmFzC1kjiFzDZlz
+yNxD5iAyF5E5icxNZI4icxWZs8jcReYwMpeROY3MbWSOI3MdmfPI3EfmQDIX
+kjmRzI1kjiRzJZkzydxJ5lAyl5I5lcytZI4lcy2Zc8ncS+ZgMheTOZnMzWSO
+JnM1mbPJ3E3mcDKXkzmdzO1kjidzPZnzydxP5oAyF5Q5ocwNZY4oc0WZM8rc
+UeaQMpeUOaXMLWWOKXNNmXPK3FPmoDIXlTmpzE1ljipzVZmzytxV5rAyl5U5
+rcxtZY4rc12Z88rcV+bAMheWObHMjWWOLHNlmTPL3Fnm0DKXljm1zK1lji1z
+bZlzy9xb5uAyF5c5uczNZY4uc3WZs8vcXebwMpeXOb3M7WWOL3N9mfPL3F/m
+ADMXmDnBzA1mjjBzhZkzzNxh5hAzl5g5xcwtZo4xc42Zc8zcY+YgMxeZOcnM
+TWaOMnOVmbPM3GXmMDOXmTnNzG1mjjNznZnzzNxn5kAzF5o50cyNZo40c6WZ
+M83caeZQM5eaOdXMrWaONXOtmXPN3GvmYDMXmznZzM1mjjZztZmzzdxt5nAz
+l5s53cztZo43c72Z883cb+aAMxecOeHMDWeOOHPFmTPO3HHmkDOXnDnlzC1n
+jjlzzZlzztxz5qAzF5056cxNZ446c9WZs87cdeawM5edOe3MbWeOO3PdmfPO
+3HfmwDMXnjnxzI1njjxz5Zkzz9x55tAzl5459cytZ449c+2Zc8/ce48fDjpD
+zbcb40S3jR8Outb5NMGDoT1+OOi/7yMLvof2+OGg/W7USdkyhm38cF+V9ln8
+X/Kr0B4/HPThjj4B5ZVt/HDQMxt1qLsT2uOHg243seeMbJZt/HDQ0zPmej0f
+2uOH+6L0+7JLGvh42cYPB3097vm7w6A9fjjoJMt29f0M7fHDQUfLEpy1nW0b
+Pxx0i4P3ME/axg/3WenQKakvVXVs44eDLrYv54kD0B4/HPSxjgmv5nVt44eD
+fnPo3LcV0B4/HPTXZ63zpohpGz/cJ6VX/b0zYgK0xw8HXSZfoTfRvG3jh4Oe
+uLZ/x57QHj8c9MnJa2K8gPb44aAjYp7Z0CiWbfxwH5WerR/2OA/t8cNB5/vv
+bbXA2Lbxw0GfmvRDb4f2+OGgU/+2K2WLYxs/3Ael+1xK1n4htMcPBz2raL7F
+CePaxg8HfbxVk7ejoT1+OOhzIWF1fkF7/HDQX8JfXugazzZ+uPd439PVbfUU
+2uOHg24U/37chj628cNBRywbd+EctMcPB9059n+rA+Pbxg8H3aBvk9k7oD1+
+uHf4ecnGLcqewDZ+OOjwVK/3LYH2+OGgK+8e8SlpQtv44aCnp2lQagK0xw8H
+/WpIp+UxEtnGD/dW6ULxjqXpC+3xw0G//tNmyxtojx8O+vvwOk1aJraNHw76
+2qWpqW5Ce/xw0EPSZPxaLYlt/HBRSvdbkuD5EWiPHw762MTGUUWS2sYPB/3Z
+142zCdrjh4NOMjR5YKZktvHDQR/+PH3yfGiPH+6N0ik2D/qcMLlt/HDQ+6Ju
+dRsL7fHDQd95ss4regrb+OGgM5z7ubEPtMcPB335yYkeUdAeP9xrpZe3TF6t
+ta9t/HDQT0a+L3kH2uOHg242um7F2n628cNBd1lWsf0paI8fDvpj8ktLSqW0
+jR8uEuM7w8cPO6A9fjjowdamhrlS2cYPB/3hc7xbK6E9fjjo9YUSdUud2jZ+
+OGgd+1DqWdAeP9wrpfdsTPksbhrb+OGgD7fJdmQUtMcPBz2oy9udf6A9fjjo
+hbE7H+/tbxs/3Eul2wxZ8zoK2uOHg54TZ22Wtmlt44eDnvy1x6D70B4/HHSG
+YU5kUDrb+OGgj7xv3+UCtMcP9wLjf9ySWBXT28YPBz1k+ub9B6E9fjjo7LUX
+jiuSwTZ+OOjocTt12QLt8cNBp42dpkNARtv44Z5jfM/YM2g5tMcPB73ifbnw
+VJls44eDTtL+8JtZ0B4/HPTr8gUqxs9sGz8cdMKrS/eMhfb44Z5hPm3kU8HK
+Yhs/HPS2TEMiB0J7/HDQx4Z/XfEV2uOHg667JySkW1bb+OGgfVLFbRMJ7fHD
+PVW6wJdtwa2z2cYPBz1rau+R96E9fjjoSaXq7GwQYBs/HHSsWrW9rkB7/HDQ
+YxP2Da6W3TZ+uCdKJ7t27OkJaI8fDrruq8CQwBy28cNBd178MeM+aI8fDjp9
+1VuRhXLaxg8HfbzkrxNboD1+uMdKFznTZF+OXLbxwz3+N7+rM6uhPX446A/R
+3r9Pn9s2fjjoqzWz5VoE7fHDQR+ZEDHKN49t/HCPsL/wnvV5JrTHDwddPdXF
+AQny2sYPB50yTbDfRGiPHw76v7Ytr8TMZxs/3EP8+ypHlo2E9vjhoL9knDwh
+en7b+OGgfWuenjgQ2uOHg66dPmTVd2iPHw76249Ft3oVsI0f7oHSP3KWyfAB
+2uOHg76Xql1o54K28cNB70sX34qE9vjhoCvMDQxrW8g2fjjoQ49U2SfQHj/c
+faXd+vW8mxe2jR8OemyDki/uQnv8cNC1yh2+17CIbfxw0L8HPntzHdrjh4M+
+1Gxd4rpFbeOHu6d0p+p+9S5Be/xw0C3XFNxQvZht/HDQi68p/7PQHj8c9O68
+I9dUKm4bPxz03QwHqp2A9vjh7mI/6LPTu1wJ2/jhoF/U73n/MLTHDwedseWX
+M6VK2sYPB514RuDl/dAePxz0wzrNPhTXtvHD3VG6asyaWfdAe/xw0NuSp+hf
+pJRt/HDQCaL2P9kB7fHDQX+JKte2YGnb+OGgJ4zcEiMC2uOHu630Il/v7fkC
+beOHg57qW33EFmiPHw66+btR7fOUsY0fDnq1V0TwJmiPHw564fEHQ3OVtY0f
+7hbGw9JYWzZAe/xw0EO9iv7OUc42fjjoF417NFsP7fHDQX9OuvNO9vK28cNB
+v1vu030dtMcPdxPzZe9BabJXsI0fDvr2D/vFWmiPHw6689L1JwIq2sYPB53v
+Ub9Da6E9frgb2M9k6XQ1oJJt/HDQbV+Pj74O2uOHg+644G657JVt44eDvrSl
+5fJ10B4/HHT3xelS5qhiGz/cdYzXO/7r10N7/HDQr263qJ+zqm38cNAzE0f6
+boT2+OGgM0Xf/y1XNdv44aDDkjyO2gTt8cNdU3r0uUZ/8lS3jR8OOs+S7Jm2
+Qnv8cND9YzUJzl/DNn446Ccjoo5EQHv8cNBTxjwrXKimbfxwV7E/mFHxxE5o
+jx8OOiS9X9eitWzjh4POvrVF7r3QHj8cdKJD/rFL1raNHw562Jkm0Q5Ce/xw
+V5TuVss3bmAd2/jhoPtfbpr/KLTHDwf98HxA7/J1beOHgx5zYsyFk9AePxz0
+rxIhZarUs40f7rLSwdtiXDoH7fHDQa9Yn6lfzSDb+OGgs61/U/gKtMcPB52i
+UINEQfVt44eDLnKxs3sL2uOHu4T3+0+eJE0a2MYPB92qfHjxB9AePxx08dw3
+B7VsaBs/HPTTwCM3n0F7/HD//nuna7X2jWzjh7uI8W89vPMG2uOHg254xHdk
+t8a28cNBZ7+YvvxnaI8fDnrytmjp+jWxjR/ugtI3fm1J9hva44eDjp43MPPQ
+prbxw0FvebK5ptd/tvHDQZdY6MwYA+3xw0HPe1f2Q5xmtvHDncf717Z78FRo
+jx8O2mfalB9JmtvGDwfdRa1aPhfa44eDzl9xV/s0LWzjh4Pe+vlMxeXQHj/c
+OaWfzXlSOmtL2/jhoHuf9qq3Adrjh4PekSL/8HytbOOHg17r1+fUTmiPHw46
+RpsL2Uq2to0f7izen/FlVx6B9vjhoCPT3y5WqY1t/HDQxY/PeH0e2uOHg+7s
+HRJRt61t/HDQU0aNn3Mb2uOHO4P9zZWLYc3b2cYPB914QrVNz6E9fjjoaZWd
+J52CbeOHg765OlruT9AePxx0eGDJsJD2tvHDncZ8sO148ugdbOOHg647d8G2
+0dAePxz03GknOsTtaBs/HHRgsUrFZkB7/HDQOl/mTH6dbOOHO6V0Lt+2AUuh
+PX446LZTYlXJ2tk2fjjolwVTjNoE7fHDQXfcOOtWoS628cNBN5ofWvEAtMcP
+d1Lp84vfXyrf1TZ+OOjZza/3Pg/t8cNBFxlaIn9QN9v44aBfLM8W9z60xw8H
+Pb7X0uhtu9vCh8N+cmZ4vLfQhg+H8bmxbKE+PWzhw2G+6tCv/19ow4fD+9a1
+0s3RPW3hw+H5t9tb06eXLXw4pbv+vvYkDNrw4TC/3Zo71b+3LXw4pTus8WkU
+Dm34cEoX9CtSIm8fW/hwSv+86VdsD7Thw+F5TN1bp2xfW/hw2A98TBN6Dtrw
+4VC/rat8LaifLXw4pXd2KV3yIbThwynd5FXMw+1DbOHDKe11fkXzT9CGD4f3
+93xK30H9beHDYTws7PHWGWALHw7zxbu196ZAGz6c0jn6nXvhO9AWPpzSp1/f
+ibMC2vDhFB7y3aq5BtnCh8N60unyql3Qhg+H+f3FkVRlB9vCh4POErHhPLTh
+w6H+f7mmUcMhtvDh8P49DE/7FNrw4VDfnN5udR1qCx9O6b4tr0f/CW34cKgn
+WsZNMWqYLXw47I9Cm1eNP9wWPhzmz0lX586DNnw4pf0LdPHKPMIWPhzq7yJ5
+x26BNnw4/D6NM2YtOdIWPhzq4UZVn56CNnw4pdt9W7u73ihb+HB4/p8qrnsE
+bfhwSi9IkGVX59G28OGw/0pc/dEPaMOHw/jbfyDD6FBb+HBY368NG5FwjC18
+ODyPNHP+LIQ2fDjs95vHmh4w1hY+nNITm90usxPa8OGUVs/ixi83zhY+HP7+
+neHfLkEbPpzSA5Zt+fnfeFv4cNjfd82R4g204cMpXe956johE2zhw+HnXx2/
+2ploCx8O+32vkBQzoA0fDvNh2dcr0k6yhQ+ndNMWL6pthDZ8OKVnZO2RoMRk
+W/hwSufuNOX9aWjDh1M69o/yrxtMsYUPh/G4eG6MF9CGD6f0rvxT8vWeagsf
+DutbaPZh1jRb+HBKX+nQK3IqtOHDYX7a2qmr/3Rb+HBKRxXwjb8R2vDhlI57
+YtjZEjNs4cMpbZdYvfwstOHDKb2yy7TZjWfawofDfJGv3OpIaMOHQz3W+tiV
+kFm28OEwP99K5ucdZgsfDut559KDZ0MbPhzqvV/l/2SebQsfDu9j0xyzd0Ab
+PpzS67r/qF5hji18OKWdxJvS3oA2fDilN6YLit9uri18OIyHge99v0EbPhzm
+m+gjS4fOs4UPh3pycpKRyebbwodT+pH3mseroA0fDvVt7fJNCy+whQ+H9a7y
+u08noQ0fTmnrRvjKhgtt4cPhfbjTv3cktOHD4f0u3q75gEW28OHweR/1bBdn
+sS18OKxnG1aMWwBt+HAYrxNjnM65xBY+nNKp207IeBDa8OEwf/lXWVBrqS18
+OKUPrArM8wTa8OHw+Z71fdRrmS18OKWzHH+33lluCx8O+60CG2fNhjZ8ODwv
+/z3zsq2whQ+n9K3eyffthTZ8OKU3pz/7s/pKW/hwWE9S3Kn7CNrw4bDfrFj5
+TM9VtvDhlC63JPV/zmpb+HDYDyRpGncOtOHD4fuYE+tWQLgtfDily6bJfmg/
+tOHDKV14/vFjtdbYwofD+2E/eP4U2vDhlG5Rq3+Gfmtt4cOhvuqzYHDsdbbw
+4ZQe3Lnal4XQhg+ndKmck8fkXW8LH07pUVvaFT4ObfhwSi/5fMer0QZb+HBK
+73/3PioK2vDhUG8tWvtp2EZb+HBKX4yRIGnSTbbw4VA/JspUbw204cMpfezy
+u00lN9vCh8P40D2zXoE2fDjUu40i9rfbYgsfDutH+j3dfkMbPhz+/vlj9dSt
+tvDhMD+fyhiQaZstfDjUS+tn5NsDbfhwSjeoeqdBzQhb+HBK31/7d+4zaMOH
+Q7132frZf7stfDjUy8fe9Y6/wxY+nNLNJp+ItxLa8OGUjlZoytFiO23hw2G9
+Pl497BK04cNhva0QM7TdLlv4cFgfTxya/gfa8OGwHtQYum/6blv4cNgfvK3o
+lW2PLXw41Idb/IMPQhs+nNKtw+O8CtprCx8OP/9JgtAoaMOHw3zVtUDgyH22
+8OGUzttioK/fflv4cErXOPXaZwu04cNhP7hnTLpKB2zhw2E/UrlB7YfQhg+H
+9XNis0V9D9rCh8P6FrbM2+eQLXw4rCdDs05dCW34cHj/mn8tUPKwLXw4jIfq
+Pt+vQRs+nNLLW4fc6HzEFj4c1te9Ra7aR23hw2E+617v7QJow4fD+7nwUsaC
+x2zhw6GearG1/3low4dDvX4jWlTb47bw4ZSennrvwGgnbOHDod4Jiso6G9rw
+4bBeLZ79OfdJW/hwSp9LeeTuKWjDh1N6YFT3xy1P2cKHw3gvsMb+DW34cHh/
+U3QvP/O0LXw4pWPuO7M85xlb+HCov8sf8D8Jbfhw2M/drbm7xVlb+HBK91s5
+qvsvaMOHw/p1tmX5meds4cNhf9kvqnCu87bw4bC/u5Kt0ilow4fD/OXt37fV
+BVv4cErvLn/58B9ow4dDvbSjfPbZF23hw6FeGDt8a95LtvDhUM++GdfgHLTh
+w+H7jNfGL/iyLXw4zE9pk/5WV2zhwyk9MmjZzwXQhg+H8fYgQTJ8Y8KHw/z2
+vm2tq9CGD6f03n2rwrtes4UPh/V2wK00sa/bwodT+mvzGNtWQhs+HPaPyzO0
+DbxhCx8O9fSgigXvQxs+HOrTTD0y9L9pCx8O+8kbK3MnvWULHw7v29nXjbZA
+Gz4cPm+p8suq37aFD6d06W57vF9DGz6c0uXn1JwUescWPhz2Sz9j5clw1xY+
+nNKvL737cBDa8OHwfbfwutT0ni18OMynr6qd/wlt+HDYv6279Crsvi18OMyP
+UTPSF3hgCx9O6Vgf5g+4DG34cNhv/Hr7oetDW/hwmK/qTBkd95EtfDjUT3p0
+kbXQhg+H/WPM67EqPbaFD4fn9WXkz+fQhg+HerjW7JijntjCh8Ofb5ukQPqn
+tvDhsJ8aFmPoIWjDh8N4ftviVbNntvDhUO/+LNb9L7Thw6Ee+Dwj2YLntvDh
+lC6avcfdYi9s4cMpHfDx5oHb0IYPp/T2sPOHQl7awodTumrXBo+Tv7KFD4f1
+6+yAtDuhDR8Of94qOaR+pC18OKy37Zf/+gpt+HBKz6+7bdas17bw4ZS+kLJn
+zYJvbOHDod71fZ7lOrThw2F9XpHQv0+ULXw4zG8p/hZI+tYWPhz+/MX1HbZD
+Gz4c9ptZMu8PemcLH07p+gO75v4GbfhwGA8BEw6FvbeFD6d0upnDuxf+YAsf
+DvVe8galbkEbPhy+3+QJc/b/aAsfDvvxzxFF/T7ZwofD/JegUtu90IYPp3Sd
+Kxc3Nf1sCx9O6ckLa/tG+2ILHw77rVtXli6GNnw4pf9ENqwc+NUWPhzq32KR
+8Z9CGz7cv3p43NdR32zhw2F/VUL/yvzdFj4c5pcj8dKchjZ8OKxHef+26PTD
+Fj6c0iW/Jzwa76ctfDjsN4fVLrcZ2vDhlJ5a4vCzOr9s4cMpvWd+uxVfoQ0f
+TunfPhVHzvltCx8O9Yp3++HF/9jCh1M66e8Lix5AGz4cnmeT4XeH/7WFD4f9
+6cJRhTNFc4QPp/T1Ig+2noI2fDjUf8tnVO8c3RE+nNLb6q+NmSCGI3w47O/O
+ZHm8Ddrw4TDeByS800A5wodTuvGjzp9+Qxs+nNL/9S8VsMRyhA+n9Kwjk4eX
+83KED4f9QbEWP15BGz4c3rcWuydPsh3hw2G927a4XD7HET6c0ot2pvC7CW34
+cFjP3maLP8h1hA+H7+/WrQzpYjrCh8P4j5a94Qlow4fD+HuWaX0nb0f4cEpn
+TXDRP2EsR/hw2E/HzrFtB7Thw2G/3bhMu6axHeHDYb2cmLyoFccRPhzWq6xb
+sodDGz4c5qt9SXSNuI7w4bA/vlax+xdow4fD8/5b88i8eI7w4ZQeeypfgUAf
+R/hw2G8e+3r8JbThw+H7G7Go3+T4jvDhlK4+M1/lggkc4cPheU3eWewetOHD
+YT72yl9tZEJH+HCoz8avHRyQyBE+HN63XRkuXoY2fDilIzKtKN0/sSN8OLy/
+HfNeSZvEET4c9g9pL488BW34cFgfn4wN6p7UET4c5rdqzSqmSOYIH07pbL/q
+NzoEbfhwSoeOD5nQPrkjfDilCy44dT9BCkf4cNiPX6xWaze04cMpffVY7Kct
+fR3hw6E+9PcOi+3nCB8O+8vhVTpsgzZ8OKwnU282bZrSET6c0qM/RHR3UjnC
+h8N6VvnVio3Qhg+ndM0y/X42SO0IH07p7yODu6o0jvDh8Lx2HfBaB234cPj+
+x43YXc/fET6c0nFW7poSLa0jfDilz+xoFxoObfhwmA+7TF9YJ50jfDiln/cL
+vP4H2vDhlP4U2j/n6vSO8OGwPlctvap2Bkf4cKhP+88v9Qfa8OGwvz069eeq
+jI7w4ZQOepDpWu1MjvDhlK40rMXFP9CGD6d0xRYV3qzO7AgfDvV8oftZ6mZx
+hA+HendfwOhoWR3hw+F5rSvgtRba8OHw/h2KsSwomyN8OKzPO2a2VAGO8OHw
+/VX/FrgB2vDhMB8FZi/bKLsjfDj8+6CibZ0cjvDhsB+smDl8C7Thw+H9vPc9
+TrOcjvDh8L7c2DY1di5H+HCYz342L7QT2vDh8D7Esf62zu0IHw77qWuLnyXI
+4wgfDvONX6m3+6ENHw717ernyTrldYQPh9+n/NyWKfI5wodTuvvB5uePQxs+
+HPYbT3TjXvkd4cP9W59KeKcr4AgfDvNTo2Y3L0AbPhzGY7W1JwcVdIQPh/1R
+xsy3Awo5wofD/LL9Zpzb0IYPh3rh8rHmYwo7wofDz6/2+VrBIo7w4ZTO8bd9
+p2fQhg+n9Jfd2TPMKOoIHw71cuPAP4HFHOHDKd1/16ZvH6ANHw714oZBiZYU
+d4QPh/o06caaNUs4wofD5z1XeWO0ko7w4fB9bArKtRHa8OGw/i6+efE/7Qgf
+Du//wOvT45VyhA+H+iZDUL/90IYPh/l4YNPBXUo7wodDPRD8cUXqQEf4cPh5
+Z3zfnYc2fDilb4y/23BIGUf4cNhPTS3xPFdZR/hwGH9Hysx4CG34cJgv435p
+NbWcI3w4pXvVr18vsLwjfLh//pZuwZ+gDR8OP29x+QXLKzjCh1N6U8iDT/Uq
+OsKHU/parNKd3EqO8OHwect2d3ZBGz4cxleyPoc7VHaED4fx17fe4pRVHOHD
+Yf/fIMni89CGD6d00017Dg2t6ggfDuO5V3U7XzVH+HBKl1l4pcMzaMOHw/qY
+sdbHsOqO8OGUTu51bl7lGo7w4TB/FqzW7g+04cMp/XfHjbqbajrCh1O6Q2iP
+1q1qOcKHU5iX0s9KWtsRPhzGQ5wPr05BGz6c0jmPPGw2qI4jfDjUv2e+f8td
+1xE+HPanmfWWp9CGD4f6996uSbPrOcKHw/zxucvEqkGO8OEwv/RovSF6fUf4
+cEova774wzZow4f7V99mqd++gSN8OKWH7bAepGroCB8O71ehQmMvQxs+HJ53
+/VP1Qhs5wodTemXGg2WLN3aED6f0uC1pgz5AGz4c1iufz2NXNnGED6d0ZPUS
+Dxs3dYQPp/TtkVbDBP85wodTutbxqp+PQxs+HH5+1jRbBjZzhA+H9eD40Gl5
+mzvCh8P+O6LvzJfQhg+H+il+rD0LWzjCh1N636cSVr2WjvDhlH7fP0WX2K0c
+4cNh/B5d+usQtOHDYT1/+2Btv9aO8OGUbuR7Y3CuNo7w4bC/bz+p13Now4dT
+2v4be+KCto7w4VBP/K53sm47R/hwSicb3yNTnGBH+HD4/BfarToCbfhwmH8+
+FKsyoL0jfDil8/l9SZCvgyN8OKVr95nzKxLa8OGwP8+ZK+ayjo7w4f6dV+4t
+1LiTI3w4pfN2rjAuUWdH+HBKf6h5PdpZaMOHU/pgta6zR3ZxhA+H8TEzed0S
+XR3hw2F9anIz71dow4fDenB9W/6N3Rzhw2G+LrKtYXB3R/hw/+r5u0vS9nCE
+D4f6dk7+uHegDR8O+wfvw/Nm9HSED4f5ucL4atV7OcKHw3ifPCtdzN6O8OGw
+vvtH+h6GNnw4jL/CEwoO7OMIHw7vS7IRvQv2dYQPh88f/dqN99CGD6f0swJj
+mq7t5wgfTumJv5Y6bUMc4cNhvQgLuOLf3xE+HMZ/jSxH7kAbPpzShzovuj5r
+gCN8OHwfRcPi1h7oCB8O4z960uC4gxzhwyk9PXa65yehDR8O+501h0JHDnaE
+D4f1ItuvqqWGOMKHw3pw92qB39CGD4f6L2G9wJ1DHeHDYf+baniPXsMc4cPh
+farT8nju4Y7w4TC+vX+XiII2fDilvWfWuxU+whE+nNK5avSe3XakI3w47Ien
+thiQfpQjfDilV0X4D38IbfhweJ+S71q3YLQjfLh/9VmeX41CHeHDKZ0q4eTO
+ycc4wodD/dnulnUd2vDhlF7cL+n+6WMd4cPh+w2vOr/WOEf4cEr3aTp8oc94
+R/hwSg//ue/oOWjDh8P4emH7TJjgCB9O6UITmg+qPNERPhzej9pXfbwnOcKH
+w3hZ0e74CWjDh1N67gf/JaMnO8KHw3y53FlcboojfDis39nTHPGa6ggfDt/3
+j26xjkIbPhz2x0NUnxHTHOHDYf3NfdsuM90RPhy+/6F/d6kZjvDhlA551nva
+YWjDh8N+/kb5ycNnOsKHw37jfN9NgbMc4cMpvbCsz1cV5ggfDvNLRKLmR6AN
+H07ppwvGvx0x2xE+nNL3BgxaUnaOI3w4zC8X3vWz5zrCh8N8kPxVr+PQhg+H
+7+d215mh8xzhw+H7nj3udsX5jvDhsB7e0GVjLXCED6f0ndSzLp+BNnw4PK+v
+00dNXOgIHw7r+3PdtMYiR/hwSi/pv7hhgsWO8OGw3pfc2/8KtOHDKf324JyD
+M5c4wodTesBkHdBgqSN8OLzPRbft9l3mCB8O+6t6f7vcgzZ8ONTv3TNUXLzc
+ET4c1sMMOcq3WuEIHw7j10rTPtNKR/hw2G+vjL75FbThw+H5r7qZav0qR/hw
+Sj9ZuH5jt9WO8OHw92cd3TZ/uCN8OKX9ngYHfoc2fDilh3RuUmbvGkf4cPi+
+2rRrP3StI3w4/H6dp2wru84RPpzSdbLez+C93hE+nNL+xevvPgdt+HBKp6yq
+ek/b4AgfDs8j+vO69Tc6wodT+kUM70YpNznCh1O638/uIx9BGz6c0ntnZr66
+crMjfDiltwzNXanTFkf4cEqfaz/9SZ6tjvDhsN+MXn/ZN2jDh8N8+23YmH3b
+HOHDKV03ut/0ERGO8OGw/l/IcqTSdkf4cFgv/LYkj7/DET6c0vnn7pt+Hdrw
+4bAft2vnX7DTET6c0juT9vnZapcjfDilf4zN/Tzbbkf4cEoHpBzz7QO04cMp
+fXf8iJy79jjCh1M60Zys44fudYQPh/XeHha34j5H+HCYT6dPifDZ7wgfDutB
+zGYjbkAbPhyeZ9ZPfRYdcIQPh/3z/jpT2h10hA+H+WRK6IVchxzhwyndqv3M
+/N+hDR8O4y/JyAMHDzvCh8Pv37JRt7FHHOHDYf+XOk2F2kcd4cMpndb3Vhm/
+Y47w4TAfZZ7c9im04cNhvfStuHH9cUf4cHgex2Ol7nvCET4c6nuv+1tKnXSE
+D/dvfjzZOdYpR/hw2A9MuVT9KrThw2H8zogWtPC0I3w41GdTGo4IPuMIHw77
+p9bPr+c96wgfDn/+3bqaf6ANH07pvgm2vT9xzhE+HObn9WrHtPOO8OHwPq9a
+tKzpBUf4cEp/ezZ1e5aLjvDhUK9Vf/juE7Thw6G+OzO1xoFLjvDhlE5fbv21
+cZcd4cOhPl1dZHjQFUf4cEr/97hEvXRXHeHDYX59dLD6W2jDh1N63qxTXXZf
+c4QPp3SaT/9FjL7uCB8O/z4yNF2dG47w4ZS2elTZnuamI3w4rIdDNnV7A234
+cHjf4uyvteuWI3w4pWfFH9Bw9G1H+HBY78e8Da1zxxE+HOaPrmnu+d91hA+n
+9JtjiRu+hTZ8OKXVuGu/9txzhA+H8bIv+NjY+47w4ZQ+0epaRP0HjvDhUI8N
+TXcu40NH+HD4/f3qx/4MbfhwSi8q2r/b4UeO8OHw97+c9nvKY0f4cPjvc67e
+2OyJI3w4PA/fQ2NzPnWED6d0+V1Px/2BNnw4fN9+vlvPPnOED4f3sVawmv/c
+ET4c6oEu1/t1fOEIHw7rRWjHpMVeOsKHw++/KeedWK8c4cNhPrMyn7gNbfhw
+Sk8Ia3x7TaQjfDiMpzFXEg947QgfTukEH2f2qfLGET4c3q+P4dFSRjnCh1N6
+cnjSTW+gDR8O31/hJ6H73jrCh8N+/GDS0EnvHOHDYb8UvHN9s/eO8OHw99e9
+8Cv3B0f4cEoXX9eyu/roCB9O6YtzQuJdhTZ8OKWXVvC7suKTI3w41IePqx/o
++9kRPhzqjzC/K5W+OMKHw34/bEy8lF8d4cMpvSfhgu5voQ0fTuk4JZr/PvjN
+ET6c0rsq39ow/bsjfDjUd919xrb94QgfDvNhpPf4Ij8d4cOh3nt7YVucX47w
+4VAv7Ax2HkIbPhz2HyPvDNn62xE+nNLu9FxpQ/84wofDep2uU2Sjv47w4ZTW
+vWffyRnNFT4c5rvzez6r6K7w4ZTu1PNegRvQhg+H/d0ar0VrY7jCh1N6xt7C
+uYcqV/hw+Dyfhr6qa7nCh1O6ytynp7N6ucKHw/iO1vHqX2jDh8P73s3PuWq7
+wofDeNF/moU7rvDhUE/tT/Z4sOsKHw7vX+keE+rGdIUPh/o/deJm2bxd4cMp
+nXidV6PosVzhw2E8l6ky6Dq04cP9u496d3JdbFf4cFj//34rPiKOK3w4pX3v
+drrVMK4rfDiloxeptzB3PFf4cEqf7rNzvOvjCh8O4+P7giX3oQ0fDu9r+rgP
+I+K7wodTuth/cStMTOAKHw7zX/yV11sndIUPh/3rivuTiidyhQ+H/Vno/q6J
+E7vCh1N6cMZqIW+gDR9O6RFRU9ceTeIKH07pMzVnOAuSusKHw/M61Hhc72Su
+8OGUDox4V7B6clf4cP/60erHyZzCFT4c6vffc2NF93WFD4fPW/pQnlvQhg+H
+5xd5adgWP1f4cErH73P15/iUrvDhMB5bXJzfJpUrfDjUfznOtdOpXeHDKX2y
+yeXGKdK4wofD+9fjRb9P0IYPp3T450QHzvm7wofD/r1Ds5yr07rCh0N92PTS
+8eHpXOHDYb6v331M0/Su8OEwHp6X71k4gyt8OKVfhTUMTZTRFT4c1tvfm46+
+hTZ8OOw/V9QNOJ3JFT4c6r1MVfesyOwKHw71R9JFvYZlcYUPh/UnVr36TbO6
+wodDfTW/d6si2Vzhw2E9aRdzTpIAV/hw+H3cJN8/QBs+HNZbv2VDz2d3hQ+H
+ej1wd961OVzhw2H/k7plvDE5XeHDYf9fZ2miNrlc4cMp/XL08MDA3K7w4ZS+
+1CzWvDR5XOHDYf0MLZ3qD7Thw2G+WJXr1O28rvDhUL91ubtwZz5X+HB438bU
+WDgrvyt8OPy+q6ac6FXAFT4c5seBq3zrFHSFD6f0593zwvIUcoUPh/1Oit4l
+4xd2hQ+H+a16MZ930IYPh/kv8Vfv80Vc4cPh82RYn3N9UVf4cPj3JYIHTSjm
+Ch9O6Zwpc33tWNwVPpzSuYd7z6lSwhU+nNL980RrG1DSFT6c0pnfJmsaW7vC
+h8N8PLjx4NfQhg+ndJHwS6fOlHKFD4f1s/Bwva60K3w41Cffez2YEOgKH07p
+1Ns3h3cu4wofTulHutTC6mVd4cOhHm+XZV+ucq7w4ZSe9re7k6C8K3w4PJ/b
+Gfp/hDZ8OLz/lysmv1rBFT6c0jX2P3sYUdEVPhzGU1/ralglV/hwSne8E/4h
+pLIrfDjUP8cfFmlSxRU+HMan76Z1Jau6wofDfL4jTeW01Vzhw+H5Di2U0Ku6
+K3w4pQ83iWa/gDZ8OPz9eYekO13DFT6c0jci93dYX9MVPpzSPt2P35tSyxU+
+HPaXmxcM6FXbFT6c0s3mVy3boI4rfDil3/nfKVS8rit8ODzvvLWC/Ou5wofD
+fHh0+yKvIFf4cNDnEyV+BW34cHj/Knbbeq6+K3w4pTNlvzpoSwNX+HCoP3pX
+6BnW0BU+nNJN01+ePrCRK3w4pTfnH/igRWNX+HDYT6ytFlShiSt8OIzH8dW/
+Z2/qCh8OP+/26GMJ/3OFD6f0gkV/932HNnw4pQc93ffofjNX+HBKd9t2Nvex
+5q7w4ZTenTLf2rUtXOHDYb7L/qPmtJau8OGUjvclU7qQVq7w4fB9jT2aunlr
+V/hw2F/8vVW+QhtX+HB4/h26zs3Z1hU+nNI/X0xIkbSdK3w4rGdTih79A234
+cErHHDZ07rNgV/hw+D5vtp1/rr0rfDjs33Z8ORXRwRU+HObLUgXSL+zoCh8O
+60NYjtWjO7nCh8Pzevq8QdfOrvDhUN9Vb1+gQRdX+HCof2LsK1G6qyt8OKVH
+Z4nsnq2bK3w4jMeP3y8l6u4KHw714+QPTf9AGz4c5u+8d5O86OEKHw7ric+h
+Hxd7usKHw3zYZLX3nl6u8OGwntWaW25Fb1f4cErPybpo/eQ+rvDhMN/7Hyjd
+v68rfDis/72UatPPFT4c9ittu7+tEeIKHw7vT6HEbrH+rvDh8L5m/1Ql0wBX
++HD4+ROS7ksw0BU+nNIrFoxu9Afa8OGUXre2SoZXg1zhw6HeUV18rw12hQ+H
+5/3+S/FDQ1zhw+H9PPZ6/PqhrvDhlPa6Wt+dO8wVPpzSY7oFbhw93BU+nNIl
+Pmwd0XOEK3w4PO8N20Y2H+kKHw6fR1XbUm2UK3w4pdNVHhWn2GhX+HBKt37S
+ZnqWUFf4cEo/z/mtfNIxrvDhlM4+uXRmr7Gu8OGUPhZcLf9HaMOHU7pquvRd
+Ho5zhQ+H/X6GM1fPj3eFD4fnd6ta8L4JrvDh8P1t3Jpl3URX+HD4fhPZSedN
+coUPp/TQvpVzj5vsCh8Oz7f6hL4hU1zhw+F9jXPldfBUV/hw+PxZM09sMM0V
+Phzq49RTG1ec7gofDu972xT1C89whQ+H32fwySFZZrrCh8P89GzlteSzXOHD
+4X1Iva+Bd5grfDj8/esSef+ENnw41NeJtz6PnO0KH07pU/eWfbgzxxU+HD7v
+9LdZz811hQ+ndJKD8ybvn+cKH07pmR+3pts03xU+HOaD3frJkgWu8OEwH62p
+cGn6Qlf4cHjeQVffjFrkCh9O6cb13hbot9gVPhzqo5IL13VY4gofTukCG97U
+bLrUFT6c0tf143Q1l7nCh1N6+7TQdGWWu8KHQ31S4VmNgitc4cNhf6e81mZd
+6QofDvVouzf5Uq1yhQ+ndKnUqyLjr3aFD6f0xovFL3iFu8KHU7pQtu2PvkMb
+PpzSS276pYta4wof7t/5Sp8pj9a6wofDfPXlfPbr61zhwymd/0yOb6fXu8KH
+Uzry0Lx3Bza4wofD+J2WNmnERlf4cEon/H6iw5pNrvDhlI67MSxq0WZX+HBK
+z+4zZ+HMLa7w4ZR+7HN90PitrvDhsJ8rGTR+2DZX+HBKlz6R7kTfCFf4cJif
+e5TN02W7K3w4pWPHOnqq9Q5X+HD4fhqumdJ4pyt8OPw+uaKPrr3LFT4c1vum
+58Mr7XaFD4d6cmuq36X2uMKHQ70W89vAwntd4cOhnsvXKnvufa7w4ZR+G7tj
+rCz7XeHDKX20S7Jk/gdc4cNhv1Oke+3kB13hwyn9p/KwvfEPucKHw3o6umY9
+78Ou8OEw/i+8SKmOuMKHw5+PUzPRL2jDh8PPzzSt8OejrvDhMH+4OyZEHXOF
+D4f6d+EJnxfHXeHDod66efbQwxOu8OGULhd+Yentk67w4TAfWLe2XD3lCh8O
+z/fehw/nT7vCh1M6Ta70zU+dQX0VkuLZHeizZ/79z9X/B38tKr0=
+ "]]}, Annotation[#, "Charting`Private`Tag#6"]& ],
+ TagBox[{
+ Hue[0.08640786499873876, 0.6, 0.6],
+ Directive[
+ PointSize[
+ NCache[
+ Rational[1, 360], 0.002777777777777778]],
+ RGBColor[0.363898, 0.618501, 0.782349],
+ AbsoluteThickness[2]],
+ LineBox[CompressedData["
+1:eJws3HlYTWvcxvHKXmttTcqQoRCRqUmhgXhSGUpCiSQUoaTQIBIakTRQ5ogG
+okIUKSUJCRlCQoYMCUmKJjn3eZ79/vNen8sZHNVvr/Ve3/ce4uo9z01GSkrq
+oaKU1P//+/69//9HTLb8nrPFP0tE+r294lEOnxud3/m/jYdrfjSBP0sFe5yF
+RSOf+5wpFxP159Oq3sCbNctUBsALM+Wn9T4nIp1L2u7vuismcaGPL86A5yq5
+HWorE5Myx4NDguDkTd03ucMyektiLsBbq2s9X9wRExN+2N+P8KMNP31nwj6v
+vngMOC8ijSG6cXm3xeRs9rmq2XCs9ZHiUfCHnX7TQuEyBX3+8C0xUVs68dJl
+uI/czyWy8Pzx0kO/wfPCn5ZvLhWTPXK3Y9QviMj1wlezvt4Uk1vvov7aw9Lt
+3d47wf8uz1uzC+63ecbueyViYhjd78U12DPk1AxTeN2KmmlN8C2HQQOybojJ
+aZOUS5rZIjJn4pl/g+B3Sh5DneAE3xltMcVi0v+zbmwMHDr9Ny8Nz7vW8rcE
+dm87P3LDdTGJ3Je/phVuq/BbUlskJiXuwS+0LoqIhfLU0/Zwx5Tp013ga916
+8bcKxWScikJOAmzS8HGjIez57fHQu/CPvlf+nr4mJqk3DsZ2wT53Ig4MgF8f
+XNKlfwl//3Rby6gCMVHxHua5CtasURS68sVktmX9iyPwqsobr7zhHarnpz+E
+D/qsvvXuqpgU/fTLEeWIiAH3t8QObr09UcMY7v0k6GlpnpjoHZOOWwv7jKhr
+N4TdfW93nYC/zjIed+aKmJy02uP5DN4Y7RWsBler21XL5orIBsPw99GXxaTX
+n34zpsAJ+zYvkIat79fk+MAdDdZvfXLFJCw5ReM0PHD/7y2fcsSkYJNH3Cv4
+6dON2o5wi63eP6XLIuLUce9n+SUx0db87WkJT7f/VTYZXtmZX70JjtGpy7lw
+UUyOPQ6ekQVHVZ3OGQY/Pz099z3cmKRfdiBbTHpsUxjW94qIPH4W0igLz5j/
+JM4aTi7bP2brBTHZPubQv23whLI1m3+eF5M86aVrL8H5w/+9WgH/fD7sZR18
+XXe2XdU5MRmdVT9jYJ6IjDNyeG0Nu4adz50Lu8T2DizKEpMji/yHRcA/d0Vo
+GcCVepP2XoW/+6f/TMsUE3lBRuoHfDV9890BsOXr22s1roqImt+f3OgMMQm6
+uOflAnic1sDLMnDuLruZUXDo0C93/c+KScPS/pevwx/OLmyqPyMmIya8GdYC
+x6u5ay+Fl8qn7h2VLyIjy/pueZIuJgffe0gtgQ/wrjXT4YdX9Lz2wgajLe0L
+TotJ95jfL2/BGbsKX+vBZm4FMztgxcDyzamnxGTzxJDLugUiUmLvPmYAnK08
+Y/gKOHZtwo/oNDH5+llh30H4sJrN7W6wRuETqfvw0rw92QGpYrI4/pCX9DV8
+vx6xv/A9RUziPZa+Gg/Xqx4vcYXvk+FWHnDQXo8vz5PFhOv79fIxeNXCS0Nt
+4Mnfzw9/Ajff2uR946SYbCzx3ycUisgDwysVhvC5Q5OkJ8EdorXmmSfEpM5b
+xnsd/HJnwt2hsPq0O69SYK1Bum4Hk8TEUS3a6gXMqRv2UoTjmuyuKBThr/9y
+pjL0uJjcvdNfcyoc9HxHetsx3LPjb/b5w30ty+O84Yl+qdJnYe2YDXs+JuKe
+Wa/xfgOf7Bl41AnOGDL2da/rInJB633ho6O4Z39+W82Am0xSm6fDAx8UXNkC
+LzhSbFp4BPcsJUTzAqydMe7wODh684z4j7DqvY7uZw/jns1RlBlQLCIai3rv
+GQL/06z0ng0n5wRqHDyEe/b30OsQeM5k3fuK8LonS60vw6b2WpHhB8UkPX14
+3le4csG6RZ0HcM+2fdVUv4H/3vRWUx94gMOFeHt4/dkb4+r3455pbZTZBSsX
+lk92gXfLmK67Bu8xV15clYB7ViVT8xPueSw2yhbuzLpjrVkiIiP0pj+8FY97
+Fh6dtwjOWKw/YjK81sl+RAxcHWEbl7MP92zsgIQS2KLnUUVtuEZ4K9MKP3Pt
+czxlL+5ZTeo6rZu4B6+uTFWDbS+tqVkGv/0Q2rYvDvcscuysBPj7G58SOfj6
+sj95ZbCNQURSaCzu2YRrI7rgdIsrsR0xYjJWITRBvxSfB5uFeB/YvXZGt1Xw
+eeP1Z75G457lKa4/Aq+ub3qyHK6OqaypgMf/2qX0ag/u2crDs0S3RGRTvsEy
+e3jWpGVXjeAfZ77fuBeFe9ZTc+Ra+OyoHCNL+Frd14QTcP+kHcXXduOeFV7o
+9gzu9Hd1ngDrJGxcL3tbRLz6msufi8Q9W2P6ZjJcW6/5YAR83KybjQ+s6SSX
+nLQL96xv2dVT8MLH3yP7w0oN0SNfwU1Xy8P37sQ9u2m/X+mOiNzednKfHBx8
+eIDIEv672/tS2A7cs3Vv12+Ce1nr1f2NEJOmaWlvMuF3I9/rbIRHD/S0eQ/H
+x4XsbAwXk+W/xuarlInIuZ+KLe7wkbI/I61hxdww39ow3LPj1/Zvg99bv+Od
+YXn/UNEl+KL60Ixnobhns2ZuqINdTlqsmAMHDe3xVu2uiKhPmaZ7NwT3rLXS
+Zi68xW2YggX848Hh/HB4Qdirv9eCcc9Sl426Cn+R9ZQ2gpcFah5ogItWP+yb
+vR33bO43kUa5iBQqCGZa8KMR2RsWwIM9FILStuGedW18uxve0PC2XB2eWmk6
++zp8RG6b9pGtuGdnuhU0w8/1P57oA1/cXjZq1D0RyX2qNCo2CPfMIeaAM6y2
+8t8NWXiY9nxuLzzNIcs7fAvuWTdVn1vwjX6qulJwwou3b9vhAHVz6cBA3LNz
+abN17+MevNX41LJZTPgIz4Ll8IN7V1+vgycv1h99EH63kKv7ugn3TL/1wD24
+T5sUtwo+Jy7kpB+IyJ8hZ8e9D8A9qwn1GQ+7z5De6AwPyZn5zh1Ofid1r2oj
+7tnuHrbHYN3lpwzs4b0uTwseww1TmzIr/HHPDI+MFirw9f9TY2INd1N0OTgR
+HvHbo/qWH+7ZB01+HSy6vC9qKux79ZtPCvzqvMPcQl/cs9jsd1WwvtOFkSbw
+x5UBtgoPReSN9omeuT64Z6aTr5nB8ic0eujDDr1EY/xhE+0Jg7I24J59KTt4
+Bp5o/WzKaPh2UQz/Bh7vK+2bth73LGG+b69H+PMaknN1KGzkqfp+Omxzv6HX
+8XW4Z1Pf2W6BHX6e3aYKp/c7de08PFZc//eAN+5Zg+eYj3ByVFp0b3hAqf6h
+/o9FpLStZmycF+7ZkVZ+NixTHvtZAd69vtA3BO6/Je9c5FoxuTk97H0uPGCX
+Q6QAdw60mvMVdvdy2xjmKSbjm3sUDn4iIgWna/2l4bV3n46xh1VzHuzcukZM
+0pKOHNoJv1UaltnhgXvm7yJcg68Yv6sNgPvajPD7CZ/M7Kb92x33TOP7++GV
+uB/1O3f6wDvbsucsgqeu8/rduBr3rCKgMBqOKbjg7wW3pU7WKoHVbOd0/7YK
+92yL6PAfOOTU9Cx32GPeXUHrqYicsUxw+7wS92xkrN8y+GH6BF03+GXX/Np4
+eJv9KLlaN9yzp6pzy+ADtzzalsGzzr4r/AtbBre21azAPQs+paX/TERk+Yfy
+zvC1BWsPr4SvPGsY+3K5mPzWNhAfgdf5zXN3hHVEbX4VcNqK1uznrmKyqrqw
+tttz/DyOqFF0gI+fD5trBH+fIh1U6SImVRFWRZ5wgP7Sv/NgJWcl7ROwb0hL
+zKNlYjLT4Nnhp3DdxeJxc+Dg7kfFslUiMsa6+OuDpWJy9Y2L/2T4w72fl2zg
+ppwRHzbAsoVzYu8tEZMxUd/nnvr/15NfBlnDy10vFr38/9dFsUF3ncXkqNEm
+baUXIrJ8xZqYmXCl4pQjFrCm9ZqLdxaLicJHUfdN8MvJe75Mhy3z7/pnwgtu
+PRh720lMtsbFfngHF6/WjpoG565ymKdSLSLRmWmtpYtwz0zVrlvB4WpGGy3h
+Eb3fa2+D80zfCKWOuGf1p45chGMOHTpjAR+6vrZ73f+/fmXF0psLcc/2G2xU
+e4mfn2GTNS1g2bVtH+bArm4a/0oW4J6ZF80Lhx9zPevN4cD+4dfz4IAY4XOJ
+A+7ZDyudBnhflPRvc/hbqdLRoa9wz3f8Vbk5H/fs6LPuC+A0ubaZFrDzhqMb
+d8PJyT+jb9rjns1w/VgEq7388NECfjBopF0z/ML04exSO9yzlu/XR77GfVlw
+ocwSnlJ+UccZvpYT7nBrHu7ZiU1H4+DWWquWafD5jVNkb8FHvbtSb8/FPbPh
+Atr///WPiatnwEOGlX/UqRGR1EpN07I5uGftsXbL4aiy/RpW8N6HDsUH4Np5
+X1XLbcWkPE1N9x6s/W+I5iy4W9D7o1JvRGSSs9HU+7PFZJLdadnxsE7nmHWz
+Yd9RXgHusPea9nMVNmKS+c/gUyKcZ3JCei788Wmb3WO4Z/tAt8ezxGRQRlEx
+/1ZE7ht7VdvBDiHhuhPh3ZExLk+txSRmoXWiN2wctK3dAb6toyyXAvdMnpha
+ZSUmUtzzgCo4cU+xyyLY6OXRT/LvRCTrgaLeq5lisv6Cq70Z7NaqrrQETt8x
+8oYfrJvYIv12hpi8d27QPQOX2kZyrvCAcZcSa2Cd5FcDPkwXEzvZzXK93uP9
+ZHS92Up499spm6bDcpvPb66bhnuWy30OhMXDtUs94M6ocvvz8Jci5yHfLXHP
+lsfd+ACPfTMlxhv2Ml6g178Wz2t9Hyk2WeCe9Rh4zAbe2KWY5Au/+fheLgRu
+Gfln6h9z3LOC05ty4WqtHX82wXP2en2uhzWSCq51TsU9Wz1u/uAPeF7un5Cw
+DS6e3H7DDrbSUdwmA7f1vq63E070H7453ExM9L+GHyuATXZVRYhhj2Jr+Z/w
+/r/DUncTMUk+oLx5+Ed8nq8RP1WEX659/tkRfumxXWXvFDHpbZE4PxrWjI90
+7wPPGrC85Abcsm3Yg4OTxSS8ceTYP/CE29YWavC1Ww3HxnzCferWVX7cFPfs
+6CX5ZfDY+0ZuGrCOz+bN8bBxUVuPU5Nwz2aSujuwjc/ke6Ph44N5h79wRajo
+cNZE3LOW8pKxn0XEY/fMTfqw8r24sSvh3sPlPHJNcM9OLjh+GJb7Ns3TBA4J
+GKhQAb8MbN9WaIx7Nrt2c7c6fL6t00idCv8all5nCB9xK3p5ywj3rMPLwRNW
+bi3XsIZXPBp3Mwl2vzktqMIQ9+xU+9incOIq7To7+GnQ9ePdv+B9aWvQiqoJ
+uGf2EQqT4bZT45oWw9NGzwrcAEdsnxP3bjzumVTPL2lwftoDs5Xw5WfPHV7C
+0nkZ3b6Owz3LSLzZo15EFBzqnnnDI0OX61vA1Wrb8psNcM8cRyUFwOcyvC5s
+gg/p/lDIhPulXrrSpY97xuUEvoN/pM5+FArLvtr8pc9XEbGzNekQw+bZZIEV
+nGnmNyF6LO7ZTr50K5w18G9IL/jSknv6F+G5YRVvD+rhno3bm/QZfqFSbzsI
+Hi63UFHtGz7v/K0eJuvinr0buGUOLDutwWUUvP9y7Zcw+KTmE9E5HdyzPekL
+8uCuq7+vjIOFFd6l3+E7qQ5br2rjnpmMNxj6Hd8/uxrtCRyg1JHkABfL3ph0
+Swv37NN1xd3whfI742fBXwoithTBMetkyOMxuGf7ZtX/gtclejothBe591w4
+sgF/Pr9FO2tG455NqSpdDP9QLytdAZf3OWYQB6sW5/b+Ogr37NvyE6Xw8i3l
+vuvhSTdG9WiHp7aKPv0ZiXt28McWnR/4+axetnornOmVU+8Ky5e96hDBnywC
+Fx6AZ3v4J+0egXumanarHK5cMcahJ7zgJz9OqlFENi9tUzukiXt2+96JcfBK
+6ZrmwfCdxL093GGppmev04bjnvkuDEqEO6vePdeGja0GfX0Ez13S+f7SMNwz
+9Q8L+Z8iMnn0sH8T4TO/02+ZwDM/OmiVaOCe3fMe5/3/rxvt9bCCVZPHn0yG
+de89yXs0FPdsU0ePKtjXqv8ARzjKtjhIvgnfD4uX7X47BPds+I6vBC7KSFNY
+Df/tmOXoB1d++JL0Qx337HHP2+nw0nMjLDfCXqerxtXAfS87t3cNxj3beuxk
+z1/4vEnbdT0CfmO/Qmk6PH10+gFFuN+Y0VsD4chvedv2D8I9k278eg7eeygv
+YBC863mO4wd4/evUkLSBuGeZgbf7NYtI8IotiTpwe6jZeBvY9aVJWa4a7tki
+ITkYbm2o4abAa/TuK+XCnrNW2t1WxT3j922th3VOPLhgC796tfDboBYRaTzc
+Z0jVANyzi4MW2cFZn41OLINtdn24vQNOGT9B/0t/3LOlZ8YXwA4GcpXr4cLx
+65Ib4aiYnIj2frhnchOUh//Gz1ebvlUorPu+Y6sj3Dk4eJA8vOpK8bc98KCL
+id0S+opJUvSORTfgfa4RbQPhqhU2d37DgTVGUqdUcM8m9pow5g/u4fPsvnrw
+TOUXyUth/78/p+T1wT37fEw5Hh4s0xwwFc6/tmLbHXj5/twb5b1xz/aN/t4J
+X1ljOHA+rOXRuGhsK96/DHx31vTCPSO5d9zggiQP0Wo4UWXLhMNw+op+cT97
+4p59M0t5AGvoB+oEwoolQs9ubXj/zY99JYKnHbq/zRAemuNwJFpZTLZ57/u+
+BhY9uuvRD75s6eiUBI8pqbc6qSQmjaqDyyphrymXJmrBI5s+TOjejufNtmGm
+uT3ExOXOmRTT9v+/X0xsCXzo2LqeG2DTjqb1dxXF5LHvhO1p8LGz1qn2sKx1
+5/dq2Gzt1C81CrhnQ2449ejA909Lpak7HPhnR5k5PLldKvmXPO7ZfRvDANhw
+7M1+W+Hvyb1SM+Dzc9SOi+Hhm1/0fAcP7iFM2CcnJkvmHN/ep1NEpmiEvB4I
+79d0a5gJy1nsTjgtKyYVnaMXb4VvjFRfYgALTxrLsuFPOycbFnYXE5Kea/gZ
+Nlb7oD4TDti2JVX1L/76w4qqlWIxuTB/aq85cHlB/vCl8Jcx4uAw+JXJF1Iv
+iMlQmQcNV+DS+/GefvCiqn2Lv8P7dApOS8H7shzvDunC+4SKc8tuHvcsbLCR
+A7xqit+8vrDI6WNqJPzUVeb6SQ73bOzZXkVwu4nMZB3YT1gf/AvWCdlwL0+E
+e/Z6wo8R//B582vOGkv408XOxYvh9TOODHjUDfcs8sbdWHizqW31YnjBsp1G
+pXDEHo8zdTJiEjthdlobbNhcH+kL35Hv3VtHiiPe2g8CpWDp2hfBrvDcFuWg
+KGncs7zjP/bDU8WXovvBG2LcnMvhuqHZ51OkcM/cxpT/g7VkZGv14NqJP43G
+SXNk3PK84df+CUS15+W01bBHt8KAmbB93ZbeifCmpD6vnnYJJKpwasgjeFbr
+NVtXuDRe3MjJcESx7NKThr8C+evxwNkE1nr0Z1UgPMEsvtwLtqsIkxfDXn0X
+GSfDG0Ici+M7BXLq++BTz+HcdJ+IIfCbko+95btxJEb0yCmrQyD9Dp8NIXDG
+PG+zifCcdesbfeG/drMM77QLZNc0wyXp8IU7bqbz4WK1v+WvYeP1eXbv2wTS
+3nTDuKeIIxaKlpu9YYOynaemwTeX8Rc6WwWy5vjsPoHwl1Edf3bBKX69Q8/B
+GmOG2PaFX1lXN9bCQzT9c1P+CKTP0KQl/TiOPH31R1sftml1uzcL9lJOySn6
+LZCIB2NMgmGniAAbG7gw5eepHNi6a0NLdYtA/my+3Kce1pkUl7ka1p0bFDqI
+54het0d+v5sFsnqE+c95cLGK3uwwOOmveOkOeLdJxoSe8IsnD+7lw0H65rpJ
+vwSifCbepPH/v/5Gk6EObLV90elhAnzuypyCJoGEOKirOMKjCvdusoLztT6F
+7oHfZG/NrvopkF8yGT+LYQW7zR0rYa0X65f+hvutCLVvaRSI2znD+6PFHEk7
+e+BaKJwY/tdkKXz0x6UJPeFnTiWn98EDf1cVJf0QiKL+LpU7cGS4tKMuPF1s
+G9YJh67QkilsEMi2mt5Net058tlxQf4s+Mql6qVu8FOt7WEvvwukMTLp/iE4
+LSXF2QMe5bJy4gP4984b09q+CcTFUCtdRpYjiSeeT9kJH1ZoUjGEL+S+m9EX
+flx7OWwNvCO2xiXtq0DkrgY1HYez/5RHjofNY82XVcLdck6V3KwXyJaV3R+I
+5TiyM85b3h6+NKlioikc4zDErfaLQL73TEhfD5+8f/X+Bnj4l0V90/7/668b
+T5OBlxSph1fDVm1HHsTVCWR/wqcmRXn8eU99s3IIXLEmY5k5fNpNuseFzwIR
+T93wYCMcriN1m8Ckn9GkDPjaqhfRDz8JZFPD3/S3cOSryJXL4As3S/r2UeCI
+68Kesxs/CqT+8K7wmXBH2lrL7fDQ9ba/gmDL+MOzlGCn6X1csuF13/YvT/og
+kH0DXz74BH8JXBapB9/7lTRJVZEjDj1arl+vFYjo7soztnCSzzxhLmyapNUv
+DK7z83d+914gfv5N4VfgmNolJevhrFlXfn2Dx0Z2N5aBPw3d6jKkB/77DH0L
+974TyOA284r5cPerR+004AUV3U0j///1N9tbL74VSGxqxZlCuNfGQZkW8J3A
+hH6/YBVbn/VP3whEep5TxAgljlydEGS5EjYZOaTZCTb/azzqT41ANnR9comF
+9TecUtsJn63MqLgJW7iVDO4P157ZYNoG+6Tt1j/zWiBqwUZntZU50sJ12U+E
+7Rd09XOFTez77bj3SiB7tG9G7IcbXaruOMOl3SKb78IyUpMG/HgpkK4Xtq7/
+4IR/JHA7POF8n4cGPTkiq//xqzLsHfHSdDXctVrTM7ka92zxibNHYWt/mc5x
+8Fv9Vf0fwZzWxiO3XuCeddfewfXiyJbFIVYL4blvmpqN4UnVQ7rXV+Ge5Vxx
+9YIVAuyeB8I3dm99eBJuFPfJUYDbXSwmP4c1l604efw57pmRbIZcb3julONj
+4TWKD/sTOPVc8tmSZ7hnHxJ2+MIJtjG358Ovrzq1nIYHc1K/Pj/FPYsbsvw1
+fCbll/ZmePaqzw+V+3DkuczqAHk4wjRz8jQ4pHnR42OVAinq5ZOxGb45++7E
+sfCfL0YDzsHfP128VPJEIHrXu3bUwpF7+5g6wKv332zpq8KRFSO+V9Y9FsgJ
+z8jls+AtgUZbAuEXU+c82g4rubXoK8I9+6tMyYH3Xx3SlvQI9+zHy4wv8I15
++Q8M4NDSEwMG9eXINtH1i7ce4p4dWbVzHtySpn3aEW5er/07Ag5Tlsn4VoF7
+NuPX8ny4THVi0TbYbVDeox/wocRn73rCic1bpwzrh6+P9+NeaQ9wz+5aZC6E
+56/Wmm8MK56QVd0DK7m+T713H/ds48OdxXDTuCZuGbzdZv/vFrglz9Hv1z3c
+M43FK0b3xz24q9IcAf9sG/J4CbxkyoiQAfCoh5+n7IOfNu0cnFUuENe0zMzb
+cGyh8T0z+PAWH9VOOH2L4c6ndwXyZJ7xLr0BHFkvbLdzh+VG/fu9AvYzVtb5
+WyYQi383VxyCA7/X9Y2DtzyNfHwfDu0SKQ+Hc87OITKqHCmdvrx/3h3cs2CV
+rAlwTor0WBtYc+Er1TVwZ+PrBe9u457pnNx1HN4u/r3HDz4gWv3nCbz09vQn
+3eGKam03sRq+H7s/GnHsFu7ZhV+PJ8ElGTG79WGyI4+sh09GBXfdKsU9c96W
+lQpHR6Rsd4KzDSzVqv//6zf+Vm68iXvWXS5ScSBHLpn6ZYfBGm8f/pkK98gd
+5Nofdsrd77YRzitsVM8qEUh81OInZ+GH4780TIXvuQ41ewtntHH3nt8QCGdc
+l9V7EEde1llc8YRNe2SpzYQ13ydflIb9P/pEBsHRN9UL9xfjnuUbt16Arb3z
+no+BP8f9c/sEVxSvkSq+jnu2uvTJgMH4fj8y3sgBXjh5t5ktLP+697avRbhn
+veeeC4WvuwlPt8Nl9SoDr8DjVeRMVGDp4leR3+BfDwZmnS3EPTtwslVdnSOF
+60zHmsEb1q5eOR+OfbWq5Nk13DNzncpd8NFfh1d4wrX9m80KYZsDlb1lYLXG
+vHNNsGV6z8oDBQKZf2vbwBFD8PWRszupDe85arnbCc44vm9bSb5Abm2Qa4uB
+/Wc8XuMId814tPImPLlOftWPqwIxHHygshUudDFbHw57tyyeqj2UI58OrI1U
+hU+XDz3vAr9ZG5N9IQ/37ETdwP2wcDvly3S4f0DW7rtwS8RZ3ZoruGezfdu6
+4E1xJ8J84chhJqsMNPDzfDesTha+0f6vchUcpWLndOKyQDoelk49Ct9zlH1t
+CBuc2n3+Idxt0+m1D3IF4hk0dxA3DJ8XjmMU3OAUu75RxnCfN7H5HTm4Z6Ne
+t62FFzU+C9gL95FKXnUSXr2hw2IUPPvZ6qfP4C6rzsHXLwlkR4aOudxwjigv
+e959AVwU0nx+Cnz/QKRMw0WBtC68OsgXTqjqJRsO6+lujzoNS3dfr64Gu3PT
+2l/B73okWV7Mxj17KbdaWZMjppXHNlnB1RcePbWE55iuKXh3Afds5wHzzXCs
+fjfFTbD1EucLWXDqkRVeSnDoOI3BtfC6ZXtenzovkALZL1F9R+Dz0z3QaQrc
+/Dar3RrOT9Sqe3ZOINqXfVdvh+U+Hwv1gt32mDy7BF/QfqjNw8eWS1l8gY8v
+KvyUmIV7ZnzrwsCRHGlzWJU1Hu6hFDV4HqwqXxZ2PxP37NPcPRHwgeXv3N3g
+7QV9O67C46dnOf/NwD3b+3r1D7g5SXtZAvxzdfIzjVG4l07O67Xh0VPcLRbC
+lUsnxpWexT3ro5sdBf87VFrkDB/52jy4GHZqbutsOYN7Vnx1Twv8y/HZjGhY
+/uD2jlGj8f2UuzBZE7bwmua+BFZo3ipflC6QIAv553vh8/+mhS2AcwY8trgN
+P7qZJdt4WiANjQeyO+AdupeO74Q1bzur643hiJrWfPMh8NJEjegVcO9TMS15
+p3DPfL50HISH7nHJnQc/nHnO/T48rvxO+Nc03DN1v+fSWnj/mV2yPAw2+21i
+OQHuL7KdMxDedE/qogf84IW7dW4q7tnJW+rH4RnXlOfbwvUBUdFP4C1HLdbW
+peCe2c7rFLQ5Eu8mFR8MLx7ez2MS/JM3LxsAx3e8fr4OHuYtq3ApWSD3HyVb
+psKtUfZLbWDutPvFF7CH7eDrn04KZPJW3SGKOhw5m7padzvsb98SPRUetk0n
+sz9Mezh4XbmX8cUTAuvh4KWbR1TOgmkPB/8OdAj6lCSwHk4X7y/X28Zth2kP
+B08w6tHRH6Y9HNzwJL7i4nGB9XCwd9jObBuY9nBwiUld8udjAuvh9PD8W3ch
+ORimPRzcZ2vtBVWY9nCwTsPmBzmJAuvh4Lmj/dtsYdrDwXuGPdGvPyqwHm4s
+7ndFzOYwmPZwcILamYeDYNrDwRH/Bo/POyKwHg6u8vhxyg6mPRycNFdlVMNh
+gfVw+hwZfmrvlZ0w7eHg2iWuDhow7eHgXZ6hMoWHBNbDwe0lvwoWwrSHg20c
+L4T/OiiwHs4A90v96uJomPZw8G9F+amjYNrDwYH9UsffPCCwHg420w81XArT
+Hg5eNjdlevt+gfVw4/D1XMOvTIBpDwcr+J3aqwfTHg6+tyL8fnmCwHo4eIbe
+MZVVMO3hxnPk8P0fa2Vg2sPBigYBTxLjBdbDwRoLxk83hmkPB+/RG15WuU9g
+PRw8NtfScR1Me7gJHBn5Jv6PHEx7OPjaSaWUU3sF1sPB3q25S8xh2sPBjc/D
+R7yJE1gPBw8zDuzaDNMezhD//t4JtSow7eHgCS6PnmXHCqyHg1/206maDdMe
+Di42SP9cHyOwHg6+e4ZwO2DawxnheXxjk54GTHs4uDyuwKMoWmA9HBzWfDTb
+CaY9HPzhYJy4dY/Aejj4TsBBz3iY9nDGeN+IPlejB9MeDj7wpHLJ/SiB9XDw
+RHP+uztMezi46rnZLh6mPRw8PSrcIHm3wHo4E3z+OVV8nQLTHg4WmQ3MfhUp
+sB4OljFaG7EJpj0cPG7StdUqMO3hYK+Zco4Xdwmsh5vIkStO8xfMgWkPN/H/
+55dDy7/vFFgPB+/b/jQoEqY9HKwdJaSNgGkPB3+O1n51c4fAerhJeL4Jt1R3
+hWkPB7estdnwL0JgPRz8xsL88VGY9nBwP/FwYgLTHs4Un7c5jfnPwwXWw8F3
+rFIs/WDaw8Erbpm+7gnTHg4+qJkfcj5MYD0c3OQ+YMJsmPZwk/H9F+P452uo
+wHo4eEaC/61dMO3h4IWB3skjYNrDwTlkanRpiMB6OPjDh28Ry2Haw03B89Sq
+tXukYdrDwTfvFJ84HiywHg72F9eVmMK0h4M7NWt+vdwusB4Ofjjs5NjNMO3h
+CD5fZfSD+sG0h4OnF+9+lrtNYD0c/Mwl03Q+THs4OOpjfPavrQLr4eAXNmT8
+Xpj2cGZ4PziaWaoH0x4O/v64enlFkMB6OHj3r9IeXjDt4WAPqbVl8jDt4eAf
+Hfdjz24RWA83FZ+XdZ/crGDaw8EbynJmfAkUWA8H65wwMt4J0x4O7u6z1nAE
+THs42HnqPPNbmwXWw5nj+aLnx8VuMO3h4OufNcJEMO3h4A2l8nnJmwTWw8Hv
+ziV2TIVpDwc7nq20fh8gsB7OgiP2BefSg2Haw8FBn7X6DIFpDwefH2sVfX2j
+wHo4uO0412cZTHs4ON7QOf2fv8B6OEv8ef2dbX0cpj0cnNRa1T4Zpj0cHKjd
+drnGT2A93P8+mRmyFaY93DTcC+fmRYNg2sPBZW7lpNBXYD0cLF2sN24JTHs4
+eKz/0PFdPgLr4eBpUcfMj8G0h5vOkcWyyUsnw7SHg6//0d5Vs0FgPRz83cn0
++laY9nDw3skVosEw7eHgnafeORStF1gPN4Mjr49tyF0K0x4OLtfariEF0x4O
+LnIUH0taJ7AeDp6r013TDKY9HDz74vb8d94C6+FmcuTcT88lITDt4eDEpnJF
+DZj2cPCGoiP3SrwE1sPBuS7VB1bAtIeDh9SGr+Ng2sNZ4fPG5qhD2lqB9XCw
+8VlVq+kw7eHgqbyMdZ2nwHo4WNvdxnEXTHs4+GhNh+9omPZw1hxxWy93rHyN
+wHo4eLfW5kpPmPZwMFGd1k8Rpj0c/HHGWvdzHgLr4WC54u+358C0h5vFEZ+Y
+UoMmd4H1cLDs9aaMfTDt4eAfS3wMxsO0h4O9AyxvP1stsB4O5vqvWh0A0x7O
+Bj8fNs9UBsC0h4PnDI17nL9KYD0c/Dkl4YgzTHs4eOH7d+v/rRRYDzcb7491
+PvNPwLSHg/eXzJxmDtMeDr4a4mLx0U1gPRzsaZBnuwOmPRx8r3b26lEw7eFs
+OTL6pHp0+QqB9XAwF6RVvBamPRwsF7pOWgmmPRysUlI/O3u5wHo4WH/WoXR7
+mPZwc/B5p71Z+Y+rwHo4ONN/d8QhmPZwcHfDcvEkmPZw8PqthgdrXATWw8HP
+Fj8YFwzTHm4ufv7f76nRgGkPB1sP9k24tUxgPRw8atg2R3eY9nDwMenM0fIw
+7eHgiDsd4nNLBdbDzePIl13uzXNh2sPBXQ7N35qXCKyHg0eZHW46ANMe7v9f
+d3TkJsK0h4MnX9QdXuMssB7ODvd4ieq8YJj2cPBXrwFRw2Daw8HFLaOf3F4s
+sB4OruSsR6yBaQ8Hl18I2KkI0x7OHs//8tm/LzgJrIeD60e2rJ8P0x4OnjaA
+tLcuElgPBzf+io05CtMeDvYr+ziWwLSHm8+RmKxJ72odBdbDwSMu70vcAdMe
+Drb/U7dyDEx7ONgx1MS0YqHAejj4jHeEug9MezgHfD4+vKvUF6Y9HPwsn1PM
+XyCwHg4OtBzfbylMezi4PWSBbjeY9nAL8M/b5WF3ykFgPRzcw9szzBqmPRxc
+PcPpxo/5Auvh4Hqt8QrxMO3hYKuxrSuMYNrDLcT7pufJslf2Auvh4J7NYycG
+w7SHg/3epOQNh2kPB6tbtlnctRNYDwfLTNJ+7QXTHs4R9+fl5JBeMO3hYAUT
+rXFX5gmsh4P/eP9qWgzTHg4+HL+3UBqmPRx8p0g4kDZXYD3cIg6/z7lbrGHa
+w8GNuzy9GucIrIeDvR0Xrk2AaQ8Hh8X23GQC0x4Orp1+KO6NrcB6OCf8PB+s
+zw2DaQ8Hax0RfRkF0x4OXub+cUTFbIH1cLCX2m4fX5j2cPC3+7/K+8O0h1vM
+kSMHBo4tshFYDwe77+OTV8C0h4N9XmYMkYVpDwdLRSpmnpslsB4O3pk3ynI+
+THs4Z3x9wzq/tFsLrIeDjfjwI0kw7eFgLcdix2kw7eHg8wfPDftmJbAeDu73
+1qYzDqY93BKO1FkdfmsI0x4Ovt+899HrmQLr4eDUtvEVoTDt4WB/v+AXo2Da
+wy3lyMYwn8aKGQLr4WCxuWxvf5j2cPCV++YWajDt4eCpZoOCb0wXWA8HR189
+cHc1THu4ZRzJcshS7wHTHg7+oL8sNGeawHo4ONHzbJMTTHs4eMOQaC8ZmPZw
+8Ehv/s9pS4H1cC4cueTTM8oWpj0crG9zXvu3hcB6OPhH/5qXR2Haw8GurYf2
+m8O0h4N1hffO9eYC6+Fc8X7qdmlsHEx7ONh8bI+eRjDt4eALkY1dNVMF1sPB
+JbEOreEw7eHgDtcpXVow7eGW489rSLpSpZnAejj4Rn2cbiBMezhY7+2fRUNh
+2sPBYUNe7C0jAuvhYLUKg+frYNrDrcCvd+dH9oNpDwev/2kTXjRFYD0cfPtU
+9x8rYdrDwftsDN0UYdrDwT1FTz/nTBZYD+eG77dvb/2dYdrDwQ0jHXtyMO3h
+4MTqiVczTAXWw8EnNXZ42cO0h4N7axrrdk4SWA+3EvdENKczGaY9HOz3tuyp
+NUx7ONjrdUr+r4kC6+HgTwPfZB6BaQ+38v//+5J/hjlMe7hVHJnV4n75q4nA
+ejj4xOPcB/tg2sPB07c7NU2EaQ8HvxniMPSDscB6uNUcMXyZsiQKpj0cPOOh
+5alxMO3h/v/14Yadr4wE1sPB87v8ncNh2sPBg7Z3K9eGaQ/njvfPimqLZ4YC
+6+HgbUodd7fCtIeDv6x2dR4B0x4OTvur2FkxQWA9HCzf3JUWANMezgPPX+v1
+lgyBaQ8H80dPDLk7XmA9HDz00JyfG2Daw8G/oyfeV4VpDwdfTF6Wc3OcwHq4
+Nfh5+HstfS1Mezg4uGTuGRWY9nDwA9UBl4sMBNbDwZu0+zxcDdMeDo4abNai
+DNMezpMjpv2PaubrC6yHg7+ZDVuxAqY9HDyi+HmmAkx7ODi18FK3y2MF1sPB
+M13z3JbBtIdbi+fXyton3WHaw8GrJ+nPvqgnsB4ODi05WbkYpj0c3G2vwSoe
+pj0cfPLhe+68rsB6OC/8809nnXeEaQ8Hd5+asKobTHs4eMjt+NGZOgLr4eD2
+ZWfbHGDaw8EjjJ9XSsG0h/PG72eTSsEZbYH1cPAp61Xn7GHaw8EdL25ndWkJ
+rIeDU2ZPuHoapj3cOnweV55/NA+mPRz8KH58S+cYgfVw8Ln8G8NOwbSHg/f7
+OCybC9MeDk783HCqY7TAerj1+O8xj+xIhWkPB8+8oOk0B6Y9HPzb+cat9lEC
+6+HgZ75Ok1Nh2sPBz4c0FtvCtIfbgOfPuK1z20cKrIeDqxpE31Ng2sPBe1YF
+x9vCtIeDn4xomt4+QmA9HOy9eL6QCtMezgc/L/rpj21h2sPBx599TW/XFFgP
+Bx/wV92TCtMeDj43ZcKWOTDt4eCwpSYbO4YLrIfz5cjbbppb02Daw8GXFv2J
+nQvTHg5W35txrnOYwHo4eG2VefUpmPZwsOLifCU7mPZwfhxJtla269IQWA8H
+Nz81P5EO0x4O/j1qboc9THs4+K6/oYsUTHs4+PLX5sdnhwqsh/PnyLgrO+Ys
+gGkPB7+Ra3ghA9MeDg5T0fTOGiKwHg5WEesoLYJpDwdfVhJd42Daw23E5/ey
+NL8L6gLr4WD/kb1MnGHaw8HpB2fIdodpDwf3eW/x6dJggfVwcNZ4/sEymPZw
+AXg/vxlZLA/THg7uef3h9SuDBNbDwYmOz8pXwLSHg5/eOPReCaY93Cb8/rX7
+c9cGCqyHg5PK5xm4w7SHg2dUWKztA9MeDr7t8T27WE1gPRwc99BK5AXTHm4z
+nrcNnFwGwLSHg8+Xqt29pSqwHg6+eXXPZB+Y9nDwCcuMwsEw7eHg2EP+VvcG
+CKyHC8R9rK9/FwDTHg4+6SGED4dpDwdr2941eNxfYD0cfLh8bMNWmPZwsLj3
+pEtjYNrDbeHI9cWfw6v6CayHg8dVj10eDtMeDhYV95+lD9MeDv5tmUje9BVY
+Dwf/TbxKomDawwXh86TLe5YxTHs4+OuR/OWfVATWw8GRGUci9sG0h4Oz3RRz
+CEx7OHjUX+Uf3/sIrIfbip+H0ynjjsC0h4Objt0MnwHTHg5O67PufUtvgfVw
+sKd5qlUyTHs4+M0S18I5MO3htuF55ViqaVcvgfVwsNhk7Z2zMO3h4DurLi9x
+hGkPB09fGiIlwLSHg38tuJd5qafAerjtHHHbtW+lK0x7ONhlzLPRSjDt4eAn
+fnvbrykLrIf730m3nq6BaQ8HJ39YV9Afpj1cML4/NsVk3VaS9HBw7EH1DD8l
+SQ8Hc5uH5mgoSXo4uNVhX9mjHpIeLoQj21ev/7Kth6SHg19+vtpbp4ekh4P9
+Fb2sXylKejj4fZ9deyIVJT0c/MZQ9qWRoqSHC+WIQ9YPg88Kkh4OXnjR8GCC
+gqSHg4cFvxUsFCQ9HDxkXl1Ik7ykh4PfLrPpfkJe0sOFcWRgncIRW3lJDwcX
+Dh1p1CUn6eHgSuvDbzPkJD0cfOCYa7yTnKSHg70cttnJykl6uHA8P2U1DMyT
+lfRwcF5t1q9VspIeDr6rV1ipIivp4WDNxwOKS7tLejhYJCq54ttd0sNF4OdZ
+Jidfo7ukh4NbZX+UPRZLejh4jqN3bbBY0sPBmaPHiceKJT0cPKBgotFbQdLD
+7cD7uVWYT4wg6eHgQb3lr04WJD0cfHT+I7kGXtLDwa2zHq9O5CU9HNzDSOHR
+LF7Sw+3kyGf77RadnKSHg7PfjSo5y0l6OPiumtjGiZP0cHCuRf/3spykh4OH
+HXQKuSqS9HC7OPJ9/n1tD5Gkh4NVrnl+6C+S9HDwPXmjtLJukh4OXhmm7bOp
+m6SHi+TIquXW1qO6SXo4OPBLjM4LGUkPB290aFPbJSPp4WCn+nAVYxlJDwfP
++2ig+kVa0sPtxvvFDukxh6QlPRzcrPzdcqa0pIeDS282r2mTkvRw8O+3Konp
+UpIeDg49NfeFo5Skh4vC54FjsrqslKSHgwOMZH2u/uNZDwefCQ976AHTHg6u
+CFEyVoVpDwfnrs/IKO/iWQ+3B9//8Q5jtsC0h4OfaynkaMG0h4ODgx7MfP2X
+Zz0cfO/OwS97YNrDwY5zPeInw7SHi8Z/n6OZ1Y9OnvVwcNxwNbkkmPZw8Jw/
+rc/mwLSHgzf1fJYpDdMeDg6+eiEmu4NnPVwMvp8NIrcsh2kPB5cVOfv2hmkP
+B99IGb2xtJ1nPRwsq/kjzB+mPRz8aUd64giY9nCx+HlQXFhc1cazHg62/Nf6
+YxdMezhY41jkqIkw7eHgOXpyXt9aedbDwe/bA64lwrSHi8P7nPnjvrYw7eFg
+99l9gqRg2sPBS1zJ9wt/eNbDwfk3565eDtMeDl6TP72hN0x7uL14/4hS33br
+N896ONhwa/WAAJj2cHD7M5/iUTDt4WDH1/UbXrbwrIfbxxHlKlPdPTDt4WBB
+cc3vyTDt4WDrW+vuNDbzrIeD+82wST0J0x4OfljdFWUP0x4uHs/rt0K38TDt
+4eBVc6u3XPnFsx4OfnNTKtwDpj0cHLC65YAaTHu4+P9/vnJzHjTxrIdLwNfH
+ZWrNdpj2cPCPaQeUDWDaw8FlWy/afvzJsx4O9pubcPAATHs4uFOY+G0mTHu4
+/fj++nrSqrORZz0cHGNZfjELpj0cHLQ0e4QLTHs4WD7UIa0XTHs4uG97ju6t
+Hzzr4Q7g+UixoiQApj0cXCWb5DoGpj0c3Nd4hHxNA896OPhtrev1WJj2cPCb
++XO3mcO0hzuI54UXjTN+f+dZDwdz+VMGpsO0h4MXWkzqdIJpDwebFH/4qAjT
+Hg4eFWRYXfyNZz3cIbzvlei/8IVpDwd3vq18PwKmPRycra72p/orz3o4uE8F
+rxIN0x4O3mS0b4oZTHu4w/j3pxf5NNfzrIf7316R2adg2sPBMyt/diyCaQ8H
+DxvZbKsI0x7uCJ7PL8dkFX/hWQ8Hz39wo68fTHs4eF3+7t0jYdrDwTL36rq/
+quNZDwc/t6naGwPTHu4ofl6jF2qaw7SHg+e8XnXz92ee9XDw0h2itWdg2sPB
+O15qqS+BaQ8Hu49881oZpj1cIu5VQf+00k886+HglM/VAZtg2sPBPVrVHbRh
+2sPB803rTd995FkPB3/kx+slwLSHO4af55R/WjNh2sPBoW4zxv39wLMeDp5+
+WGHaBZj2cPCNvTaubjDt4WCT4/yu/jDt4Y7jfigZXr1fy7MeDpaZ8LolGKY9
+HHzO5c/ECTDt4WClD6FR9e951sPBkxSDPx+DaQ+XhJ+Xsd9n2cG0h4NHHL9V
+IMC0h4M/n5YzLHjHsx4O9k+6mr8Opj0cXPj8kdVwmPZwJ/D8kmT74cVbnvVw
+8G8b/Z3RMO3h4OixARPMYdrDwbrHBv/484ZnPRy8/5NmdgZMe7iTHDnrHLXN
+BaY9HBzsMHuBCkx7ONhu2Brj8hqe9XDwrgHvhm+HaQ8HZ0dlqY2HaQ+XzJHd
+Dx4NrH/Nsx4ObjWYOeo4THs4uLtyryn2MO3h/v/1PO2l3WHaw6VwZHTogV2F
+r3jWw8HaxbMLfWDaw8F5d+b+HQnTHg7Objg2reYlz3o4WHPnuMP7YNrDpXJk
+Vr1S6wyY9nBwhIf+sq5qnvVwsMuSA48vwrSHg+NVJ9u6w7SHg6Vbhz0bBNMe
+Lg3PDzOtVlW+4FkPB79emSETCdMeDq5NnXl6Ckx7OHi2s/rCliqe9XBwZa1O
+z7Mw7eFO4fs71ufZMpj2cPCLvG8pKjDt4eCEyweD7j3nWQ8H1731WxYC0x4O
+dtoTYmME0x7uNN7Xel+zaHjGsx4OPvxAY1oKTHs42LpXztxFMO3h4HoT71VK
+MO3h4MeJc3bcesqzHi6dI3viF1zYAtMeDi7fGPJRH6Y9HOyRVKHxpZJnPRy8
+fpWp53GY9nBwT827hfNh2sOdwfv2eF9VeZj2cHDBD+OQG0941sPBfzP7/wqA
+aQ8Hz7ir7KUL0x4OTj6m/uvjY571cGc5MjncIuQoTHs42L8qUNUOpj0cXNF0
+s7A7THs4uENnkOf1Rzzr4TLw9fgcrrERpj0c7BLQ/kEbpj0c/Gji5vMfHvKs
+h4O37+kWcQSmPRzcdCfebR5Me7hMfD7N1LLtDtMeDlbwvDP1egXPejg4Yfcq
+shGmPRx8QiSeoQPTHg7ebXDa8eMDnvVwWfh+8J3mdxSmPRw8cfi7w3Yw24fD
+++4J/7uyMNuH48j9aZzoxn1esg/HEYMNu6dvgtk+HD4vg4UEPZjtw3Gk6+HG
+b5/v8ZJ9OI4cLKq2OQ6zfTiOFJ/RyXOA2T4cR7Y2rtdRhNk+HP7+hpOZpeW8
+ZB+OI8dE1ycEwWwfDj8PMbfLxsFsHw6f/z8ur/x2l5fsw+HrGxKjkAKzfTh8
+vp2aVegEs304jly89j2gF8z24Tjybth60/IyXrIPh+etSU/lQmG2D4fPl+X9
+PpjAbB8O/70dRrea7vCSfTiOTHUdn30GZvtw+P20yZ12hdk+HO7zkPxTA2C2
+D8eRW8ZmFx7f5iX7cPh6phy9GQmzfTh8fa6Xv5sKs304joz7eU/ccYuX7MPh
+83L/MeOLMNuHw9dXeYrvGpjtw3HE+2bGFQ2Y7cPh/VzpE/+qlJfsw+H+Lfyy
+JB5m+3Acaey8dH0WzPbhOKLjMl2Lg9k+HD7vPh87ce0mL9mHw+//Z566P8z2
+4fD9Xbs/XQdm+3AcaRs0btLnEl6yD4d7IcRWHYfZPhzet6TSty6E2T4cR/55
+Bukow2wfDvf3vFxd2Q1esg/HERvdeWdDYLYPx5FLs2wDJsJsHw7vI57Sts3F
+vGQfDr/f5pW6mTDbh8O9mL61/0qY7cPh877MUmEwzPbh8Pt5ly9bdZ2X7MNx
+5GpTjXIczPbh8PtxzRxqBbN9OPx87R9u2g1m+3Acafhl6VJQxEv24Tii9VY+
+xg9m+3B4/i4OuKUDs304vD937hDqCnnJPhx+vlqN5p2A2T4c7qdqZNoimO3D
+4Xnk3iZRb5jtw3GkaB3vef8aL9mHw/Oit87rCJjtw+H5XK9xAYHZPhxHnvW3
+etVWwEv24fB5uM/E4yLM9uE48qHbdem1MNuHw+/vSdVJTZjtw3Gkv0eozdt8
+XrIPh3uvWyh9GGb7cPg82r2jyA5m+3B4Pvv0OkIBZvtweP5KL1pw+yov2Yfj
+SM3EMfrBMNuHw/O4MFhlIsz24Thi5XeoW0seL9mHw/Pv94PtWTDbh8Pz00vV
+jtUw24fjyJNUdU4DZvtw+HpfSe33+gov2YfD80tg+vgDMNuH48iURaMXz4XZ
+Phw+zws1o+Rgtg+H99GeiaWll3nJPhy+X4p2i7fDbB8Ozzv6P+1NYLYPh69X
+ZfmZ5lxesg+He6I8QPYczPbh8DxqX73BHWb7cLivYrmPGjDbh8Pz+6Ezy2py
+eMk+HO7/+ssfD8JsHw7vg126vnYw24fjyNiMnvKKMNuH48idj86Zdy7xkn04
+jgzop7QwFGb7cHi+PDdCfjLM9uFw7/snl7Ve5CX7cPh6F2+PvQizfTiOvOpT
+tMwLZvtwuPehi01GwWwfDn/+GxcM/JDNS/bh8Pm0JKv7cZjtw3Fk7eml/xxh
+tg/HkVPF7l29YbYPh8+DfuX8wwu8ZB+OI1tUQ/rthtk+HEeuGe0xmAazfTj8
+fNXUL5CG2T4c3l+3HAovOM9L9uFwD4MPFGyE2T4cnsecajv1YbYPx5HczYHT
+Gs7xkn04jtjOXnIoHWb7cPjnW0a2rIDZPhxHFj36u0gdZvtweP9YdrnsZRYv
+2YfD5+3yHLMDMNuHw/OA1e8b82C2D8eRzIgAG0WY7cPh+3OHybuyTF6yD4ef
+hyKTreEw24fDz3fixmFmMNuHw/P7vh9POjN4yT4cnl96nYi6ArN9OI4MiYmc
+7QuzfTh8Xvqf6a8Hs304jnia/vv+9Swv2YfjiJf9jvJTMNuH48h4HbPs5TDb
+h8P7iemYk4Nhtg+H3/8v8yMvz/CSfTjc75u7Eg/AbB8O939ox2k7mO3D4f0k
+eP+1HjDbh8M/327Ry/J0XrIPh89LeUuZnTDbh+OIz+D5+hYw24fD+7L0rjVS
+MNuHw/P4sDeZBad5yT4cns+65rcFwGwfjiN8t28242G2D8eRuWnHz/48xUv2
+4TgyyNm7ZxbM9uHw+znqGOIBs304vG9ULe7QhNk+HEeMd2wMqk3jJftwHNk7
+8LQ4CWb7cPh8Vv5+dDHM9uHwefTcwqQ/zPbhODL8U+bbp6m8ZB+OI3EXNWP3
+wmwfDs+jOZkzbGG2D4evp6uZrDzM9uFwn8e+rbyTwkv24fD+dXDn6XCY7cPh
+fbKHcfhUmO3DceSMXKPHv2Resg/Hkc1chmMBzPbhOCLvu2buJpjtw3Hk+wOt
+eRNgtg+H54s9DU6/TvKSfTiO5Iw853UeZvtwuG9910auhdk+HH7/jzXPjYbZ
+Phz+fB5Xv/p8gpfsw+F5KmZHr1SY7cPhXoaMsXOF2T4cPj+Glx4ZDLN9ODyf
+/Jj3/VUSL9mHw/ON05Pph2G2D4fPh3cWZxfAbB8O9/Fvat8+MNuH48hpzZao
+x8d5yT4cRw5V6cnFwmwfDu/PexbstYHZPhxHVheuGioHs304jgz7vDT/zjFe
+sg+HP+/gyc4RMNuHw/txdxmxBcz24TgS3nY6Xxpm+3AcCbs3NqAokZfsw+Hn
+seuwaRDM9uE48q17rdxEmO3DcSR1jbi29Sgv2YfjiOHx7iW5MNuHw/OG+sez
+vjDbh+OIr+ehRH2Y7cNx5HnXsIONR3jJPhxHQuwjjmTBbB8Oz5/1+ac8YbYP
+xxFF05sFo2G2D4d7czexuu4wL9mHw/1SnC59Cmb7cBwZurNQzw1m+3AcWX5J
+xl0DZvtw+LxR7nnm3SFesg+H91m1r7+Ow2wfDs/z9lHTlsBsHw4/70bNJ9Rg
+tg+H51/LIfzLg7xkH44jZ9uVfQ7BbB8Oz6/Pb9YtgNk+HEfeLDJapQKzfTjc
+w25rGioP8JJ9OI6ozHPaug9m+3AcEUqFvvNgtg+H+//K64oSzPbh8HnbL8a1
+Yj8v2YfjiFHbyj7RMNuHw+d1V/PDWTDbh8N9OWOYIAezfTiO2AVqu95N4CX7
+cHgf/lVpuAtm+3D4fN6npTIDZvtwHIl5rf+Xh9k+HEduzv30rTSel+zDcWTk
+BsuPYTDbh8P75fXZn8xhtg+He1so1SgDs304/Lw3OMrc2MdL9uE48vXxwoHB
+MNuHw+fP9w5CYLYPx5GWYrO1//bykn04jox5PPJkIcz24Tiy5sS5N0Ew24fD
+53125XBTmO3DceTprv2+nXG8ZB8O33/pv8rzYbYPh6///voxgTDbh+PIlyeb
+4k1gtg+HP8+Px7n2WF6yD4fP3zlO2/Jgtg+H59WDZ6Q3wWwfDp/3U6OijGC2
+D8cRyyddg1tjeMk+HEfmV0gVXIbZPhxH5Apil22E2T4c3m8GZSoYwmwfDj+/
+W+xLfkfzkn043Dun8OBcmO3D4b/HbPIMf5jtw3Hk8qWgvhNgtg/HkXSTqT9a
+9vCSfTiOyC6KrMiB2T4cR1Ycsr/iB7N9OI6s23Y8fTzM9uE40mufe3JLFC/Z
+h+OIq9OF1ByY7cPhfXap33k/mO3DcWTCiEsl42G2D4fnOWPPNy27eck+HEcG
+Dz7aLRdm+3C4l0un6vnDbB8O73Mhzm4TYLYPx5GlSt9O/o7kJftweD7f+60u
+F2b7cPjvi3U23AizfTg8P8WbRhvCbB8On2+au7//2cVL9uE48rrCYv4VmO3D
+cWTVAPfSAJjtw3EkOOa3qTHM9uHwPnnla2HbTl6yD4fnP/XpM67CbB+OI6Vz
+hOrNMNuHw/1+Mtp3Isz24fA+YHBepXMHL9mHw73tSCgugNk+HD7fc6t9g2C2
+D8cRv4YtepNhtg+H7yfdwOauCF6yD4fnOa7yehHM9uHw/d4enrAdZvtwHOl2
+NGaDGcz24fD3+/5YIAOzfTh8viunWJaE85J9ONyXv2cnhsFsH44jDrc4E0uY
+7cNxxLT1HOFhtg+H+6uebns7jJfsw+Hn9e6PlTthtg+H5/PwkIiZMNuHw+d3
+zdIsWZjtw3Fko0tETXkoL9mHw9cvsVllD8z24fB+o56+YDbM9uE4MjngZFIP
+mO3DcUTK4M3PhyG8ZB8O729vnK33wmwfDvdbbmCmHcz24f7//2dV7dsHZvtw
+/3/9Fux6FsxL9uHwfj2iottBmO3DcWRDfXCEI8z24fB+3rZWWRVm+3D4fv4Q
+l/JqOy/Zh8Pnz8RvU47BbB8O/77owNqlMNuHw/OK5+SYITDbh8Pnz2oD89pt
+vGQfDu9TSo7/UmC2D4f36z+ZJSthtg/HkT0ZerEjYbYPh7//xpsV9Vt5yT4c
+Pt/K8swyYLYPh+ddu2uaXjDbh+NIeVNdLz2Y7cNxJM1oYvemIF6yD4d7dDmb
+vwSzfTj8fErPlveH2T4cRzadlhtgBLN9OHw+kXrd9i28ZB8O71uL6mwKYLYP
+h+fP3SLfrTDbh8Pnt5vpSQKzfTg83wXGVcnAbB8O98j1n0ppIC/Zh+NIYEa4
+8w6Y7cNx5ErD0IyZMNuH48jLgqcy8jDbh+OI1tmjLg8285J9OI5ozPa/Ewuz
+fTj8fJu4GNrBbB+OI/dEi7P6wGwfjiMLp7ppV23iJftweP7fGXjpMMz24fDv
+W5No7gyzfTi8L4SUVQ+G2T4cfr5cuza9D+Al+3AcyTphMiQVZvtw+Lx4uuXh
+Kpjtw+H3l1CyYzTM9uE4st5fYfr3jbxkH44jM5UcFc/DbB/u/+e1lNcbYLYP
+xxGdsh+XxsNsHw7vmypG8a3+vGQfDs/fAVsC82G2D4f3yx35Hlthtg/HEb2X
+v1zMYLYPh/d92WEuIpjtw+H575zV6tt+vGQfDs87y1ZujITZPhxHgnL9om1g
+tg+H90GrjZlKMNuHw9cz173yiS8v2YfDvy/OutsBmO3D4XnPT9VkEcz24fA+
+1/k8YCDM9uE4Elu0reitDy/Zh8PP30JlxRSY7cNxpNJl94pVMNuH48gAv283
+RsNsHw7PW1oGoxo28JJ9OPw8aCw5cAFm+3B4/2heo+AHs304/PuNnXYbwWwf
+Dp830aOVO9fzkn04PC9FVx0rgtk+HEeKKpePC4XZPhxHpv29+2gazPbh8Hmd
+LL9RFmb7cBwZtWLEsAfreMk+HN4Hq/u/iIPZPhy+PsnvE+bDbB8O923x9kX9
+YbYPx5HuST81X3vzkn04fD/Kj+9Igtk+HN5vpsx8vgJm+3B4H3yqlT8SZvtw
+HDHwrEn75sVL9uE4YnZi8eHzMNuHw/tdz7QEX5jtw3FEd0neQSOY7cNxxHFo
+QnLnWl6yD4ef37+Guddhtg+Hvz466WEYzPbh8M/3ud80A2b7cBzJsL6mpgCz
+fTh8PuZ6zX7kyUv24fD8Yfd2RwLM9uFwT4uVyhxhtg/HkU9JXcqDYLYPh8+D
+uNOu79fwkn04PO/oK+SnwWwfjiMHh49RXQOzfTh8XspKh+rCbB8O79/Be5p+
+efCSfTh8fmhVuF+B2T4c7sHZm3VbYLYPh69Hkqe3Gcz24fC8f7b0LwezfTjc
+d+8H++6685J9ONzr6PCxMTDbh+PI9vQvz+xgtg+HnzfXttB+MNuHw/uK80Wj
+16v/a+qsw7LK2rdt7P3sbWHM2D12YGAgKrpEEAQVFURRsVGxFRtbsbu7u5PX
+7sYccwzGFrsD87tmr/v6Hd/7zxzn6wQ8sffaa133ebnED4fXq3KWT8vA2g+H
+69HifHvag7UfDr9v8cujSoC1Hw7fr5GFm7zt4BI/HF7nwLzldoG1Hw7vc6G9
+mQeCtR8O35O4T7+rgbUfDp/TZZfepQRrPxx+7/G1X5xu7xI/nEu9ztzy5SSw
+9sO5VFBi+k8NwdoPh+v46qZmNrD2w2Hd8sE7991Il/jh8Ne+u6suB2s/nEs9
+unK6bQew9sNhXbe16/SSYO2Hc6lq21edftfOJX44l9oypLvrf2Dth3Opo/vO
+BA0Caz8crlvpd8ytAdZ+OJcKyFf8lQus/XC4bs90r32urUv8cC61NtP+jdPA
+2g/nUodqXM3aGKz9cPhen+49PhdY++Fc6ny9hcaDNi7xw7lUs5jao9eAtR/O
+pb58Gpi+K1j74fA9b196qQdY++Fcak7vyEpfW7vED4fnltM5bx4Aaz+cS6VN
+02DoSLD2w+E56lHKUrXB2g+H7/UPj0duYO2Hc6llP+8su9rKJX44/B5TknWY
+D9Z+OHwvIhaWawXWfjiXquK2xSoM1n44vL51PR++aOkSPxze52PlTm4Daz8c
+nrtzrdjaD6z9cPheJhu13Bus/XAudSnHtQUpwdoP51K5s8xaeKaFS/xw+H0W
+HV05Baz9cPjeNG2+sxFY++Hw+UhqFZ8TrP1w+PkKX3x2P8IlfjiXqjxhVfq1
+YO2Hw+f86oOq3cDaD4fXZ3Nsz/Jg7YfDOv34xE3fmrvED4fP8dHPbw+DtR/O
+pZqEHa0yBqz9cC51rsTrSXXB2g/nUvfe9H/6B1j74bDuDW4dcKuZS/xwLuX7
+ddXWpWDth/svt+CXrwNY++HwPb1VbY47WPvh8Dp2m5r5Y1OX+OHwe6f0WrAX
+rP1wuI77eRYdDtZ+OHwOHo7b799U8nBga1LpJm5NJQ8Hvvum8Per4ZKHA5fZ
+123VgnDJw6XDOmyx2bhNuOThwL/8n6cvFi55OHBAx5yX3jSRPBx42+Y5c+Ka
+SB4OnCM+ov3gJpKHc8PP2bVLVd8mkocDd6h1NHuaJpKHAydztfh1ubHk4cBm
+RLXncxtLHg4c+KP13ZaNJQ+XHp+DmaduFG4seTjwnRtd/3kVJnk48LG+IQ92
+hkkeDlygQL/3MWGShwMfnXwjVc0wycNlcKm5naOLpg6TPBz4Qufa9S43kjwc
++ECNJjFzG0keDvx2yeItLRtJHg6czyvni8KNJA+XEf+ew+fcX4dKHg7cJHFb
+v12hkocDn2p35vSgUMnDgc1nGfP7hkoeDny46PhhaUIlD5cJv++NMk//DpE8
+HLjxeqPR/BDJw4FHhhpnW4dIHg58dnypWsVCJA/3B36f5CPOvG0oeThwm24/
+Q3Y3lDwceGzsksdDG0oeDtznR/sh/g0lDweeOLZhnvQNJQ/3J65H/7Y6cb2B
+5OHAR+OmRi9uIHk48KLj94q2byB5OHDuQ8GP3RtIHg48v/mdtZ/qSx4uM74f
+IbHRB+pLHg78qGltv9j6kocDNypWJE/d+pKHA7v1zf3rz/qShwM3+1r88Z1g
+ycNlcak9HepdWRkseTjwzZjRp7sESx4OPPvl5ePlgyUPBzZ6lT79o57k4cCt
+jy/6+3g9ycNlxfdhYc5HE+tJHg78ZNuaH6H1JA8HHnlQ5cpdT/Jw4J8DH/s8
+rit5OPC4pTN7bKorebhsLjU5sc6qPnUlDwdekTbdfe+6kocDTz15pYCrruTh
+wPUuLel6oY7k4cDWo+4HZ9eRPFx2l8qy3ydLyzqShwPbf2TtU6SO5OHAc1e8
+uPUmSPJw4Liih/x3B0keDjw0Yuq+YUGSh8uB69PPiIq1gyQPB449Vnh3xiDJ
+w4E/dn6mbgVKHg7cZ/vKS8sDJQ+XE9//kMYdOgdKHg5cLHUys3yg5OHAWWcu
+WvejtuThwBM2lWp0orbk4cAt/thuTa4tebhc+P9HFD4SVlvycOBeu8cPz1tb
+8nDgJr3uBiQGSB4O/LRr7qzbAiQPB37esfbLAQGSh8uN9zd/q9M+AZKHAw9s
+1GpDmgDJw4FnHQuYddVf8nBgv+LZRi/ylzwcOCjg/OD2/pKHy+NSC+60H1Ta
+X/Jw4KarHw7/WkvycOC77XwmH6kleTjw+hvDl42vJXk4cMzBpftCakkeLq9L
+Vfpn0Z1ctSQPB/7+tJ/xxE/ycOD0G9zLbfGTPBz43YMDHfv7SR4OXK9+kVU1
+/CQPlw8/586Oian9JA8HLnxxmMdVX8nDgd+36TZyka/k4cC3ypS53d5X8nDg
+Ed+Oe5XxlTxcftxfhpdYklRT8nDgmWPbpDlWU/Jw4CqXOw6ZWFPycOAceby/
+NqopeThwfNmE/nlrSh7uL1ynLgYme+YjeTjw993DJ2/3kTwceMX24QUG+Uge
+DtxlaO1Dfj6ShwM/fnCjdXofycMVwOdmaYk0/9SQPBw41+Ca+5bXkDwc+FWV
+PL261JA8HHjOsr2lK9aQPFxBl1rcK+vH30rycOC90eUOnVGShwNfiko3bYaS
+PBz4e/aVURFK8nDgkbU/BxRRkocrhOvZgRSl31WXPBw4vurpnPuqSx4OnHmi
+X/rY6pKHA1/uOSBVcHXJw4Gr72yTOnt1ycMVxn8/e7JMD6tJHg5cJKp+vk3V
+JA8HzhbVsEK/apKHA6+9ZzSoUU3ycGC3Oe2j01STPFwRl9oa0nfhNW/Jw4GL
+JnicW+IteTiw+jU/RSdvycOBP8Zsql7eW/Jw4B55o0b+qip5uKJYJ247d/50
+VcnDgaOSrueZUVXycOCKR0b3jagqeThw58u3rhapKnk4cMkPl73eV5E8XDG8
+Xm86rdpfRfJw4EtTV2YdU0XycMX+ux8PntqgiuThwJmffkyfq4rk4cBNyqSa
+/aSy5OGK43pfa89f2ypLHg48833KuJjKkocD/y9ZYnCtypKHA9ep0u5thsqS
+hwO36dpvzm0vycOVwPesTT6/1V6ShwMHPI5I6uEleThwmaOldlbxkjwc+OTx
+aX1cXpKHK4n3bU+s9+VKkocD1+mcKu3CSpKHA99Zk/N++0qShwO3qLJvf9lK
+kocDL37/ZPEPT8nDueN6P3/RmFOekocDxyRL6DvdU/Jw4DXvVneJ8JQ8HHhz
+lS8di3pKHg7cYOP5zh8qSh6uFO7LGYv1OVhR8nDgHl527LiKkocDd3wftSC0
+ouThwB9S192dt6Lk4cDnG2y9/byC5OFKu1TCrOlmXAXJw4F9V7+vMLyC5OHA
+QQ0vdqlTQfJw4F5RRdZnrSB5OHDUvqRXD8pLHq4MPm/Z/CptLi95OPCgYHvc
+gPKShwO/Ketzz7e85OHACVPeeWcoL3k48DuvzMtvl5M8XFmX+p1sY9o15SQP
+B84Yt3Nwr3KShwO3LV7qk3c5ycOBW5bOGp2qnOThwCtmd/ty1UPycPjrr7Ll
+Riz1kDzc//dX/v/8+/jP8d/Dfy//O/zv8ufgz8Wfkz83fw/+Xvw9+XvzdeDr
+wteJrxtfR76ufJ35uvN94PvC94nvG99Hvq98n/m+83PAzwU/J/zc8HPEzxU/
+Z/zc8XPIzyU/p/zc8nPMzzU/5/zc83vA7wW/J/ze8HvE7xW/Z/ze8XvI7yW/
+p/ze8nvM7zW/5/ze8zrA6wKvE7xu8DrC6wqvM7zu8DrE6xKvU7xu8TrG6xqv
+c7zu8TrI6yKvk7xu8jrK6yqvs7zu8jrM6zKv07xu8zrO6zqv87zu8z7A+wLv
+E7xv8D7C+wrvM7zv8D7E+xLvU7xv8T7G+xrvc7zv8T7I+yLvk7xv8j7K+yrv
+s7zv8j7M+zLv07xv8z7O+zrv87zvcx3AdQHXCVw3cB3BdQXXGVx3cB3CdQnX
+KVy3cB3DdQ3XOVz3cB3EdRHXSVw3cR3FdRXXWVx3cR3GdRnXaVy3cR3HdR3X
+eVz3cR3IdSHXiVw3ch3JdSXXmVx3ch3KdSnXqVy3ch3LdS3XuVz3ch3MdTHX
+yVw3cx3NdTXX2Vx3cx3OdTnX6Vy3cx3PdT3X+Vz38zmAzwV8TuBzA58j+FzB
+5ww+d/A5hM8lfE7hcwufY/hcw+ccPvfwOYjPRXxO4nMTn6P4XMXnLD538TmM
+z2V8TuNzG5/j+FzH5zw+9/E5kM+FfE7kcyOfI/lcyedMPnfyOZTPpXxO5XMr
+n2P5XMvnXD738jmYz8V8TuZzM5+j+VzN52w+d/M5nM/lfE7nczuf4/lcz+d8
+PvdzH4D7Atwn4L4B9xG4r8B9Bu47cB+C+xLcp+C+BfcxuK/BfQ7ue3AfhPsi
+3Cfhvgn3Ubivwn0W7rtwH4b7Mtyn4b4N93G4r8N9Hu77cB+I+0LcJ+K+EfeR
+uK/EfSbuO3EfivtS3KfivhX3sbivxX0u7ntxH4z7Ytwn474Z99G4r8Z9Nu67
+cR+O+3Lcp+O+HffxuK/HfT7u+3EfkPuC3CfkviH3EbmvyH1G7jtyH5L7ktyn
+5L4l9zG5r8l9Tu57ch+U+6LcJ+W+KfdRua/KfVbuu3Iflvuy3Kflvi33cbmv
+y31e7vtyH5j7wtwn5r4x95G5r8x9Zu47cx+a+9Lcp+a+Nfexua/NfW7ue3Mf
+nPvi3Cfnvjn30bmvzn127rtzH5778tyn57499/G5r899fu778xyA5wI8J+C5
+Ac8ReK7AcwaeO/AcgucSPKfguQXPMXiuwXMOnnvwHITnIjwn4bkJz1F4rsJz
+Fp678ByG5zI8p+G5Dc9xeK7Dcx6e+/AciOdCPCfiuRHPkXiuxHMmnjvxHIrn
+Ujyn4rkVz7F4rsVzLp578RyM52I8J+O5Gc/ReK7Gczaeu/EcjudyPKfjuR3P
+8Xiux3M+nvvxHJDngjwn5LkhzxF5rshzRp478hyS55I8p+S5Jc8xea7Jc06e
+e/IclOeiPCfluSnPUXmuynNWnrvyHJbnsjyn5bktz3F5rstzXp778hyY58I8
+J+a5Mc+Rea7Mc2aeO/McmufSPKfmuTXPsXmuzXNunnvzHJzn4jwn57k5z9F5
+rs5zdp678xye5/I8p+e5Pc/xea7Pc36e+zMHwFwAcwLMDTBHwFwBcwbMHTCH
+wFwCcwrMLTDHwFwDcw7MPTAHwVwEcxLMTTBHwVwFcxbMXTCHwVwGcxrMbTDH
+wVwHcx7MfTAHwlwIcyLMjTBHwlwJcybMnTCHwlwKcyrMrTDHwlwLcy7MvTAH
+w1wMczLMzTBHw1wNczbM3TCHw1wOczrM7TDHw1wPcz7M/TAHxFwQc0LMDTFH
+xFwRc0bMHTGHxFwSc0rMLTHHxFwTc07MPTEHxVwUc1LMTTFHxVwVc1bMXTGH
+xVwWc1rMbTHHxVwXc17MfTEHxlwYc2LMjTFHxlwZc2bMnTGHxlwac2rMrTHH
+xlwbc27MvTEHx1wcc3LMzTFHx1wdc3bM3TGHx1wec3rM7THHx1wfc37M/TEH
+yFwgc4LMDTJHyFwhc4bMHTKHyFwic4rMLTLHyFwjc47MPTIHyVwkc5LMTTJH
+yVwlc5bMXTKHyVwmc5rMbTLHyVwnc57MfTIHylwoc6LMjTJHylwpc6bMnTKH
+ylwqc6rMrTLHylwrc67MvTIHy1wsc7LMzTJHy1wtc7bM3TKHy1wuc7rM7TLH
+y1wvc77M/TIHzFwwc8LMDTNHzFwxc8bMHTOHzFwyc8rMLTPHzFwzc87MPTMH
+zVw0c9LMTTNHzVw1c9bMXTOHzVw2c9rMbTPHzVw3c97MfTMHzlw4c+LMjTNH
+zlw5c+bMnTOHzlw6c+rMrTPHzlw7c+7MvTMHz1w8c/LMzTNHz1w9c/bM3TOH
+z1w+c/rM7TPHz1w/c/7M/XMOgHMBnBPg3ADnCDhXwDkDzh1wDoFzCZxT4NwC
+5xg418A5B849cA6CcxGck+DcBOcoOFfBOQvOXXAOg3MZnNPg3AbnODjXwTkP
+zn1wDoRzIZwT4dwI50g4V8I5E86dcA6FcymcU+HcCudYONfCORfOvXAOhnMx
+nJPh3AznaDhXwzkbzt1wDodzOZzT4dwO53g418M5H879cA6Ic0GcE+LcEOeI
+OFfEOSPOHXEOiXNJnFPi3BLnmDjXxDknzj1xDopzUZyT4twU56g4V8U5K85d
+cQ6Lc1mc0+LcFue4ONfFOS/OfXEOjHNhnBPj3BjnyDhXxjkzzp1xDo1zaZxT
+49wa59g418Y5N869cQ6Oc3Gck+PcHOfoOFfHOTvO3XEOj3N5nNPj3B7n+DjX
+xzk/zv1xDpBzgZwT5Nwg5wg5V8g5Q84dcg6Rc4mcU+TcIucYOdfIOUfOPXIO
+knORnJPk3CTnKDlXyTlLzl1yDpNzmZzT5Nwm5zg518k5T859cg6Uc6GcE+Xc
+KOdIOVfKOVPOnXIOlXOpnFPl3CrnWDnXyjlXzr1yDpZzsZyT5dws52g5V8s5
+W87dcg6Xc7mc0+XcLud4OdfLOV/O/XIOmHPBnBPm3DDniDlXzDljzh1zDplz
+yZxT5twy55g518w5Z849cw6ac9Gck+bcNOeoOVfNOWvOXXMOm3PZnNPm3Dbn
+uDnXzTlvzn1zDpxz4ZwT59w458g5V845c86dcw6dc+mcU+fcOufYOdfOOXfO
+vXMOnnPxnJPn3Dzn6DlXzzl7zt1zDp9z+ZzT59w+5/g51885f8790wNALwA9
+AfQG0CNArwA9A/QO0ENALwE9BfQW0GNArwE9B/Qe0INALwI9CfQm0KNArwI9
+C/Qu0MNALwM9DfQ20ONArwM9D/Q+0ANBLwQ9EfRG0CNBrwQ9E/RO0ENBLwU9
+FfRW0GNBrwU9F/Re0INBLwY9GfRm0KNBrwY9G/Ru0MNBLwc9HfR20ONBrwc9
+H/R+0ANCLwg9IfSG0CNCrwg9I/SO0ENCLwk9JfSW0GNCrwk9J/Se0INCLwo9
+KfSm0KNCrwo9K/Su0MNCLws9LfS20ONCrws9L/S+0ANDLww9MfTG0CNDrww9
+M/TO0ENDLw09NfTW0GNDrw09N/Te0INDLw49OfTm0KNDrw49O/Tu0MNDLw89
+PfT20ONDrw89P/T+0ANELxA9QfQG0SNErxA9Q/QO0UNELxE9RfQW0WNErxE9
+R/Qe0YNELxI9SfQm0aNErxI9S/Qu0cNELxM9TfQ20eNErxM9T/Q+0QNFLxQ9
+UfRG0SNFrxQ9U/RO0UNFLxU9VfRW0WNFrxU9V/Re0YNFLxY9WfRm0aNFrxY9
+W/Ru0cNFLxc9XfR20eNFrxc9X/R+0QNGLxg9YfSG0SNGrxg9Y/SO0UNGLxk9
+ZfSW0WNGrxk9Z/Se0YNGLxo9afSm0aNGrxo9a/Su0cNGLxs9bfS20eNGrxs9
+b/S+0QNHLxw9cfTG0SNHrxw9c/TO0UNHLx09dfTW0WNHrx09d/Te0YNHLx49
+efTm0aNHrx49e/Tu0cNHLx89ffT20eNHrx89f/T+0QNILyA9gfQG0iNIryA9
+g/QO0kNILyE9hfQW0mNIryE9h/Qe0oNILyI9ifQm0qNIryI9i/Qu0sNILyM9
+jfQ20uNIryM9j/Q+0gNJLyQ9kfRG0iNJryQ9k/RO0kNJLyU9lfRW0mNJryU9
+l/Re0oNJLyY9mfRm0qNJryY9m/Ru0sNJLyc9nfR20uNJryc9n/R+0gNKLyg9
+ofSG0iNKryg9o/SO0kNKLyk9pfSW0mNKryk9p/Se0oNKLyo9qfSm0qNKryo9
+q/Su0sNKLys9rfS20uNKrys9r/S+0gNLLyw9sfTG0iNLryw9s/TO0kNLLy09
+tfTW0mNLry09t/Te0oNLLy49ufTm0qNLry49u/Tu0sNLLy89vfT20uNLry89
+v/T+0gNMLzA9wfQG0yNMrzA9w/QO00NMLzE9xfQW02NMrzE9x/Qe04NMLzI9
+yfQm06NMrzI9y/Qu08NMLzM9zfQ20+NMrzM9z/Q+0wNNLzQ90fRG0yNNrzQ9
+0/RO00NNLzU91fRW02NNrzU91/Re04NNLzY92fRm06NNrzY92/Ru08NNLzc9
+3fR20+NNrzc93/R+0wNOLzg94fSG0yNOrzg94/SO00NOLzk95fSW/5/HXLzm
+9JzTe04POr3o9KTTm06POr3q9KzTu04PO73s9LTT206PO73u9LzT+04PPL3w
+9MTTG0+PPL3y9MzTO08PPb309NTTW0+PPb329NzTe08PPr349OTTm0+PPr36
+9OzTu08PP7389PTT20+PP73+9PzT+88eAPYCsCeAvQHsEWCvAHsG2DvAHgL2
+ErCngL0F7DFgrwF7Dth7wB4E9iKwJ4G9CexRYK8CexbYu8AeBvYysKeBvQ3s
+cWCvA3se2PvAHgj2QrAngr0R7JFgrwR7Jtg7wR4K9lKwp4K9FeyxYK8Fey7Y
+e8EeDPZisCeDvRns0WCvBns22LvBHg72crCng70d7PFgrwd7Ptj7wR4Q9oKw
+J4S9IewRYa8Ie0bYO8IeEvaSsKeEvSXsMWGvCXtO2HvCHhT2orAnhb0p7FFh
+rwp7Vti7wh4W9rKwp4W9LexxYa8Le17Y+8IeGPbCsCeGvTHskWGvDHtm2DvD
+Hhr20rCnhr017LFhrw17bth7wx4c9uKwJ4e9OezRYa8Oe3bYu8MeHvbysKeH
+vT3s8WGvD3t+2PvDHiD2ArEniL1B7BFirxB7htg7xB4i9hKxp4i9RewxYq8R
+e47Ye8QeJPYisSeJvUnsUWKvEnuW2LvEHib2MrGnib1N7HFirxN7ntj7xB4o
+9kKxJ4q9UeyRYq8Ue6bYO8UeKvZSsaeKvVXssWKvFXuu2HvFHiz2YrEni71Z
+7NFirxZ7tti7xR4u9nKxp4u9XezxYq8Xe77Y+8UeMPaCsSeMvWHsEWOv2P/1
+jEnvGHvI2EvGnjL2lrHHjL1m7Dlj7xl70NiLxp409qaxR429auxZY+8ae9jY
+y8aeNva2sceNvW7seWPvG3vg2AvHnjj2xrFHjr1y7Jlj7xx76NhLx5469tax
+x469duy5Y+8de/DYi8eePPbmsUePvXrs2WPvHnv42MvHnj729rHHj71+7Plj
+7x97ANkLyJ5A9gayR5C9guwZZO8gewjZS8ieQvYWsseQvYbsOWTvIXsQ2YvI
+nkT2JrJHkb2K7Flk7yJ7GNnLyJ5G9jayx5G9jux5ZO8jeyDZC8meSPZGskeS
+vZLsmWTvJHso2UvJnkr2VrLHkr2W7Llk7yV7MNmLyZ5M9mayR5O9muzZZO8m
+ezjZy8meTvZ2sseTvZ7s+WTvJ3tA2QvKnlD2hrJHlL2i7Bll7yh7SNlLyp5S
+9payx5S9puw5Ze8pe1DZi8qeVPamskeVvarsWWXvKntY2cvKnlb2trLHlb2u
+7Hll7yt7YNkLy55Y9sayR5a9suyZZe8se2jZS8ueWvbWsseWvbbsuWXvLXtw
+2YvLnlz25rJHl7267Nll7y57eNnLy55e9vayx5e9vuz5Ze8ve4DZC8yeYPYG
+s0eYvcLsGWbvMHuI2UvMnmL2FrPHmL3G7Dlm7zF7kNmLzJ5k9iazR5m9yuxZ
+Zu8ye5jZy8yeZvY2s8eZvc7seWbvM3ug2QvNnmj2RrNHmr3S7Jlm7zR7qNlL
+zZ5q9lazx5q91uy5Zu81e7DZi82ebPZms0ebvdrs2WbvNnu42cvNnm72drPH
+m73e7Plm7zd7wNkLzp5w9oazR5y94uwZZ+84e8jZS86ecvaWs8ecvebsOWfv
+OXvQ2YvOnnT2prNHnb3q7Fln7zp72NnLzp529razx5297ux5Z+87e+DZC8+e
+ePbGs0eevfLsmWfvPHvo2UvPnnr21rPHnr327Lln772ThwMXitxZdhrYycOB
+S1sPIp6DnTxca1O1+Tpvdk1fS+fhwG+yJ9xeCHbycGCPulvdP4OdPBx4Z3Sm
+icF+ls7DgYt2d31ZC3bycK1M1Sv/5G4palk6Dwde1GXD+2ZgJw8HfuTRauQu
+sJOHA28O25wvvb+l83DgyXvnnO0IdvJwLU3lUyPP8KNgJw8H3n2+pm+uAEvn
+4cB2zdR/9gU7eThwv1HRby+CnTwcuG+f4f8Uq23pPFwLXE+SKlwcCXbycODz
+H6dfvgt28nDgxMD59zwDLZ2HA2e7V/fHNLCTh4vA/XvuloIvwU4eDlwy/Eh4
+rSBL5+HAlVyxC5aCnTwceP2oH8++gZ08HHjsnmJ+jepYOg/X3FTJxrtt2gJ2
+8nDg6Nsb86eua+k8HDhqhmtFO7CThwMvmJO77CGwk4cDvzz/IT57PUvn4Zrh
++5RrQnRvsJOHA7eKelzkItjJw4FLLjCeFQu2dB4O3GXu87hRYCcPB37oP2/a
+v2AnD9cUn9+pmQZUrm/pPBy4e3iTrrPATh4O/HZcl25vwU4eDjw8VYNBQQ0s
+nYcDnz5kzVkNdvJw4Vhfzpx+MHlDS+fhwF+6f3jfHOzk4cDpKpcsvxvs5OHA
+XrerjfgjxNJ5OHCKqu53u4GdPFwTrD/8knzPgp08HLjPvyv3FAq1dB4OnOlj
+2SrDwU4eDlyhy/Izd8BOHg4cWPZru0qNLJ2Ha2yq5yUrpJsJdvJw4FsBzY6+
+ATt5OHD67l1GBYVZOg8HXj+uU8gasJOHA38b0bh0ysaWzsOF4fndr0K2lmAn
+Dwe+vs902wd28nDgR5fOZsjaxNJ5OPD67qPzRYOdPFwjU4WPrOx9Eezk4cCh
+XxLblwi3dB4OXOR/MxaNATt5OPCUzVXvPwQ7eThwnzOPy6qmls7DheL9+jB1
+ykKwk4cD18qhvn0FO3k48POin3o2ambpPBx4UNrtn7eBnTwcOH5b/7FuzS2d
+hwvB860ZVKQz2MnDgY98Kn7lFNjJw4FfdMsxsWCEpfNw4H9a5Gw4HOzk4cDV
+dpQulAB28nANTfUrPNys0sLSeThwsRrz388BO3m4//487OPLj2AnDwd+Ni7q
+Y4OWls7DgUef/m5vATt5uAamWpx8U/G0rSydhwMXKzg0PArs5OHAQXl7zzoJ
+dvJw4PAHkxIKtLZ0Hg58vfmF8sPBTh6uPq7/QzznJoCdPBw4lWe8XbWNpfNw
+4E19J4yeB3bycOA57gMzfgE7eTiwR51560LbWjoPF4z157Hn9baDnTwcOM3I
+HskztLN0Hg5sDi55pCvYycOBiy/PNzke7OThwOce1utYLNLSebh6+D6X2xM8
+Buzk4cB7R7T2fQx28nDg2cdq16rZ3tJ5OHDaxOhGy8BOHg7c5MH9nr/BTh6u
+rqmerpy1IKKDpfNw4Pp/Tft7H9jJw4Ej6l7PkqOjpfNwYDN7h479wU4erg6u
+F/39Tl0HO3k48JsW0eUqRFk6DwdOffj9xhlgJw8Hjp5yotx7sJOHA6c58upU
+/U6WzsMFmepxQNeoLWAnDwdWOWtlc+ts6TwceELJgVe7gJ08HDiyZ5rF8WAn
+DwdemPC9d/Euls7DBeL5Nqpu+Diwk4cD+7hSBCWCnTwc2GtDzkD/rpbOw4Hn
+110Ythrs5OHA+R/G9jC7WToPV9tUca1vzWkHdvJw4F6HFpw7BnbycOBF7+Pd
+CnS3dB4OvOVdlxYjwE4eDlxvx7B998FOHi7AVA1KpSpco4el83DgQ+H24qVg
+Jw8Hji85rECynpbOw4HvLu4V1xLs5OHAY9fcDzsEdvJw/qaaXu2ikbeXpfNw
+4FfNvA8PATt5OPDhL+7jEsBOHg7cPPWKltWiLZ2HA9eauLjmYrCTh6tlqrJ9
+/6rwC+zk4cDJj5Qp36K3pfNw4DOR8eog2MnDgeMjPjbN08fSeThwzPJNI4aA
+nTycH9g96X8JYCcPB1769ea3an0tnYcDv/pZL2gJ2MnDgWd6Rqz7DXbycL6m
+SlpiZm7Vz9J5OPDWsoGTD4OdPBx48NOSmfP3t3QeDhy6f8u64WAnDwcO33A1
+6AHYycPVNNX9LYu++wywdB4O3OtE2j0rwE4eDnz4aYFRxkBL5+HA2zI9bh4J
+dvJw4AifhjVPgp08nA+uF9FdPYvEWDoPBy61rJLXWLCThwP3OrMr4BnYycOB
+tyY+iQwcZOk8HPjN9/NTN4CdPFwNU3VK1vVM2sGWzsOBJ3w4kb4b2MnDgV/9
+favtRbCThwO3WLjpRJkhls7Dgf+pqypMBzt5OIXnpcczt38AO3k48PXWm7wb
+DbV0Hg7sf2TC9Tiwk4cDL0nhMTjbMEvn4cCXCi4vOxDs5OGqm+pH4YQPt8FO
+Hg7c10485j3c0nk48PHTR5YtATt5OPDCDl0nJR9h6Twc+NGjl6Pbgp08XDVT
+7VI+k0+AnTwcuElM9xVFRlo6DwcOmNX35Diwk4cDl50S/uUF2MnDgd9H5ahY
+b5Sl83DepppbeN+IrWAnDwdud9L7bqZYS+fhwKcDV/r1ATt5OHDHXW/33QA7
+eThwNruQqjza0nm4qnhe8q3590Kwk4cDf+pat9dvsJOHAx+P9cvXZoyl83Dg
+p5Pd7xwHO3m4KrgeTbRWFxlr6TwceMawa4PHg508HDio+7y2r8BOHg68u1mj
+xvXHWToPB+5WO034DrCTh6tsqvJVD3TMMt7SeThwikpdRw8AO3k4sFEj9/Y7
+YCcPB57d7OKL6hMsnYcD+0+MLbcC7OThvEx180aNca6Jls7DgavUdL2KAjt5
+OPCcK1dbnAc7eThwzclbEspMsnQeDny6/9wuM8FOHq4S3t+50+yvYCcPBx71
+ceH2ZpMtnYcDx0/b3+kQ2MnDgVP3e1+mwBRL5+HAZ9crcwzYycN5Yv1Rbt3T
+52AnDwe+na3UzXpTLZ2HA1dsffn6drCThwMX+HPWwyzTLJ2HAxf0ivk1EOzk
+4SpivXQjtsi/YCcPB+7+Na5FzemWzsOBDyzPsHIN2MnDgYv+O/NLmhmWzsOB
+y8b5hfcAO3m4CqaaVKbQmatgJw8HLtC4gr/XTEvn4cBu5fpfWQR28nDg+eff
+dE0xy9J5OHBAmcVZOoCdPFx53P/bxZ6PBzt5OHC6Pmuml5lt6TwcuGBnV/tZ
+YCcPB27VYKX/N7CThytnqhoeIz1bzrF0Hg4ck21VheNgJw8H/uyW1qfYXEvn
+4cDn8u1tPhns5OHAdcO3xX4AO3k4D6x/j33Y32SepfNw4HFdRqY4CHbycOCH
+LdqEFZhviR8Oz6drpu8eC9Z+OFzvG2Qp9hqs/XD4vHV6syZkgSV+OKzvfuet
+sAes/XCmmpVr/aU8Cy3xw5mq8MUpA0eBtR8Or3fBKx7PwdoPh/tp8b5JwYss
+8cPh+vt64IVdYO2HM1XmIQ+35VxsiR8O68XEbSuGg7UfDs/flRNXPAVrPxw+
+D6PGbq+7xBI/nKleX5l5cQdY++HweauU/nv2pZb44fD9PJxUfhhY++Hw+saE
+DX4C1n44U7UcWORqnWWW+OFM1SO+m9cOsPbD4f0cWmpT9uWW+OFMtWFVx9LD
+wNoPh/tBcN7DT8DaD2eqrxNDW9ZdYYkfDv9899TpdoK1H85U71w1z+RYaYkf
+DvfTyGQzh4O1Hw7r/4W+XRPB2g+Hz9+BjI2CV1nihzPVhX+iguLA2g9nquxG
+cP3cqy3xw+HnqXes7Siw9sPhehR/OvYFWPvhTPXXpNZxDddY4ocz1Z9rpnza
+A9Z+OFPlKtmoZv61lvjhTDWm9M4lY8HaD/ff/tLm1G/B2g+H++XvWqMar7PE
+D4fvw8chaQ+BtR/OVFZckxWF11vihzPVh/DrAZPB2g9nqmYfk358Ams/nKl+
+zztxKGKDJX44PO+0rDLtBFj74bDebRbR032jJX44U31c6t5qFlj74f6bZ90c
+8ROs/XC4Pra9HxW5yRI/nKlypj0z6jxY++GwfgnrsLnCZkv8cLi/Nj34ZBFY
+++GwvnC/5O7aYokfDuvjp4tHdgNrP5yp9i0qmXgdrP1wWG9ExTSrvtUSPxw+
+T60m3V0D1n44U61a0K5bhm2W+OFMNdUjpdsAsPbDYb3v3Xn/fbD2w5nK++ri
+AYHbLfHDYX2UfqnfDrD2w2H9l6pnvlw7LPHD4ft584/UsWDthzPV+TnjU7wG
+az+cqTK2upGq8U5L/HB4vgv8kfcwWPvhcL/t9d232C5L/HCmavr2ev/pYO2H
+w/f136n7voO1H85Uf4SXSBcZZ4kfzlQpB6ztegGs/XC4foWnvuv5P0v8cFjv
+ZAlptgys/XC4/50dlZh6tyV+OFMNmLZsVG+w9sPhfj56Q+kEsPbD4fN0auUz
+/z2W+OFw/+86Zfs2sPbDmerJnK7jc+61xA9nqoOta/SMBWs/HJ5/E9N2eAPW
+fjisjwL+7hy+zxI/nKk2Lpkx9BhY++FwfUgTstx9vyV+OFP5rct0dQ5Y++Fw
+PZ5z9c8UByzxw2E99WF+uy5g7YfD+3unw7HrYO2Hw8/Tw7tsjYOW+OHwfbiQ
+e/MGsPbD4fObJU3lLIcs8cNhvRtpXRsG1n44PD/e/XPoC7D2w2F9s6BCpbDD
+lvjhTHXxSOdkR8DaD/ff+mXPjRJHLPHDmWry8XwHZ4O1Hw7X7wcrdiQ/aokf
+DvfvRN/dXcDaD4fXI8k8dwOs/XBYb1Z49trnmCV+OFPtOfg232aw9sOZKn1c
+njbZj1vihzPVTu8+20eBtR8O1/N+nzO+BWs/HH6e0SuHNTthiR/OVMsnDv91
+Eqz9cPj7N06Z4HHSEj8c1gepLhdZDNZ+OLw/p/yvpDpliR/OVMPsz5P6gLUf
+Duvht3cb3wdrPxzWsyuTl6172hI/nKlO+LfNvges/XCmGvnLyFjojCV+ONyf
+XyVmnQbWfjhT9fHKWOonWPvhTNXTGhYSddYSP5yp1g3yHHsNrP1weP8Pep2r
+EW+JH85U196PzbsZrP1weD6oXmREjnOW+OFMFXg2y8fRYO2Hw+d/T3ifD2Dt
+h8N6uvx7s9V5S/xwpsrQ5sGqc2DthzNVo44lG3ldsMQPh+tl97//WA3WfjhT
+zVt0/X6mi5b44fC8mLPKoaFg7YfDejBjio0vwdoPh//+ave14Zcs8cOZaqhx
+eMdJsPbDmepow30Xyl22xA+H7/Pe/ElLwdoPh58v8pOH29+W+OFwf4upNCgG
+rP1wWP8XeXU1Eaz9cKYaPz2zd9gVS/xweJ56smPnMbD2w+HzXu9slbJXLfHD
+mWrEx6Z/LwZrP5ypbqTo2D/tNUv8cKZav/KD+0Cw9sOZKq+Z7MNTsPbD4XoZ
+POVUo+uW+OFwfd6yYsMxsPbD4fvRoPqSsjcs8cOBW7VbvgSs/XD4PNqZd6W7
+aYkfDve//iE3YsDaD2eqqrfyp3oO1n44/P7NRwQ2+ccSPxzen5L9FpwEaz8c
+vq99U/wof8sSPxyuzx0Ld1kB1n44rMc9Hr/IeNsSPxx+/t8qZhhY++HwvJGs
+ao43YO2Hw8/X+ubpiDuW+OFMVTk025hzYO2Hw/tr/gqtctcSP5ypoldP8FgP
+1n44U/lGHsubPcESP5ypPHqtyTUWrP1weN746VXsC1j74Uy1t+Jgv/b/WuKH
+M1WW4Oie18DaD4f7Rb88m3zvWeKHM9Xaf4d93QHWfjjcP/cuDClw3xI/HP7c
+s/fB6WDth8P6fnwqrxQPLPHDmWrKwxbHeoK1H85UiX36RtwHaz8c1rfRDa0G
+Dy3xw5kqLP2nw4fB2g9nqmcxrcaXeWSJHw7365ez2y4Faz8crvcz59fJ8NgS
+P5ypvq/u6jcMrP1wpmrTJFO9t2Dth8Pn98749q2eWOKHw/NKh38mXwJrP5yp
+YkslO6WeWuKHw+8XmTz9NrD2w2H96/Nv+/yJkocDByYtuDAtUfJwaUw19rBX
+rRTPJA8HXn5+7/lezyQPB54Slj/y4TPJw/3390/rnjb0ueThwCl3rTl2/Lnk
+4VKbavuX+PEVXkgeDjxmakLr1S8kDwfeFnc/IOtLycOBFy27UX3sS8nDgT+P
+PVor6aXk4VKZavXKlRGdXkkeDnyt5LBRt19JHg78NLzxvjqvJQ8HHtmuZIqD
+ryUPZ+P1i00eXvqN5OHAuT/fPLT0jeThwAvf7KyY6a3k4cCrN8w5MPKt5OHA
+2dqNDP30VvJwFr6PIQO/t38neTjwv9uHbL/5TvJw4GIHpw8IfC95OPCRLbvr
+738vebj/+Oh7z1IfJA/nMtVgj5qll36QPBx4QuWNFTN9lDwc+EiWMvVGfZQ8
+HLhMyst9Pn+UPBy4VNVpmzp+kjycie/7r16fbn2SPBy42ej+det+ljwcuFvG
+lbsOfZY8HPjanS/uHl8kDwfOX7hv3Movkocz8HxbIn9w1q+ShwM/K/b9y7iv
+kocDH2/l2vbjq+ThwL5ufgO7J0keDuzVc0/IgyTJw6XE+3860rvRN8nDgX+G
+1PE8/U3ycOCNDbvXqPJd8nDgKcblZpu/Sx4OHLcuenT+H5KHS2GqXiPCj8z8
+IXk4cMjFUWntn5KHA5e8/KVDzE/Jw4Hdzuy88vqn5OHAdb4eCG7zS/JwybFe
+XJr5zrVfkocDd0p5sH/t35KHA5dvu6fQgd+ShwOXTJH6YZlktvjhcL34a/vW
+lWDthzOVj71zcrbktvjh8Pz6KePgiWDth8Pzp/uFmGQpbPHDmcrz4/PxvcHa
+D2eo0ZM6rU8Eaz+coQZ6B99qntIWP5yhegYsyHEZrP1whkr3oX5nP8MWP5yh
+So3odW4PWPvhDPWtcopqpUxb/HCGutYmxeHlYO2HM1SH6n0aZnXZ4ocz1Jws
+EZ8mgLUfzlAzSu1fm8yyxQ9nqBPnZ3bpA9Z+OEPdqfxMPQdrP5yh4vfvK9TS
+tsUPZ6ij891yXgVrP5yhvHI9ylc7lS1+OEM9GVvN8yBY++Hw9xfN16Jcalv8
+cIZK4zth1lqw9sMZqnqBEXdzp7HFD2eovOmtijPA2g9nqK31cy2x09rihzOU
+Z9nj2YaAtR/OUNW+JVvxAaz9cIaa/umqd1Q6W/xwhqrR1edZAlj74Qy1eEPQ
+qlA3W/xwhvL+/r7nWbD2wxnq6+rKwSq9LX44QyUmFfSOA2s/nKG6Vd9ZpWQG
+W/xwhipx7HngcrD2wxnKuHy2U7aMtvjhDPXXrrAFk8HaD2eo9/um3jEy2eKH
+M1QBj5hSMWDthzPUunbZpr0Daz+cofYv7WR0/MMWP5yhbpTrPTYBrP1whtrd
+2TN3oz9t8cMZqu3suKPxYO2Hw+uZ4mN/n8y2+OEM1ffnu+p7wNoPh/fvxvas
+ZbLY4oczVExCpWRrwNoPh89Lm9FJubPa4oczVJ4di1LOAms/nKF+5B2eJ202
+W/xwhgpJ8ggcCdZ+OENNnLJr9Dew9sMZKqxcmqs9s9vihzPUygoVPZ6BtR/O
+UJufVlrWKoctfjhDvZ2fOf9NsPbD4fuw7MK24Jy2+OEM1aVO+5BTYO2Hw/v3
+OsGsnssWP5yh2tyufCYOrP1whhrebtCiUrlt8cPh+3d31YjVYO2Hw+dn3p7+
+efLY4ocz1PiXe4bOBms/nKH8i6+b45bXFj/cf5+XcYdHg7UfzlBZ/xfx7RdY
+++EM1XJLEb9++Wzxwxnq6qNnS9+AtR/OUIc2rk7XMb8tfjhDbWreasI9sPbD
+Gap3YPYc4X/Z4oczVOlzV/ZcBms/HD7/laZ3Cixgix/OULUfh5U8BtZ+OPx5
+8YK/qxS0xQ9nqAYtfjzYCdZ+OLx/N+/fcC9kix/OUMneX7+7Gqz9cIZqnzzh
+Y97CtvjhcP1qmZRrHlj74fD7tCsRlqmILX44Q9Xr1HfpBLD2wxkq7Zk7342i
+tvjhDNXvVquOQ8DaD2con6/Gky9g7YfD53dQfO+exWzxwxkq55G4P1+AtR/O
+UG/ynTnRrrgtfjhDbflsjE0Aaz+coXos6tKsSQlb/HCGmtIjhfobrP1whtoW
+f7pCnZK2+OEMdST10aonwdoPZ6hP496GKndb/HCGOr0qbMhesPbDGerX3s+7
+y5eyxQ9nqOWFrxhbwNoPZ6jUtV63LlbaFj+coS71Dby0Aqz9cIb6J8vz4Dxl
+bPHD4f0YdfHeXLD2w+Hzn/vniD/K2uKHw+ehRp+Kk8HaD4fvV3Dl77aHLX44
+vB6r6l0eCdZ+OENlW7Vz9y+w9sPh9dnYbduAcrb44Qx1K9fQfR/B2g+H+01Y
+4vXu5W3xwxkq+Z6NKV+AtR/OUPtWX6jRvoItfjjcz4bVn3YfrP1whkpaU/59
+84q2+OEM9XHI4HY3wdoPZ6hFHdwTQzxt8cMZKup4rcEXwdoPZ6iMX+MLBFWy
+xQ9nqAWRh26fBGs/HK4XPQqs8vGyxQ9nqNsx34YeBGs/HO4nL2t1qVzZFj+c
+of4slKZTHFj74QzVaULtAR5VbPHDGeriSGP+ZrD2wxmqbnS1c8Wr2uKHw/Xw
+UFL6NWDthzNU2fOVIgt42+KHw/U05a/4JWDthzNUxVNBvrmq2eKHw+dnaMEL
+c8HaD2eowjPHR2WubosfDj9/p2FZpoO1H85QvTrb19yULX44Q83+WXDVBLD2
+wxmq8ribo+0atvjh8Hr2LTQwFqz9cIYKLOU2NIWPLX44XH+yz5o1FKz9cLi/
+LN1/4AdY++Hw/pcc82VATVv8cPh5i37x+QLWfjh8P3+5Le3ta4sfzlAbs152
+ew/Wfji8Hv9Wn9LdzxY/nKGeHYrI/wqs/XCGsgu5n+hUyxY/HN6fgVsHJoK1
+Hw6fp+LPa7T3t8UPh+v5ijs5HoG1Hw7rkeDxZpsAW/xwuN4t+pT8Hlj74QwV
++TVfhha1bfHD4ftywa3MHbD2w+H1mXSkddNAW/xwhsq0osqqm2Dth8P7O3jo
+t7AgW/xwhpowfkrra2DthzPUea9ut0Lq2OKHwz//LXfk32DthzPUnsrLkjeo
+a4sfzlDdO3/bchGs/XD4fX6U6FGvni1+OENVjajkcx6s/XCGcv+dv3CdYFv8
+cIZ62PBFzniw9sPhfnlmdoHA+rb44Qy16mph7zNg7YfD/ebxoo4BDWzxwxlq
+Yfdfq06BtR8Of/4w8FOthrb44Qx1YFds2Emw9sMZ6nXjbWf8Qmzxw+F65H2p
+3gmw9sMZKtftR499Q23xwxlqxYp3k4+DtR/OUKvTJNX2bWSLHw7XlzE/sxwH
+az8c1gsTk3+uGWaLH85Q/adYT4+BtR/OUH+bmZ7XbGyLHw7358gCv4+BtR8O
+n/eC1Qr7NrHFD4fXe3e7lsfB2g+H6/m8eet9w23xw+HPvf+1ToC1H85Qsbkq
+9fNraosfzlCTN63+egKs/XC43nd0n1irmS1+OEM1Pnmh7Cmw9sPh+1lt0jP/
+5rb44fD9Deq84zRY++Fwf2rXeUrtCFv8cLjeG1MHnwVrP5yhHq24PTiohS1+
+OPz5wfpTz4G1Hw5/fu7dzrotbfHDYf0YdOTFBbD2w2G9ueNI+fqtbPHD4f4/
+4tOUy2Dth8Pr6dHyZ8PWtvjhDPWqevLBV8HaD4frU5EEt7A2tvjh8H61+7r9
+Blj74XB/7NMwKrytLX44rB+vvy57G6z9cPh5XZfSRrSzxQ9nKL/hX5MSwNoP
+h+eJk52SWkXa4ocz1NDQYmkegrUfDve7dRVLR7a3xQ9nqPV+syKfgrUfzlAj
+1vhvjupgix8On7fg+qlegrUfDu/v/m19u3W0xQ+H9UGPbp/fgrUfDve752PH
+RkfZ4ofD/XdTSvfPYO2Hw+/jdf9h/062+OEMdS9DwU3fwdoPh/XErgtjh3S2
+xQ+H9fXah32Td7HFD4f7U7fIfqPA2g9nqBzjwsZbXW3xwxkq+6A9W8aDtR/O
+UCnipz5N180WPxyuX0kJZaeBtR8O35+Jqyf/2d0WPxyun/bzn3PA2g+H+9u7
+DUNz9rDFD4f70fnXfywBaz8cfr/8u/b+1dMWP5yhKvRO3ns1WPvhDFUl6Hr1
+4r1s8cPh++NeMc9msPbDYf21rEB6j2hb/HCG+td9WaY4sPbDGcqj2bailXvb
+4ofD89/WsAYHwdoPh+eZ/82Y6NPHFj+coYp87nTrJFj74Qz1x5eEykF9bfHD
+4fri837TRbD2w+H63XZNudB+tvjh8HrcT3buJlj74fB6ByTvF9HfFj+cob7k
+31D+AVj74QyVOSmZ2WGALX44Q91vYia+AGs/nKEunNt7t8dAW/xweL3uFXjy
+Caz9cPi+5KuZPCbGFj8cnkez5SydbJAtfjhD1Qrb3D0WrP1w+Dy2/3009WBb
+/HCGiruWodhUsPbD4fnL4/GyzENs8cNhvZJmqPsCsPbD4X7++l58vqG2+OHw
+feyUbvBqsPbDGepgOqtGyWG2+OGw/u94Ket2sPbD4X6aukvySsNt8cPh+jTq
+zs8DYO2HM9SgyILpfEfY4oczVL7qtUqfBWs/nKFaL/dtV3+kLX44Q+3I99fG
+62DthzPUg6D7rohRtvjhDOUWN6r3Q7D2w+F6/s7tU1SsLX44Q82cNmLsW7D2
+w+H1L/qgVL/Rtvjh8P4HlUn8CdZ+OEP9nNB956gxtvjhDHVq6PIZacba4ofD
+8+/e+NjpYO2HM1STv1+Nzz7OFj8crrfN0qxYCtZ+ONwfnxe+UGS8LX44PH9n
+rZl2C1j74fD80rdNRMUJtvjh8P1cOubIAbD2wxlqQ7Fdlfwm2uKHw/Vj/auj
+58DaD2eoAfvKtQqdZIsfDt+vD+My3AFrP5yhOj5/f6XtZFv8cIba6tVz/Quw
+9sNhvTzQmhk9xRY/HJ7ffXdP/Q7Wfjh8n8uNXjpyqi1+OFyv/40+lmaaLX44
+XJ8ejUyaAdZ+OENdu7PbJ9d0W/xwhrreJvOSlWDthzOUb6aFbu4zbPHDYT03
+OnjaLrD2w2G91tyjSLWZtvjh8H0t43/pJFj74bCeWTx1YvAsW/xwhppUM2Pz
+m2Dth8N6/GB8tdazbfHD4fl4w9Hyz8HaD4f747qv3tFzbPHD4fmvcY+mP8Da
+D2co79CS42Pn2uKHM1T9aqXPu82zxQ+H7/+umAJzwdoPh/Vp0z8n5Z9vix8O
+1+dz31NtAGs/HNZLG8vPL7/AFj8cvg8LjngfBGs/HD5PlVd99F9oix8Oz3cl
+Hxy8DNZ+OFwPMsUsbLbIFj8c/n1Tek16DNZ+OKyX/eKndV9six/OUINvjFmX
+BNZ+OPy+z9ZfHbnEFj+cocx8nn+4LbXFD2eoknlKR84Faz8c/v6xs87+tcwW
+P5yhvhtda24Caz8crleeuy96LrfFD4fnpZMDuh8Faz+coTo02flX3RW2+OHw
+80zv9OwGWPvhDPU855JjbVba4ofD+m5B6LZXYO2HM1TLPZO2919lix/OUPNz
+1T2VcrUtfjhDTe06681ksPbDGepYaFSJHGts8cPhehATP3AVWPvh8Hkad/Bu
+mbW2+OEMVa64X+h+sPbDYT3gapPgv84WP5yhip7JOugKWPvhcP3IFeXecr0t
+fjisfzY0ef8crP1whhr517OzfTfY4oczVPmSuf+XYqMtfjhcj/t8iZsM1n44
+Q+1dN/Bsjk22+OHwfeq77t1qsPbDGerduNEly222xQ+H6+HUP2MOgbUfDv/+
+SmF3g7bY4ocz1OHS9UJugrUfDs8nhX7fabfVFj8cnu/OdB74Dqz9cPj8npld
+Ysg2W/xwWM9eH/E29XZb/HCGervU48wcsPbDYT1/c+2ugjts8cNhfVMqcdc2
+sPbDGco/9MOZajtt8cMZqtn3c+/iwdoPh+vBtX7u4bts8cMZKvfsz4OegLUf
+Dp+v10H3ouNs8cMZataMgY2T/88WPxzuR56xDyaDtR8Oz3eTuw3PtdsWP5yh
+XtTxKr8erP1whooukvjNc48tfjg8T18ZfO0EWPvh8P6bP4+F7LXFD2eoudEd
+T94Haz8cPr9Xj97pvs8WPxyu5wlu1i+w9sPh8+of7Ddxvy1+OPz3To+ek+OA
+LX44XJ+z7v65Fqz9cFjPvH7cz/OgLX44/PMp/3CdBGs/HK6HGX3Whh6yxQ9n
+qKSLfVo8BGs/HNYXSVuL9jpsix8Onzf/z67kR2zxw+H16h2QNAWs/XC4XlVZ
+/zvPUVv8cIY6GZYnx2aw9sMZqsuINQHex2zxwxkq28CACefA2g+H+8G3lA+a
+HbfFD4fP18E7dV6AtR/OUA1jr8UPPGGLHw7rmzTvWqQ+aYsfzlBn0nm45oO1
+Hw7f16AFR4qdssUPh8/XiNLT9oC1H85Ql3u96137tC1+OEMNufWwyz9g7YfD
+53VAqgFRZ2zxwxmqQYbIeUlg7YfD/bNF0vlxZ23xwxlqYOEzWXLE2+KHw/qv
+6I3o9WDth8Pzc6HCjyufs8UPh9//3u5O8eBBn+sP+o/Pn/vvf7b6f7g23TY=
+
+ "]]}, Annotation[#, "Charting`Private`Tag#7"]& ],
+ TagBox[{
+ Hue[0.3224758424985268, 0.6, 0.6],
+ Directive[
+ PointSize[
+ NCache[
+ Rational[1, 360], 0.002777777777777778]],
+ RGBColor[1, 0.75, 0],
+ AbsoluteThickness[2]],
+ LineBox[CompressedData["
+1:eJx1nXlYTm3ftgtd60oKDcpMyhyi2bREZlJIhhQZojvKkBSSWaIyl2SIDCEk
+lJQGZUxoUJI5M8k89h3WtY73/bZv277nn3vbH253ruFca53n/juO1lPnOk+v
+paam9lWppvbvnzdv/PufUtQqDDA3T1OIu2L3pv7j/jta9/7HbU53EILAS3xe
+HJ0OntNg4KQO4DP9jxtFg78kfk4pua4U3zWevyYfPHStRas1YNMqm8+1LipE
+vY11wi3Ak3P/TrEG1z/vqXh6TSnuiMm55f3v12tGrYkE35oX2nsvWHP8dR0R
+rBwyKqEQ/Dnt9p73V5Wi2LJRY810hfi2taftbvDiL/fX9Aa3Dl52fxj41PV9
+n/3A964br/l5RSm+3jdzajzYp2ak7RGwcYBZQRl4TMNaX8aBJ4781Lt+hkI0
+/GGXogBvMUlJ6A8ec+L76uQ8pXjj57LGAeDL7e0mTgPXuT1g7TGwhcdfGz1w
+70N1vzwCrxs+oGVWrlJcuLRgqsElhZjyvK6OH/jE6O0FQ8BlbZw0WoErO0zq
+swysW2OgceuyUmypZnzsNHjPXFftZeBxxS8avwAX+xi2MANHHDu+tmmmQjSu
+drIuz1GKV1fM/+II1viiGL8BrD7e1nMV2Giu5Uo7sF3XmoLzmf9ev/LkV9lK
+cZ7G5T7vwHsSflbtBCfcDz3WOkshnnEPtxgMfnpqVBMXcM85Ucu/ZSnFZusa
+rQsF9ykwLIoHj5lc/iUdXL5Ms7sLeKPFfs9P4KHzfXZogC/X9brdLhs/b7y9
+RnKmUvz7yKzvJPBT3XVB08BW5z4diwC/Otnrpx547saUJpfBAYHuIdmXlOIh
+z+B1P8A2sz40mA9+ZOvw1SxHIT73f3PYGGzUQGvaVLDzbuchdzKUolNlwe3t
+4FnFbapDwOvTtve9Du7YbHKcOThr86TjNeDjXmpuj9OV4k8v46YWlxVi87Oa
+LSPBPfq+XOcFzvgb8EoE/2dw4msM+F2vEWlVF5XigTfzp90GG3qv3rEX/CDT
+9o5GrkLMWdkqaBTYYGdNXztwREjzmWrgkXMuH58DNncPmngyTSmuGbChaRzY
+19DW1QOc0cRpfQnY7OBYtwbgb1WNvmnlKUT32gWzL11Qit3yyqeJYH2zQ8t9
+wV67999ZAJ7TvCy2FXjffC/xCPjIrZmXC1KVYumQLicegA36On5eDtZt9bmp
+7hX8vDPDO5mDh35NWT8Q3KV/O+/HKUpx5Y3gb4Hgd/kGSZHgC/sdpieC/2pM
+qG0P/hygdfcpuPWz6onV55ViZ8fbotFV/LzTH6btB0833XFiOFhndYu2o8Gx
+vyY1CwFf6Zu4oza4+LZxaDJ4QWREwzPnlGL9wy+/vQLb+2dumQYetOzE9BbX
+8H6/FlsYgJePWXDXGbzgtfapy2eV4vmOdv3Wgg/PazfcH/xRTS3xAjgmOOxD
+W3CHksvNqsDV2r12lSQrxanHN4SaXFeIbk0sHdeBo1c6fXcFJ+zz17IF3x1v
+OGMjOH1vza1XZ7CedXtwNxO8Sf9WTDR4gCKu31dwx59P/YaBl5R7JXa8ge/r
+yN6Ov5OUYvLpLs3dwQvql1kcB79b9zl0C/iEbYrxZHBb99TveeCCa6VG9cGT
+LZfP+A12uWRneOk01jOtgYXdbirEEsP7zf3Atx5r2U8H/85P6WwMVp6/nRgF
+Xvu0qP/dU0qx36YdzfPBjqO7eK4CL57mtqFWPl6/ZlmhluDTdm1+WIE9e0Wk
+Vp7Eetbg1Qxv8M1TO6p3gNu8OFG4B5wYWNJ9CHjixQX2hWCnbSODfiYqxa1b
+7E4qb+H9U/t9PQF8Y5Zai97gCSkVJm5gDTF3gx84I+PLah1w70ZhPw6CyxqK
+HzJOKEX/t04zy8CeJ9I8/MAnsgyLdAoUosnW2WXG4Bc7H9j3B9dkDp5UeBzr
+2dy4k4vA76xcKleDXR1mtTgG/v0xMsAaHNG0a9gjsFP1T91Xx7Ceffz8Q/+2
+QjS1jkiOBqtfSZ05BHw9Y5THcLBd7PKipeAjG3rq/U3AerZgYP/T4J7RjvmJ
+4ISh9U5Vgg3fbIicAn7W6k6LpncU4rOlHybpgZt92xHmCPZ0Xtzt8lGlOPam
+28+V4Nle7estAm+Ma+N1/t/vz/j1oT04d/GrorfgQtfq+2VHsJ45JvZvfRfr
+Tw+tgjCwdduFp8aCwxwdbvQBz/1t1zIUnHt8T0HVYaV4+I7axnTwpJGNH+wH
+Pzqc+7ManGF+6uMYcOPgMK92hfh8uc7QEcBOY52LJ4KbZFv3SDmkFEM7GQ2I
+AHvOM/HwBmepV5zKARvN7LStOfhXSVzLH/9+//5hd27FYz07MWujWRH+eyar
+DFeA/1vV9dcU8Nv3d6dZgA9M+OK1Hfy6ll1q5UGsZ90uFF8Db5qSbBgFbiSE
+DKgBt6vnsHQYeOSDgad7FOP1rPPy9Z8DSnFtUr1WXuDSobs9ToIz1t/ZGAP+
++9izYir4u/vOXwXgjtftphmAu1lNnqVRohCbKltX58UpxVn1TEpswXHRBusC
+wfuevBowB3xklWFbM3DZ+cTT+8FdrpjeeLgf61n4wlYl4AEz+wZuBg+b3nOT
+1j2F2GiaZzcH8Mqe6r/7gisvRbz/tk8ppjXMm7UArLk898xR8OcXYSWHwe/i
+aq90A5ulOzs8AOt3HTS+AXj6VqOkhqX480wirLP3Yj2bXdFqIDhu9YPm/uBi
+8cCmQHCwS5d6HcD1DWf/PgFeHRVSq3wP1rN3XWc/BR9yKlYLBy/P/lJiWIbX
+N6STYA9OibrgMBz8n9lygy+xWM/mhiQtB3uMu9vpMLjjwEGtk8E6tU2GTgRP
+baYd/gpc3MPPVwe8q/rO7+b3sf6+S4nN3I317MrO2c7gmO5/CheA6+2ZfG8N
+OFew02sPHrDQZOAF8FTfuePvxyjFpcNeJ30A9/SNObQJnNz6ZGuTcoVopXXp
+Tz/w+28Lw13BwxxKJ37ZhfUsv+efMPA64xeZh8HuB9S9M8F6h152nQTeEZh3
+7wu4XUn5wfrgglEbB3Z8gNfzXFab7GisZ+1Gn5kM7jcs6og/uN8fI+Mt4E47
+3a07ghffrQjPA0/fr3/zQRTWsyMH/vwC75hzbnYk+E3wbO9uFXi91Qc1cAC3
+celWOg382T3r4vedSnFS568Do8AVm9rPPwbeWivtzE1wny0B3TzAN++FGNd6
+qBA7zzv1RQ+skTgowgp8t9udrLwdSrHPau2/s8H+haU7gsD+E+967wH/NzVv
+QVdwonlU6V2w6aOo8U+3Yz0T3AcpH2F9Gz1q4A5wqwqT5F7g2pmv7IaBXc+8
+NvYDz+s63bpmm1KMDD0ZcRBscyCzZxL4qof/31JwV9O/g2aCa1n3+k/nMV7v
+840nNQXbadcqswdv9tQLuLVVKc5/mjdoEdjY7PWuleCElI3JCeAuTXfnWYOf
+hY9u8wisbtHp15stWM9mNI7Uf6IQfyzdYrUXPLbXw7+DwRtqChePAW/SPfjf
+UnD/jPc5SnDuy9llp8CZ2Q8NL25WijXp3QZXgtP1Ds3zA1tv+5rc5KlCrHO2
+f5Ep2Nc7rY0jOODUmb5lkVjP+q2IXAluqP3j1CbwY8PBNefAD2/V79wf3Pi9
+ts/bf/+++vfj3yKUonPO3bJWzxTixUMnrY+BQ6OjBo8Fu163ueoBzvZ1P7se
+3Ht++FQD8K+Bpibp4Mr4pNrXwpWiRfM3kdXg5z4Hji0D//fpZE3b57ifvOXh
+1gN88Kq/z0RwTOELg5ebsJ7t6XU//N+vr7QpjgE38q81JAcc99wp1gk8cviV
+s9/BZeo95ijAa403mZhVKsTdj8ocLmzEevZ99OYpYMPQwaa+4O/5jdW2g9cp
+guqZgs0PPvS5Bh402e9XaRjWs6CD9/+CL0V1rN4E3u/kPaTHC4W4MPNgVX9w
+WTvzczPBNQ8ef/2+QSnq/f1qEgPW+v6gzgnwsMK0zQVgN6OoJp7gVUdXqGm8
+VIj5g3RtjMBpywfPsQWPDB/sdjNUKX5x0Sn3AT/+Zhe6AmxmVjhkP/hA6Mt0
+a/CM2tHnisF5o0b9erse61mpu6nWK4UYPtqv735wSaLplr7giTFDN4wD11/z
+Rm0BOMbifkU98OBJp+YcBpeZGttlrcN61n1ReTn4zOIWuxeBU5S9hzZ8rRAf
+2N4SzMAfK2qddwC38O0R+GQt1rPkK6aB4HFth37eAfbcsGnLCfCyGbr+I8C7
+poxRfwrebbehpha40LrJXMM3uL4eS4o4vwbrmc6j8mHgSXmhHeaAHZ4dHLoc
+HLy1/rU24KWp3ufPgPe16DevdLVSPBth3vYV2Na3hXE4+P2Mb1uav1WIRVvi
+SweA2/W+qO4MNtp6b+fPVVjP9FbOXQO+GJTkfhK889XgB6ngyLFWXWaACzJ0
+hn0AB3X2qNMMrLm98Hybd3g/tbo9ub0S69l/0W1dweF/DuStBQfae2wNA1dp
+p5/pDT5t1LZWJrhwUOCRTyuwnr1/M/cLOOzsvYNHwG0un3rQ4b1CDJl+74g7
+eNKuRcMmg7t6BCQbgLf69U7ZDO50+tyV6yFYzwbVbpcHbjZz29MQsKLF1a2/
+wFmhDRQ24D6fN9Xq9kEhfmzfvtv75Upx0bUxvtPAW0bcn3IAnLi3ScVO8JE6
+HXZNAL/0fzTsJnjwhAblDcCtRsSnqFfh/Z8QYZIXrBTHt/mvnRW4suHhBUvB
+kT/Mt80GLwlzudEDfO3Wt1p7wDeLozu9Xob1LP6i713wxD/zN+8F91yyskL4
+iNe33mO1ceD5zkOG9wLvb/jYXxt8rH39VF9wvtH8z9lLsZ79LWx3ENyk6/bF
+geDmRdHbSsH+U4YozMFjEzxq61QrxBdpG6JfLMF6FtLWzx68duQkq1hw7ri3
+Ff7/uE1q6Rhwjdnp4QngLkMOrNIC29QJSH0ILrnR2DorCOtZWe/2+p9wPbnQ
++GMA+MjJ2tsHg+uZxJ3uCn685mrtpeB03eSgykCl2MQt3O8UOG3byOG7wc49
+xj58Ds5PnWMyBrxBs+mIJp9xfQnXr6MFzn74KHUkOMO475vMxUrxd3J8+5Xg
+mJB3pQFgi7D/tp8Dh6a2KOgK9pnavc5bcPr92zcrA7Ce2Xz3a/VFIa74pHF3
+N7hCJ/3hGLBtg9SHY8CNnq8csR48Tnz3SQvseGHIhYtg782x9bMXYT2LrN+h
+GqxvcLN7IPjSzKLtbb/i71eyyM0c/L33rjoTwS1f7A5/6Y/1TH/KvHCw+Zg+
+V/eAZ71u+ygbbGvmWncceP+ltyO+gweHvHbWAd/ffvpC528Kcbn75/2XF2I9
+8wnoMAXcvGTBzyXg4f377NgG9vk2e7wFeFXjOhrXwEW3ijLeLFCKFz9cnfcX
+fGfuGbM48JfL4Y+6f1eInyo14iaAu8SMHTkT/HDA1Za64BnzmqbtAjtH/Ym7
+Ol8p7hn8uEMBuMXnfV1DwCUtDu2o8wPfl+nJWTbgBl/+07AFL/xt5VY1D+vZ
+9e7zfcANrpnWHAKH7Pv+aB/YtGL5YXdwyqL0kcXgqsGDxhuCq0esSqv7E8+z
+TQIa3vLDemYytGNfsME03dtrwJ4/6++cD3axNNjZB7yroEjjMLj1nuAZX32x
+nsXvml/+j0+P6nUCrL10yuMGv3B/Gby28Qyww+h2jg7g4kZt/jYHL+vwLm0x
+eHio8euiuVjPak53PAFe8nrVg43gD0UBO5+AgwYPuecAbnesj8LwN74fyXPK
+/sxRih4r6iwYBj5l//lpMnin67XHweCV6qWffcC3u0Q4ngFPqN1Muy1YU8Pl
+4ktw6vi0zhU+StH+ftNOzf8oxF6NUkZvBweeerzTCRw+tOGKkeCktYcUa8AB
+ypxzCvAbN58FqeDbUwo+p/+nFE0sejx5Dw71srRdBJ5U94djm79Yb7pUr+oK
+3vYo/eI48JBcjXsvvLGenV3VKQwc3W9u971gxcahUZfAz0+bbXUF9/FsIHwB
+r+os/mkAXmRbvKBDDe6nLx30uTpbKZ6sH/PEDbxnhdvzEPDL51NGbQaLq2ZM
+swO3TmuXngsOvpfxunoW1rPN7zr9Arfb7BWQAN7slRTVVU0Q9XPctaeBr/VZ
+LEwD9wo5cKQZuLZB34U7wYfKLUcUeWE9e1Pn6Q3wwle63zeCF2ReG6WuLoj3
+U+2ODgQf2xGRbgk2mXbMs2amEvcpLp1ng09+n2FyHtx8QLPoWPDnDbPe+oJd
+mjwR7oKXmidd6ADeVHVooVBLEN/+tt/8ZIZSzMv1edoT/F3dyHcXuCamh5Mv
+2GeM+dgxYJv5P9IPgLsoN/XTBvsOyehcCu5ubmaZOx3rWcvV0dq1BXHdU+1u
+weDHX4Yq7cFOPbp2twE3udHA3x98xSKi58dpSnH0/uKnR8E9f3cdfhS8ISDG
+6SFYJ1Z7mic4Z+TUDL06gpjapf3KZuDfJu3NBoMLspYdKfJUipa/3kUvAX+e
+06BkE9jndpLyFPjxoHKtweD4Q4v9n4O9pj4epA6uWNr3WWMNQZx7t8WG1KlK
+0XCMhvNI8MfELUXzwY4dr2esANfU69vODLxOLdLsHDirpuXyyilYz4pddr0B
+L9xt+WgP+MexZpqtFILo/WvZoPFg85VP/MeA63X9lawLnj3+8LN14OIRRzrd
+8MB61nWO80XwRJ91h1eD72tYXPoIHhC3o3NfsF75D7O2Al4vjeJz392xnp3O
+2DUBPPaI/dDT4NXrVmuGg3seLH/qDb44ediibLB6/bhVpuCvFg2ffwNf/L21
+88PJWM+0Spw7KwUxatWp+zvBMx/HXPIAF6d9i3QG7zk3tcs28PULMxzrge9t
+bB9zFfxkxx+9XDesZ9Pea/4F75554WEweIjdmUXdNQVxS789p23BIQ0Cn88A
++/U6HPZpklJMrew7ehf4+5win+Pg6jSNzFvgWlWmLjPBnbZc71KnriAGFu90
+aA32nBUZYwOebmvW6/5EpRjTd1xdH3B51ye228CFBs0D9oHr3T7bxxGs/fbJ
+8yKwrcXRoZpgh6zDo+tqCWKG7wW37AlYz3bOyewD1op9tWgp+Owci67zwfvv
+9oiyBn8Y8DPmELh1h6jMj+OVYvuml+qWg63OGn1MAHt8XB3QoB6+f5tPtZsB
+jsobVjkA7FQ8dXor8O3dDccsBptEdTpa5qoU6y4oyTwObvep7tetYPuhu7s+
+AS/6XTPYERzUynN3I21BdLipGacJTvraXmsYuGxpuzo545Ti2xvvA4LBm9u6
+/rcMbBJ3pjIJ/Phh9H0bsNviwDEvwY5Z750+uWA9cxSzmukIYlCl863j4HxT
+RTcnsNH03NFeYMXv67tXgz+4DH5oDO57J1IrFfy4sMTvwVisZ4fHLX4PfvJt
+vtZO8MllzV8Y1xfE3/eaHnMGvxzzdMw4sGNk/mhtcOtOR7I2gBvabah1ZYxS
+nKA+t9sl8Ma3o86vAG8usYj9DDbNarGwN/j68Z9aHRoI4sjCTzbfR2M9W3Vp
+sRt4W69btZPAvSaseREJjtE/WeQDXtBt+NhccBP/bSfag48rdLN/gh8ELtv0
+1BnrWXlJt64NBTGv1+yFseAWSbtjPcEFReM8x4Nd1nvW2wlWeAx01QeHu3cI
+vAHe9MVizC0nrGeWH16o6Qri3pPG40LBavWSx1qCNyToTHEA2zwJzJ4FTlb7
+7qcG9jsvmseCt197sP7CKKxnmxR77oDT22Qc9gc/mXajnqAniIVtd+Wbg5v0
+3BzYE7z5ve+vt45Yzxq6vpwLvrqtb9fD4A0vmrscALtbK2Z7gnMuPs2+B3Z6
+n53QAvxnyxFzbX1BTCxa9Ll0JNaz2XP39APvU7YesA08R7TU9gd77k+PHgWO
+b/Qr8Ch4SLrjdy3ww7eXXlaALyy6OylvBNaz7DUuegaCaPl68JUV4FFRw3MG
+gYebJ9r1Aa+bq9t9CfiIl8aZH8OVYqbDvT0nwZrHhlokg380jdV+DrY3XHbB
+F9y92jOocSNB7JMbO6QzePaVDq9GgH8VJlS8GKYU42I/uKwAh7sfCIwD31+Q
+nHMWbLpibXN3sP6woO5vwH9cx+Q1AQ9v3W9vS0NBnKNWN6B4KNazbwqdMeCn
+Ww913Qy+ePNG0Drwg+6d348Af43b/CoN/Onr9iRNcNdA13EfwXf+VAZfHoL1
+bFSLy6ZGgth7WtPRIeC9bZ91nwCuO6iHWW/wvd9H9m4Ct8820/kxWCk2vDtX
+Jxsc/UXz6xnwkCOWS76BA37lPvMFrwj+9apTY1wPPnqWdQanjs0c5wEe8vVh
+8ctBSvFTp7WXt4JLTe3KDoA71RrR4ypYN9bvmQd42j3dfX/Ai5as/tIMHHPi
+nk73JoJ4oGKBdulApVi0KnbJDPDgJ306bwNrT5z2Ohrc8eATJyfwQPOOrrfA
+pg7uy7TBy4Sqy7WbCmKnR0mnrjooxXMPknvYgPttffhmNfhDUtC+/8Crgh93
+tge3D+1Xfx+43aXzC/4OwHrmISwtAvstmJadCo6yuvlas5kgXkp9arQIfKfe
+Ftc+4NWnLBf2ANd96po7Dzxs0fh7H/orxf4pLSwOgRM7jrQ/Bg4Kf7bvPnj6
+a90kL/CZ6UfrN2guiNZF8R1NwW97+i4dAK5dV/PIY3ulaKpr9SYAnHHIpkss
+2O3lL9fj4IU3LVIngLenZ+Y+BjtE/x5uCM7futaiUQv8+WbhlXf7KUXBe8T+
+oeBW8W/WRID79tNrEAwuadOwywhwgGHp0iSweu7f+5rgk+9i37wAd8TzfK6o
+FF9lTxvfrCXuD750Gb4S3Dq6Y94ocKPsuToieIJvlcVqsHuPhSW/+2I9G3h2
+fwr45Iw+h1LA15stafAeXGvptaX+4Nqf+i0zbiWI07YbTewB7nVVeOsC/nGn
+Xd+qPkpx4Z6b4zeAfzp/63AcfHzhlrwM8DmrNU1ngyuHjbf8DN4ae1evHbiF
+ccu49q1xfUuo0H3WWymO+/6sgRs4cUm80T5weP7RZZHgNhYdTSeDrxzwfXsZ
+bFztZdMUrBZkNeEneFnJFOd7vZSirdPvvC7GgthcQ3/+NrBfuyxLT/CfXcui
+ncFH/6yN2wE2u7j3Sn3wk7sjGt4Al6xf/OdGT6XY9KhesFobvJ9tlLah4NHL
+S99agPceHRY0CBzmsmfCLHBQv/45dcA5nadf2Q0eqPleL8sO61mtTlZ3wNva
+DJsdDLYsrYpTmOD6cXp8Xi/wnMSzDXuCFxcbdfppqxQPrV4SPBe8//TabefA
+Dyfav4sDL/I6qFgINuqunHgP/K2x37Lu4FHK/Cv1THH9f/Xq9wcbpbi+YotV
+P7DXd50Vx8GZZ8YfWAjOmfVQ2xv8M7Sl7lHwQfcJe9uDu095Hlxh+u/6vMy2
+0lopelsnvNNtK4hpU4eXxoHjtP0mDgJrJWcGTwGXP7W6GgTWa1TRuSVYP/W3
+1UnwtsN7H5VbKcUREVkHnoG9w5W7osGrZ6zTbdxOEFe+05/kCk7vNXL5CPCj
+5zltGoG/6uq/DwHH7jKsvmuJ9exV6cSz4Nfm9fIiwTMz9lx9Da57Y99+R/De
+bdOtW7YXRNeNJau0wfe8Ox0cDXaIOuZz3QLrmf1H3XXgcXqt3NaDhxqdW54G
+7tDSfPQg8Ir3S95XgX0eVThqgC/k2E8y7SCIrwLbj87ugfUsWnltPDhQV9st
+BNzZL996E1j3+gafvuBpg7YezAKnXolb9ae7UtzdfILeN3B41zH7L4CLPrUM
+6dQRr3ebmNzFYJ1rz9+7g/dfDfxoDR64N2HSVvA6hw/GX82VYrC/37Ur4NcX
+vk84Az433NrmD9jJaXvUPHCV8Z+D5p3wfeyYV9EN3P5Hlt4McJ53aMcP3ZTi
+lFvrQqLBY+0eLjkOjjo48kM++HVqTpE3+E6Qvlvtzvh86tpZdgTXdS67Zg1u
+NKPPrpddsZ6132vzH7isrEA4BF7yd3r8XrD69qrA6eAzhZ30izr/uz+O+dwG
+/O7oxxBNM3w+FhQueNIF61nIuQ+9wWZPt//aC548bqnbPHCy2dN17uDtZv2v
+x4N/LD7frAX4Vm1N2/vgU+8MzpWbYT0ry4+v30UQT5z4OW4XWDy5VX8A+O6T
+6TXjwQFrJqwIADc76XLcCHxqUquqY+CdvW5MKemM9ax7pdtjsM+Jy822g401
+j1036Iqft5N9xRjwhId+tkPBpvfFeD3wlmTrQ8vAl55cWnCnE9azDX/0k/79
++qzMIZHgOlOzV7wAP9/az3QUuJfN+qqm3QTxcJgo1Acv1HGcPArcadHFDzc7
+Yj17pn9jFbh/0LmKMHBlapltCrgkw6xwGLhl5N5D78AvvFsW1AWPmznDwNhc
+ENfEb7hztYNSjOjdeaUL+OF2v/vrwFf0qqtCwd2nFbweBFZ/fW5yBrjQ8pCa
+ALa9tPTGJ3C3Hl+a5bZXivO297dr310Qc1em9F0NPvqf5uFJ4C6On7wGgJ/a
+3zKIBOtd3LezNrhp420rL4Otv2TnZ7VTimM+TPj4Azyv5XitFeCwy63cu/TA
+eu/pMbIf+PKuyhtTwV9f3duhBv7jd8xuB3hiWeaLjLZK0WrwvMPXwTpuTfoE
+g+e0sGmkZiGIztGPo/uAD33+s9ICvCK10d8/pljPrmV/9ALrVJ6feRFstG+9
++27wYoe8kiXgUYscb94GT1bvN7IXeP0Ig54KS0H0tTe9/stEKWa1uX/YDjzP
+fP7IC+CfP/Y2mgu2/9bhXiC4R8GMVXHg22mDvezA3vGdq0vA7RLy//5ooxQP
+LKl2r2cliB5vUnelgMudz98UwYnx9fouBht0WNZzIXiSIvulDXhETf8jR8C5
+PR7s/G6sFNcUaRpWgKe4TnA8D05PuLVK1xqf99229QLA30K2VQ8Ee5oF3rIG
+d3Wd6BEEbmneNOpba6Xo1aV1fiI46U7TWefAe+u86PkMrN4rqO8icGnZsSNG
+Nnje3m7TzBrc8NQ8wxHgc9qja762wnq21mZ1CHj4tasvz4JXuP2tTgZ/+brr
+nj/4Qo8cj9fgvxev5FuBP2uG5rewxfPsEMfrX1tiPXvk2Gs0uDCnS/5Z8PSz
+BkfXguPHzyjxB+8Ou2+YBq7s/qXSClw8dd/qKvDIoLLfX1tgPbOd+cnEThAT
+3AwanwMPqm82ZTz4WZ2DPReBg59X528EV+9aN80afP7C+V5Z4BcjMrZ8a471
+LHLZ0a/glw6Dr54Dd/AaYNSpJz7vicYaAeApfequcQcbJI8YZAOO1i/4tAX8
+Y8WV8O/NsJ693jblCnjCgM0V58FamRNv/QbfNDnaY3Ez2Yfrhedtx/rhts1k
+Hw686+Olqh9NZR8OvN4y3TW1qezDgRMGKfICm8o+XG+8H2N29uzZVPbhwHvX
+zD/7q4nsw4GTtHZYpzWRfThwYP1aGUuayD4ceHh60vDeTWQfrg/ubwYkPPrT
+WPbhwIX5LwLTG8s+HPjAeq+mwY1lHw58cl/nrL6NZR8OnNa/x1y1xrIP1xfP
+QzFBxplGsg8HHlZapzzESPbhwJfa5u+yN5J9OHCT08VTahvJPhx43eHmXXIM
+ZR9OxPOt9X611YayDwe+tsGz1MFQ9uHAs+96nFcYyj4c+GzPqN15jWQfDjyk
+Wmv9ukayD9cP65/J+cAhjWQfDmyqvnte3UayDwfWS07xvW4g+3DgLXO0F4YZ
+yD4c+PjEHcEjDGQfzh7rx1GXCB0D2YcDD1g/9NAtfdmHA/dtOy8nQl/24cB3
+Em+8cNKXfTjw/DHjG+rpyz5cf1xv7A37FerJPhzY+IjGom16sg8HXne2TZKL
+nuzDgY9H+X4x1JN9OLBfyJvepbqyDzdAEPNjtoRF68o+HPh2E6/HE3VlHw4c
+29GrV3Nd2YcDz/21eXdFQ9mHA29Oe1Fnb0PZh3PA9Wz39HlTGso+HDjwplal
+cUPZhwMPXVLq/qyB7MOBV5TefHiwgezDDRTECv2X02c2kH04sPnkdtXtG8g+
+HHjq89BVr+vLPhzYp6xh82P1ZR8OPMPnwgWf+rIPN0gQ/fPXeHStL/tw4Ptm
+87U+6sg+HPjlheC00zqyDwfWPJIwf4GO7MOBL5p+7WalI/twgwUxaurkz9+0
+ZR8OPDji6cUUbdmHA4c9XLUxSFv24Qb/2w/u59lbW/bhwP3jjfrW1JN9uCG4
+nw3WbJ1ZT/bhwAF99DRX1pN9OPBbPctvA+rJPhx4gPmcN4p6sg8HLs27+PyK
+luzDDcX3RbNNZaiW7MOBw9rufjtcS/bhwNecOv3Q0ZJ9OPCqtBtat+vKPhx4
++c7lJlvqyj7cMKw/hgP7j60r+3DgXO9mXoZ1ZR8OrJlXa0uppuzDgUMmfs/e
+pSn7cGCPib9/umnKPtxwPI9/17ZppSn7cODIGZ2DnihlHw6cXOySc0Ap+3Dg
+yqAwvZlK2YcD56674dVBKftwI3B/3a1RzhtB9uHASw54mZ4QZB8OXGOUHeYr
+yD4ceP0lk5/dBdmHG4nra36YzxeF7MOB/yz4WXlOIftw4H4v/5sRqJB9OHD/
+iU/f9FLIPhx4hrrbohoN2YdzFEQTnVJllobsw4HrJbvsXaUh+3DgnA5FvQdp
+yD4cWNg7+rGmhuzDgeOH3Q69UUf24UbhfstjhF14HdmHA8fr5n1wqiP7cOBG
+23sn6NeRfThwTYuT/5XUln048J7HzS2ia8s+nBM+r7pr1N1qyz4cePrzF4Ut
+a8s+HHhhuP2JJ7VkHw5cz2HbxoO1ZB8OXGT3cJ5XLdmHc8b7d7Dl5E61ZB8O
+3Ch1rON7ddmHAzseXz7wlLrsw4HFM3v6L1CXfThwTe3TA63VZR9utCCm3D7r
++FNN9uHASc7HJ19Uk304sEPa1vnL1WQfDvyg/3+b+qvJPhxYvWWPRIWa7MON
+wfVl5cuiqzWCyocDe8dvqLURLPlw4LbpTS1HgSUfDjxBbaePHljy4cDf9tck
+FP8VVD7cWEGsU+5UFQWWfLix/17fjXZuYMmHA/96dTq0FVjy4cBTOl169PSP
+oPLhwF3Kz/Q6BJZ8OBdBvNc9InY2WPLhwC+nOym6gCUfDlyT8G3+x9+CyocD
+3+m54sUZsOTDjRPEzsOrPALAkg8H/qDX71FPsOTDgfWuzZ9e80tQ+XDguINr
+q7LAkg8HznkQFLIGLPlwroJ47Iij0VCw5MOBE8RaydpgyYcDm5ZtHnf7p6Dy
+4cBbj6upbQNLPhx4bfXQE65gyYcbj//eI9+pzcCSDwc+mOjX7NEPQeXDgSfv
+GF4eB5Z8OPCZW2r7Z4IlH+7fvx+x0acTWPLhJuDzo1vd58N3QeXDgU+FmTVK
+Aks+HNjKpu8nf7Dkw4Fbj2hbbAeWfDhwRe0n6X+/CSofbqIgvtnqdzwLLPlw
+4Ac2hfvWgCUfDjylvWbMULDkw4GtY+rH6IAlHw5sebNy352vgsqHm4T7ic8b
+j28HSz4ceOHQOhkTwJIPB76tHFLcAiz5cOBQr4mfnnwRVD4cuHK/XaNDYMmH
+cxPE3h+f9/EGSz4cWG3jJJ+uYMmHA59O3L3v02dB5cOBqzYfvn8OLPlw4Nm+
+S5ouAUs+3GTcz4YYTRHBkg8HHqC+5FgdsOTDgee1j/9z5ZOg8uHAgebbx2wE
+Sz6cO9hl2CknsOTDgQ/eztFrBJZ8OPDAB+pLyqoFlQ8HvpCk/joWLPlw4MXh
+2W6eYMmH8xBE7YSBJe3Akg8HNugX6vL2o6Dy4cBDwzbePwmWfDjwojzHGQvB
+kg8HDjYr+GoLlny4Kfj+/tDe+LdKUPlwU/7tFyg7ZIMlHw5cdCL92lqw5MOB
+7+p0mzccLPlw4MmZE1s2BEs+3FTcL6j3u1P0QVD5cODLWg9Do8GSDwc+3sRy
+iDtY8uHAdrPttU3Akg8HbmelKHn5XlD5cJ5Yf1OD44+DJR8OvLL7iaB5YMmH
+A98ri3CxBks+HHj8h7bWv98JKh8O3O3Y3OaZYMmHmyaIMSNma64BSz4cuLp+
+o19DwZIPB47tOq+6Pljy4cCtXi39UPhWUPlwYJ3FNtVRYMmHmy6I+s32/ZwM
+lnw48Fedc0oTsOTDgTdsWtzs1RtB5cOBL5W8sDwBlnw4cFQ79bHzwZIPNwP3
+bxdyFtuAJR8OnHzL/MCf14LKhwN77x9UmAWWfDjwcV+NuuvAkg8Hfr9otsMI
+sOTDzcTn+svCNbpgyYcDb2/X7mbJK0Hlw4FHDFvaeDdY8uHAsbGLvKeCJR/O
+SxC93A2y24ElHw68+/rYVu9eCiofDjyotc3K02DJhwOvjr3wZhFY8uHAYSEP
+x/cGSz7cLLxvyribtcCSDwe2macx6MoLQeXDgZN+a+RuBEs+HDi+Mm7oaLDk
+w4FPz6koNAJLPtxsQYy4e2ZaRaWg8uHA2mPa/owDSz7cP+7afdsssOTDgdfF
+lVh2BUs+HDi8yqD883NB5cN54/s49u3aVLDkw4FfNphguxws+XDg3KmTqxzA
+kg8Hdgj9fkwLLPlw4Ke57ebefiaofLj/8D65vrHaAZZ8OHDJUvs6bmDJhwNv
+WdS5xBgs+XBgm9WHE18+FVQ+HPhkZfLGE2DJh/PB8/H90X4LwJIP5/Pv/CRk
+gh1Y8uHA3iv6DFEDSz4cuCZpfe/cJ4LKhwPbBU61DgNLPtwcfA8Mrlg5gyUf
+DuyXm9LTCCz5cOA1N60GVjwWVD4c2N+7j8sBsOTDgRWPb3nPBks+3Fy8j3Nf
+r+kGlnw4cLDLxkNfHwkqHw488d65m2lgyYcDZ1jO+rECLPlwvvicJu7tOAQs
++XDgT2vdptQHSz4ceEZN7O6ih4LKhwMfGDft4S6w5MOBre8cazsVLPlwfoKY
+enLR/PZgyYcDP7bIufy+QlD5cOBFeyObJ4MlHw7savkwMAgs+XDgIMtjD/qB
+JR9uniC+fvLNQQmWfDhwTnBmUv4DQeXDgfuNVLbbBpZ8OPDxiOt7JoIlHw7s
+tb5uC2Ow5MPNx/sSmLPvZbmg8uHA2Ye+d0wESz4ceItzfMpCsOTDgQ3Sb4zo
+BZZ8OHAjM+8XtcCSD7cAn8sny9dcvS+ofDiwfWvtThFgyYcDL+pcv8gFLPlw
+YHHQmlXNwZIPB75/xs/2WZmg8uEWYn06X/DpKFjy4cCPt+1P8gNLPhy4W0Rl
+gA1Y8uHAjd/s6l9TKqh8OPDA15l6uWDJh/PH9f32uFdhYMmHAy9+NilnNFjy
+4cB9ZhYcaAKWfDhwzu5ToY/vCSofDtzqRs3Cw2DJh1uEv69V6oy5YMmHA7do
+/WiSFVjy4cDjC3xd/5QIKh8OHLPOe3wOWPLhwLM23XLfAJZ8uAD8/rYx3s5g
+yYcDN95WsKQxWPLhwL4t/9vyqFhQ+XBgy7pzEg+BJR9uMf796KKCOWDJhwM/
+0d//zRIs+XDgN+l32vwpElQ+HPjggxljc8CSDwd2OesWtgEs+XCBgui26ewV
+Z7Dkw4E7JvjWbQKWfDjwQOcNTo8LBZUPBx51VSP2MFjy4cC/xj78MBcs+XBB
+gtiwj+Ega7Dkw4H98o7F/b0rqHy4f79us0cjFyz5cOBfRe/+2wiWfDjwqBc7
+SseAJR9uCdb/0zHDmoElHw7ceemvrKd3BJUPB56yKalvAljy4cCTO+dkzgNL
+Phz41O7OQ+zAkg+3FM+T7d8WqYMlHw78S7+W19XbgsqHAwce9qmJAEs+HNij
+Y5cYV7Dkw4HjH9v3aQWWfLhleP0MEp6/KBBUPhw4od6MzYlgyYcD39CZP2AR
+WPLhwLqet3/1AUs+HPjZqOXnFWDJhwsWxPSWwYH5twSVDwe2NLzZbztY8uHA
+Vctm6UwGSz4cODF29CNTsOTDgR3SQ8+9yxdUPtxyXE9NdbYmgyUfDny22YOF
+S8GSDweOf/N1kgNY8uHAO8smDNEGSz5cCP4e5sqeRTcFlQ8H3m3713w3WPLh
+wPPtenWZDpZ8OPCdJZldzcCSDwd2HrLR6ssNQeXDrcD37GWs/UWw5MOBV8V9
+Gb0aLPlw4NtZEbNHgCUfDhwUPneNAVjy4f79fufIQw+uCyofbiXuw8d+uXkQ
+LPlwYOtH0T98wJIPBx7XO6SjFVjy4cA5yYc8/l4TVD4c+ONm7ZhcsOTDrcLn
+vsXp8k1gyYcDp+zbajwOLPlw4IMzzvi0BEs+HLjqbIP0F1cFlQ8HXlx+WO8k
+WPLhVuM5tfWSOQFgyYcDt7+1Pl8ESz4cOKDb7R6aYMmHA7uGO8XeviKofDiw
+vlVdnWiw5MOtwX3D3J8rpoIlHw58dlXrPx3Bkg8H3pu5bMmnPEHlw63597zR
+UD0NLPlw4Pz790JXgSUfbi3e75GFjUeAJR8OnKBX+4QBWPLhwOr+0wZV5Aoq
+Hw585NK35/FgyYcD5/ZJWz8XLPlw6/C563mquw1Y8uHA7rWKH6mBJR8OHFHR
+YevVy4LKhwPvb3ps+Gaw5MOB22pMqjsRLPlw63GdqbS52QYs+XBgi3r2297m
+CCofDjw8039qMljy4cCfnIotloElHy4U60hdj3qDwJIPB/5pqfeqPljy4cA7
+Wn+4di9bUPlw4J6NP53aB5Z8OHCvWS1iZ4MlH24DvjeTfcN7gCUfDtxgwMvV
+v7MElQ8H/jFzdchlsOTDgWc3GrRiE1jy4cBtYjqvGweWfLgw/DwOlltagSUf
+DvzAwyPuVaag8uHA+bbHz58GSz4c+GnzpneDwJIPBx4+4Uj1ALDkw23E81mv
+cYY6YMmHA9s0NOlXcklQ+XDglW3r++4FSz4cOPGq4YFZYMmHA7sO7v2gO1jy
+4Tbhdaxa1vR3hqDy4cBVOuWTL4MlHw68vHr0oU1gyYcD33z5/PM4sOTDgcv7
+Rg5qDZZ8uHBBvO4wds/rdEHlw4GvDTb/nQSWfDiw8Q6TyUvBkg8H7hLc5fJA
+sOTDgT0dR5o3AEs+XASuey4r95deFFQ+HHjJkxtGcWDJhwOftu+49T+w5MOB
+ky9H61uBJR8OPDW1eXRNmqDy4SLxesw9bXIVLPlw4EMWrmc2gyUfDjzLVWfI
+pDRB5cOBO3UsfGIKlny4zYJo++NwyIcLgsqHA3/WDzNNAUs+HPjujSX5K8CS
+Dwee4hu4ZDhY8uHA9o6rujYCSz7cFlzvUqJePEwVVD4c+P2flANHwJIPB57t
+82zGfLDkw4Gjxhl16Q2WfDjw+npjfyrAkg+3FdfH8qjrBSmCyocDOxtW7osG
+Sz4c+Iy27dJpYMmHA7+qv9mtC1jy4cDec6rsv58XVD7cNrwPi0ebZYElHw6c
+uCK1WRhY8uHAt0tNGrqAJR8OXKsgsm4rsOTDgTueVdN8fU5Q+XDb8T174Fvv
+DFjy4cDTtz/WXwaWfDjwqe7OxoPBkg+3/d9zYJaFLljy4cAl47sNLz8rqHy4
+HVin18Z4xYMlH27Hv/shjVBfsOTDgfVPeJ+0A0s+HHjq0Jv364AlHw48sk7H
+ereSBZUPtxPXQbOQflFgyYcDexndCfIESz4cOLhRswtmYMmHA2sGTq75dkZQ
++XDgLtt2Ds4CSz5cFNbx1Kvbw8CSDwee2fPjKxew5MOBe3rr2LcGSz4cuGtM
+qz1vkgSVDwcubdVO/SxY8uGiBfHFsNZey8GSDwdu4qtTOBQs+XDgIY/eDTAA
+Sz4ceOqH9NSHpwWVD7cLf5+q5ZZHwZIPB55n1SN5AVjy4cAn9Yts+4IlHw7s
+WTE9WxMs+XDgyspnToWnBJUPF4PPUYjT81iw5MOB29dKWDoLLPlwYCGtqokF
+WPLhwFW1jC/+PSmofDjwkY59pl0FSz7cblz/1g5osBUs+XDguv9ZZE4GSz4c
++LCZ9qIOYMmHA6u1yjf/nCiofDjwgB3+H9PBkg8Xi9f9hcbZ9WDJhwNfnB4U
+PAYs+XDgjOnFI1qCJR8OPLBXo9avTwgqHw5c1dvuxxmw5MPtwecto19xMFjy
+4cCrDTqfHwqWfDhwo23fYw3Akg8HbrglPvTRcUHlw4GDp1kGJYAlH24vnj8m
+H/D1B0s+HLhPcfXsfmDJhwNrtW41ux5Y8uHA/bd2mlNyTFD5cGDX1fqL9oMl
+H24f1p8hZat8wJIPBx5jvWSHDVjy4cDhcT9O1AZLPhx4xDOn6/kJgsqHA/s4
+rnobBZZ8uP24f7WL0J0Olny4/f/8+AW9u4ElHw7c6I25z6+jgsqHA7edlLsv
+Fyz5cHGCaBVvfj8SLPlw4EMt5zd2A0s+HPhDi9BJ7cGSDweO+rnwwKcjgsqH
+AztoWn1MB0s+3AF8XvZdtQ8FSz4cOLJJt6ixYMmHAz+85vW5FVjy4cDFT/zG
+vD0sqHy4/4slH+7g/7Lkw/1fLPlw4I9T0us0AUs+HPjyyuIlzw8JKh8OHNw3
+7cdJsOTDxf8vSz7c/8WSDwf+vthmox5Y8uHi//ef/P/5+/5/f87/+9/hz8Gf
+iz8nf27+Pf5/f8//93X4f18nvo58Xfk683Xn+8D3he8T3ze+j3xf+T7zfefn
+gJ8Lfk74ueHniJ8rfs74uePnkJ9Lfk75ueXnmJ9rfs75uef3gN8Lfk/4veH3
+iN8rfs/4veP3kN9Lfk/5veX3mN9rfs/5vec6wHWB6wTXDa4jXFe4znDd4TrE
+dYnrFNctrmNc17jOcd3jOsh1kesk102uo1xXuc5y3eU6zHWZ6zTXba7jXNe5
+znPd53WA1wVeJ3jd4HWE1xVeZ3jd4XWI1yVep3jd4nWM1zVe53jd43WQ10Ve
+J3nd5HWU11VeZ3nd5XWY12Vep3nd5nWc13Ve53nd530A7wt4n8D7Bt5H8L6C
+9xm87+B9CO9LeJ/C+xbex/C+hvc5vO/hfRDvi3ifxPsm3kfxvor3Wbzv4n0Y
+78t4n8b7Nt7H8b6O93m87+N9IO8LeZ/I+0beR/K+kveZvO/kfSjvS3mfyvtW
+3sfyvpb3ubzv5X0w74t5n8z7Zt5H876a99m87+Z9OO/LeZ/O+3bex/O+nvf5
+vO/ncwCfC/icwOcGPkfwuYLPGXzu4HMIn0v4nMLnFj7H8LmGzzl87uFzEJ+L
++JzE5yY+R/G5is9ZfO7icxify/icxuc2PsfxuY7PeXzu43Mgnwv5nMjnRj5H
+8rmSz5l87uRzKJ9L+ZzK51Y+x/K5ls+5fO7lczCfi/mczOdmPkfzuZrP2Xzu
+5nM4n8v5nM7ndj7H87mez/l87uc+APcFuE/AfQPuI3BfgfsM3HfgPgT3JbhP
+wX0L7mNwX4P7HNz34D4I90W4T8J9E+6jcF+F+yzcd+E+DPdluE/DfRvu43Bf
+h/s83PfhPhD3hbhPxH0j7iNxX4n7TNx34j4U96W4T8V9K+5jcV+L+1zc9+I+
+GPfFuE/GfTPuo3Ffjfts3HfjPhz35bhPx3077uNxX4/7fNz34z4g9wW5T8h9
+Q+4jcl+R+4zcd+Q+JPcluU/JfUvuY3Jfk/uc3PfkPij3RblPyn1T7qNyX5X7
+rNx35T4s92W5T8t9W+7jcl+X+7zc9+U+MPeFuU/MfWPuI3NfmfvM3HfmPjT3
+pblPzX1r7mNzX5v73Nz35j4498W5T859c+6jc1+d++zcd+c+PPfluU/PfXvu
+43Nfn/v83PfnOQDPBXhOwHMDniPwXIHnDDx34DkEzyV4TsFzC55j8FyD5xw8
+9+A5CM9FeE7CcxOeo/BchecsPHfhOQzPZXhOw3MbnuPwXIfnPDz34TkQz4V4
+TsRzI54j8VyJ50w8d+I5FM+leE7FcyueY/Fci+dcPPfiORjPxXhOxnMznqPx
+XI3nbDx34zkcz+V4TsdzO57j8VyP53w89+M5IM8FeU7Ic0OeI/JckeeMPHfk
+OSTPJXlOyXNLnmPyXJPnnDz35Dkoz0V5TspzU56j8lyV56w8d+U5LM9leU7L
+c1ue4/Jcl+e8PPflOTDPhXlOzHNjniPzXJnnzDx35jk0z6V5Ts1za55j81yb
+59w89+Y5OM/FeU7Oc3Oeo/NcnefsPHfnOTzP5XlOz3N7nuPzXJ/n/Dz3pwdA
+L4CeAL0BegT0CugZ0Dugh0AvgZ4CvQV6DPQa6DnQe6AHQS+CngS9CXoU9Cro
+WdC7oIdBL4OeBr0Nehz0Ouh50PugB0IvhJ4IvRF6JPRK6JnQO6GHQi+Fngq9
+FXos9FroudB7oQdDL4aeDL0ZejT0aujZ0Luhh0Mvh54OvR16PPR66PnQ+6EH
+RC+InhC9IXpE9IroGdE7oodEL4meEr2l//GYZK+JnhO9J3pQ9KLoSdGbokdF
+r4qeFb0relj0suhp0duix0Wvi54XvS96YPTC6InRG6NHRq+Mnhm9M3po9NLo
+qdFbo8dGr42eG703enD04ujJ0ZujR0evjp4dvTt6ePTy6OnR26PHR6+Pnh+9
+P3qA9ALpCdIbpEdIr5CeIb1Deoj0Eukp0lukx0ivkZ4jvUd6kPQi6UnSm6RH
+Sa+SniW9S3qY9DLpadLbpMdJr5OeJ71PeqD0QumJ0hulR0qvlJ4pvVN6qPRS
+6anSW6XHSq+Vniu9V3qw9GLpydKbpUdLr5aeLb1berj0cunp0tv9H49X9nrp
++dL7pQdML5ieML1hesT0iukZ0zumh0wvmZ4yvWV6zPSa6TnTe6YHTS+anjS9
+aXrU9KrpWdO7podNL5ueNr1tetz0uul50/umB04vnJ44vXF65PTK6ZnTO6eH
+Ti+dnjq9dXrs9NrpudN7pwdPL56ePL15evT06unZ07unh08vn54+vX16/PT6
+6fnT++ccAOcCOCfAuQHOEXCugHMGnDvgHALnEjinwLkFzjFwroFzDpx74BwE
+5yI4J8G5Cc5RcK6Ccxacu+AcBucyOKfBuQ3OcXCug3MenPvgHAjnQjgnwrkR
+zpFwroRzJpw74RwK51I4p8K5Fc6xcK6Fcy6ce+EcDOdiOCfDuRnO0XCuhnM2
+nLvhHA7ncjinw7kdzvFwrodzPpz74RwQ54I4J8S5Ic4Rca6Ic0acO+IcEueS
+OKfEuSXOMXGuiXNOnHviHBTnojgnxbkpzlFxropzVpy74hwW57I4p8W5Lc5x
+ca6Lc16c++IcGOfCOCfGuTHOkXGujHNmnDvjHBrn0jinxrk1zrFxro1zbpx7
+4xwc5+I4J8e5Oc7Rca6Oc3acu+McHufyOKfHuT3O8XGuj3N+nPvjHCDnAjkn
+yLlBzhFyrpBzhpw75Bwi5xI5p8i5Rc4xcq6Rc46ce+QcJOciOSfJuUnOUXKu
+knOWnLvkHCbnMjmnyblNznFyrpNznpz75Bwo50I5J8q5Uc6Rcq6Uc6acO+Uc
+KudSOafKuVXOsXKulXOunHvlHCznYjkny7lZztFyrpZztpy75Rwu53I5p8u5
+Xc7xcq6Xc76c++UcMOeCOSfMuWHOEXOumHPGnDvmHDLnkjmnzLllzjFzrplz
+zpx75hw056I5J825ac5Rc66ac9acu+YcNueyOafNuW3OcXOum3PenPvmHDjn
+wjknzrlxzpFzrpxz5pw75xw659I5p865dc6xc66dc+6ce+ccPOfiOSfPuXnO
+0XOunnP2nLvnHD7n8jmnz7l9zvFzrp9z/pz7Zw4AcwGYE8DcAOYIMFeAOQPM
+HWAOAXMJmFPA3ALmGDDXgDkHzD1gDgJzEZiTwNwE5igwV4E5C8xdYA4DcxmY
+08DcBuY4MNeBOQ/MfWAOBHMhmBPB3AjmSDBXgjkTzJ1gDgVzKZhTwdwK5lgw
+14I5F8y9YA4GczGYk8HcDOZoMFeDORvM3WAOB3M5mNPB3A7meDDXgzkfzP1g
+DghzQZgTwtwQ5ogwV4Q5I8wdYQ4Jc0mYU8LcEuaYMNeEOSfMPWEOCnNRmJPC
+3BTmqDBXhTkrzF1hDgtzWZjTwtwW5rgw14U5L8x9YQ4Mc2GYE8PcGObIMFeG
+OTPMnWEODXNpmFPD3Brm2DDXhjk3zL1hDg5zcZiTw9wc5ugwV4c5O8zdYQ4P
+c3mY08PcHub4MNeHOT/M/WEOEHOBmBPE3CDmCDFXiDlDzB1iDhFziZhTxNwi
+5hgx14g5R8w9Yg4Sc5GYk8TcJOYoMVeJOUvMXWIOE3OZmNPE3CbmODHXiTlP
+zH1iDhRzoZgTxdwo5kgxV4o5U8ydYg4Vc6mYU8XcKuZYMdeKOVfMvWIOFnOx
+mJPF3CzmaDFXizlbzN1iDhdzuZjTxdwu5ngx14s5X8z9Yg4Yc8GYE8bcMOaI
+MVeMOWPMHWMOGXPJmFPG3DLmmDHXjDlnzD1jDhpz0ZiTxtw05qgxV405a8xd
+Yw4bc9mY08bcNua4MdeNOW/MfWMOHHPhmBPH3DjmyDFXjjlzzJ1jDh1z6ZhT
+x9w65tgx1445d8y9Yw4ec/GYk8fcPOboMVePOXvM3WMOH3P5mNPH3D7m+DHX
+jzl/zP1jDiBzAZkTyNxA5ggyV5A5g8wdZA4hcwmZU8jcQuYYMteQOYfMPWQO
+InMRmZPI3ETmKDJXkTmLzF1kDiNzGZnTyNxG5jgy15E5j8x9ZA4kcyGZE8nc
+SOZIMleSOZPMnWQOJXMpmVPJ3ErmWDLXkjmXzL1kDiZzMZmTydxM5mgyV5M5
+m8zdZA4nczmZ08ncTuZ4MteTOZ/M/WQOKHNBmRPK3FDmiDJXlDmjzB1lDilz
+SZlTytxS5pgy15Q5p8w9ZQ4qc1GZk8rcVOaoMleVOavMXWUOK3NZmdPK3Fbm
+uDLXlTmvzH1lDixzYZkTy9xY5sgyV5Y5s8ydZQ4tc2mZU8vcWubYMteWObfM
+vWUOLnNxmZPL3Fzm6DJXlzm7zN1lDi9zeZnTy9xe5vgy15c5v8z9ZQ4wc4GZ
+E8zcYOYIM1eYOcPMHWYOMXOJmVPM3GLmGDPXmDnHzD1mDjJzkZmTzNxk5igz
+V5k5y8xdZg4zc5mZ08zcZuY4M9eZOc/MfWYONHOhmRPN3GjmSDNXmjnTzJ1m
+DjVzqZlTzdxq5lgz15o518y9Zg42c7GZk83cbOZoM1ebOdvM3WYON3O5mdPN
+3G7meDPXmznfzP1mDjhzwZkTztxw5ogzV5w548wdZw45c8mZU87ccuaYM9ec
+OefMPWcOOnPRmZPO3HTmqDNXnTnrzF1nDjtz2ZnTztx25rgz150578x9Zw48
+c+GZE8/ceObIM1eeOfPMnWcOPXPpmVPP3Hrm2DPXnjn3zL1nDj5z8ZmTz9x8
+5ugzV585+8zdZw4/c/mZ08/cfub4M9efOf/M/WcPAHsB2BPA3gD2CLBXgD0D
+7B1gDwF7CdhTwN4C9hiw14A9B+w9YA8CexHYk8DeBPYosFeBPQvsXWAPA3sZ
+2NPA3gb2OLDXgT0P7H1gDwR7IdgTwd4I9kiwV4I9E+ydYA8FeynYU8HeCvZY
+sNeCPRfsvWAPBnsx2JPB3gz2aLBXgz0b7N1gDwd7OdjTwd4O9niw14M9H+z9
+YA8Ie0HYE8LeEPaIsFeEPSPsHWEPCXtJ2FPC3hL2mLDXhD0n7D1hDwp7UdiT
+wt4U9qiwV4U9K+xdYQ8Le1nY08LeFva4sNeFPS/sfWEPDHth2BPD3hj2yLBX
+hj0z7J1hDw17adhTw94a9tiw14Y9N+y9YQ8Oe3HYk8PeHPbosFeHPTvs3WEP
+D3t52NPD3h72+LDXhz0/7P1hDxB7gdgTxN4g9gixV4g9Q+wdYg8Re4nYU8Te
+IvYYsdfof3qO5N4j9iCxF4k9SexNYo8Se5XYs8TeJfYwsZeJPU3sbWKPE3ud
+2PPE3if2QLEXij1R7I1ijxR7pdgzxd4p9lCxl4o9VeytYo8Ve63Yc8XeK/Zg
+sReLPVnszWKPFnu12LPF3i32cLGXiz1d7O1ijxd7vdjzxd4v9oCxF4w9YewN
+Y48Ye8XYM8beMfaQsZeMPWXsLWOPGXvN2HPG3jP2oLEXjT1p7E1jjxp71diz
+xt419rCxl409bextY48be93Y88bet//pgZN74dgTx9449sixV449c+ydYw8d
+e+nYU8feOvbYsdeOPXfsvWMPHnvx2JPH3jz26LFXjz177N1jDx97+djTx94+
+9vix1489f+z9Yw8gewHZE8jeQPYIsleQPYPsHWQPIXsJ2VPI3kL2GLLXkD2H
+7D1kDyJ7EdmTyN5E9iiyV5E9i+xdZA8jexnZ08jeRvY4steRPY/sfWQPJHsh
+2RPJ3kj2SLJXkj2T7J1kDyV7KdlTyd5K9liy15I9l+y9ZA8mezHZk8neTPZo
+sleTPZvs3WQPJ3s52dPJ3k72eLLXkz2f7P1kDyh7QdkTyt5Q9oiyV5Q9o+wd
+ZQ8pe0nZU8reUvaYsteUPafsPWUPKntR2ZPK3lT2qLJXlT2r7F1lDyt7WdnT
+yt5W9riy15U9r+x9ZQ8se2HZE8veWPbIsleWPbPsnWUPLXtp2VPL3lr22LLX
+lj237L1lDy57cdmTy95c9uiyV5c9u+zdZQ8ve3nZ08veXvb4steXPb/s/WUP
+MHuB2RPM3mD2CLNXmD3D7B1mDzF7idlTzN5i9hiz15g9x+w9Zg8ye5HZk8ze
+ZPYos1eZPcvsXWYPM3uZ2dPM3mb2OLPXmT3P7H1mDzR7odkTzd5o9kizV5o9
+0+ydZg81e6nZU83eavZYs9eaPdfsvWYPNnux2ZPN3mz2aLNXmz3b7N1mDzd7
+udnTzd5u9niz15s93+z9Zg84e8HZE87ecPaIs1ecPePsHWcPOXvJ2VPO3nL2
+mLPXnD3n7D1nDzp70dmTzt509qizV5096+xdZw87e9nZ087edva4s9edPe/s
+fWcPPHvh2RPP3nj2yLNXnj3z7J1nDz176dlTz9569tiz15499+y9l3w4cOnQ
+3R4nwZIPBzas8/L1H7Dkw4Hb1XNYOuygUuXDFSnETVOSDaPAkg8Hfl3LLrUS
+LPlw4Lfv706ziFeqfDjwJJNVhivAkg8HbrJ/2J1bYMmHK8T1cmanbc0PKVU+
+HNhznomHN1jy4cBNsq17pIAlHw68wHWGjnBYzl0GZ5if+jjmsOzD3cV/b2Tj
+B/sPyz4cOPf4noKqw7IPBw5zdLjR54jsw4Gde2gVhB2RfThwoWv1/bIjsg93
+RyE+y/j1of1R2YcDz/ZqX2/RUdmHA3s6L+52+ajsw/37/Us/TNJLkH04sOGb
+DZFTEmQf7ja+H9GO+YkJsg8HPrKhp97fBNmHA1/PGOUx/Jjsw4FNrSOSo4/J
+PhzYqfqn7qtjsg9XoBB/f4wMsD4u+3Dgd1YulauPyz4cuCZz8KTC47IPBzbZ
+OrvM+ITsw4E9T6R5+J2QfbhbuJ41FD9knJB9OHBGxpfVOomyDweekFJh4pYo
++3BgHbXf1xMSZR8O7LRtZNDPRNmHy1eIiYEl3YeclH048M1TO6p3nJR9OLBn
+r4jUypOyDwe2b5YVanlK9uHAjqO7eK46JftwN3G//LSo/91Tsg8H/p2f0tn4
+tOzDgUsM7zf3Oy37cGCXS3aGl07LPtwNhVhwrdSofpLsw4FP2KYYT06SfTjw
+gvplFseTZB8OnDKyt+PvJNmHA3f8+dRv2BnZh7uO74P+rZjoM7IPB07fW3Pr
+1RnZhwMn7PPXsk2WfTiwWxNLx3XJsg8HrtbutaskWfbhrmE9DA770Pas7MOB
+D89rN9z/rOzDgRe81j51+azsw4EDXostDM7JPhzY3j9zy7Rzsg93Fb8/MqLh
+mXOyDwe+0jdxR+3zsg8H1lndou3o87IPBzab/jBt/3nZhwO3flY9sfq87MNd
+wfqhMaG2fYrsw4Hf5RskRabIPhy4S/923o9TZB8ObDgzvJN5quzDgQ36On5e
+nir7cHn4/N+aebkgVfbhwHOal8W2uiD7cGB9s0PLfS/IPhzYvXbB7EsXZB8O
+bHZwrFuDNNmHy1WIvoa2rh5psg8HNncPmngyTfbhwBEhzWeqXZR9OHDOylZB
+oy7KPhzY0Hv1jr0XZR/uMv5+vUakVV2UfThwxt+AV2K67MOBm5/VbBmZLvtw
+4ONeam6P02UfLgefl2aT48wzZB8OPKu4TXVIhuzDgZ13Ow+5kyH7cODn/m8O
+G1+SfTiwzawPDeZfkn24bLzfge4h2ZdkHw786mSvn3qZsg8Hfqq7LmhapuzD
+gYvj7TWSM2UfDjx0vs8OjSzZh8tSiOXLNLu7ZMk+HLhPgWFRfJbsw4F7zola
+/i1L9uHAZ9zDLQZnyz4ceE/Cz6qd2bIPl4nr3fjy5FfZsg8HNpprudIuR/bh
+wBpfFOM35Mg+HNi42sm6PEf24cDFPoYtzC7LPtwl/PlzXbWXXZZ9OLBujYHG
+rcuyDwcua+Ok0SpX9uHAKc/r6vjlyj4ceN3wAS2zcmUfLkMhWnj8tdHLk304
+8OX2dhOn5ck+HHjMie+rk/NkHw5s+MMuRXFF9uH+/XrDWl/GXZF9uHSF6FMz
+0vbIFdmHA9+7brzm5xXZhwO3Dl52f9hV2YcDv23tabv7quzDgT+n3d7z/qrs
+w1389/pd1xGvyT4cWK9m1JrIa7IPB65/3lPx9Jrsw/379Y11wi2uyz4ceOha
+i1Zrrss+XJpC/JL4OaXkuuzDgec0GDipww3ZhwO3Od1BCLoh+3DgXbF7U2+A
+tQoDzP/xzRv//qcU/w/WYo8I
+ "]]}, Annotation[#, "Charting`Private`Tag#8"]& ]}}, {{}, {}}}, {
+ DisplayFunction -> Identity, DisplayFunction -> Identity, AspectRatio ->
+ 1, Axes -> {True, True}, AxesLabel -> {None, None},
+ AxesOrigin -> {1.9000000000000041`, 1.9000000000000041`},
+ DisplayFunction :> Identity, Frame -> {{True, True}, {True, True}},
+ FrameLabel -> {{
+ FormBox[
+ TagBox[
+ SubscriptBox["\[Omega]", "2"], HoldForm], TraditionalForm], None}, {
+
+ FormBox[
+ TagBox[
+ SubscriptBox["\[Omega]", "1"], HoldForm], TraditionalForm], None}},
+ FrameStyle -> GrayLevel[0],
+ FrameTicks -> {{Automatic, Automatic}, {Automatic, Automatic}},
+ GridLines -> {None, None}, GridLinesStyle -> Directive[
+ GrayLevel[0.5, 0.4]], LabelStyle -> {FontFamily -> "Times",
+ GrayLevel[0], FontSize -> 12},
+ Method -> {
+ "AxisPadding" -> Scaled[0.02], "DefaultBoundaryStyle" -> Automatic,
+ "DefaultGraphicsInteraction" -> {
+ "Version" -> 1.2, "TrackMousePosition" -> {True, False},
+ "Effects" -> {
+ "Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2},
+ "Droplines" -> {
+ "freeformCursorMode" -> True,
+ "placement" -> {"x" -> "All", "y" -> "None"}}}},
+ "DefaultMeshStyle" -> AbsolutePointSize[6], "DefaultPlotStyle" -> {
+ Directive[
+ RGBColor[0.368417, 0.506779, 0.709798],
+ AbsoluteThickness[2]],
+ Directive[
+ RGBColor[0.880722, 0.611041, 0.142051],
+ AbsoluteThickness[2]],
+ Directive[
+ RGBColor[0.560181, 0.691569, 0.194885],
+ AbsoluteThickness[2]],
+ Directive[
+ RGBColor[0.922526, 0.385626, 0.209179],
+ AbsoluteThickness[2]],
+ Directive[
+ RGBColor[0.528488, 0.470624, 0.701351],
+ AbsoluteThickness[2]],
+ Directive[
+ RGBColor[0.772079, 0.431554, 0.102387],
+ AbsoluteThickness[2]],
+ Directive[
+ RGBColor[0.363898, 0.618501, 0.782349],
+ AbsoluteThickness[2]],
+ Directive[
+ RGBColor[1, 0.75, 0],
+ AbsoluteThickness[2]],
+ Directive[
+ RGBColor[0.647624, 0.37816, 0.614037],
+ AbsoluteThickness[2]],
+ Directive[
+ RGBColor[0.571589, 0.586483, 0.],
+ AbsoluteThickness[2]],
+ Directive[
+ RGBColor[0.915, 0.3325, 0.2125],
+ AbsoluteThickness[2]],
+ Directive[
+ RGBColor[0.40082222609352647`, 0.5220066643438841, 0.85],
+ AbsoluteThickness[2]],
+ Directive[
+ RGBColor[
+ 0.9728288904374106, 0.621644452187053, 0.07336199581899142],
+ AbsoluteThickness[2]],
+ Directive[
+ RGBColor[0.736782672705901, 0.358, 0.5030266573755369],
+ AbsoluteThickness[2]],
+ Directive[
+ RGBColor[0.28026441037696703`, 0.715, 0.4292089322474965],
+ AbsoluteThickness[2]]}, "DomainPadding" -> Scaled[0.02],
+ "PointSizeFunction" -> "SmallPointSize", "RangePadding" ->
+ Scaled[0.05], "OptimizePlotMarkers" -> True, "IncludeHighlighting" ->
+ "CurrentSet", "HighlightStyle" -> Automatic, "OptimizePlotMarkers" ->
+ True, "CoordinatesToolOptions" -> {"DisplayFunction" -> ({
+ Identity[
+ Part[#, 1]],
+ Identity[
+ Part[#, 2]]}& ), "CopiedValueFunction" -> ({
+ Identity[
+ Part[#, 1]],
+ Identity[
+ Part[#, 2]]}& )}}, PlotRange -> {{1.9, 3.1}, {1.9, 3.1}},
+ PlotRangeClipping -> True, PlotRangePadding -> {{0, 0}, {0, 0}},
+ Ticks -> {Automatic, Automatic}}],
+ FormBox[
+ FormBox[
+ TemplateBox[{
+ "0.`", "0.2`", "0.4`", "0.6000000000000001`", "0.8`", "1.`",
+ "1.2000000000000002`", "1.4`"}, "LineLegend",
+ DisplayFunction -> (FormBox[
+ StyleBox[
+ StyleBox[
+ PaneBox[
+ TagBox[
+ GridBox[{{
+ StyleBox["\[Epsilon]", {FontFamily -> "Times",
+ GrayLevel[0], FontSize -> 12}, Background -> Automatic,
+ StripOnInput -> False]}, {
+ TagBox[
+ GridBox[{{
+ TagBox[
+ GridBox[{{
+ GraphicsBox[{{
+ Directive[
+ EdgeForm[
+ Directive[
+ Opacity[0.3],
+ GrayLevel[0]]],
+ PointSize[0.5],
+ RGBColor[0.368417, 0.506779, 0.709798],
+ AbsoluteThickness[2]], {
+ LineBox[{{0, 12.5}, {20, 12.5}}]}}, {
+ Directive[
+ EdgeForm[
+ Directive[
+ Opacity[0.3],
+ GrayLevel[0]]],
+ PointSize[0.5],
+ RGBColor[0.368417, 0.506779, 0.709798],
+ AbsoluteThickness[2]], {}}}, AspectRatio -> Full,
+ ImageSize -> {20, 12.5}, PlotRangePadding -> None,
+ ImagePadding -> Automatic,
+ BaselinePosition -> (Scaled[0.116] -> Baseline)], #}, {
+ GraphicsBox[{{
+ Directive[
+ EdgeForm[
+ Directive[
+ Opacity[0.3],
+ GrayLevel[0]]],
+ PointSize[0.5],
+ RGBColor[0.880722, 0.611041, 0.142051],
+ AbsoluteThickness[2]], {
+ LineBox[{{0, 12.5}, {20, 12.5}}]}}, {
+ Directive[
+ EdgeForm[
+ Directive[
+ Opacity[0.3],
+ GrayLevel[0]]],
+ PointSize[0.5],
+ RGBColor[0.880722, 0.611041, 0.142051],
+ AbsoluteThickness[2]], {}}}, AspectRatio -> Full,
+ ImageSize -> {20, 12.5}, PlotRangePadding -> None,
+ ImagePadding -> Automatic,
+ BaselinePosition -> (Scaled[0.116] -> Baseline)], #2}, {
+ GraphicsBox[{{
+ Directive[
+ EdgeForm[
+ Directive[
+ Opacity[0.3],
+ GrayLevel[0]]],
+ PointSize[0.5],
+ RGBColor[0.560181, 0.691569, 0.194885],
+ AbsoluteThickness[2]], {
+ LineBox[{{0, 12.5}, {20, 12.5}}]}}, {
+ Directive[
+ EdgeForm[
+ Directive[
+ Opacity[0.3],
+ GrayLevel[0]]],
+ PointSize[0.5],
+ RGBColor[0.560181, 0.691569, 0.194885],
+ AbsoluteThickness[2]], {}}}, AspectRatio -> Full,
+ ImageSize -> {20, 12.5}, PlotRangePadding -> None,
+ ImagePadding -> Automatic,
+ BaselinePosition -> (Scaled[0.116] -> Baseline)], #3}, {
+ GraphicsBox[{{
+ Directive[
+ EdgeForm[
+ Directive[
+ Opacity[0.3],
+ GrayLevel[0]]],
+ PointSize[0.5],
+ RGBColor[0.922526, 0.385626, 0.209179],
+ AbsoluteThickness[2]], {
+ LineBox[{{0, 12.5}, {20, 12.5}}]}}, {
+ Directive[
+ EdgeForm[
+ Directive[
+ Opacity[0.3],
+ GrayLevel[0]]],
+ PointSize[0.5],
+ RGBColor[0.922526, 0.385626, 0.209179],
+ AbsoluteThickness[2]], {}}}, AspectRatio -> Full,
+ ImageSize -> {20, 12.5}, PlotRangePadding -> None,
+ ImagePadding -> Automatic,
+ BaselinePosition -> (Scaled[0.116] -> Baseline)], #4}, {
+ GraphicsBox[{{
+ Directive[
+ EdgeForm[
+ Directive[
+ Opacity[0.3],
+ GrayLevel[0]]],
+ PointSize[0.5],
+ RGBColor[0.528488, 0.470624, 0.701351],
+ AbsoluteThickness[2]], {
+ LineBox[{{0, 12.5}, {20, 12.5}}]}}, {
+ Directive[
+ EdgeForm[
+ Directive[
+ Opacity[0.3],
+ GrayLevel[0]]],
+ PointSize[0.5],
+ RGBColor[0.528488, 0.470624, 0.701351],
+ AbsoluteThickness[2]], {}}}, AspectRatio -> Full,
+ ImageSize -> {20, 12.5}, PlotRangePadding -> None,
+ ImagePadding -> Automatic,
+ BaselinePosition -> (Scaled[0.116] -> Baseline)], #5}, {
+ GraphicsBox[{{
+ Directive[
+ EdgeForm[
+ Directive[
+ Opacity[0.3],
+ GrayLevel[0]]],
+ PointSize[0.5],
+ RGBColor[0.772079, 0.431554, 0.102387],
+ AbsoluteThickness[2]], {
+ LineBox[{{0, 12.5}, {20, 12.5}}]}}, {
+ Directive[
+ EdgeForm[
+ Directive[
+ Opacity[0.3],
+ GrayLevel[0]]],
+ PointSize[0.5],
+ RGBColor[0.772079, 0.431554, 0.102387],
+ AbsoluteThickness[2]], {}}}, AspectRatio -> Full,
+ ImageSize -> {20, 12.5}, PlotRangePadding -> None,
+ ImagePadding -> Automatic,
+ BaselinePosition -> (Scaled[0.116] -> Baseline)], #6}, {
+ GraphicsBox[{{
+ Directive[
+ EdgeForm[
+ Directive[
+ Opacity[0.3],
+ GrayLevel[0]]],
+ PointSize[0.5],
+ RGBColor[0.363898, 0.618501, 0.782349],
+ AbsoluteThickness[2]], {
+ LineBox[{{0, 12.5}, {20, 12.5}}]}}, {
+ Directive[
+ EdgeForm[
+ Directive[
+ Opacity[0.3],
+ GrayLevel[0]]],
+ PointSize[0.5],
+ RGBColor[0.363898, 0.618501, 0.782349],
+ AbsoluteThickness[2]], {}}}, AspectRatio -> Full,
+ ImageSize -> {20, 12.5}, PlotRangePadding -> None,
+ ImagePadding -> Automatic,
+ BaselinePosition -> (Scaled[0.116] -> Baseline)], #7}, {
+ GraphicsBox[{{
+ Directive[
+ EdgeForm[
+ Directive[
+ Opacity[0.3],
+ GrayLevel[0]]],
+ PointSize[0.5],
+ RGBColor[1, 0.75, 0],
+ AbsoluteThickness[2]], {
+ LineBox[{{0, 12.5}, {20, 12.5}}]}}, {
+ Directive[
+ EdgeForm[
+ Directive[
+ Opacity[0.3],
+ GrayLevel[0]]],
+ PointSize[0.5],
+ RGBColor[1, 0.75, 0],
+ AbsoluteThickness[2]], {}}}, AspectRatio -> Full,
+ ImageSize -> {20, 12.5}, PlotRangePadding -> None,
+ ImagePadding -> Automatic,
+ BaselinePosition -> (Scaled[0.116] -> Baseline)], #8}},
+ GridBoxAlignment -> {
+ "Columns" -> {Center, Left}, "Rows" -> {{Baseline}}},
+ AutoDelete -> False,
+ GridBoxDividers -> {
+ "Columns" -> {{False}}, "Rows" -> {{False}}},
+ GridBoxItemSize -> {
+ "Columns" -> {{All}}, "Rows" -> {{All}}},
+ GridBoxSpacings -> {
+ "Columns" -> {{0.5}}, "Rows" -> {{0.8}}}], "Grid"]}},
+ GridBoxAlignment -> {
+ "Columns" -> {{Left}}, "Rows" -> {{Top}}}, AutoDelete ->
+ False, GridBoxItemSize -> {
+ "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}},
+ GridBoxSpacings -> {"Columns" -> {{1}}, "Rows" -> {{0}}}],
+ "Grid"]}}, GridBoxAlignment -> {"Columns" -> {{Center}}},
+ AutoDelete -> False,
+ GridBoxItemSize -> {
+ "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}},
+ GridBoxSpacings -> {
+ "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}], "Grid"],
+ Alignment -> Left, AppearanceElements -> None,
+ ImageMargins -> {{5, 5}, {5, 5}}, ImageSizeAction ->
+ "ResizeToFit"], LineIndent -> 0, StripOnInput -> False], {
+ FontFamily -> "Times",
+ GrayLevel[0], FontSize -> 12}, Background -> Automatic,
+ StripOnInput -> False], TraditionalForm]& ),
+ InterpretationFunction :> (RowBox[{"LineLegend", "[",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{
+ RowBox[{"Directive", "[",
+ RowBox[{
+ RowBox[{"PointSize", "[",
+ FractionBox["1", "360"], "]"}], ",",
+
+ TemplateBox[<|
+ "color" -> RGBColor[0.368417, 0.506779, 0.709798]|>,
+ "RGBColorSwatchTemplate"], ",",
+ RowBox[{"AbsoluteThickness", "[", "2", "]"}]}], "]"}], ",",
+ RowBox[{"Directive", "[",
+ RowBox[{
+ RowBox[{"PointSize", "[",
+ FractionBox["1", "360"], "]"}], ",",
+
+ TemplateBox[<|
+ "color" -> RGBColor[0.880722, 0.611041, 0.142051]|>,
+ "RGBColorSwatchTemplate"], ",",
+ RowBox[{"AbsoluteThickness", "[", "2", "]"}]}], "]"}], ",",
+ RowBox[{"Directive", "[",
+ RowBox[{
+ RowBox[{"PointSize", "[",
+ FractionBox["1", "360"], "]"}], ",",
+
+ TemplateBox[<|
+ "color" -> RGBColor[0.560181, 0.691569, 0.194885]|>,
+ "RGBColorSwatchTemplate"], ",",
+ RowBox[{"AbsoluteThickness", "[", "2", "]"}]}], "]"}], ",",
+ RowBox[{"Directive", "[",
+ RowBox[{
+ RowBox[{"PointSize", "[",
+ FractionBox["1", "360"], "]"}], ",",
+
+ TemplateBox[<|
+ "color" -> RGBColor[0.922526, 0.385626, 0.209179]|>,
+ "RGBColorSwatchTemplate"], ",",
+ RowBox[{"AbsoluteThickness", "[", "2", "]"}]}], "]"}], ",",
+ RowBox[{"Directive", "[",
+ RowBox[{
+ RowBox[{"PointSize", "[",
+ FractionBox["1", "360"], "]"}], ",",
+
+ TemplateBox[<|
+ "color" -> RGBColor[0.528488, 0.470624, 0.701351]|>,
+ "RGBColorSwatchTemplate"], ",",
+ RowBox[{"AbsoluteThickness", "[", "2", "]"}]}], "]"}], ",",
+ RowBox[{"Directive", "[",
+ RowBox[{
+ RowBox[{"PointSize", "[",
+ FractionBox["1", "360"], "]"}], ",",
+
+ TemplateBox[<|
+ "color" -> RGBColor[0.772079, 0.431554, 0.102387]|>,
+ "RGBColorSwatchTemplate"], ",",
+ RowBox[{"AbsoluteThickness", "[", "2", "]"}]}], "]"}], ",",
+ RowBox[{"Directive", "[",
+ RowBox[{
+ RowBox[{"PointSize", "[",
+ FractionBox["1", "360"], "]"}], ",",
+
+ TemplateBox[<|
+ "color" -> RGBColor[0.363898, 0.618501, 0.782349]|>,
+ "RGBColorSwatchTemplate"], ",",
+ RowBox[{"AbsoluteThickness", "[", "2", "]"}]}], "]"}], ",",
+ RowBox[{"Directive", "[",
+ RowBox[{
+ RowBox[{"PointSize", "[",
+ FractionBox["1", "360"], "]"}], ",",
+
+ TemplateBox[<|"color" -> RGBColor[1, 0.75, 0]|>,
+ "RGBColorSwatchTemplate"], ",",
+ RowBox[{"AbsoluteThickness", "[", "2", "]"}]}], "]"}]}],
+ "}"}], ",",
+ RowBox[{"{",
+
+ RowBox[{#, ",", #2, ",", #3, ",", #4, ",", #5, ",", #6, ",", #7,
+ ",", #8}], "}"}], ",",
+ RowBox[{"LegendMarkers", "\[Rule]",
+ RowBox[{"{",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"False", ",", "Automatic"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"False", ",", "Automatic"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"False", ",", "Automatic"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"False", ",", "Automatic"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"False", ",", "Automatic"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"False", ",", "Automatic"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"False", ",", "Automatic"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"False", ",", "Automatic"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"False", ",", "Automatic"}], "}"}]}], "}"}]}], ",",
+ RowBox[{"Joined", "\[Rule]",
+ RowBox[{"{",
+
+ RowBox[{
+ "True", ",", "True", ",", "True", ",", "True", ",", "True",
+ ",", "True", ",", "True", ",", "True", ",", "True"}],
+ "}"}]}], ",",
+ RowBox[{"LegendLabel", "\[Rule]", "\[Epsilon]"}], ",",
+ RowBox[{"LegendLayout", "\[Rule]", "\"Column\""}]}], "]"}]& ),
+ Editable -> True], TraditionalForm], TraditionalForm]},
+ "Legended",
+ DisplayFunction->(GridBox[{{
+ TagBox[
+ ItemBox[
+ PaneBox[
+ TagBox[#, "SkipImageSizeLevel"], Alignment -> {Center, Baseline},
+ BaselinePosition -> Baseline], DefaultBaseStyle -> "Labeled"],
+ "SkipImageSizeLevel"],
+ ItemBox[#2, DefaultBaseStyle -> "LabeledLabel"]}},
+ GridBoxAlignment -> {"Columns" -> {{Center}}, "Rows" -> {{Center}}},
+ AutoDelete -> False, GridBoxItemSize -> Automatic,
+ BaselinePosition -> {1, 1}]& ),
+ Editable->True,
+ InterpretationFunction->(RowBox[{"Legended", "[",
+ RowBox[{#, ",",
+ RowBox[{"Placed", "[",
+ RowBox[{#2, ",", "After"}], "]"}]}], "]"}]& )]], "Output",
+ CellChangeTimes->{
+ 3.909045677015095*^9, 3.909046340411375*^9, {3.909047439726328*^9,
+ 3.909047526046637*^9}, 3.909047564404361*^9, 3.9155360776765347`*^9,
+ 3.9155368604895*^9, 3.915772759432945*^9, 3.9163812145378447`*^9,
+ 3.916386519150815*^9, 3.916388170780579*^9},
+ CellLabel->
+ "Out[243]=",ExpressionUUID->"ccc0c10d-374b-4561-9b69-130306acddb0"]
+}, Open ]]
+}, Open ]],
+
+Cell[CellGroupData[{
+
+Cell["Two-sphere", "Section",
+ CellChangeTimes->{{3.9155323567472897`*^9,
+ 3.915532358033332*^9}},ExpressionUUID->"3e089f73-01c1-4198-8f45-\
+28504d7853b6"],
+
+Cell[BoxData[
+ RowBox[{
+ RowBox[{"p0RSBrules", "=",
+ RowBox[{"{", "\[IndentingNewLine]",
+ RowBox[{
+ RowBox[{
+ RowBox[{
+ RowBox[{"p0RSBmat", "[",
+ RowBox[{"n_", ",",
+ RowBox[{"{",
+ RowBox[{
+ "adt_", ",", "a0tu_", ",", "a0tl_", ",", "ad_", ",", "a0_"}],
+ "}"}]}], "]"}],
+ RowBox[{"p0RSBmat", "[",
+ RowBox[{"n_", ",",
+ RowBox[{"{",
+ RowBox[{
+ "bdt_", ",", "b0tu_", ",", "b0tl_", ",", "bd_", ",", "b0_"}],
+ "}"}]}], "]"}]}], ":>",
+ RowBox[{"p0RSBmat", "[",
+ RowBox[{"n", ",",
+ RowBox[{"{", "\[IndentingNewLine]",
+ RowBox[{
+ RowBox[{"adt", " ", "bdt"}], ",", "\[IndentingNewLine]",
+ RowBox[{"a0tu", " ", "b0tu"}], ",", "\[IndentingNewLine]",
+ RowBox[{"a0tl", " ", "b0tl"}], ",", "\[IndentingNewLine]",
+ RowBox[{"ad", " ", "bd"}], ",", "\[IndentingNewLine]",
+ RowBox[{"a0", " ", "b0"}]}], "\[IndentingNewLine]", "}"}]}],
+ "]"}]}], ",", "\[IndentingNewLine]",
+ RowBox[{
+ RowBox[{
+ RowBox[{"p0RSBmat", "[",
+ RowBox[{"n_", ",",
+ RowBox[{"{",
+ RowBox[{
+ "adt_", ",", "a0tu_", ",", "a0tl_", ",", "ad_", ",", "a0_"}],
+ "}"}]}], "]"}], ".",
+ RowBox[{"p0RSBmat", "[",
+ RowBox[{"n_", ",",
+ RowBox[{"{",
+ RowBox[{
+ "bdt_", ",", "b0tu_", ",", "b0tl_", ",", "bd_", ",", "b0_"}],
+ "}"}]}], "]"}]}], ":>",
+ RowBox[{"p0RSBmat", "[",
+ RowBox[{"n", ",",
+ RowBox[{"{", "\[IndentingNewLine]",
+ RowBox[{
+ RowBox[{
+ RowBox[{"adt", " ", "bdt"}], "+",
+ RowBox[{
+ RowBox[{"(",
+ RowBox[{"n", "-", "1"}], ")"}], "a0tu", " ", "b0tl"}]}], ",",
+ "\[IndentingNewLine]",
+ RowBox[{
+ RowBox[{"a0tu", " ", "bd"}], "+",
+ RowBox[{"adt", " ", "b0tu"}], "+",
+ RowBox[{
+ RowBox[{"(",
+ RowBox[{"n", "-", "2"}], ")"}], "a0tu", " ", "b0"}]}], ",",
+ "\[IndentingNewLine]",
+ RowBox[{
+ RowBox[{"a0tl", " ", "bdt"}], "+",
+ RowBox[{"ad", " ", "b0tl"}], "+",
+ RowBox[{
+ RowBox[{"(",
+ RowBox[{"n", "-", "2"}], ")"}], "b0tl", " ", "a0"}]}], ",",
+ "\[IndentingNewLine]",
+ RowBox[{
+ RowBox[{"ad", " ", "bd"}], "+",
+ RowBox[{"a0tl", " ", "b0tu"}], "+",
+ RowBox[{
+ RowBox[{"(",
+ RowBox[{"n", "-", "2"}], ")"}], "a0", " ", "b0"}]}], ",",
+ "\[IndentingNewLine]",
+ RowBox[{
+ RowBox[{"a0", " ", "bd"}], "+",
+ RowBox[{"ad", " ", "b0"}], "+",
+ RowBox[{"a0tl", " ", "b0tu"}], "+",
+ RowBox[{
+ RowBox[{"(",
+ RowBox[{"n", "-", "3"}], ")"}], "a0", " ", "b0"}]}]}],
+ "\[IndentingNewLine]", "}"}]}], "]"}]}], ",", "\[IndentingNewLine]",
+
+ RowBox[{
+ RowBox[{
+ RowBox[{"p0RSBmat", "[",
+ RowBox[{"n_", ",",
+ RowBox[{"{",
+ RowBox[{
+ "adt_", ",", "a0tu_", ",", "a0tl_", ",", "ad_", ",", "a0_"}],
+ "}"}]}], "]"}], "+",
+ RowBox[{"p0RSBmat", "[",
+ RowBox[{"n_", ",",
+ RowBox[{"{",
+ RowBox[{
+ "bdt_", ",", "b0tu_", ",", "b0tl_", ",", "bd_", ",", "b0_"}],
+ "}"}]}], "]"}]}], ":>",
+ RowBox[{"p0RSBmat", "[",
+ RowBox[{"n", ",",
+ RowBox[{"{", "\[IndentingNewLine]",
+ RowBox[{
+ RowBox[{"adt", "+", "bdt"}], ",", "\[IndentingNewLine]",
+ RowBox[{"a0tu", "+", "b0tu"}], ",", "\[IndentingNewLine]",
+ RowBox[{"a0tl", "+", "b0tl"}], ",", "\[IndentingNewLine]",
+ RowBox[{"ad", "+", "bd"}], ",", "\[IndentingNewLine]",
+ RowBox[{"a0", "+", "b0"}]}], "\[IndentingNewLine]", "}"}]}],
+ "]"}]}], ",", "\[IndentingNewLine]",
+ RowBox[{
+ RowBox[{"const_", " ",
+ RowBox[{"p0RSBmat", "[",
+ RowBox[{"n_", ",",
+ RowBox[{"{",
+ RowBox[{
+ "adt_", ",", "a0tu_", ",", "a0tl_", ",", "ad_", ",", "a0_"}],
+ "}"}]}], "]"}]}], ":>",
+ RowBox[{"p0RSBmat", "[",
+ RowBox[{"n", ",",
+ RowBox[{"const",
+ RowBox[{"{", "\[IndentingNewLine]",
+ RowBox[{
+ "adt", ",", "\[IndentingNewLine]", "a0tu", ",",
+ "\[IndentingNewLine]", "a0tl", ",", "\[IndentingNewLine]", "ad",
+ ",", "\[IndentingNewLine]", "a0"}], "\[IndentingNewLine]",
+ "}"}]}]}], "]"}]}], ",", "\[IndentingNewLine]",
+ RowBox[{
+ RowBox[{"-",
+ RowBox[{"p0RSBmat", "[",
+ RowBox[{"n_", ",",
+ RowBox[{"{",
+ RowBox[{
+ "adt_", ",", "a0tu_", ",", "a0tl_", ",", "ad_", ",", "a0_"}],
+ "}"}]}], "]"}]}], ":>",
+ RowBox[{"p0RSBmat", "[",
+ RowBox[{"n", ",",
+ RowBox[{"{",
+ RowBox[{
+ RowBox[{"-", "adt"}], ",",
+ RowBox[{"-", "a0tu"}], ",",
+ RowBox[{"-", "a0tl"}], ",",
+ RowBox[{"-", "ad"}], ",",
+ RowBox[{"-", "a0"}]}], "}"}]}], "]"}]}], ",", "\[IndentingNewLine]",
+ RowBox[{
+ RowBox[{"logDet", "[",
+ RowBox[{"p0RSBmat", "[",
+ RowBox[{"n_", ",",
+ RowBox[{"{",
+ RowBox[{
+ "adt_", ",", "a0tu_", ",", "a0tl_", ",", "ad_", ",", "a0_"}],
+ "}"}]}], "]"}], "]"}], ":>",
+ RowBox[{
+ RowBox[{
+ RowBox[{"(",
+ RowBox[{"n", "-", "2"}], ")"}],
+ RowBox[{"Log", "[",
+ RowBox[{"ad", "-", "a0"}], "]"}]}], "+",
+ RowBox[{"Log", "[",
+ RowBox[{
+ RowBox[{"adt", " ", "ad"}], "+",
+ RowBox[{
+ RowBox[{"(",
+ RowBox[{"n", "-", "2"}], ")"}], "adt", " ", "a0"}], "-",
+ RowBox[{
+ RowBox[{"(",
+ RowBox[{"n", "-", "1"}], ")"}], "a0tu", " ", "a0tl"}]}], "]"}]}]}],
+ ",", "\[IndentingNewLine]",
+ RowBox[{
+ SuperscriptBox[
+ RowBox[{"p0RSBmat", "[",
+ RowBox[{"n_", ",",
+ RowBox[{"{",
+ RowBox[{
+ "adt_", ",", "a0tu_", ",", "a0tl_", ",", "ad_", ",", "a0_"}],
+ "}"}]}], "]"}], "2"], ":>",
+ RowBox[{"p0RSBmat", "[",
+ RowBox[{"n", ",",
+ RowBox[{"{",
+ RowBox[{
+ SuperscriptBox["adt", "2"], ",",
+ SuperscriptBox["a0tu", "2"], ",",
+ SuperscriptBox["a0tl", "2"], ",",
+ SuperscriptBox["ad", "2"], ",",
+ SuperscriptBox["a0", "2"]}], "}"}]}], "]"}]}], ",",
+ "\[IndentingNewLine]",
+ RowBox[{
+ RowBox[{"sumDiag", "[",
+ RowBox[{"p0RSBmat", "[",
+ RowBox[{"n_", ",",
+ RowBox[{"{",
+ RowBox[{
+ "adt_", ",", "a0tu_", ",", "a0tl_", ",", "ad_", ",", "a0_"}],
+ "}"}]}], "]"}], "]"}], ":>",
+ RowBox[{"adt", "+",
+ RowBox[{
+ RowBox[{"(",
+ RowBox[{"n", "-", "1"}], ")"}], "ad"}]}]}], ",",
+ "\[IndentingNewLine]",
+ RowBox[{
+ RowBox[{"sum", "[",
+ RowBox[{"p0RSBmat", "[",
+ RowBox[{"n_", ",",
+ RowBox[{"{",
+ RowBox[{
+ "adt_", ",", "a0tu_", ",", "a0tl_", ",", "ad_", ",", "a0_"}],
+ "}"}]}], "]"}], "]"}], ":>",
+ RowBox[{"adt", "+",
+ RowBox[{
+ RowBox[{"(",
+ RowBox[{"n", "-", "1"}], ")"}],
+ RowBox[{"(",
+ RowBox[{"ad", "+", "a0tu", "+", "a0tl"}], ")"}]}], "+",
+ RowBox[{
+ RowBox[{"(",
+ RowBox[{
+ SuperscriptBox["n", "2"], "-", "1", "-",
+ RowBox[{"3",
+ RowBox[{"(",
+ RowBox[{"n", "-", "1"}], ")"}]}]}], ")"}], "a0"}]}]}]}],
+ "\[IndentingNewLine]", "}"}]}], ";"}]], "Input",
+ CellChangeTimes->{{3.9060154869143467`*^9, 3.9060156486206284`*^9}, {
+ 3.906015706414013*^9, 3.906015879409375*^9}, {3.9060159104259157`*^9,
+ 3.90601616215897*^9}, {3.9060164087157993`*^9, 3.9060164195478573`*^9}, {
+ 3.906016724777636*^9, 3.906016759546612*^9}, {3.906017868966701*^9,
+ 3.906017993144882*^9}, {3.916298349295138*^9, 3.91629838447995*^9}, {
+ 3.916304012705944*^9, 3.9163040560749063`*^9}, {3.916305680970009*^9,
+ 3.916305737162888*^9}, {3.916306025874814*^9, 3.916306032537112*^9}},
+ CellLabel->
+ "In[142]:=",ExpressionUUID->"32615cc9-ab89-4fec-9507-d4081e5ab9af"],
+
+Cell[BoxData[
+ RowBox[{
+ RowBox[{"sum", "[",
+ RowBox[{"p0RSBmat", "[",
+ RowBox[{"n_", ",",
+ RowBox[{"{",
+ RowBox[{"adt_", ",", "a0tu_", ",", "a0tl_", ",", "ad_", ",", "a0_"}],
+ "}"}]}], "]"}], "]"}], ":>",
+ RowBox[{"adt", "+",
+ RowBox[{
+ RowBox[{"(",
+ RowBox[{"n", "-", "1"}], ")"}],
+ RowBox[{"(",
+ RowBox[{"ad", "+", "a0tu", "+", "a0tl"}], ")"}]}], "+",
+ RowBox[{
+ RowBox[{"(",
+ RowBox[{
+ SuperscriptBox["n", "2"], "-", "1", "-",
+ RowBox[{"3",
+ RowBox[{"(",
+ RowBox[{"n", "-", "1"}], ")"}]}]}], ")"}], "a0"}]}]}]], "Input",Expres\
+sionUUID->"b5146e99-78bb-48d4-9374-7b833d3a6574"],
+
+Cell[BoxData[
+ RowBox[{
+ RowBox[{"matForm", "[",
+ RowBox[{"p0RSBmat", "[",
+ RowBox[{"n_", ",",
+ RowBox[{"{",
+ RowBox[{"adt_", ",", "a0tu_", ",", "a0tl_", ",", "ad_", ",", "a0_"}],
+ "}"}]}], "]"}], "]"}], ":=",
+ RowBox[{"With", "[",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"a", "=",
+ RowBox[{"Unique", "[", "a", "]"}]}], "}"}], ",",
+ RowBox[{
+ RowBox[{"Array", "[",
+ RowBox[{"a", ",",
+ RowBox[{"{",
+ RowBox[{"n", ",", "n"}], "}"}]}], "]"}], "/.",
+ RowBox[{"{",
+ RowBox[{
+ RowBox[{
+ RowBox[{"a", "[",
+ RowBox[{"1", ",", "1"}], "]"}], ":>", "adt"}], ",",
+ RowBox[{
+ RowBox[{"a", "[",
+ RowBox[{"i_", ",", "i_"}], "]"}], ":>", "ad"}], ",",
+ RowBox[{
+ RowBox[{"a", "[",
+ RowBox[{"i_", ",", "j_"}], "]"}], ":>",
+ RowBox[{"a0tu", "/;",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"i", "==", "1"}], "&&",
+ RowBox[{"j", "!=", "1"}]}], ")"}]}]}], ",",
+ RowBox[{
+ RowBox[{"a", "[",
+ RowBox[{"i_", ",", "j_"}], "]"}], ":>",
+ RowBox[{"a0tl", "/;",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"i", "!=", "1"}], "&&",
+ RowBox[{"j", "==", "1"}]}], ")"}]}]}], ",",
+ RowBox[{
+ RowBox[{"a", "[",
+ RowBox[{"_", ",", "_"}], "]"}], ":>", "a0"}]}], "}"}]}]}],
+ "]"}]}]], "Input",
+ CellChangeTimes->{{3.90601619406374*^9, 3.906016261000745*^9}},
+ CellLabel->"In[8]:=",ExpressionUUID->"ae37dedd-da6c-42ec-ae9b-796780482b37"],
+
+Cell[BoxData[{
+ RowBox[{
+ RowBox[{"A", "=",
+ RowBox[{"p0RSBmat", "[",
+ RowBox[{"7", ",",
+ RowBox[{"{",
+ RowBox[{"adt", ",", "a0tu", ",", "a0tl", ",", "ad", ",", "a0"}],
+ "}"}]}], "]"}]}], ";"}], "\[IndentingNewLine]",
+ RowBox[{
+ RowBox[{"B", "=",
+ RowBox[{"p0RSBmat", "[",
+ RowBox[{"7", ",",
+ RowBox[{"{",
+ RowBox[{"bdt", ",", "b0tu", ",", "b0tl", ",", "bd", ",", "b0"}],
+ "}"}]}], "]"}]}], ";"}]}], "Input",
+ CellChangeTimes->{{3.906016273153998*^9, 3.906016296681038*^9}, {
+ 3.906016335065982*^9, 3.906016335785755*^9}, {3.906016425291695*^9,
+ 3.906016427035625*^9}},
+ CellLabel->"In[9]:=",ExpressionUUID->"3d84f495-773b-4ce0-a779-44c19e0915c3"],
+
+Cell[BoxData[
+ RowBox[{
+ RowBox[{"id", "[", "n_", "]"}], ":=",
+ RowBox[{"p0RSBmat", "[",
+ RowBox[{"n", ",",
+ RowBox[{"{",
+ RowBox[{"1", ",", "0", ",", "0", ",", "1", ",", "0"}], "}"}]}],
+ "]"}]}]], "Input",
+ CellChangeTimes->{{3.916303142184292*^9, 3.9163031607199087`*^9}},
+ CellLabel->"In[72]:=",ExpressionUUID->"618a42f8-b051-4cdf-8473-21e9de937b82"],
+
+Cell[BoxData[
+ RowBox[{
+ RowBox[{"corner", "[", "n_", "]"}], ":=",
+ RowBox[{"p0RSBmat", "[",
+ RowBox[{"n", ",",
+ RowBox[{"{",
+ RowBox[{"1", ",", "0", ",", "0", ",", "0", ",", "0"}], "}"}]}],
+ "]"}]}]], "Input",
+ CellChangeTimes->{{3.916303208929206*^9, 3.916303222257146*^9}},
+ CellLabel->"In[75]:=",ExpressionUUID->"9a83e28a-4231-4cff-9a04-fac75f5e1b4d"],
+
+Cell[BoxData[
+ RowBox[{
+ RowBox[{"lineTop", "[", "n_", "]"}], ":=",
+ RowBox[{"p0RSBmat", "[",
+ RowBox[{"n", ",",
+ RowBox[{"{",
+ RowBox[{"1", ",", "1", ",", "0", ",", "0", ",", "0"}], "}"}]}],
+ "]"}]}]], "Input",
+ CellChangeTimes->{{3.916303427533416*^9, 3.916303446237496*^9}, {
+ 3.916303596128808*^9, 3.916303599784398*^9}},
+ CellLabel->
+ "In[101]:=",ExpressionUUID->"43300cae-9f4f-47cf-9813-49db8b5d69a9"],
+
+Cell[BoxData[
+ RowBox[{
+ RowBox[{"lineBottom", "[", "n_", "]"}], ":=",
+ RowBox[{"p0RSBmat", "[",
+ RowBox[{"n", ",",
+ RowBox[{"{",
+ RowBox[{"1", ",", "0", ",", "1", ",", "0", ",", "0"}], "}"}]}],
+ "]"}]}]], "Input",
+ CellChangeTimes->{{3.916303610984568*^9, 3.9163036158725*^9}},
+ CellLabel->
+ "In[104]:=",ExpressionUUID->"e7afa4f7-6f52-45c9-9d8a-53932a27bcf7"],
+
+Cell[CellGroupData[{
+
+Cell[BoxData[
+ RowBox[{
+ RowBox[{"lineTop", "[", "4", "]"}], "//", "matForm"}]], "Input",
+ CellChangeTimes->{{3.916303161920828*^9, 3.916303170176252*^9}, {
+ 3.916303224914093*^9, 3.916303226809374*^9}, {3.9163034500461063`*^9,
+ 3.91630345216578*^9}, {3.916303603512663*^9, 3.916303603976437*^9}},
+ CellLabel->
+ "In[103]:=",ExpressionUUID->"c1a6934f-6252-4ba2-8a31-abb6a974a91c"],
+
+Cell[BoxData[
+ RowBox[{"{",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"1", ",", "1", ",", "1", ",", "1"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"0", ",", "0", ",", "0", ",", "0"}], "}"}]}], "}"}]], "Output",
+ CellChangeTimes->{{3.916303164634424*^9, 3.91630317055126*^9},
+ 3.9163032271085043`*^9, 3.91630345237505*^9, {3.9163036013289824`*^9,
+ 3.91630360419517*^9}},
+ CellLabel->
+ "Out[103]=",ExpressionUUID->"bafdc24d-ce74-44fa-81b1-b5eed3c1c110"]
+}, Open ]],
+
+Cell[BoxData[
+ RowBox[{
+ RowBox[{"corner", "[", "4", "]"}], "//", "matForm"}]], "Input",ExpressionUUI\
+D->"c7e4db28-e1d9-4e45-8d64-b45ae3f3b02a"],
+
+Cell[CellGroupData[{
+
+Cell[BoxData[
+ RowBox[{
+ RowBox[{"matForm", "[", "A", "]"}], "//", "MatrixForm"}]], "Input",
+ CellChangeTimes->{{3.90601650742142*^9, 3.906016511901194*^9}},
+ CellLabel->"In[11]:=",ExpressionUUID->"90f8e6cf-a2cb-4fc4-af6b-a2643f1c18bc"],
+
+Cell[BoxData[
+ TagBox[
+ RowBox[{"(", "\[NoBreak]", GridBox[{
+ {"adt", "a0tu", "a0tu", "a0tu", "a0tu", "a0tu", "a0tu"},
+ {"a0tl", "ad", "a0", "a0", "a0", "a0", "a0"},
+ {"a0tl", "a0", "ad", "a0", "a0", "a0", "a0"},
+ {"a0tl", "a0", "a0", "ad", "a0", "a0", "a0"},
+ {"a0tl", "a0", "a0", "a0", "ad", "a0", "a0"},
+ {"a0tl", "a0", "a0", "a0", "a0", "ad", "a0"},
+ {"a0tl", "a0", "a0", "a0", "a0", "a0", "ad"}
+ },
+ GridBoxAlignment->{"Columns" -> {{Center}}, "Rows" -> {{Baseline}}},
+ GridBoxSpacings->{"Columns" -> {
+ Offset[0.27999999999999997`], {
+ Offset[0.7]},
+ Offset[0.27999999999999997`]}, "Rows" -> {
+ Offset[0.2], {
+ Offset[0.4]},
+ Offset[0.2]}}], "\[NoBreak]", ")"}],
+ Function[BoxForm`e$,
+ MatrixForm[BoxForm`e$]]]], "Output",
+ CellChangeTimes->{3.9060165121210833`*^9, 3.906186585845617*^9,
+ 3.906188367634499*^9, 3.906445737287404*^9, 3.906526380957107*^9,
+ 3.907146520679757*^9, 3.907328401870837*^9, 3.90852775810122*^9,
+ 3.90853517690338*^9, 3.9086033051904783`*^9, 3.908611419200552*^9,
+ 3.908621322305964*^9, 3.908959013422355*^9, 3.909041244953446*^9,
+ 3.915532039997315*^9, 3.915532490361631*^9, 3.9157715661300697`*^9,
+ 3.916298086103642*^9},
+ CellLabel->
+ "Out[11]//MatrixForm=",ExpressionUUID->"761ce714-4f2f-4e7a-9a77-\
+4aeb97c7b9e3"]
+}, Open ]],
+
+Cell[CellGroupData[{
+
+Cell[BoxData[
+ RowBox[{
+ RowBox[{
+ RowBox[{
+ RowBox[{"matForm", "[", "A", "]"}], ".",
+ RowBox[{"matForm", "[", "B", "]"}]}], "-",
+ RowBox[{"matForm", "[",
+ RowBox[{
+ RowBox[{"A", ".", "B"}], "/.", "p0RSBrules"}], "]"}]}], "//",
+ "MatrixForm"}]], "Input",
+ CellChangeTimes->{{3.90601630021717*^9, 3.9060163020008*^9}, {
+ 3.906016344778521*^9, 3.906016369306422*^9}},
+ CellLabel->"In[12]:=",ExpressionUUID->"8fc542b7-ffb8-43ab-82fe-a6e3bc6c4dc1"],
+
+Cell[BoxData[
+ TagBox[
+ RowBox[{"(", "\[NoBreak]", GridBox[{
+ {"0", "0", "0", "0", "0", "0", "0"},
+ {"0", "0", "0", "0", "0", "0", "0"},
+ {"0", "0", "0", "0", "0", "0", "0"},
+ {"0", "0", "0", "0", "0", "0", "0"},
+ {"0", "0", "0", "0", "0", "0", "0"},
+ {"0", "0", "0", "0", "0", "0", "0"},
+ {"0", "0", "0", "0", "0", "0", "0"}
+ },
+ GridBoxAlignment->{"Columns" -> {{Center}}, "Rows" -> {{Baseline}}},
+ GridBoxSpacings->{"Columns" -> {
+ Offset[0.27999999999999997`], {
+ Offset[0.7]},
+ Offset[0.27999999999999997`]}, "Rows" -> {
+ Offset[0.2], {
+ Offset[0.4]},
+ Offset[0.2]}}], "\[NoBreak]", ")"}],
+ Function[BoxForm`e$,
+ MatrixForm[BoxForm`e$]]]], "Output",
+ CellChangeTimes->{{3.906016302200728*^9, 3.9060163698749247`*^9}, {
+ 3.906016412112354*^9, 3.906016427752605*^9}, 3.906186586394137*^9,
+ 3.906188367784443*^9, 3.906445737488733*^9, 3.906526381171613*^9,
+ 3.9071465208390102`*^9, 3.907328401969231*^9, 3.90852775852439*^9,
+ 3.908535176947983*^9, 3.9086033052426033`*^9, 3.908611419390637*^9,
+ 3.908621322502807*^9, 3.9089590134471207`*^9, 3.909041245152533*^9,
+ 3.915532040420734*^9, 3.915532490902354*^9, 3.9157715661819*^9,
+ 3.91629808635922*^9},
+ CellLabel->
+ "Out[12]//MatrixForm=",ExpressionUUID->"ba200cb0-9e0e-423b-9f5f-\
+963ad56ef299"]
+}, Open ]],
+
+Cell[CellGroupData[{
+
+Cell[BoxData[
+ RowBox[{
+ RowBox[{
+ RowBox[{
+ RowBox[{"logDet", "[", "A", "]"}], "-",
+ RowBox[{"Log", "[",
+ RowBox[{"Det", "[",
+ RowBox[{"matForm", "[", "A", "]"}], "]"}], "]"}]}], "/.",
+ "p0RSBrules"}], "//",
+ RowBox[{
+ RowBox[{"FullSimplify", "[",
+ RowBox[{"#", ",",
+ RowBox[{"Assumptions", "->",
+ RowBox[{"{",
+ RowBox[{
+ RowBox[{"ad", ">", "a0"}], ",",
+ RowBox[{"a0", ">", "0"}], ",",
+ RowBox[{"ad", ">", "0"}], ",",
+ RowBox[{"ad", ">", "0"}]}], "}"}]}]}], "]"}], "&"}]}]], "Input",
+ CellChangeTimes->{{3.906016432156065*^9, 3.906016492940791*^9}},
+ CellLabel->"In[13]:=",ExpressionUUID->"d97a16cb-8f13-463e-9235-10cf798e882c"],
+
+Cell[BoxData["0"], "Output",
+ CellChangeTimes->{{3.906016435385942*^9, 3.906016493093434*^9},
+ 3.9061865868641443`*^9, 3.906188367909843*^9, 3.906445737894533*^9,
+ 3.906526381387528*^9, 3.907146521410756*^9, 3.907328402072982*^9,
+ 3.908527759253859*^9, 3.908535176992972*^9, 3.908603305293064*^9,
+ 3.908611419701027*^9, 3.908621322735462*^9, 3.908959013614911*^9,
+ 3.909041245371322*^9, 3.915532041003538*^9, 3.915532491323807*^9,
+ 3.9157715663195257`*^9, 3.916298087124516*^9},
+ CellLabel->"Out[13]=",ExpressionUUID->"ab9cfbb0-fc67-419d-ba7f-6c7524f65677"]
+}, Open ]],
+
+Cell[BoxData[
+ RowBox[{
+ RowBox[{"\[ScriptCapitalS]twin", "=",
+ RowBox[{"With", "[",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{
+ RowBox[{"Q11", "=",
+ RowBox[{"p0RSBmat", "[",
+ RowBox[{"n", ",",
+ RowBox[{"{",
+ RowBox[{
+ "q11d1", ",", "q111", ",", "q111", ",", "q11d0", ",", "q110"}],
+ "}"}]}], "]"}]}], ",",
+ RowBox[{"Q22", "=",
+ RowBox[{"p0RSBmat", "[",
+ RowBox[{"n", ",",
+ RowBox[{"{",
+ RowBox[{
+ "q22d1", ",", "q221", ",", "q221", ",", "q22d0", ",", "q220"}],
+ "}"}]}], "]"}]}], ",",
+ RowBox[{"Q12", "=",
+ RowBox[{"p0RSBmat", "[",
+ RowBox[{"n", ",",
+ RowBox[{"{",
+ RowBox[{
+ "q12d1", ",", "q121", ",", "q121", ",", "q12d0", ",", "q120"}],
+ "}"}]}], "]"}]}]}], "}"}], ",", "\[IndentingNewLine]",
+ RowBox[{
+ RowBox[{
+ RowBox[{
+ RowBox[{"-", "\[Beta]"}],
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"\[Omega]1", " ",
+ RowBox[{"sumDiag", "[", "Q11", "]"}]}], "+",
+ RowBox[{"\[Omega]2", " ",
+ RowBox[{"sumDiag", "[", "Q22", "]"}]}]}], ")"}]}], "+",
+ RowBox[{"\[Lambda]",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"\[Omega]1", " ", "q11d1"}], "+",
+ RowBox[{"\[Omega]2", " ", "q22d1"}]}], ")"}]}], "+",
+ RowBox[{
+ SuperscriptBox["\[Sigma]1", "2"],
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{
+ SuperscriptBox["\[Beta]", "2"],
+ RowBox[{"sum", "[",
+ SuperscriptBox["Q11", "2"], "]"}]}], "+",
+ RowBox[{
+ SuperscriptBox["\[Lambda]", "2"],
+ SuperscriptBox["q11d1", "2"]}], "-",
+ RowBox[{"2", " ", "\[Beta]", " ", "\[Lambda]",
+ RowBox[{"(",
+ RowBox[{
+ SuperscriptBox["q11d1", "2"], "+",
+ RowBox[{
+ RowBox[{"(",
+ RowBox[{"n", "-", "1"}], ")"}],
+ SuperscriptBox["q111", "2"]}]}], ")"}]}]}], ")"}]}], "+",
+ RowBox[{
+ SuperscriptBox["\[Sigma]2", "2"],
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{
+ SuperscriptBox["\[Beta]", "2"],
+ RowBox[{"sum", "[",
+ SuperscriptBox["Q22", "2"], "]"}]}], "+",
+ RowBox[{
+ SuperscriptBox["\[Lambda]", "2"],
+ SuperscriptBox["q22d1", "2"]}], "-",
+ RowBox[{"2", " ", "\[Beta]", " ", "\[Lambda]",
+ RowBox[{"(",
+ RowBox[{
+ SuperscriptBox["q22d1", "2"], "+",
+ RowBox[{
+ RowBox[{"(",
+ RowBox[{"n", "-", "1"}], ")"}],
+ SuperscriptBox["q221", "2"]}]}], ")"}]}]}], ")"}]}], "+",
+ RowBox[{
+ SuperscriptBox["\[Sigma]12", "2"],
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{
+ SuperscriptBox["\[Beta]", "2"],
+ RowBox[{"sum", "[",
+ RowBox[{"Q11", " ", "Q22"}], "]"}]}], "+",
+ RowBox[{
+ SuperscriptBox["\[Lambda]", "2"], "q11d1", " ", "q22d1"}], "-",
+ RowBox[{"2", " ", "\[Beta]", " ", "\[Lambda]",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"q11d1", " ", "q22d1"}], "+",
+ RowBox[{
+ RowBox[{"(",
+ RowBox[{"n", "-", "1"}], ")"}], "q111", " ", "q221"}]}],
+ ")"}]}]}], ")"}]}], "+",
+ RowBox[{
+ FractionBox["1", "2"],
+ RowBox[{"logDet", "[",
+ RowBox[{"Q11", ".", "Q22"}], "]"}]}]}], "//.", "p0RSBrules"}]}],
+ "\[IndentingNewLine]", "]"}]}], ";"}]], "Input",
+ CellChangeTimes->{{3.905848963495986*^9, 3.905849056640668*^9}, {
+ 3.905849098609572*^9, 3.905849153378747*^9}, {3.905849229244924*^9,
+ 3.905849299413603*^9}, {3.9058497801426687`*^9, 3.905849929641574*^9}, {
+ 3.905850661167429*^9, 3.905850663479553*^9}, {3.9058506988640537`*^9,
+ 3.905850823299843*^9}, {3.906016526231467*^9, 3.906016610960813*^9}, {
+ 3.906016648120619*^9, 3.906016668361017*^9}, {3.906018022634241*^9,
+ 3.906018040601918*^9}, {3.906018074803009*^9, 3.906018131963895*^9}, {
+ 3.9162982057078943`*^9, 3.916298272949469*^9}, {3.916303258595335*^9,
+ 3.9163032644194717`*^9}, {3.916303356613431*^9, 3.916303356757037*^9}},
+ CellLabel->"In[88]:=",ExpressionUUID->"1be6ad59-07a8-4e68-a148-615473405a94"],
+
+Cell[CellGroupData[{
+
+Cell[BoxData[
+ RowBox[{"\[ScriptCapitalS]twin2", "/.",
+ RowBox[{"n", "->", "0"}]}]], "Input",
+ CellChangeTimes->{{3.916304984013535*^9, 3.916305003547409*^9}},
+ CellLabel->
+ "In[137]:=",ExpressionUUID->"31ecc6b1-3013-4df7-a379-762ad87db2ba"],
+
+Cell[BoxData[
+ RowBox[{
+ RowBox[{
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"2", " ",
+ SuperscriptBox["q110", "2"]}], "-",
+ RowBox[{"2", " ",
+ SuperscriptBox["q111", "2"]}], "-",
+ SuperscriptBox["q11d0", "2"], "+",
+ SuperscriptBox["q11d1", "2"]}], ")"}], " ",
+ SuperscriptBox["\[Beta]", "2"]}], "-",
+ RowBox[{
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{
+ RowBox[{"-", "2"}], " ",
+ SuperscriptBox["q111", "2"]}], "+",
+ RowBox[{"2", " ",
+ SuperscriptBox["q11d1", "2"]}]}], ")"}], " ", "\[Beta]", " ",
+ "\[Lambda]"}], "+",
+ RowBox[{
+ SuperscriptBox["q11d1", "2"], " ",
+ SuperscriptBox["\[Lambda]", "2"]}]}], ")"}], " ",
+ SuperscriptBox["\[Sigma]1", "2"]}], "+",
+ RowBox[{
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"2", " ", "q110", " ", "q220"}], "-",
+ RowBox[{"2", " ", "q111", " ", "q221"}], "-",
+ RowBox[{"q11d0", " ", "q22d0"}], "+",
+ RowBox[{"q11d1", " ", "q22d1"}]}], ")"}], " ",
+ SuperscriptBox["\[Beta]", "2"]}], "-",
+ RowBox[{
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{
+ RowBox[{"-", "2"}], " ", "q111", " ", "q221"}], "+",
+ RowBox[{"2", " ", "q11d1", " ", "q22d1"}]}], ")"}], " ", "\[Beta]",
+ " ", "\[Lambda]"}], "+",
+ RowBox[{"q11d1", " ", "q22d1", " ",
+ SuperscriptBox["\[Lambda]", "2"]}]}], ")"}], " ",
+ SuperscriptBox["\[Sigma]12", "2"]}], "+",
+ RowBox[{
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"2", " ",
+ SuperscriptBox["q220", "2"]}], "-",
+ RowBox[{"2", " ",
+ SuperscriptBox["q221", "2"]}], "-",
+ SuperscriptBox["q22d0", "2"], "+",
+ SuperscriptBox["q22d1", "2"]}], ")"}], " ",
+ SuperscriptBox["\[Beta]", "2"]}], "-",
+ RowBox[{
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{
+ RowBox[{"-", "2"}], " ",
+ SuperscriptBox["q221", "2"]}], "+",
+ RowBox[{"2", " ",
+ SuperscriptBox["q22d1", "2"]}]}], ")"}], " ", "\[Beta]", " ",
+ "\[Lambda]"}], "+",
+ RowBox[{
+ SuperscriptBox["q22d1", "2"], " ",
+ SuperscriptBox["\[Lambda]", "2"]}]}], ")"}], " ",
+ SuperscriptBox["\[Sigma]2", "2"]}], "+",
+ RowBox[{"\[Lambda]", " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"q11d1", " ", "\[Omega]1"}], "+",
+ RowBox[{"q22d1", " ", "\[Omega]2"}]}], ")"}]}], "-",
+ RowBox[{"\[Beta]", " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"-", "q11d0"}], "+", "q11d1"}], ")"}], " ", "\[Omega]1"}],
+ "+",
+ RowBox[{
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"-", "q22d0"}], "+", "q22d1"}], ")"}], " ", "\[Omega]2"}]}],
+ ")"}]}], "+",
+ RowBox[{
+ FractionBox["1", "2"], " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{
+ RowBox[{"-", "2"}], " ",
+ RowBox[{"Log", "[",
+ RowBox[{
+ RowBox[{"q110", " ", "q220"}], "-",
+ RowBox[{"q11d0", " ", "q220"}], "-",
+ RowBox[{"q110", " ", "q22d0"}], "+",
+ RowBox[{"q11d0", " ", "q22d0"}]}], "]"}]}], "+",
+ RowBox[{"Log", "[",
+ RowBox[{
+ RowBox[{
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{
+ RowBox[{"-", "2"}], " ", "q111", " ", "q220"}], "+",
+ RowBox[{"q11d1", " ", "q221"}], "+",
+ RowBox[{"q111", " ", "q22d0"}]}], ")"}], " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{
+ RowBox[{"-", "2"}], " ", "q110", " ", "q221"}], "+",
+ RowBox[{"q11d0", " ", "q221"}], "+",
+ RowBox[{"q111", " ", "q22d1"}]}], ")"}]}], "-",
+ RowBox[{"2", " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{
+ RowBox[{"-", "3"}], " ", "q110", " ", "q220"}], "+",
+ RowBox[{"q11d0", " ", "q220"}], "+",
+ RowBox[{"q111", " ", "q221"}], "+",
+ RowBox[{"q110", " ", "q22d0"}]}], ")"}], " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{
+ RowBox[{"-", "q111"}], " ", "q221"}], "+",
+ RowBox[{"q11d1", " ", "q22d1"}]}], ")"}]}], "+",
+ RowBox[{
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{
+ RowBox[{"-", "2"}], " ", "q110", " ", "q220"}], "+",
+ RowBox[{"q111", " ", "q221"}], "+",
+ RowBox[{"q11d0", " ", "q22d0"}]}], ")"}], " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{
+ RowBox[{"-", "q111"}], " ", "q221"}], "+",
+ RowBox[{"q11d1", " ", "q22d1"}]}], ")"}]}]}], "]"}]}],
+ ")"}]}]}]], "Output",
+ CellChangeTimes->{{3.916304986518355*^9, 3.916305003774634*^9}},
+ CellLabel->
+ "Out[137]=",ExpressionUUID->"c29d260e-8842-437a-a5aa-1328cb436e45"]
+}, Open ]],
+
+Cell[BoxData[
+ RowBox[{
+ RowBox[{"\[ScriptCapitalS]twin2", "=",
+ RowBox[{"With", "[",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{
+ RowBox[{"Q11", "=",
+ RowBox[{"p0RSBmat", "[",
+ RowBox[{"n", ",",
+ RowBox[{"{",
+ RowBox[{
+ "q11d1", ",", "q111", ",", "q111", ",", "q11d0", ",", "q110"}],
+ "}"}]}], "]"}]}], ",",
+ RowBox[{"Q22", "=",
+ RowBox[{"p0RSBmat", "[",
+ RowBox[{"n", ",",
+ RowBox[{"{",
+ RowBox[{
+ "q22d1", ",", "q221", ",", "q221", ",", "q22d0", ",", "q220"}],
+ "}"}]}], "]"}]}], ",",
+ RowBox[{"Q12", "=",
+ RowBox[{"p0RSBmat", "[",
+ RowBox[{"n", ",",
+ RowBox[{"{",
+ RowBox[{
+ "q12d1", ",", "q121", ",", "q121", ",", "q12d0", ",", "q120"}],
+ "}"}]}], "]"}]}]}], "}"}], ",", "\[IndentingNewLine]",
+ RowBox[{
+ RowBox[{
+ RowBox[{"-", "\[Beta]"}],
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"\[Omega]1", " ",
+ RowBox[{"sum", "[",
+ RowBox[{
+ RowBox[{"id", "[", "n", "]"}], " ", "Q11"}], "]"}]}], "+",
+ RowBox[{"\[Omega]2", " ",
+ RowBox[{"sum", "[",
+ RowBox[{
+ RowBox[{"id", "[", "n", "]"}], " ", "Q22"}], "]"}]}]}], ")"}]}],
+ "+",
+ RowBox[{"\[Lambda]",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"\[Omega]1", " ",
+ RowBox[{"sum", "[",
+ RowBox[{
+ RowBox[{"corner", "[", "n", "]"}], "Q11"}], "]"}]}], "+",
+ RowBox[{"\[Omega]2", " ",
+ RowBox[{"sum", "[",
+ RowBox[{
+ RowBox[{"corner", "[", "n", "]"}], "Q22"}], "]"}]}]}], ")"}]}],
+ "+",
+ RowBox[{
+ SuperscriptBox["\[Sigma]1", "2"],
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{
+ SuperscriptBox["\[Beta]", "2"],
+ RowBox[{"sum", "[",
+ SuperscriptBox["Q11", "2"], "]"}]}], "+",
+ RowBox[{
+ SuperscriptBox["\[Lambda]", "2"],
+ RowBox[{"sum", "[",
+ RowBox[{
+ RowBox[{"corner", "[", "n", "]"}],
+ SuperscriptBox["Q11", "2"]}], "]"}]}], "-",
+ RowBox[{"\[Beta]", " ", "\[Lambda]", " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"sum", "[",
+ RowBox[{
+ RowBox[{"lineTop", "[", "n", "]"}],
+ SuperscriptBox["Q11", "2"]}], "]"}], "+",
+ RowBox[{"sum", "[",
+ RowBox[{
+ RowBox[{"lineBottom", "[", "n", "]"}],
+ SuperscriptBox["Q11", "2"]}], "]"}]}], ")"}]}]}], ")"}]}], "+",
+
+ RowBox[{
+ SuperscriptBox["\[Sigma]2", "2"],
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{
+ SuperscriptBox["\[Beta]", "2"],
+ RowBox[{"sum", "[",
+ SuperscriptBox["Q22", "2"], "]"}]}], "+",
+ RowBox[{
+ SuperscriptBox["\[Lambda]", "2"],
+ RowBox[{"sum", "[",
+ RowBox[{
+ RowBox[{"corner", "[", "n", "]"}],
+ SuperscriptBox["Q22", "2"]}], "]"}]}], "-",
+ RowBox[{"\[Beta]", " ", "\[Lambda]", " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"sum", "[",
+ RowBox[{
+ RowBox[{"lineTop", "[", "n", "]"}],
+ SuperscriptBox["Q22", "2"]}], "]"}], "+",
+ RowBox[{"sum", "[",
+ RowBox[{
+ RowBox[{"lineBottom", "[", "n", "]"}],
+ SuperscriptBox["Q22", "2"]}], "]"}]}], ")"}]}]}], ")"}]}], "+",
+
+ RowBox[{
+ SuperscriptBox["\[Sigma]12", "2"],
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{
+ SuperscriptBox["\[Beta]", "2"],
+ RowBox[{"sum", "[",
+ RowBox[{"Q11", " ", "Q22"}], "]"}]}], "+",
+ RowBox[{
+ SuperscriptBox["\[Lambda]", "2"],
+ RowBox[{"sum", "[",
+ RowBox[{
+ RowBox[{"corner", "[", "n", "]"}], "Q11", " ", "Q22"}], "]"}]}],
+ "-",
+ RowBox[{"\[Beta]", " ", "\[Lambda]",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"sum", "[",
+ RowBox[{
+ RowBox[{"lineTop", "[", "n", "]"}], "Q11", " ", "Q22"}], "]"}],
+ "+",
+ RowBox[{"sum", "[",
+ RowBox[{
+ RowBox[{"lineBottom", "[", "n", "]"}], "Q11", " ", "Q22"}],
+ "]"}]}], ")"}]}]}], ")"}]}], "+",
+ RowBox[{
+ FractionBox["1", "2"],
+ RowBox[{"logDet", "[", "Q11", "]"}]}], "+",
+ RowBox[{
+ FractionBox["1", "2"],
+ RowBox[{"logDet", "[", "Q22", "]"}]}]}]}], "\[IndentingNewLine]",
+ "]"}]}], ";"}]], "Input",
+ CellChangeTimes->{{3.9163030331990423`*^9, 3.9163030459032707`*^9}, {
+ 3.916303183587496*^9, 3.9163031939544497`*^9}, {3.9163032334434023`*^9,
+ 3.916303256435604*^9}, {3.91630328881266*^9, 3.9163032892379*^9}, {
+ 3.9163033800945187`*^9, 3.916303413625928*^9}, {3.91630346014445*^9,
+ 3.916303481112104*^9}, {3.916303620411435*^9, 3.916303706988596*^9}, {
+ 3.916305620361405*^9, 3.9163056338095617`*^9}},
+ CellLabel->
+ "In[143]:=",ExpressionUUID->"95097ec5-8784-4805-b556-6daf94695fcf"],
+
+Cell[CellGroupData[{
+
+Cell[BoxData["\[ScriptCapitalS]twin2"], "Input",
+ CellChangeTimes->{{3.916305623145124*^9, 3.916305636919092*^9}},
+ CellLabel->
+ "In[144]:=",ExpressionUUID->"54fb42a2-4e37-42ef-bcb5-a2ee989bb8c3"],
+
+Cell[BoxData[
+ RowBox[{
+ RowBox[{
+ FractionBox["1", "2"], " ",
+ RowBox[{"logDet", "[",
+ RowBox[{"p0RSBmat", "[",
+ RowBox[{"n", ",",
+ RowBox[{"{",
+ RowBox[{"q11d1", ",", "q111", ",", "q111", ",", "q11d0", ",", "q110"}],
+ "}"}]}], "]"}], "]"}]}], "+",
+ RowBox[{
+ FractionBox["1", "2"], " ",
+ RowBox[{"logDet", "[",
+ RowBox[{"p0RSBmat", "[",
+ RowBox[{"n", ",",
+ RowBox[{"{",
+ RowBox[{"q22d1", ",", "q221", ",", "q221", ",", "q22d0", ",", "q220"}],
+ "}"}]}], "]"}], "]"}]}], "+",
+ RowBox[{
+ SuperscriptBox["\[Sigma]1", "2"], " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{
+ SuperscriptBox["\[Beta]", "2"], " ",
+ RowBox[{"sum", "[",
+ SuperscriptBox[
+ RowBox[{"p0RSBmat", "[",
+ RowBox[{"n", ",",
+ RowBox[{"{",
+ RowBox[{
+ "q11d1", ",", "q111", ",", "q111", ",", "q11d0", ",", "q110"}],
+ "}"}]}], "]"}], "2"], "]"}]}], "+",
+ RowBox[{
+ SuperscriptBox["\[Lambda]", "2"], " ",
+ RowBox[{"sum", "[",
+ RowBox[{
+ RowBox[{"p0RSBmat", "[",
+ RowBox[{"n", ",",
+ RowBox[{"{",
+ RowBox[{"1", ",", "0", ",", "0", ",", "0", ",", "0"}], "}"}]}],
+ "]"}], " ",
+ SuperscriptBox[
+ RowBox[{"p0RSBmat", "[",
+ RowBox[{"n", ",",
+ RowBox[{"{",
+ RowBox[{
+ "q11d1", ",", "q111", ",", "q111", ",", "q11d0", ",", "q110"}],
+ "}"}]}], "]"}], "2"]}], "]"}]}], "-",
+ RowBox[{"\[Beta]", " ", "\[Lambda]", " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"sum", "[",
+ RowBox[{
+ RowBox[{"p0RSBmat", "[",
+ RowBox[{"n", ",",
+ RowBox[{"{",
+ RowBox[{"1", ",", "0", ",", "1", ",", "0", ",", "0"}], "}"}]}],
+ "]"}], " ",
+ SuperscriptBox[
+ RowBox[{"p0RSBmat", "[",
+ RowBox[{"n", ",",
+ RowBox[{"{",
+ RowBox[{
+ "q11d1", ",", "q111", ",", "q111", ",", "q11d0", ",", "q110"}],
+ "}"}]}], "]"}], "2"]}], "]"}], "+",
+ RowBox[{"sum", "[",
+ RowBox[{
+ RowBox[{"p0RSBmat", "[",
+ RowBox[{"n", ",",
+ RowBox[{"{",
+ RowBox[{"1", ",", "1", ",", "0", ",", "0", ",", "0"}], "}"}]}],
+ "]"}], " ",
+ SuperscriptBox[
+ RowBox[{"p0RSBmat", "[",
+ RowBox[{"n", ",",
+ RowBox[{"{",
+ RowBox[{
+ "q11d1", ",", "q111", ",", "q111", ",", "q11d0", ",", "q110"}],
+ "}"}]}], "]"}], "2"]}], "]"}]}], ")"}]}]}], ")"}]}], "+",
+ RowBox[{"\[Lambda]", " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"\[Omega]1", " ",
+ RowBox[{"sum", "[",
+ RowBox[{
+ RowBox[{"p0RSBmat", "[",
+ RowBox[{"n", ",",
+ RowBox[{"{",
+ RowBox[{"1", ",", "0", ",", "0", ",", "0", ",", "0"}], "}"}]}],
+ "]"}], " ",
+ RowBox[{"p0RSBmat", "[",
+ RowBox[{"n", ",",
+ RowBox[{"{",
+ RowBox[{
+ "q11d1", ",", "q111", ",", "q111", ",", "q11d0", ",", "q110"}],
+ "}"}]}], "]"}]}], "]"}]}], "+",
+ RowBox[{"\[Omega]2", " ",
+ RowBox[{"sum", "[",
+ RowBox[{
+ RowBox[{"p0RSBmat", "[",
+ RowBox[{"n", ",",
+ RowBox[{"{",
+ RowBox[{"1", ",", "0", ",", "0", ",", "0", ",", "0"}], "}"}]}],
+ "]"}], " ",
+ RowBox[{"p0RSBmat", "[",
+ RowBox[{"n", ",",
+ RowBox[{"{",
+ RowBox[{
+ "q22d1", ",", "q221", ",", "q221", ",", "q22d0", ",", "q220"}],
+ "}"}]}], "]"}]}], "]"}]}]}], ")"}]}], "-",
+ RowBox[{"\[Beta]", " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"\[Omega]1", " ",
+ RowBox[{"sum", "[",
+ RowBox[{
+ RowBox[{"p0RSBmat", "[",
+ RowBox[{"n", ",",
+ RowBox[{"{",
+ RowBox[{"1", ",", "0", ",", "0", ",", "1", ",", "0"}], "}"}]}],
+ "]"}], " ",
+ RowBox[{"p0RSBmat", "[",
+ RowBox[{"n", ",",
+ RowBox[{"{",
+ RowBox[{
+ "q11d1", ",", "q111", ",", "q111", ",", "q11d0", ",", "q110"}],
+ "}"}]}], "]"}]}], "]"}]}], "+",
+ RowBox[{"\[Omega]2", " ",
+ RowBox[{"sum", "[",
+ RowBox[{
+ RowBox[{"p0RSBmat", "[",
+ RowBox[{"n", ",",
+ RowBox[{"{",
+ RowBox[{"1", ",", "0", ",", "0", ",", "1", ",", "0"}], "}"}]}],
+ "]"}], " ",
+ RowBox[{"p0RSBmat", "[",
+ RowBox[{"n", ",",
+ RowBox[{"{",
+ RowBox[{
+ "q22d1", ",", "q221", ",", "q221", ",", "q22d0", ",", "q220"}],
+ "}"}]}], "]"}]}], "]"}]}]}], ")"}]}], "+",
+ RowBox[{
+ SuperscriptBox["\[Sigma]12", "2"], " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{
+ SuperscriptBox["\[Beta]", "2"], " ",
+ RowBox[{"sum", "[",
+ RowBox[{
+ RowBox[{"p0RSBmat", "[",
+ RowBox[{"n", ",",
+ RowBox[{"{",
+ RowBox[{
+ "q11d1", ",", "q111", ",", "q111", ",", "q11d0", ",", "q110"}],
+ "}"}]}], "]"}], " ",
+ RowBox[{"p0RSBmat", "[",
+ RowBox[{"n", ",",
+ RowBox[{"{",
+ RowBox[{
+ "q22d1", ",", "q221", ",", "q221", ",", "q22d0", ",", "q220"}],
+ "}"}]}], "]"}]}], "]"}]}], "+",
+ RowBox[{
+ SuperscriptBox["\[Lambda]", "2"], " ",
+ RowBox[{"sum", "[",
+ RowBox[{
+ RowBox[{"p0RSBmat", "[",
+ RowBox[{"n", ",",
+ RowBox[{"{",
+ RowBox[{"1", ",", "0", ",", "0", ",", "0", ",", "0"}], "}"}]}],
+ "]"}], " ",
+ RowBox[{"p0RSBmat", "[",
+ RowBox[{"n", ",",
+ RowBox[{"{",
+ RowBox[{
+ "q11d1", ",", "q111", ",", "q111", ",", "q11d0", ",", "q110"}],
+ "}"}]}], "]"}], " ",
+ RowBox[{"p0RSBmat", "[",
+ RowBox[{"n", ",",
+ RowBox[{"{",
+ RowBox[{
+ "q22d1", ",", "q221", ",", "q221", ",", "q22d0", ",", "q220"}],
+ "}"}]}], "]"}]}], "]"}]}], "-",
+ RowBox[{"\[Beta]", " ", "\[Lambda]", " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"sum", "[",
+ RowBox[{
+ RowBox[{"p0RSBmat", "[",
+ RowBox[{"n", ",",
+ RowBox[{"{",
+ RowBox[{"1", ",", "0", ",", "1", ",", "0", ",", "0"}], "}"}]}],
+ "]"}], " ",
+ RowBox[{"p0RSBmat", "[",
+ RowBox[{"n", ",",
+ RowBox[{"{",
+ RowBox[{
+ "q11d1", ",", "q111", ",", "q111", ",", "q11d0", ",", "q110"}],
+ "}"}]}], "]"}], " ",
+ RowBox[{"p0RSBmat", "[",
+ RowBox[{"n", ",",
+ RowBox[{"{",
+ RowBox[{
+ "q22d1", ",", "q221", ",", "q221", ",", "q22d0", ",", "q220"}],
+ "}"}]}], "]"}]}], "]"}], "+",
+ RowBox[{"sum", "[",
+ RowBox[{
+ RowBox[{"p0RSBmat", "[",
+ RowBox[{"n", ",",
+ RowBox[{"{",
+ RowBox[{"1", ",", "1", ",", "0", ",", "0", ",", "0"}], "}"}]}],
+ "]"}], " ",
+ RowBox[{"p0RSBmat", "[",
+ RowBox[{"n", ",",
+ RowBox[{"{",
+ RowBox[{
+ "q11d1", ",", "q111", ",", "q111", ",", "q11d0", ",", "q110"}],
+ "}"}]}], "]"}], " ",
+ RowBox[{"p0RSBmat", "[",
+ RowBox[{"n", ",",
+ RowBox[{"{",
+ RowBox[{
+ "q22d1", ",", "q221", ",", "q221", ",", "q22d0", ",", "q220"}],
+ "}"}]}], "]"}]}], "]"}]}], ")"}]}]}], ")"}]}], "+",
+ RowBox[{
+ SuperscriptBox["\[Sigma]2", "2"], " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{
+ SuperscriptBox["\[Beta]", "2"], " ",
+ RowBox[{"sum", "[",
+ SuperscriptBox[
+ RowBox[{"p0RSBmat", "[",
+ RowBox[{"n", ",",
+ RowBox[{"{",
+ RowBox[{
+ "q22d1", ",", "q221", ",", "q221", ",", "q22d0", ",", "q220"}],
+ "}"}]}], "]"}], "2"], "]"}]}], "+",
+ RowBox[{
+ SuperscriptBox["\[Lambda]", "2"], " ",
+ RowBox[{"sum", "[",
+ RowBox[{
+ RowBox[{"p0RSBmat", "[",
+ RowBox[{"n", ",",
+ RowBox[{"{",
+ RowBox[{"1", ",", "0", ",", "0", ",", "0", ",", "0"}], "}"}]}],
+ "]"}], " ",
+ SuperscriptBox[
+ RowBox[{"p0RSBmat", "[",
+ RowBox[{"n", ",",
+ RowBox[{"{",
+ RowBox[{
+ "q22d1", ",", "q221", ",", "q221", ",", "q22d0", ",", "q220"}],
+ "}"}]}], "]"}], "2"]}], "]"}]}], "-",
+ RowBox[{"\[Beta]", " ", "\[Lambda]", " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"sum", "[",
+ RowBox[{
+ RowBox[{"p0RSBmat", "[",
+ RowBox[{"n", ",",
+ RowBox[{"{",
+ RowBox[{"1", ",", "0", ",", "1", ",", "0", ",", "0"}], "}"}]}],
+ "]"}], " ",
+ SuperscriptBox[
+ RowBox[{"p0RSBmat", "[",
+ RowBox[{"n", ",",
+ RowBox[{"{",
+ RowBox[{
+ "q22d1", ",", "q221", ",", "q221", ",", "q22d0", ",", "q220"}],
+ "}"}]}], "]"}], "2"]}], "]"}], "+",
+ RowBox[{"sum", "[",
+ RowBox[{
+ RowBox[{"p0RSBmat", "[",
+ RowBox[{"n", ",",
+ RowBox[{"{",
+ RowBox[{"1", ",", "1", ",", "0", ",", "0", ",", "0"}], "}"}]}],
+ "]"}], " ",
+ SuperscriptBox[
+ RowBox[{"p0RSBmat", "[",
+ RowBox[{"n", ",",
+ RowBox[{"{",
+ RowBox[{
+ "q22d1", ",", "q221", ",", "q221", ",", "q22d0", ",", "q220"}],
+ "}"}]}], "]"}], "2"]}], "]"}]}], ")"}]}]}], ")"}]}]}]], "Output",\
+
+ CellChangeTimes->{3.916306037027356*^9},
+ CellLabel->
+ "Out[144]=",ExpressionUUID->"75df506e-ff6a-4923-b1da-38da451a259d"]
+}, Open ]],
+
+Cell[CellGroupData[{
+
+Cell[BoxData[
+ RowBox[{"eqs", "=",
+ RowBox[{
+ RowBox[{"With", "[",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{
+ RowBox[{"Q11", "=",
+ RowBox[{"p0RSBmat", "[",
+ RowBox[{"n", ",",
+ RowBox[{"{",
+ RowBox[{
+ "q11d1", ",", "q111", ",", "q111", ",", "q11d0", ",", "q110"}],
+ "}"}]}], "]"}]}], ",",
+ RowBox[{"Q22", "=",
+ RowBox[{"p0RSBmat", "[",
+ RowBox[{"n", ",",
+ RowBox[{"{",
+ RowBox[{
+ "q22d1", ",", "q221", ",", "q221", ",", "q22d0", ",", "q220"}],
+ "}"}]}], "]"}]}], ",",
+ RowBox[{"Q12", "=",
+ RowBox[{"p0RSBmat", "[",
+ RowBox[{"n", ",",
+ RowBox[{"{",
+ RowBox[{
+ "q12d1", ",", "q121", ",", "q121", ",", "q12d0", ",", "q120"}],
+ "}"}]}], "]"}]}]}], "}"}], ",", "\[IndentingNewLine]",
+ RowBox[{
+ RowBox[{"{", "\[IndentingNewLine]",
+ RowBox[{
+ RowBox[{
+ RowBox[{
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{
+ RowBox[{"-", "\[Beta]"}],
+ RowBox[{"(",
+ RowBox[{"\[Omega]1", " ",
+ RowBox[{"id", "[", "n", "]"}]}], ")"}]}], "+",
+ RowBox[{"\[Lambda]",
+ RowBox[{"(",
+ RowBox[{"\[Omega]1", " ",
+ RowBox[{"corner", "[", "n", "]"}]}], ")"}]}], "+",
+ RowBox[{
+ SuperscriptBox["\[Sigma]1", "2"],
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{
+ SuperscriptBox["\[Beta]", "2"], "2", " ", "Q11"}], "+",
+ RowBox[{
+ SuperscriptBox["\[Lambda]", "2"], "2",
+ RowBox[{"corner", "[", "n", "]"}], "Q11"}], "-",
+ RowBox[{"\[Beta]", " ", "\[Lambda]", " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"2",
+ RowBox[{"lineTop", "[", "n", "]"}], "Q11"}], "+",
+ RowBox[{"2",
+ RowBox[{"lineBottom", "[", "n", "]"}], "Q11"}]}],
+ ")"}]}]}], ")"}]}], "+",
+ RowBox[{
+ SuperscriptBox["\[Sigma]12", "2"],
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{
+ SuperscriptBox["\[Beta]", "2"], "Q22"}], "+",
+ RowBox[{
+ SuperscriptBox["\[Lambda]", "2"],
+ RowBox[{"corner", "[", "n", "]"}], "Q22"}], "-",
+ RowBox[{"\[Beta]", " ", "\[Lambda]",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{
+ RowBox[{"lineTop", "[", "n", "]"}], "Q22"}], "+",
+ RowBox[{
+ RowBox[{"lineBottom", "[", "n", "]"}], " ", "Q22"}]}],
+ ")"}]}]}], ")"}]}]}], ")"}], ".", "Q11"}], "+",
+ RowBox[{
+ FractionBox["1", "2"],
+ RowBox[{"id", "[", "n", "]"}]}]}], ",", "\[IndentingNewLine]",
+ RowBox[{
+ RowBox[{
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{
+ RowBox[{"-", "\[Beta]"}],
+ RowBox[{"(",
+ RowBox[{"\[Omega]2", " ",
+ RowBox[{"id", "[", "n", "]"}]}], ")"}]}], "+",
+ RowBox[{"\[Lambda]",
+ RowBox[{"(",
+ RowBox[{"\[Omega]2", " ",
+ RowBox[{"corner", "[", "n", "]"}]}], ")"}]}], "+",
+ RowBox[{
+ SuperscriptBox["\[Sigma]2", "2"],
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{
+ SuperscriptBox["\[Beta]", "2"], "2", " ", "Q22"}], "+",
+ RowBox[{
+ SuperscriptBox["\[Lambda]", "2"], "2",
+ RowBox[{"corner", "[", "n", "]"}], "Q22"}], "-",
+ RowBox[{"\[Beta]", " ", "\[Lambda]", " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"2",
+ RowBox[{"lineTop", "[", "n", "]"}], "Q22"}], "+",
+ RowBox[{"2",
+ RowBox[{"lineBottom", "[", "n", "]"}], "Q22"}]}],
+ ")"}]}]}], ")"}]}], "+",
+ RowBox[{
+ SuperscriptBox["\[Sigma]12", "2"],
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{
+ SuperscriptBox["\[Beta]", "2"], "Q11"}], "+",
+ RowBox[{
+ SuperscriptBox["\[Lambda]", "2"],
+ RowBox[{"corner", "[", "n", "]"}], "Q11"}], "-",
+ RowBox[{"\[Beta]", " ", "\[Lambda]",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{
+ RowBox[{"lineTop", "[", "n", "]"}], "Q11"}], "+",
+ RowBox[{
+ RowBox[{"lineBottom", "[", "n", "]"}], " ", "Q11"}]}],
+ ")"}]}]}], ")"}]}]}], ")"}], ".", "Q22"}], "+",
+ RowBox[{
+ FractionBox["1", "2"],
+ RowBox[{"id", "[", "n", "]"}]}]}]}], "\[IndentingNewLine]", "}"}], "//.",
+ "p0RSBrules"}]}], "\[IndentingNewLine]", "]"}], "//",
+ "Simplify"}]}]], "Input",
+ CellChangeTimes->{{3.9163037237409077`*^9, 3.916303878855262*^9}, {
+ 3.916303920768105*^9, 3.9163039930510597`*^9}, {3.916304067940049*^9,
+ 3.916304079811782*^9}},
+ CellLabel->
+ "In[119]:=",ExpressionUUID->"f0db1c0b-165f-4f87-9592-b5d10a026867"],
+
+Cell[BoxData[
+ RowBox[{"{",
+ RowBox[{
+ RowBox[{"p0RSBmat", "[",
+ RowBox[{"n", ",",
+ RowBox[{"{",
+ RowBox[{
+ RowBox[{
+ FractionBox["1", "2"], "+",
+ RowBox[{
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"-", "1"}], "+", "n"}], ")"}], " ", "q111", " ", "\[Beta]",
+ " ",
+ RowBox[{"(",
+ RowBox[{"\[Beta]", "-", "\[Lambda]"}], ")"}], " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"2", " ", "q111", " ",
+ SuperscriptBox["\[Sigma]1", "2"]}], "+",
+ RowBox[{"q221", " ",
+ SuperscriptBox["\[Sigma]12", "2"]}]}], ")"}]}], "+",
+ RowBox[{"q11d1", " ",
+ RowBox[{"(",
+ RowBox[{"\[Beta]", "-", "\[Lambda]"}], ")"}], " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"2", " ", "q11d1", " ",
+ RowBox[{"(",
+ RowBox[{"\[Beta]", "-", "\[Lambda]"}], ")"}], " ",
+ SuperscriptBox["\[Sigma]1", "2"]}], "+",
+ RowBox[{"q22d1", " ",
+ RowBox[{"(",
+ RowBox[{"\[Beta]", "-", "\[Lambda]"}], ")"}], " ",
+ SuperscriptBox["\[Sigma]12", "2"]}], "-", "\[Omega]1"}],
+ ")"}]}]}], ",",
+ RowBox[{
+ RowBox[{"(",
+ RowBox[{"\[Beta]", "-", "\[Lambda]"}], ")"}], " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"q11d0", " ", "q221", " ", "\[Beta]", " ",
+ SuperscriptBox["\[Sigma]12", "2"]}], "+",
+ RowBox[{
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"-", "2"}], "+", "n"}], ")"}], " ", "q110", " ",
+ "\[Beta]", " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"2", " ", "q111", " ",
+ SuperscriptBox["\[Sigma]1", "2"]}], "+",
+ RowBox[{"q221", " ",
+ SuperscriptBox["\[Sigma]12", "2"]}]}], ")"}]}], "+",
+ RowBox[{"q111", " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"2", " ", "q11d0", " ", "\[Beta]", " ",
+ SuperscriptBox["\[Sigma]1", "2"]}], "+",
+ RowBox[{"2", " ", "q11d1", " ",
+ RowBox[{"(",
+ RowBox[{"\[Beta]", "-", "\[Lambda]"}], ")"}], " ",
+ SuperscriptBox["\[Sigma]1", "2"]}], "+",
+ RowBox[{"q22d1", " ", "\[Beta]", " ",
+ SuperscriptBox["\[Sigma]12", "2"]}], "-",
+ RowBox[{"q22d1", " ", "\[Lambda]", " ",
+ SuperscriptBox["\[Sigma]12", "2"]}], "-", "\[Omega]1"}],
+ ")"}]}]}], ")"}]}], ",",
+ RowBox[{"\[Beta]", " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"2", " ", "q111", " ", "q11d1", " ",
+ RowBox[{"(",
+ RowBox[{"\[Beta]", "-", "\[Lambda]"}], ")"}], " ",
+ SuperscriptBox["\[Sigma]1", "2"]}], "+",
+ RowBox[{"q11d1", " ", "q221", " ",
+ RowBox[{"(",
+ RowBox[{"\[Beta]", "-", "\[Lambda]"}], ")"}], " ",
+ SuperscriptBox["\[Sigma]12", "2"]}], "+",
+ RowBox[{
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"-", "2"}], "+", "n"}], ")"}], " ", "q111", " ",
+ "\[Beta]", " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"2", " ", "q110", " ",
+ SuperscriptBox["\[Sigma]1", "2"]}], "+",
+ RowBox[{"q220", " ",
+ SuperscriptBox["\[Sigma]12", "2"]}]}], ")"}]}], "+",
+ RowBox[{"q111", " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"2", " ", "q11d0", " ", "\[Beta]", " ",
+ SuperscriptBox["\[Sigma]1", "2"]}], "+",
+ RowBox[{"q22d0", " ", "\[Beta]", " ",
+ SuperscriptBox["\[Sigma]12", "2"]}], "-", "\[Omega]1"}],
+ ")"}]}]}], ")"}]}], ",",
+ RowBox[{
+ FractionBox["1", "2"], "+",
+ RowBox[{"2", " ",
+ SuperscriptBox["q111", "2"], " ", "\[Beta]", " ",
+ RowBox[{"(",
+ RowBox[{"\[Beta]", "-", "\[Lambda]"}], ")"}], " ",
+ SuperscriptBox["\[Sigma]1", "2"]}], "+",
+ RowBox[{"q111", " ", "q221", " ", "\[Beta]", " ",
+ RowBox[{"(",
+ RowBox[{"\[Beta]", "-", "\[Lambda]"}], ")"}], " ",
+ SuperscriptBox["\[Sigma]12", "2"]}], "+",
+ RowBox[{
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"-", "2"}], "+", "n"}], ")"}], " ", "q110", " ",
+ SuperscriptBox["\[Beta]", "2"], " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"2", " ", "q110", " ",
+ SuperscriptBox["\[Sigma]1", "2"]}], "+",
+ RowBox[{"q220", " ",
+ SuperscriptBox["\[Sigma]12", "2"]}]}], ")"}]}], "+",
+ RowBox[{"q11d0", " ", "\[Beta]", " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"2", " ", "q11d0", " ", "\[Beta]", " ",
+ SuperscriptBox["\[Sigma]1", "2"]}], "+",
+ RowBox[{"q22d0", " ", "\[Beta]", " ",
+ SuperscriptBox["\[Sigma]12", "2"]}], "-", "\[Omega]1"}],
+ ")"}]}]}], ",",
+ RowBox[{"\[Beta]", " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"2", " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"-", "3"}], "+", "n"}], ")"}], " ",
+ SuperscriptBox["q110", "2"], " ", "\[Beta]", " ",
+ SuperscriptBox["\[Sigma]1", "2"]}], "+",
+ RowBox[{"2", " ",
+ SuperscriptBox["q111", "2"], " ",
+ RowBox[{"(",
+ RowBox[{"\[Beta]", "-", "\[Lambda]"}], ")"}], " ",
+ SuperscriptBox["\[Sigma]1", "2"]}], "+",
+ RowBox[{"q11d0", " ", "q220", " ", "\[Beta]", " ",
+ SuperscriptBox["\[Sigma]12", "2"]}], "+",
+ RowBox[{"q111", " ", "q221", " ",
+ RowBox[{"(",
+ RowBox[{"\[Beta]", "-", "\[Lambda]"}], ")"}], " ",
+ SuperscriptBox["\[Sigma]12", "2"]}], "+",
+ RowBox[{"q110", " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"4", " ", "q11d0", " ", "\[Beta]", " ",
+ SuperscriptBox["\[Sigma]1", "2"]}], "+",
+ RowBox[{
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"-", "3"}], "+", "n"}], ")"}], " ", "q220", " ",
+ "\[Beta]", " ",
+ SuperscriptBox["\[Sigma]12", "2"]}], "+",
+ RowBox[{"q22d0", " ", "\[Beta]", " ",
+ SuperscriptBox["\[Sigma]12", "2"]}], "-", "\[Omega]1"}],
+ ")"}]}]}], ")"}]}]}], "}"}]}], "]"}], ",",
+ RowBox[{"p0RSBmat", "[",
+ RowBox[{"n", ",",
+ RowBox[{"{",
+ RowBox[{
+ RowBox[{
+ FractionBox["1", "2"], "+",
+ RowBox[{
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"-", "1"}], "+", "n"}], ")"}], " ", "q221", " ", "\[Beta]",
+ " ",
+ RowBox[{"(",
+ RowBox[{"\[Beta]", "-", "\[Lambda]"}], ")"}], " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"q111", " ",
+ SuperscriptBox["\[Sigma]12", "2"]}], "+",
+ RowBox[{"2", " ", "q221", " ",
+ SuperscriptBox["\[Sigma]2", "2"]}]}], ")"}]}], "+",
+ RowBox[{"q22d1", " ",
+ RowBox[{"(",
+ RowBox[{"\[Beta]", "-", "\[Lambda]"}], ")"}], " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"q11d1", " ",
+ RowBox[{"(",
+ RowBox[{"\[Beta]", "-", "\[Lambda]"}], ")"}], " ",
+ SuperscriptBox["\[Sigma]12", "2"]}], "+",
+ RowBox[{"2", " ", "q22d1", " ",
+ RowBox[{"(",
+ RowBox[{"\[Beta]", "-", "\[Lambda]"}], ")"}], " ",
+ SuperscriptBox["\[Sigma]2", "2"]}], "-", "\[Omega]2"}], ")"}]}]}],
+ ",",
+ RowBox[{
+ RowBox[{"(",
+ RowBox[{"\[Beta]", "-", "\[Lambda]"}], ")"}], " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"q111", " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"-", "2"}], "+", "n"}], ")"}], " ", "q220"}], "+",
+ "q22d0"}], ")"}], " ", "\[Beta]", " ",
+ SuperscriptBox["\[Sigma]12", "2"]}], "+",
+ RowBox[{"q221", " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"q11d1", " ",
+ RowBox[{"(",
+ RowBox[{"\[Beta]", "-", "\[Lambda]"}], ")"}], " ",
+ SuperscriptBox["\[Sigma]12", "2"]}], "+",
+ RowBox[{"2", " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"-", "2"}], "+", "n"}], ")"}], " ", "q220", " ",
+ "\[Beta]", " ",
+ SuperscriptBox["\[Sigma]2", "2"]}], "+",
+ RowBox[{"2", " ", "q22d0", " ", "\[Beta]", " ",
+ SuperscriptBox["\[Sigma]2", "2"]}], "+",
+ RowBox[{"2", " ", "q22d1", " ", "\[Beta]", " ",
+ SuperscriptBox["\[Sigma]2", "2"]}], "-",
+ RowBox[{"2", " ", "q22d1", " ", "\[Lambda]", " ",
+ SuperscriptBox["\[Sigma]2", "2"]}], "-", "\[Omega]2"}],
+ ")"}]}]}], ")"}]}], ",",
+ RowBox[{"\[Beta]", " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"q111", " ", "q22d1", " ",
+ RowBox[{"(",
+ RowBox[{"\[Beta]", "-", "\[Lambda]"}], ")"}], " ",
+ SuperscriptBox["\[Sigma]12", "2"]}], "+",
+ RowBox[{"2", " ", "q221", " ", "q22d1", " ",
+ RowBox[{"(",
+ RowBox[{"\[Beta]", "-", "\[Lambda]"}], ")"}], " ",
+ SuperscriptBox["\[Sigma]2", "2"]}], "+",
+ RowBox[{
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"-", "2"}], "+", "n"}], ")"}], " ", "q221", " ",
+ "\[Beta]", " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"q110", " ",
+ SuperscriptBox["\[Sigma]12", "2"]}], "+",
+ RowBox[{"2", " ", "q220", " ",
+ SuperscriptBox["\[Sigma]2", "2"]}]}], ")"}]}], "+",
+ RowBox[{"q221", " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"q11d0", " ", "\[Beta]", " ",
+ SuperscriptBox["\[Sigma]12", "2"]}], "+",
+ RowBox[{"2", " ", "q22d0", " ", "\[Beta]", " ",
+ SuperscriptBox["\[Sigma]2", "2"]}], "-", "\[Omega]2"}],
+ ")"}]}]}], ")"}]}], ",",
+ RowBox[{
+ FractionBox["1", "2"], "+",
+ RowBox[{"q111", " ", "q221", " ", "\[Beta]", " ",
+ RowBox[{"(",
+ RowBox[{"\[Beta]", "-", "\[Lambda]"}], ")"}], " ",
+ SuperscriptBox["\[Sigma]12", "2"]}], "+",
+ RowBox[{"2", " ",
+ SuperscriptBox["q221", "2"], " ", "\[Beta]", " ",
+ RowBox[{"(",
+ RowBox[{"\[Beta]", "-", "\[Lambda]"}], ")"}], " ",
+ SuperscriptBox["\[Sigma]2", "2"]}], "+",
+ RowBox[{
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"-", "2"}], "+", "n"}], ")"}], " ", "q220", " ",
+ SuperscriptBox["\[Beta]", "2"], " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"q110", " ",
+ SuperscriptBox["\[Sigma]12", "2"]}], "+",
+ RowBox[{"2", " ", "q220", " ",
+ SuperscriptBox["\[Sigma]2", "2"]}]}], ")"}]}], "+",
+ RowBox[{"q22d0", " ", "\[Beta]", " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"q11d0", " ", "\[Beta]", " ",
+ SuperscriptBox["\[Sigma]12", "2"]}], "+",
+ RowBox[{"2", " ", "q22d0", " ", "\[Beta]", " ",
+ SuperscriptBox["\[Sigma]2", "2"]}], "-", "\[Omega]2"}], ")"}]}]}],
+ ",",
+ RowBox[{"\[Beta]", " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"q11d0", " ", "q220", " ", "\[Beta]", " ",
+ SuperscriptBox["\[Sigma]12", "2"]}], "+",
+ RowBox[{"q111", " ", "q221", " ", "\[Beta]", " ",
+ SuperscriptBox["\[Sigma]12", "2"]}], "+",
+ RowBox[{"q110", " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"-", "3"}], "+", "n"}], ")"}], " ", "q220"}], "+",
+ "q22d0"}], ")"}], " ", "\[Beta]", " ",
+ SuperscriptBox["\[Sigma]12", "2"]}], "-",
+ RowBox[{"q111", " ", "q221", " ", "\[Lambda]", " ",
+ SuperscriptBox["\[Sigma]12", "2"]}], "-",
+ RowBox[{"6", " ",
+ SuperscriptBox["q220", "2"], " ", "\[Beta]", " ",
+ SuperscriptBox["\[Sigma]2", "2"]}], "+",
+ RowBox[{"2", " ", "n", " ",
+ SuperscriptBox["q220", "2"], " ", "\[Beta]", " ",
+ SuperscriptBox["\[Sigma]2", "2"]}], "+",
+ RowBox[{"2", " ",
+ SuperscriptBox["q221", "2"], " ", "\[Beta]", " ",
+ SuperscriptBox["\[Sigma]2", "2"]}], "+",
+ RowBox[{"4", " ", "q220", " ", "q22d0", " ", "\[Beta]", " ",
+ SuperscriptBox["\[Sigma]2", "2"]}], "-",
+ RowBox[{"2", " ",
+ SuperscriptBox["q221", "2"], " ", "\[Lambda]", " ",
+ SuperscriptBox["\[Sigma]2", "2"]}], "-",
+ RowBox[{"q220", " ", "\[Omega]2"}]}], ")"}]}]}], "}"}]}], "]"}]}],
+ "}"}]], "Output",
+ CellChangeTimes->{
+ 3.916303993371069*^9, {3.916304044794738*^9, 3.9163040803307133`*^9}},
+ CellLabel->
+ "Out[119]=",ExpressionUUID->"94abb570-dead-4d27-9ab4-47b0a6832b02"]
+}, Open ]],
+
+Cell[CellGroupData[{
+
+Cell[BoxData[
+ RowBox[{"eqs2", "=",
+ RowBox[{"Flatten", "[",
+ RowBox[{"Limit", "[",
+ RowBox[{
+ RowBox[{"eqs", "[",
+ RowBox[{"[",
+ RowBox[{"All", ",", "2"}], "]"}], "]"}], ",",
+ RowBox[{"n", "->", "0"}]}], "]"}], "]"}]}]], "Input",
+ CellChangeTimes->{{3.916304081138425*^9, 3.91630409377801*^9}, {
+ 3.916304127010668*^9, 3.916304132834882*^9}},
+ CellLabel->
+ "In[122]:=",ExpressionUUID->"dca0231b-2ccb-4ad8-ba7d-c5644fabf4cd"],
+
+Cell[BoxData[
+ RowBox[{"{",
+ RowBox[{
+ RowBox[{
+ FractionBox["1", "2"], "-",
+ RowBox[{"q111", " ", "\[Beta]", " ",
+ RowBox[{"(",
+ RowBox[{"\[Beta]", "-", "\[Lambda]"}], ")"}], " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"2", " ", "q111", " ",
+ SuperscriptBox["\[Sigma]1", "2"]}], "+",
+ RowBox[{"q221", " ",
+ SuperscriptBox["\[Sigma]12", "2"]}]}], ")"}]}], "+",
+ RowBox[{"q11d1", " ",
+ RowBox[{"(",
+ RowBox[{"\[Beta]", "-", "\[Lambda]"}], ")"}], " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"2", " ", "q11d1", " ",
+ RowBox[{"(",
+ RowBox[{"\[Beta]", "-", "\[Lambda]"}], ")"}], " ",
+ SuperscriptBox["\[Sigma]1", "2"]}], "+",
+ RowBox[{"q22d1", " ",
+ RowBox[{"(",
+ RowBox[{"\[Beta]", "-", "\[Lambda]"}], ")"}], " ",
+ SuperscriptBox["\[Sigma]12", "2"]}], "-", "\[Omega]1"}], ")"}]}]}],
+ ",",
+ RowBox[{
+ RowBox[{"(",
+ RowBox[{"\[Beta]", "-", "\[Lambda]"}], ")"}], " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"q11d0", " ", "q221", " ", "\[Beta]", " ",
+ SuperscriptBox["\[Sigma]12", "2"]}], "-",
+ RowBox[{"2", " ", "q110", " ", "\[Beta]", " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"2", " ", "q111", " ",
+ SuperscriptBox["\[Sigma]1", "2"]}], "+",
+ RowBox[{"q221", " ",
+ SuperscriptBox["\[Sigma]12", "2"]}]}], ")"}]}], "+",
+ RowBox[{"q111", " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"2", " ", "q11d0", " ", "\[Beta]", " ",
+ SuperscriptBox["\[Sigma]1", "2"]}], "+",
+ RowBox[{"2", " ", "q11d1", " ",
+ RowBox[{"(",
+ RowBox[{"\[Beta]", "-", "\[Lambda]"}], ")"}], " ",
+ SuperscriptBox["\[Sigma]1", "2"]}], "+",
+ RowBox[{"q22d1", " ", "\[Beta]", " ",
+ SuperscriptBox["\[Sigma]12", "2"]}], "-",
+ RowBox[{"q22d1", " ", "\[Lambda]", " ",
+ SuperscriptBox["\[Sigma]12", "2"]}], "-", "\[Omega]1"}], ")"}]}]}],
+ ")"}]}], ",",
+ RowBox[{"\[Beta]", " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"2", " ", "q111", " ", "q11d1", " ",
+ RowBox[{"(",
+ RowBox[{"\[Beta]", "-", "\[Lambda]"}], ")"}], " ",
+ SuperscriptBox["\[Sigma]1", "2"]}], "+",
+ RowBox[{"q11d1", " ", "q221", " ",
+ RowBox[{"(",
+ RowBox[{"\[Beta]", "-", "\[Lambda]"}], ")"}], " ",
+ SuperscriptBox["\[Sigma]12", "2"]}], "-",
+ RowBox[{"2", " ", "q111", " ", "\[Beta]", " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"2", " ", "q110", " ",
+ SuperscriptBox["\[Sigma]1", "2"]}], "+",
+ RowBox[{"q220", " ",
+ SuperscriptBox["\[Sigma]12", "2"]}]}], ")"}]}], "+",
+ RowBox[{"q111", " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"2", " ", "q11d0", " ", "\[Beta]", " ",
+ SuperscriptBox["\[Sigma]1", "2"]}], "+",
+ RowBox[{"q22d0", " ", "\[Beta]", " ",
+ SuperscriptBox["\[Sigma]12", "2"]}], "-", "\[Omega]1"}], ")"}]}]}],
+ ")"}]}], ",",
+ RowBox[{
+ FractionBox["1", "2"], "+",
+ RowBox[{"2", " ",
+ SuperscriptBox["q111", "2"], " ", "\[Beta]", " ",
+ RowBox[{"(",
+ RowBox[{"\[Beta]", "-", "\[Lambda]"}], ")"}], " ",
+ SuperscriptBox["\[Sigma]1", "2"]}], "+",
+ RowBox[{"q111", " ", "q221", " ", "\[Beta]", " ",
+ RowBox[{"(",
+ RowBox[{"\[Beta]", "-", "\[Lambda]"}], ")"}], " ",
+ SuperscriptBox["\[Sigma]12", "2"]}], "-",
+ RowBox[{"2", " ", "q110", " ",
+ SuperscriptBox["\[Beta]", "2"], " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"2", " ", "q110", " ",
+ SuperscriptBox["\[Sigma]1", "2"]}], "+",
+ RowBox[{"q220", " ",
+ SuperscriptBox["\[Sigma]12", "2"]}]}], ")"}]}], "+",
+ RowBox[{"q11d0", " ", "\[Beta]", " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"2", " ", "q11d0", " ", "\[Beta]", " ",
+ SuperscriptBox["\[Sigma]1", "2"]}], "+",
+ RowBox[{"q22d0", " ", "\[Beta]", " ",
+ SuperscriptBox["\[Sigma]12", "2"]}], "-", "\[Omega]1"}], ")"}]}]}],
+ ",",
+ RowBox[{"\[Beta]", " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{
+ RowBox[{"-", "6"}], " ",
+ SuperscriptBox["q110", "2"], " ", "\[Beta]", " ",
+ SuperscriptBox["\[Sigma]1", "2"]}], "+",
+ RowBox[{"2", " ",
+ SuperscriptBox["q111", "2"], " ",
+ RowBox[{"(",
+ RowBox[{"\[Beta]", "-", "\[Lambda]"}], ")"}], " ",
+ SuperscriptBox["\[Sigma]1", "2"]}], "+",
+ RowBox[{"q11d0", " ", "q220", " ", "\[Beta]", " ",
+ SuperscriptBox["\[Sigma]12", "2"]}], "+",
+ RowBox[{"q111", " ", "q221", " ",
+ RowBox[{"(",
+ RowBox[{"\[Beta]", "-", "\[Lambda]"}], ")"}], " ",
+ SuperscriptBox["\[Sigma]12", "2"]}], "+",
+ RowBox[{"q110", " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"4", " ", "q11d0", " ", "\[Beta]", " ",
+ SuperscriptBox["\[Sigma]1", "2"]}], "-",
+ RowBox[{"3", " ", "q220", " ", "\[Beta]", " ",
+ SuperscriptBox["\[Sigma]12", "2"]}], "+",
+ RowBox[{"q22d0", " ", "\[Beta]", " ",
+ SuperscriptBox["\[Sigma]12", "2"]}], "-", "\[Omega]1"}], ")"}]}]}],
+ ")"}]}], ",",
+ RowBox[{
+ FractionBox["1", "2"], "-",
+ RowBox[{"q221", " ", "\[Beta]", " ",
+ RowBox[{"(",
+ RowBox[{"\[Beta]", "-", "\[Lambda]"}], ")"}], " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"q111", " ",
+ SuperscriptBox["\[Sigma]12", "2"]}], "+",
+ RowBox[{"2", " ", "q221", " ",
+ SuperscriptBox["\[Sigma]2", "2"]}]}], ")"}]}], "+",
+ RowBox[{"q22d1", " ",
+ RowBox[{"(",
+ RowBox[{"\[Beta]", "-", "\[Lambda]"}], ")"}], " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"q11d1", " ",
+ RowBox[{"(",
+ RowBox[{"\[Beta]", "-", "\[Lambda]"}], ")"}], " ",
+ SuperscriptBox["\[Sigma]12", "2"]}], "+",
+ RowBox[{"2", " ", "q22d1", " ",
+ RowBox[{"(",
+ RowBox[{"\[Beta]", "-", "\[Lambda]"}], ")"}], " ",
+ SuperscriptBox["\[Sigma]2", "2"]}], "-", "\[Omega]2"}], ")"}]}]}],
+ ",",
+ RowBox[{
+ RowBox[{"(",
+ RowBox[{"\[Beta]", "-", "\[Lambda]"}], ")"}], " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"q111", " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{
+ RowBox[{"-", "2"}], " ", "q220"}], "+", "q22d0"}], ")"}], " ",
+ "\[Beta]", " ",
+ SuperscriptBox["\[Sigma]12", "2"]}], "+",
+ RowBox[{"q221", " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"q11d1", " ",
+ RowBox[{"(",
+ RowBox[{"\[Beta]", "-", "\[Lambda]"}], ")"}], " ",
+ SuperscriptBox["\[Sigma]12", "2"]}], "-",
+ RowBox[{"4", " ", "q220", " ", "\[Beta]", " ",
+ SuperscriptBox["\[Sigma]2", "2"]}], "+",
+ RowBox[{"2", " ", "q22d0", " ", "\[Beta]", " ",
+ SuperscriptBox["\[Sigma]2", "2"]}], "+",
+ RowBox[{"2", " ", "q22d1", " ", "\[Beta]", " ",
+ SuperscriptBox["\[Sigma]2", "2"]}], "-",
+ RowBox[{"2", " ", "q22d1", " ", "\[Lambda]", " ",
+ SuperscriptBox["\[Sigma]2", "2"]}], "-", "\[Omega]2"}], ")"}]}]}],
+ ")"}]}], ",",
+ RowBox[{"\[Beta]", " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"q111", " ", "q22d1", " ",
+ RowBox[{"(",
+ RowBox[{"\[Beta]", "-", "\[Lambda]"}], ")"}], " ",
+ SuperscriptBox["\[Sigma]12", "2"]}], "+",
+ RowBox[{"2", " ", "q221", " ", "q22d1", " ",
+ RowBox[{"(",
+ RowBox[{"\[Beta]", "-", "\[Lambda]"}], ")"}], " ",
+ SuperscriptBox["\[Sigma]2", "2"]}], "-",
+ RowBox[{"2", " ", "q221", " ", "\[Beta]", " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"q110", " ",
+ SuperscriptBox["\[Sigma]12", "2"]}], "+",
+ RowBox[{"2", " ", "q220", " ",
+ SuperscriptBox["\[Sigma]2", "2"]}]}], ")"}]}], "+",
+ RowBox[{"q221", " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"q11d0", " ", "\[Beta]", " ",
+ SuperscriptBox["\[Sigma]12", "2"]}], "+",
+ RowBox[{"2", " ", "q22d0", " ", "\[Beta]", " ",
+ SuperscriptBox["\[Sigma]2", "2"]}], "-", "\[Omega]2"}], ")"}]}]}],
+ ")"}]}], ",",
+ RowBox[{
+ FractionBox["1", "2"], "+",
+ RowBox[{"q111", " ", "q221", " ", "\[Beta]", " ",
+ RowBox[{"(",
+ RowBox[{"\[Beta]", "-", "\[Lambda]"}], ")"}], " ",
+ SuperscriptBox["\[Sigma]12", "2"]}], "+",
+ RowBox[{"2", " ",
+ SuperscriptBox["q221", "2"], " ", "\[Beta]", " ",
+ RowBox[{"(",
+ RowBox[{"\[Beta]", "-", "\[Lambda]"}], ")"}], " ",
+ SuperscriptBox["\[Sigma]2", "2"]}], "-",
+ RowBox[{"2", " ", "q220", " ",
+ SuperscriptBox["\[Beta]", "2"], " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"q110", " ",
+ SuperscriptBox["\[Sigma]12", "2"]}], "+",
+ RowBox[{"2", " ", "q220", " ",
+ SuperscriptBox["\[Sigma]2", "2"]}]}], ")"}]}], "+",
+ RowBox[{"q22d0", " ", "\[Beta]", " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"q11d0", " ", "\[Beta]", " ",
+ SuperscriptBox["\[Sigma]12", "2"]}], "+",
+ RowBox[{"2", " ", "q22d0", " ", "\[Beta]", " ",
+ SuperscriptBox["\[Sigma]2", "2"]}], "-", "\[Omega]2"}], ")"}]}]}],
+ ",",
+ RowBox[{"\[Beta]", " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"q11d0", " ", "q220", " ", "\[Beta]", " ",
+ SuperscriptBox["\[Sigma]12", "2"]}], "+",
+ RowBox[{"q111", " ", "q221", " ", "\[Beta]", " ",
+ SuperscriptBox["\[Sigma]12", "2"]}], "+",
+ RowBox[{"q110", " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{
+ RowBox[{"-", "3"}], " ", "q220"}], "+", "q22d0"}], ")"}], " ",
+ "\[Beta]", " ",
+ SuperscriptBox["\[Sigma]12", "2"]}], "-",
+ RowBox[{"q111", " ", "q221", " ", "\[Lambda]", " ",
+ SuperscriptBox["\[Sigma]12", "2"]}], "-",
+ RowBox[{"6", " ",
+ SuperscriptBox["q220", "2"], " ", "\[Beta]", " ",
+ SuperscriptBox["\[Sigma]2", "2"]}], "+",
+ RowBox[{"2", " ",
+ SuperscriptBox["q221", "2"], " ", "\[Beta]", " ",
+ SuperscriptBox["\[Sigma]2", "2"]}], "+",
+ RowBox[{"4", " ", "q220", " ", "q22d0", " ", "\[Beta]", " ",
+ SuperscriptBox["\[Sigma]2", "2"]}], "-",
+ RowBox[{"2", " ",
+ SuperscriptBox["q221", "2"], " ", "\[Lambda]", " ",
+ SuperscriptBox["\[Sigma]2", "2"]}], "-",
+ RowBox[{"q220", " ", "\[Omega]2"}]}], ")"}]}]}], "}"}]], "Output",
+ CellChangeTimes->{{3.9163040852045593`*^9, 3.916304093991681*^9},
+ 3.916304133060424*^9},
+ CellLabel->
+ "Out[122]=",ExpressionUUID->"93fcca29-6cfb-44b9-a537-5fa298b15766"]
+}, Open ]],
+
+Cell[CellGroupData[{
+
+Cell[BoxData["\[ScriptCapitalS]twin"], "Input",
+ CellChangeTimes->{{3.916298304193592*^9, 3.916298305516719*^9}},
+ CellLabel->"In[19]:=",ExpressionUUID->"b5c3d02d-a185-4dd1-b953-b06af4d48aed"],
+
+Cell[BoxData[
+ RowBox[{
+ RowBox[{
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"-", "1"}], "-",
+ RowBox[{"3", " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"-", "1"}], "+", "n"}], ")"}]}], "+",
+ SuperscriptBox["n", "2"]}], ")"}], " ",
+ SuperscriptBox["q110", "2"]}], "+",
+ RowBox[{
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"-", "1"}], "+", "n"}], ")"}], " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"2", " ",
+ SuperscriptBox["q111", "2"]}], "+",
+ SuperscriptBox["q11d0", "2"]}], ")"}]}], "+",
+ SuperscriptBox["q11d1", "2"]}], ")"}], " ",
+ SuperscriptBox["\[Beta]", "2"]}], "-",
+ RowBox[{"2", " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"-", "1"}], "+", "n"}], ")"}], " ",
+ SuperscriptBox["q111", "2"]}], "+",
+ SuperscriptBox["q11d1", "2"]}], ")"}], " ", "\[Beta]", " ",
+ "\[Lambda]"}], "+",
+ RowBox[{
+ SuperscriptBox["q11d1", "2"], " ",
+ SuperscriptBox["\[Lambda]", "2"]}]}], ")"}], " ",
+ SuperscriptBox["\[Sigma]1", "2"]}], "+",
+ RowBox[{
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"-", "1"}], "-",
+ RowBox[{"3", " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"-", "1"}], "+", "n"}], ")"}]}], "+",
+ SuperscriptBox["n", "2"]}], ")"}], " ", "q110", " ", "q220"}], "+",
+ RowBox[{
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"-", "1"}], "+", "n"}], ")"}], " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"2", " ", "q111", " ", "q221"}], "+",
+ RowBox[{"q11d0", " ", "q22d0"}]}], ")"}]}], "+",
+ RowBox[{"q11d1", " ", "q22d1"}]}], ")"}], " ",
+ SuperscriptBox["\[Beta]", "2"]}], "-",
+ RowBox[{"2", " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"-", "1"}], "+", "n"}], ")"}], " ", "q111", " ", "q221"}],
+ "+",
+ RowBox[{"q11d1", " ", "q22d1"}]}], ")"}], " ", "\[Beta]", " ",
+ "\[Lambda]"}], "+",
+ RowBox[{"q11d1", " ", "q22d1", " ",
+ SuperscriptBox["\[Lambda]", "2"]}]}], ")"}], " ",
+ SuperscriptBox["\[Sigma]12", "2"]}], "+",
+ RowBox[{
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"-", "1"}], "-",
+ RowBox[{"3", " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"-", "1"}], "+", "n"}], ")"}]}], "+",
+ SuperscriptBox["n", "2"]}], ")"}], " ",
+ SuperscriptBox["q220", "2"]}], "+",
+ RowBox[{
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"-", "1"}], "+", "n"}], ")"}], " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"2", " ",
+ SuperscriptBox["q221", "2"]}], "+",
+ SuperscriptBox["q22d0", "2"]}], ")"}]}], "+",
+ SuperscriptBox["q22d1", "2"]}], ")"}], " ",
+ SuperscriptBox["\[Beta]", "2"]}], "-",
+ RowBox[{"2", " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"-", "1"}], "+", "n"}], ")"}], " ",
+ SuperscriptBox["q221", "2"]}], "+",
+ SuperscriptBox["q22d1", "2"]}], ")"}], " ", "\[Beta]", " ",
+ "\[Lambda]"}], "+",
+ RowBox[{
+ SuperscriptBox["q22d1", "2"], " ",
+ SuperscriptBox["\[Lambda]", "2"]}]}], ")"}], " ",
+ SuperscriptBox["\[Sigma]2", "2"]}], "+",
+ RowBox[{"\[Lambda]", " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"2", " ", "q12d1", " ", "\[Epsilon]"}], "+",
+ RowBox[{"q11d1", " ", "\[Omega]1"}], "+",
+ RowBox[{"q22d1", " ", "\[Omega]2"}]}], ")"}]}], "-",
+ RowBox[{"\[Beta]", " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"2", " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"-", "1"}], "+", "n"}], ")"}], " ", "q12d0"}], "+",
+ "q12d1"}], ")"}], " ", "\[Epsilon]"}], "+",
+ RowBox[{
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"-", "1"}], "+", "n"}], ")"}], " ", "q11d0"}], "+",
+ "q11d1"}], ")"}], " ", "\[Omega]1"}], "+",
+ RowBox[{
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"-", "1"}], "+", "n"}], ")"}], " ", "q22d0"}], "+",
+ "q22d1"}], ")"}], " ", "\[Omega]2"}]}], ")"}]}], "+",
+ RowBox[{
+ FractionBox["1", "2"], " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"-", "2"}], "+", "n"}], ")"}], " ",
+ RowBox[{"Log", "[",
+ RowBox[{
+ RowBox[{
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"-", "3"}], "+", "n"}], ")"}], " ",
+ SuperscriptBox["q120", "2"]}], "-",
+ RowBox[{
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"-", "2"}], "+", "n"}], ")"}], " ",
+ SuperscriptBox["q120", "2"]}], "+",
+ RowBox[{"2", " ", "q120", " ", "q12d0"}], "-",
+ SuperscriptBox["q12d0", "2"], "-",
+ RowBox[{
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"-", "3"}], "+", "n"}], ")"}], " ", "q110", " ", "q220"}],
+ "+",
+ RowBox[{
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"-", "2"}], "+", "n"}], ")"}], " ", "q110", " ", "q220"}],
+ "-",
+ RowBox[{"q11d0", " ", "q220"}], "-",
+ RowBox[{"q110", " ", "q22d0"}], "+",
+ RowBox[{"q11d0", " ", "q22d0"}]}], "]"}]}], "+",
+ RowBox[{"Log", "[",
+ RowBox[{
+ RowBox[{"-",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"-", "1"}], "+", "n"}], ")"}], " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"-",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"-", "2"}], "+", "n"}], ")"}], " ", "q120", " ",
+ "q121"}], ")"}]}], "-",
+ RowBox[{"q121", " ", "q12d0"}], "-",
+ RowBox[{"q121", " ", "q12d1"}], "+",
+ RowBox[{
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"-", "2"}], "+", "n"}], ")"}], " ", "q111", " ",
+ "q220"}], "+",
+ RowBox[{"q11d1", " ", "q221"}], "+",
+ RowBox[{"q111", " ", "q22d0"}]}], ")"}], " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"-",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"-", "2"}], "+", "n"}], ")"}], " ", "q120", " ",
+ "q121"}], ")"}]}], "-",
+ RowBox[{"q121", " ", "q12d0"}], "-",
+ RowBox[{"q121", " ", "q12d1"}], "+",
+ RowBox[{
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"-", "2"}], "+", "n"}], ")"}], " ", "q110", " ",
+ "q221"}], "+",
+ RowBox[{"q11d0", " ", "q221"}], "+",
+ RowBox[{"q111", " ", "q22d1"}]}], ")"}]}], ")"}]}], "+",
+ RowBox[{
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"-", "2"}], "+", "n"}], ")"}], " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"-",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"-", "3"}], "+", "n"}], ")"}], " ",
+ SuperscriptBox["q120", "2"]}], ")"}]}], "-",
+ SuperscriptBox["q121", "2"], "-",
+ RowBox[{"2", " ", "q120", " ", "q12d0"}], "+",
+ RowBox[{
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"-", "3"}], "+", "n"}], ")"}], " ", "q110", " ",
+ "q220"}], "+",
+ RowBox[{"q11d0", " ", "q220"}], "+",
+ RowBox[{"q111", " ", "q221"}], "+",
+ RowBox[{"q110", " ", "q22d0"}]}], ")"}], " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"-",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"-", "1"}], "+", "n"}], ")"}], " ",
+ SuperscriptBox["q121", "2"]}], ")"}]}], "-",
+ SuperscriptBox["q12d1", "2"], "+",
+ RowBox[{
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"-", "1"}], "+", "n"}], ")"}], " ", "q111", " ",
+ "q221"}], "+",
+ RowBox[{"q11d1", " ", "q22d1"}]}], ")"}]}], "+",
+ RowBox[{
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"-",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"-", "2"}], "+", "n"}], ")"}], " ",
+ SuperscriptBox["q120", "2"]}], ")"}]}], "-",
+ SuperscriptBox["q121", "2"], "-",
+ SuperscriptBox["q12d0", "2"], "+",
+ RowBox[{
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"-", "2"}], "+", "n"}], ")"}], " ", "q110", " ",
+ "q220"}], "+",
+ RowBox[{"q111", " ", "q221"}], "+",
+ RowBox[{"q11d0", " ", "q22d0"}]}], ")"}], " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"-",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"-", "1"}], "+", "n"}], ")"}], " ",
+ SuperscriptBox["q121", "2"]}], ")"}]}], "-",
+ SuperscriptBox["q12d1", "2"], "+",
+ RowBox[{
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"-", "1"}], "+", "n"}], ")"}], " ", "q111", " ",
+ "q221"}], "+",
+ RowBox[{"q11d1", " ", "q22d1"}]}], ")"}]}]}], "]"}]}],
+ ")"}]}]}]], "Output",
+ CellChangeTimes->{3.916298305720996*^9, 3.916298388003971*^9},
+ CellLabel->"Out[19]=",ExpressionUUID->"a298f61a-4c39-4526-8144-4a1ce684b3a3"]
+}, Open ]],
+
+Cell[CellGroupData[{
+
+Cell[BoxData[
+ RowBox[{"e1", "=",
+ RowBox[{
+ RowBox[{"FullSimplify", "[",
+ RowBox[{
+ RowBox[{"Limit", "[",
+ RowBox[{"\[ScriptCapitalS]twin", ",",
+ RowBox[{"n", "->", "0"}]}], "]"}], ",",
+ RowBox[{"Assumptions", "->",
+ RowBox[{"{",
+ RowBox[{
+ RowBox[{"0", "<", "q11d0", "<", "1"}], ",",
+ RowBox[{"0", "<", "q11d1", "<", "1"}], ",",
+ RowBox[{"0", "<", "q110", "<", "1"}], ",",
+ RowBox[{"0", "<", "q220", "<", "1"}]}], "}"}]}]}], "]"}], "/.",
+ RowBox[{"{",
+ RowBox[{
+ RowBox[{"q22d0", "->",
+ RowBox[{"1", "-", "q11d0"}]}], ",",
+ RowBox[{"q22d1", "->",
+ RowBox[{"1", "-", "q11d1"}]}]}], "}"}]}]}]], "Input",
+ CellChangeTimes->{{3.905850825091011*^9, 3.905850839218413*^9}, {
+ 3.905851002581938*^9, 3.905851024062209*^9}, {3.905853123574729*^9,
+ 3.905853141726667*^9}, {3.906014604394625*^9, 3.906014632601555*^9}, {
+ 3.916298308773786*^9, 3.916298309445065*^9}, {3.9162984048152246`*^9,
+ 3.916298451319799*^9}},
+ CellLabel->
+ "In[145]:=",ExpressionUUID->"85b738a2-9ed8-4758-a6c3-13831de84fcb"],
+
+Cell[BoxData[
+ RowBox[{
+ RowBox[{
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"2", " ",
+ SuperscriptBox["q110", "2"]}], "-",
+ RowBox[{"2", " ",
+ SuperscriptBox["q111", "2"]}], "-",
+ SuperscriptBox["q11d0", "2"], "+",
+ SuperscriptBox["q11d1", "2"]}], ")"}], " ",
+ SuperscriptBox["\[Beta]", "2"]}], "+",
+ RowBox[{"2", " ",
+ RowBox[{"(",
+ RowBox[{"q111", "-", "q11d1"}], ")"}], " ",
+ RowBox[{"(",
+ RowBox[{"q111", "+", "q11d1"}], ")"}], " ", "\[Beta]", " ",
+ "\[Lambda]"}], "+",
+ RowBox[{
+ SuperscriptBox["q11d1", "2"], " ",
+ SuperscriptBox["\[Lambda]", "2"]}]}], ")"}], " ",
+ SuperscriptBox["\[Sigma]1", "2"]}], "+",
+ RowBox[{
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"-",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"(",
+ RowBox[{"1", "-", "q11d0"}], ")"}], " ", "q11d0"}], ")"}]}], "+",
+
+ RowBox[{
+ RowBox[{"(",
+ RowBox[{"1", "-", "q11d1"}], ")"}], " ", "q11d1"}], "+",
+ RowBox[{"2", " ", "q110", " ", "q220"}], "-",
+ RowBox[{"2", " ", "q111", " ", "q221"}]}], ")"}], " ",
+ SuperscriptBox["\[Beta]", "2"]}], "+",
+ RowBox[{"2", " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"-",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"(",
+ RowBox[{"1", "-", "q11d1"}], ")"}], " ", "q11d1"}], ")"}]}], "+",
+
+ RowBox[{"q111", " ", "q221"}]}], ")"}], " ", "\[Beta]", " ",
+ "\[Lambda]"}], "+",
+ RowBox[{
+ RowBox[{"(",
+ RowBox[{"1", "-", "q11d1"}], ")"}], " ", "q11d1", " ",
+ SuperscriptBox["\[Lambda]", "2"]}]}], ")"}], " ",
+ SuperscriptBox["\[Sigma]12", "2"]}], "+",
+ RowBox[{
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"-",
+ SuperscriptBox[
+ RowBox[{"(",
+ RowBox[{"1", "-", "q11d0"}], ")"}], "2"]}], "+",
+ SuperscriptBox[
+ RowBox[{"(",
+ RowBox[{"1", "-", "q11d1"}], ")"}], "2"], "+",
+ RowBox[{"2", " ",
+ SuperscriptBox["q220", "2"]}], "-",
+ RowBox[{"2", " ",
+ SuperscriptBox["q221", "2"]}]}], ")"}], " ",
+ SuperscriptBox["\[Beta]", "2"]}], "+",
+ RowBox[{"2", " ",
+ RowBox[{"(",
+ RowBox[{"1", "-", "q11d1", "+", "q221"}], ")"}], " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"-", "1"}], "+", "q11d1", "+", "q221"}], ")"}], " ",
+ "\[Beta]", " ", "\[Lambda]"}], "+",
+ RowBox[{
+ SuperscriptBox[
+ RowBox[{"(",
+ RowBox[{"1", "-", "q11d1"}], ")"}], "2"], " ",
+ SuperscriptBox["\[Lambda]", "2"]}]}], ")"}], " ",
+ SuperscriptBox["\[Sigma]2", "2"]}], "+",
+ RowBox[{"\[Lambda]", " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"q11d1", " ", "\[Omega]1"}], "+",
+ RowBox[{
+ RowBox[{"(",
+ RowBox[{"1", "-", "q11d1"}], ")"}], " ", "\[Omega]2"}]}], ")"}]}], "+",
+ RowBox[{"\[Beta]", " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"q11d0", " ", "\[Omega]1"}], "-",
+ RowBox[{"q11d1", " ", "\[Omega]1"}], "+",
+ RowBox[{
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"-", "q11d0"}], "+", "q11d1"}], ")"}], " ", "\[Omega]2"}]}],
+ ")"}]}], "+",
+ RowBox[{
+ FractionBox["1", "2"], " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{
+ RowBox[{"-", "2"}], " ",
+ RowBox[{"Log", "[",
+ RowBox[{
+ RowBox[{"(",
+ RowBox[{"q110", "-", "q11d0"}], ")"}], " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"-", "1"}], "+", "q11d0", "+", "q220"}], ")"}]}], "]"}]}],
+ "+",
+ RowBox[{"Log", "[",
+ RowBox[{
+ RowBox[{"(",
+ RowBox[{
+ SuperscriptBox["q111", "2"], "-",
+ RowBox[{"2", " ", "q110", " ", "q11d1"}], "+",
+ RowBox[{"q11d0", " ", "q11d1"}]}], ")"}], " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{
+ RowBox[{"(",
+ RowBox[{"1", "-", "q11d0"}], ")"}], " ",
+ RowBox[{"(",
+ RowBox[{"1", "-", "q11d1"}], ")"}]}], "-",
+ RowBox[{"2", " ",
+ RowBox[{"(",
+ RowBox[{"1", "-", "q11d1"}], ")"}], " ", "q220"}], "+",
+ SuperscriptBox["q221", "2"]}], ")"}]}], "]"}]}], ")"}]}]}]], "Output",\
+
+ CellChangeTimes->{{3.905850829877305*^9, 3.905850839465863*^9}, {
+ 3.905851005629496*^9, 3.905851024399541*^9}, {3.90585312526083*^9,
+ 3.90585314326528*^9}, 3.9058615885407877`*^9, 3.905912499053171*^9,
+ 3.905931598682398*^9, 3.906014581119566*^9, {3.906014625989239*^9,
+ 3.906014632954865*^9}, 3.906016701530336*^9, 3.906016767211265*^9,
+ 3.906018142729081*^9, 3.906186592965066*^9, 3.906188369691762*^9,
+ 3.906445739624508*^9, 3.906526383503549*^9, 3.907146523319407*^9,
+ 3.9073284035521383`*^9, 3.908527761322122*^9, 3.908535178552448*^9,
+ 3.908603306888613*^9, 3.908611423684043*^9, 3.90862132459629*^9,
+ 3.9089590151457157`*^9, 3.909041247694905*^9, 3.915532043468378*^9,
+ 3.915532493400175*^9, 3.9157715677141747`*^9, 3.916298299829978*^9,
+ 3.9162984003956337`*^9, {3.916298433084412*^9, 3.9162984516433153`*^9},
+ 3.916306067326783*^9},
+ CellLabel->
+ "Out[145]=",ExpressionUUID->"7780f5a5-3b9f-4878-bca1-49d638b2ede5"]
+}, Open ]],
+
+Cell[CellGroupData[{
+
+Cell[BoxData[
+ RowBox[{"e2", "=",
+ RowBox[{"FullSimplify", "[",
+ RowBox[{
+ RowBox[{"e1", "/.",
+ RowBox[{"{",
+ RowBox[{
+ RowBox[{"\[Epsilon]", "->", "0"}], ",",
+ RowBox[{"q120", "->", "0"}], ",",
+ RowBox[{"q121", "->", "0"}], ",",
+ RowBox[{"q12d0", "->", "0"}], ",",
+ RowBox[{"q12d1", "->", "0"}]}], "}"}]}], ",",
+ RowBox[{"Assumptions", "->",
+ RowBox[{"{",
+ RowBox[{
+ RowBox[{
+ SuperscriptBox["q111", "2"], "+",
+ RowBox[{
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{
+ RowBox[{"-", "2"}], " ", "q110"}], "+", "q11d0"}], ")"}], " ",
+ "q11d1"}]}], ">", "0"}], "}"}]}]}], "]"}]}]], "Input",
+ CellChangeTimes->{{3.906186860286684*^9, 3.906186879686674*^9}, {
+ 3.906186913895919*^9, 3.906186964896375*^9}},
+ CellLabel->
+ "In[146]:=",ExpressionUUID->"54f4b878-a43b-49d6-b99e-acf114036072"],
+
+Cell[BoxData[
+ RowBox[{
+ RowBox[{
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"2", " ",
+ SuperscriptBox["q110", "2"]}], "-",
+ RowBox[{"2", " ",
+ SuperscriptBox["q111", "2"]}], "-",
+ SuperscriptBox["q11d0", "2"], "+",
+ SuperscriptBox["q11d1", "2"]}], ")"}], " ",
+ SuperscriptBox["\[Beta]", "2"]}], "+",
+ RowBox[{"2", " ",
+ RowBox[{"(",
+ RowBox[{"q111", "-", "q11d1"}], ")"}], " ",
+ RowBox[{"(",
+ RowBox[{"q111", "+", "q11d1"}], ")"}], " ", "\[Beta]", " ",
+ "\[Lambda]"}], "+",
+ RowBox[{
+ SuperscriptBox["q11d1", "2"], " ",
+ SuperscriptBox["\[Lambda]", "2"]}]}], ")"}], " ",
+ SuperscriptBox["\[Sigma]1", "2"]}], "+",
+ RowBox[{
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"-", "1"}], "+", "q11d0"}], ")"}], " ", "q11d0"}], "+",
+ "q11d1", "-",
+ SuperscriptBox["q11d1", "2"], "+",
+ RowBox[{"2", " ", "q110", " ", "q220"}], "-",
+ RowBox[{"2", " ", "q111", " ", "q221"}]}], ")"}], " ",
+ SuperscriptBox["\[Beta]", "2"]}], "+",
+ RowBox[{"2", " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"-", "1"}], "+", "q11d1"}], ")"}], " ", "q11d1"}], "+",
+ RowBox[{"q111", " ", "q221"}]}], ")"}], " ", "\[Beta]", " ",
+ "\[Lambda]"}], "-",
+ RowBox[{
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"-", "1"}], "+", "q11d1"}], ")"}], " ", "q11d1", " ",
+ SuperscriptBox["\[Lambda]", "2"]}]}], ")"}], " ",
+ SuperscriptBox["\[Sigma]12", "2"]}], "+",
+ RowBox[{
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"-",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"-", "2"}], "+", "q11d0"}], ")"}], " ", "q11d0"}],
+ ")"}]}], "+",
+ RowBox[{
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"-", "2"}], "+", "q11d1"}], ")"}], " ", "q11d1"}], "+",
+ RowBox[{"2", " ",
+ RowBox[{"(",
+ RowBox[{"q220", "-", "q221"}], ")"}], " ",
+ RowBox[{"(",
+ RowBox[{"q220", "+", "q221"}], ")"}]}]}], ")"}], " ",
+ SuperscriptBox["\[Beta]", "2"]}], "+",
+ RowBox[{"2", " ",
+ RowBox[{"(",
+ RowBox[{"1", "-", "q11d1", "+", "q221"}], ")"}], " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"-", "1"}], "+", "q11d1", "+", "q221"}], ")"}], " ",
+ "\[Beta]", " ", "\[Lambda]"}], "+",
+ RowBox[{
+ SuperscriptBox[
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"-", "1"}], "+", "q11d1"}], ")"}], "2"], " ",
+ SuperscriptBox["\[Lambda]", "2"]}]}], ")"}], " ",
+ SuperscriptBox["\[Sigma]2", "2"]}], "+",
+ RowBox[{
+ RowBox[{"(",
+ RowBox[{"q11d0", "-", "q11d1"}], ")"}], " ", "\[Beta]", " ",
+ RowBox[{"(",
+ RowBox[{"\[Omega]1", "-", "\[Omega]2"}], ")"}]}], "+",
+ RowBox[{"\[Lambda]", " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"q11d1", " ",
+ RowBox[{"(",
+ RowBox[{"\[Omega]1", "-", "\[Omega]2"}], ")"}]}], "+", "\[Omega]2"}],
+ ")"}]}], "+",
+ RowBox[{
+ FractionBox["1", "2"], " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"Log", "[",
+ RowBox[{
+ SuperscriptBox["q111", "2"], "+",
+ RowBox[{
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{
+ RowBox[{"-", "2"}], " ", "q110"}], "+", "q11d0"}], ")"}], " ",
+ "q11d1"}]}], "]"}], "-",
+ RowBox[{"2", " ",
+ RowBox[{"Log", "[",
+ RowBox[{
+ RowBox[{"(",
+ RowBox[{"q110", "-", "q11d0"}], ")"}], " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"-", "1"}], "+", "q11d0", "+", "q220"}], ")"}]}], "]"}]}],
+ "+",
+ RowBox[{"Log", "[",
+ RowBox[{
+ RowBox[{
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"-", "1"}], "+", "q11d1"}], ")"}], " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"-", "1"}], "+", "q11d0", "+",
+ RowBox[{"2", " ", "q220"}]}], ")"}]}], "+",
+ SuperscriptBox["q221", "2"]}], "]"}]}], ")"}]}]}]], "Output",
+ CellChangeTimes->{
+ 3.906186880315091*^9, {3.906186921002465*^9, 3.906186965149336*^9},
+ 3.906188370518162*^9, 3.906445740478343*^9, 3.9065263844885607`*^9,
+ 3.907146524270124*^9, 3.907328404486239*^9, 3.908527762345582*^9,
+ 3.908535179422303*^9, 3.90860330775679*^9, 3.908613742673404*^9,
+ 3.908621325654201*^9, 3.9089590159595833`*^9, 3.909041248490795*^9,
+ 3.915532082121131*^9, 3.915532494340509*^9, 3.9157715685543637`*^9,
+ 3.916298453127364*^9, 3.9163060680762053`*^9},
+ CellLabel->
+ "Out[146]=",ExpressionUUID->"8ab0a219-d516-4630-ab17-d2c9ecd07701"]
+}, Open ]],
+
+Cell[BoxData[
+ RowBox[{
+ RowBox[{"rules2", "=",
+ RowBox[{"{",
+ RowBox[{
+ RowBox[{"q110", "->",
+ RowBox[{"q11d", "-",
+ RowBox[{"y110", "/", "\[Beta]"}], "-",
+ RowBox[{"z110", "/",
+ SuperscriptBox["\[Beta]", "2"]}]}]}], ",",
+ RowBox[{"q111", "->",
+ RowBox[{"q11d", "-",
+ RowBox[{"y111", "/", "\[Beta]"}], "-",
+ RowBox[{"z111", "/",
+ SuperscriptBox["\[Beta]", "2"]}]}]}], ",",
+ RowBox[{"q11d0", "->",
+ RowBox[{"q11d", "-", " ",
+ RowBox[{"y11d0", "/", "\[Beta]"}], "-",
+ RowBox[{"z11d0", "/",
+ SuperscriptBox["\[Beta]", "2"]}]}]}], ",",
+ RowBox[{"q11d1", "->",
+ RowBox[{"q11d", "-",
+ RowBox[{"y11d1", "/", "\[Beta]"}], "-",
+ RowBox[{"z11d1", "/",
+ SuperscriptBox["\[Beta]", "2"]}]}]}], ",",
+ RowBox[{"q220", "->",
+ RowBox[{"q22d", "-",
+ RowBox[{"y220", "/", "\[Beta]"}], "-",
+ RowBox[{"z220", "/",
+ SuperscriptBox["\[Beta]", "2"]}]}]}], ",",
+ RowBox[{"q221", "->",
+ RowBox[{"q22d", "-",
+ RowBox[{"y221", "/", "\[Beta]"}], "-",
+ RowBox[{"z221", "/",
+ SuperscriptBox["\[Beta]", "2"]}]}]}], ",",
+ RowBox[{"q12d1", "->",
+ RowBox[{"q12", "-",
+ RowBox[{"y12d1", "/", "\[Beta]"}], "-",
+ RowBox[{"z12d1", "/",
+ SuperscriptBox["\[Beta]", "2"]}]}]}], ",",
+ RowBox[{"q12d0", "->",
+ RowBox[{"q12", "-",
+ RowBox[{"y12d0", "/", "\[Beta]"}], "-",
+ RowBox[{"z12d0", "/",
+ SuperscriptBox["\[Beta]", "2"]}]}]}], ",",
+ RowBox[{"q121", "->",
+ RowBox[{"q12", "-",
+ RowBox[{"y121", "/", "\[Beta]"}], "-",
+ RowBox[{"z121", "/",
+ SuperscriptBox["\[Beta]", "2"]}]}]}], ",",
+ RowBox[{"q120", "->",
+ RowBox[{"q12", "-",
+ RowBox[{"y120", "/", "\[Beta]"}], "-",
+ RowBox[{"z120", "/",
+ SuperscriptBox["\[Beta]", "2"]}]}]}], ",",
+ RowBox[{"q22d", "->",
+ RowBox[{"1", "-", "q11d"}]}], ",",
+ RowBox[{"\[Lambda]", "->",
+ RowBox[{"\[Lambda]0", "-",
+ RowBox[{"\[Lambda]1", "/", "\[Beta]"}], "-",
+ RowBox[{"\[Lambda]2", "/",
+ SuperscriptBox["\[Beta]", "2"]}]}]}]}], "}"}]}], ";"}]], "Input",
+ CellChangeTimes->{{3.905861542929487*^9, 3.905861546187963*^9}, {
+ 3.9058616088771887`*^9, 3.905861619740603*^9}, {3.9058616556854*^9,
+ 3.905861699276464*^9}, {3.905861855312809*^9, 3.905861857476181*^9}, {
+ 3.905912367239668*^9, 3.905912369548286*^9}, {3.905912613884484*^9,
+ 3.905912616896575*^9}, {3.90591332909175*^9, 3.9059133499069*^9}, {
+ 3.905913476003109*^9, 3.905913478780634*^9}, 3.905913510172113*^9, {
+ 3.905913658453998*^9, 3.905913661681223*^9}, {3.905918897671769*^9,
+ 3.905918933808075*^9}, {3.9059194397219048`*^9, 3.905919487154225*^9}, {
+ 3.905919971332117*^9, 3.905919981516094*^9}, {3.905921624987239*^9,
+ 3.905921647467622*^9}, {3.905921807702829*^9, 3.905921811630349*^9}, {
+ 3.905922272815454*^9, 3.9059222846000423`*^9}, {3.905931570960396*^9,
+ 3.905931578736177*^9}, {3.905931954887074*^9, 3.905931975071704*^9}, {
+ 3.906014772838179*^9, 3.90601477479656*^9}, {3.906014805045081*^9,
+ 3.906014807781166*^9}, {3.906014900111161*^9, 3.906014903118968*^9}, {
+ 3.906015113442898*^9, 3.906015153147285*^9}, {3.906016827027356*^9,
+ 3.906016885852555*^9}, 3.906190615589766*^9, {3.906192507465321*^9,
+ 3.9061925793946037`*^9}, {3.906195398887929*^9, 3.906195399407722*^9}, {
+ 3.906195767951429*^9, 3.9061957720793056`*^9}, {3.906195840496765*^9,
+ 3.906195919154381*^9}, {3.906213868718033*^9, 3.906213885938034*^9}, {
+ 3.906449467308639*^9, 3.906449467504347*^9}, {3.906458374848988*^9,
+ 3.90645838768067*^9}, 3.907244382872212*^9, 3.908959048467206*^9},
+ CellLabel->"In[24]:=",ExpressionUUID->"19946ab1-9943-42ba-8c04-694cc1f0098d"],
+
+Cell[CellGroupData[{
+
+Cell[BoxData[
+ RowBox[{"stest2", "=",
+ RowBox[{"Solve", "[",
+ RowBox[{
+ RowBox[{"0", "==",
+ RowBox[{"{",
+ RowBox[{
+ RowBox[{
+ RowBox[{"2", " ", "y120"}], "-",
+ RowBox[{"2", " ", "y121"}], "-", "y12d0", "+", "y12d1"}], ",",
+ RowBox[{
+ RowBox[{"2", " ", "y110"}], "-",
+ RowBox[{"2", " ", "y111"}], "-", "y11d0", "+", "y11d1"}], ",",
+ RowBox[{"y11d0", "-", "y11d1", "+",
+ RowBox[{"2", " ", "y220"}], "-",
+ RowBox[{"2", " ", "y221"}]}]}], "}"}]}], ",",
+ RowBox[{"{",
+ RowBox[{"y110", ",", "y120", ",", "y220"}], "}"}]}], "]"}]}]], "Input",
+ CellChangeTimes->{{3.906209108534292*^9, 3.906209142918777*^9}, {
+ 3.906209281514675*^9, 3.906209401810359*^9}, {3.906209557442634*^9,
+ 3.90620956311773*^9}, {3.906210598464419*^9, 3.906210622697938*^9}, {
+ 3.90621490877896*^9, 3.906214961058323*^9}, {3.906215011570169*^9,
+ 3.906215011869331*^9}, {3.90621511367527*^9, 3.906215113937558*^9}, {
+ 3.906449850271374*^9, 3.906449864831753*^9}, {3.906452288389834*^9,
+ 3.906452349678601*^9}, {3.906452536307121*^9, 3.906452536562147*^9}, {
+ 3.90724443620947*^9, 3.907244488412445*^9}},
+ CellLabel->"In[25]:=",ExpressionUUID->"623df1f0-acb4-43e6-b11b-11cede6c62f1"],
+
+Cell[BoxData[
+ RowBox[{"{",
+ RowBox[{"{",
+ RowBox[{
+ RowBox[{"y110", "\[Rule]",
+ RowBox[{
+ FractionBox["1", "2"], " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"2", " ", "y111"}], "+", "y11d0", "-", "y11d1"}], ")"}]}]}],
+ ",",
+ RowBox[{"y120", "\[Rule]",
+ RowBox[{
+ FractionBox["1", "2"], " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"2", " ", "y121"}], "+", "y12d0", "-", "y12d1"}], ")"}]}]}],
+ ",",
+ RowBox[{"y220", "\[Rule]",
+ RowBox[{
+ FractionBox["1", "2"], " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"-", "y11d0"}], "+", "y11d1", "+",
+ RowBox[{"2", " ", "y221"}]}], ")"}]}]}]}], "}"}], "}"}]], "Output",
+ CellChangeTimes->{{3.906209114847683*^9, 3.906209134528015*^9}, {
+ 3.9062092861324043`*^9, 3.906209307644665*^9}, {3.906209348694558*^9,
+ 3.906209402069257*^9}, 3.906209567919038*^9, {3.906210599059472*^9,
+ 3.906210623077407*^9}, {3.906214910275611*^9, 3.906214961402548*^9},
+ 3.906215012221205*^9, 3.906215114141577*^9, 3.906449865837833*^9, {
+ 3.906452290224807*^9, 3.906452324323553*^9}, 3.9064523548160133`*^9,
+ 3.906452536825111*^9, 3.906452992821587*^9, 3.906535913473673*^9, {
+ 3.907244450027872*^9, 3.9072444889943857`*^9}, 3.907329066028408*^9,
+ 3.908528771220576*^9, 3.908535928499719*^9, 3.908604043703294*^9,
+ 3.908611456149561*^9, 3.9086144305920887`*^9, 3.908621428030292*^9,
+ 3.9089591306410522`*^9, 3.909041335868808*^9, 3.915532186836844*^9,
+ 3.915532553880711*^9, 3.915771627638197*^9, 3.916298567913457*^9},
+ CellLabel->"Out[25]=",ExpressionUUID->"f98a2dfe-f238-4006-aca1-8b523c40cf8d"]
+}, Open ]],
+
+Cell[CellGroupData[{
+
+Cell[BoxData[
+ RowBox[{"e3", "=",
+ RowBox[{"Limit", "[",
+ RowBox[{
+ RowBox[{
+ RowBox[{"e2", "//.", "rules2"}], "/.",
+ RowBox[{"stest2", "[",
+ RowBox[{"[", "1", "]"}], "]"}]}], ",",
+ RowBox[{"\[Beta]", "->", "\[Infinity]"}]}], "]"}]}]], "Input",
+ CellChangeTimes->{{3.916298569082382*^9, 3.9162985829299507`*^9},
+ 3.916298817983197*^9, {3.916298915120405*^9, 3.916298916200206*^9}},
+ CellLabel->"In[31]:=",ExpressionUUID->"2dd75e13-4f61-4be7-b65b-acbf57a3d45b"],
+
+Cell[BoxData[
+ RowBox[{
+ FractionBox["1", "2"], " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"4", " ", "y111", " ", "y11d0", " ",
+ SuperscriptBox["\[Sigma]1", "2"]}], "-",
+ RowBox[{
+ SuperscriptBox["y11d0", "2"], " ",
+ SuperscriptBox["\[Sigma]1", "2"]}], "-",
+ RowBox[{"4", " ", "y111", " ", "y11d1", " ",
+ SuperscriptBox["\[Sigma]1", "2"]}], "-",
+ RowBox[{"2", " ", "y11d0", " ", "y11d1", " ",
+ SuperscriptBox["\[Sigma]1", "2"]}], "+",
+ RowBox[{"3", " ",
+ SuperscriptBox["y11d1", "2"], " ",
+ SuperscriptBox["\[Sigma]1", "2"]}], "-",
+ RowBox[{"8", " ", "q11d", " ", "z110", " ",
+ SuperscriptBox["\[Sigma]1", "2"]}], "+",
+ RowBox[{"8", " ", "q11d", " ", "z111", " ",
+ SuperscriptBox["\[Sigma]1", "2"]}], "+",
+ RowBox[{"4", " ", "q11d", " ", "z11d0", " ",
+ SuperscriptBox["\[Sigma]1", "2"]}], "-",
+ RowBox[{"4", " ", "q11d", " ", "z11d1", " ",
+ SuperscriptBox["\[Sigma]1", "2"]}], "-",
+ RowBox[{"8", " ", "q11d", " ", "y111", " ", "\[Lambda]0", " ",
+ SuperscriptBox["\[Sigma]1", "2"]}], "+",
+ RowBox[{"8", " ", "q11d", " ", "y11d1", " ", "\[Lambda]0", " ",
+ SuperscriptBox["\[Sigma]1", "2"]}], "+",
+ RowBox[{"2", " ",
+ SuperscriptBox["q11d", "2"], " ",
+ SuperscriptBox["\[Lambda]0", "2"], " ",
+ SuperscriptBox["\[Sigma]1", "2"]}], "-",
+ RowBox[{"2", " ", "y111", " ", "y11d0", " ",
+ SuperscriptBox["\[Sigma]12", "2"]}], "+",
+ RowBox[{
+ SuperscriptBox["y11d0", "2"], " ",
+ SuperscriptBox["\[Sigma]12", "2"]}], "+",
+ RowBox[{"2", " ", "y111", " ", "y11d1", " ",
+ SuperscriptBox["\[Sigma]12", "2"]}], "+",
+ RowBox[{"2", " ", "y11d0", " ", "y11d1", " ",
+ SuperscriptBox["\[Sigma]12", "2"]}], "-",
+ RowBox[{"3", " ",
+ SuperscriptBox["y11d1", "2"], " ",
+ SuperscriptBox["\[Sigma]12", "2"]}], "+",
+ RowBox[{"2", " ", "y11d0", " ", "y221", " ",
+ SuperscriptBox["\[Sigma]12", "2"]}], "-",
+ RowBox[{"2", " ", "y11d1", " ", "y221", " ",
+ SuperscriptBox["\[Sigma]12", "2"]}], "-",
+ RowBox[{"4", " ", "z110", " ",
+ SuperscriptBox["\[Sigma]12", "2"]}], "+",
+ RowBox[{"4", " ", "q11d", " ", "z110", " ",
+ SuperscriptBox["\[Sigma]12", "2"]}], "+",
+ RowBox[{"4", " ", "z111", " ",
+ SuperscriptBox["\[Sigma]12", "2"]}], "-",
+ RowBox[{"4", " ", "q11d", " ", "z111", " ",
+ SuperscriptBox["\[Sigma]12", "2"]}], "+",
+ RowBox[{"2", " ", "z11d0", " ",
+ SuperscriptBox["\[Sigma]12", "2"]}], "-",
+ RowBox[{"4", " ", "q11d", " ", "z11d0", " ",
+ SuperscriptBox["\[Sigma]12", "2"]}], "-",
+ RowBox[{"2", " ", "z11d1", " ",
+ SuperscriptBox["\[Sigma]12", "2"]}], "+",
+ RowBox[{"4", " ", "q11d", " ", "z11d1", " ",
+ SuperscriptBox["\[Sigma]12", "2"]}], "-",
+ RowBox[{"4", " ", "q11d", " ", "z220", " ",
+ SuperscriptBox["\[Sigma]12", "2"]}], "+",
+ RowBox[{"4", " ", "q11d", " ", "z221", " ",
+ SuperscriptBox["\[Sigma]12", "2"]}], "-",
+ RowBox[{"4", " ", "y111", " ", "\[Lambda]0", " ",
+ SuperscriptBox["\[Sigma]12", "2"]}], "+",
+ RowBox[{"4", " ", "q11d", " ", "y111", " ", "\[Lambda]0", " ",
+ SuperscriptBox["\[Sigma]12", "2"]}], "+",
+ RowBox[{"4", " ", "y11d1", " ", "\[Lambda]0", " ",
+ SuperscriptBox["\[Sigma]12", "2"]}], "-",
+ RowBox[{"8", " ", "q11d", " ", "y11d1", " ", "\[Lambda]0", " ",
+ SuperscriptBox["\[Sigma]12", "2"]}], "-",
+ RowBox[{"4", " ", "q11d", " ", "y221", " ", "\[Lambda]0", " ",
+ SuperscriptBox["\[Sigma]12", "2"]}], "+",
+ RowBox[{"2", " ", "q11d", " ",
+ SuperscriptBox["\[Lambda]0", "2"], " ",
+ SuperscriptBox["\[Sigma]12", "2"]}], "-",
+ RowBox[{"2", " ",
+ SuperscriptBox["q11d", "2"], " ",
+ SuperscriptBox["\[Lambda]0", "2"], " ",
+ SuperscriptBox["\[Sigma]12", "2"]}], "-",
+ RowBox[{
+ SuperscriptBox["y11d0", "2"], " ",
+ SuperscriptBox["\[Sigma]2", "2"]}], "-",
+ RowBox[{"2", " ", "y11d0", " ", "y11d1", " ",
+ SuperscriptBox["\[Sigma]2", "2"]}], "+",
+ RowBox[{"3", " ",
+ SuperscriptBox["y11d1", "2"], " ",
+ SuperscriptBox["\[Sigma]2", "2"]}], "-",
+ RowBox[{"4", " ", "y11d0", " ", "y221", " ",
+ SuperscriptBox["\[Sigma]2", "2"]}], "+",
+ RowBox[{"4", " ", "y11d1", " ", "y221", " ",
+ SuperscriptBox["\[Sigma]2", "2"]}], "-",
+ RowBox[{"4", " ", "z11d0", " ",
+ SuperscriptBox["\[Sigma]2", "2"]}], "+",
+ RowBox[{"4", " ", "q11d", " ", "z11d0", " ",
+ SuperscriptBox["\[Sigma]2", "2"]}], "+",
+ RowBox[{"4", " ", "z11d1", " ",
+ SuperscriptBox["\[Sigma]2", "2"]}], "-",
+ RowBox[{"4", " ", "q11d", " ", "z11d1", " ",
+ SuperscriptBox["\[Sigma]2", "2"]}], "-",
+ RowBox[{"8", " ", "z220", " ",
+ SuperscriptBox["\[Sigma]2", "2"]}], "+",
+ RowBox[{"8", " ", "q11d", " ", "z220", " ",
+ SuperscriptBox["\[Sigma]2", "2"]}], "+",
+ RowBox[{"8", " ", "z221", " ",
+ SuperscriptBox["\[Sigma]2", "2"]}], "-",
+ RowBox[{"8", " ", "q11d", " ", "z221", " ",
+ SuperscriptBox["\[Sigma]2", "2"]}], "-",
+ RowBox[{"8", " ", "y11d1", " ", "\[Lambda]0", " ",
+ SuperscriptBox["\[Sigma]2", "2"]}], "+",
+ RowBox[{"8", " ", "q11d", " ", "y11d1", " ", "\[Lambda]0", " ",
+ SuperscriptBox["\[Sigma]2", "2"]}], "-",
+ RowBox[{"8", " ", "y221", " ", "\[Lambda]0", " ",
+ SuperscriptBox["\[Sigma]2", "2"]}], "+",
+ RowBox[{"8", " ", "q11d", " ", "y221", " ", "\[Lambda]0", " ",
+ SuperscriptBox["\[Sigma]2", "2"]}], "+",
+ RowBox[{"2", " ",
+ SuperscriptBox["\[Lambda]0", "2"], " ",
+ SuperscriptBox["\[Sigma]2", "2"]}], "-",
+ RowBox[{"4", " ", "q11d", " ",
+ SuperscriptBox["\[Lambda]0", "2"], " ",
+ SuperscriptBox["\[Sigma]2", "2"]}], "+",
+ RowBox[{"2", " ",
+ SuperscriptBox["q11d", "2"], " ",
+ SuperscriptBox["\[Lambda]0", "2"], " ",
+ SuperscriptBox["\[Sigma]2", "2"]}], "-",
+ RowBox[{"2", " ", "y11d0", " ", "\[Omega]1"}], "+",
+ RowBox[{"2", " ", "y11d1", " ", "\[Omega]1"}], "+",
+ RowBox[{"2", " ", "q11d", " ", "\[Lambda]0", " ", "\[Omega]1"}], "+",
+ RowBox[{"2", " ", "y11d0", " ", "\[Omega]2"}], "-",
+ RowBox[{"2", " ", "y11d1", " ", "\[Omega]2"}], "+",
+ RowBox[{"2", " ", "\[Lambda]0", " ", "\[Omega]2"}], "-",
+ RowBox[{"2", " ", "q11d", " ", "\[Lambda]0", " ", "\[Omega]2"}], "-",
+ RowBox[{"4", " ", "\[ImaginaryI]", " ", "\[Pi]", " ",
+ RowBox[{"Floor", "[",
+ RowBox[{"-",
+ FractionBox[
+ RowBox[{
+ RowBox[{"-", "\[Pi]"}], "+",
+ RowBox[{"Arg", "[",
+ RowBox[{
+ RowBox[{"2", " ", "y111"}], "-", "y11d0", "-", "y11d1"}], "]"}],
+ "+",
+ RowBox[{"Arg", "[",
+ RowBox[{"y11d0", "+", "y11d1", "+",
+ RowBox[{"2", " ", "y221"}]}], "]"}]}],
+ RowBox[{"2", " ", "\[Pi]"}]]}], "]"}]}], "+",
+ RowBox[{"Log", "[", "16", "]"}], "-",
+ RowBox[{"2", " ",
+ RowBox[{"Log", "[",
+ RowBox[{
+ RowBox[{"2", " ", "y111"}], "-", "y11d0", "-", "y11d1"}], "]"}]}], "-",
+ RowBox[{"2", " ",
+ RowBox[{"Log", "[",
+ RowBox[{"y11d0", "+", "y11d1", "+",
+ RowBox[{"2", " ", "y221"}]}], "]"}]}], "+",
+ RowBox[{"Log", "[",
+ RowBox[{
+ SuperscriptBox["y111", "2"], "-",
+ RowBox[{"2", " ", "y111", " ", "y11d1"}], "+",
+ SuperscriptBox["y11d1", "2"], "+",
+ RowBox[{"q11d", " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"2", " ", "z110"}], "-",
+ RowBox[{"2", " ", "z111"}], "-", "z11d0", "+", "z11d1"}], ")"}]}]}],
+ "]"}], "+",
+ RowBox[{"Log", "[",
+ RowBox[{
+ SuperscriptBox["y11d1", "2"], "+",
+ RowBox[{"2", " ", "y11d1", " ", "y221"}], "+",
+ SuperscriptBox["y221", "2"], "-",
+ RowBox[{
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"-", "1"}], "+", "q11d"}], ")"}], " ",
+ RowBox[{"(",
+ RowBox[{"z11d0", "-", "z11d1", "+",
+ RowBox[{"2", " ", "z220"}], "-",
+ RowBox[{"2", " ", "z221"}]}], ")"}]}]}], "]"}]}], ")"}]}]], "Output",\
+
+ CellChangeTimes->{{3.91629857167759*^9, 3.916298576072043*^9},
+ 3.9162986288507338`*^9, 3.916298913386046*^9, 3.916299048042665*^9},
+ CellLabel->"Out[31]=",ExpressionUUID->"c4f58aa5-4d98-4810-9646-4e8d42c22b4d"]
+}, Open ]],
+
+Cell[CellGroupData[{
+
+Cell[BoxData[
+ RowBox[{"e4", "=",
+ RowBox[{
+ RowBox[{
+ RowBox[{"Simplify", "[",
+ RowBox[{"e3", ",",
+ RowBox[{"Assumptions", "->",
+ RowBox[{"{",
+ RowBox[{
+ RowBox[{
+ RowBox[{
+ RowBox[{"2", " ", "y111"}], "-", "y11d0", "-", "y11d1"}], ">",
+ "0"}], ",",
+ RowBox[{
+ RowBox[{"y11d0", "+", "y11d1", "+",
+ RowBox[{"2", " ", "y221"}]}], ">", "0"}]}], "}"}]}]}], "]"}], "//.",
+ RowBox[{"{",
+ RowBox[{
+ RowBox[{
+ RowBox[{
+ RowBox[{"a_", " ",
+ RowBox[{"Log", "[", "x_", "]"}]}], "+",
+ RowBox[{"b_", " ",
+ RowBox[{"Log", "[", "y_", "]"}]}]}], ":>",
+ RowBox[{"Log", "[",
+ RowBox[{
+ SuperscriptBox["x", "a"],
+ SuperscriptBox["y", "b"]}], "]"}]}], ",",
+ RowBox[{
+ RowBox[{
+ RowBox[{"Log", "[", "x_", "]"}], "+",
+ RowBox[{"Log", "[", "y_", "]"}]}], ":>",
+ RowBox[{"Log", "[",
+ RowBox[{"x", " ", "y"}], "]"}]}]}], "}"}]}], "//",
+ "FullSimplify"}]}]], "Input",
+ CellChangeTimes->{{3.916299067891621*^9, 3.916299312352315*^9}},
+ CellLabel->"In[49]:=",ExpressionUUID->"785da43f-dcbf-49db-b834-5c4280942ceb"],
+
+Cell[BoxData[
+ RowBox[{
+ FractionBox["1", "2"], " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"3", " ",
+ SuperscriptBox["y11d1", "2"], " ",
+ SuperscriptBox["\[Sigma]1", "2"]}], "-",
+ RowBox[{"8", " ", "q11d", " ", "z110", " ",
+ SuperscriptBox["\[Sigma]1", "2"]}], "+",
+ RowBox[{"8", " ", "q11d", " ", "z111", " ",
+ SuperscriptBox["\[Sigma]1", "2"]}], "+",
+ RowBox[{"4", " ", "q11d", " ", "z11d0", " ",
+ SuperscriptBox["\[Sigma]1", "2"]}], "-",
+ RowBox[{"4", " ", "q11d", " ", "z11d1", " ",
+ SuperscriptBox["\[Sigma]1", "2"]}], "+",
+ RowBox[{"8", " ", "q11d", " ", "y11d1", " ", "\[Lambda]0", " ",
+ SuperscriptBox["\[Sigma]1", "2"]}], "+",
+ RowBox[{"2", " ",
+ SuperscriptBox["q11d", "2"], " ",
+ SuperscriptBox["\[Lambda]0", "2"], " ",
+ SuperscriptBox["\[Sigma]1", "2"]}], "+",
+ RowBox[{"4", " ", "y111", " ",
+ RowBox[{"(",
+ RowBox[{"y11d0", "-", "y11d1", "-",
+ RowBox[{"2", " ", "q11d", " ", "\[Lambda]0"}]}], ")"}], " ",
+ SuperscriptBox["\[Sigma]1", "2"]}], "-",
+ RowBox[{"3", " ",
+ SuperscriptBox["y11d1", "2"], " ",
+ SuperscriptBox["\[Sigma]12", "2"]}], "-",
+ RowBox[{"2", " ", "y11d1", " ", "y221", " ",
+ SuperscriptBox["\[Sigma]12", "2"]}], "-",
+ RowBox[{"4", " ", "z110", " ",
+ SuperscriptBox["\[Sigma]12", "2"]}], "+",
+ RowBox[{"4", " ", "q11d", " ", "z110", " ",
+ SuperscriptBox["\[Sigma]12", "2"]}], "+",
+ RowBox[{"4", " ", "z111", " ",
+ SuperscriptBox["\[Sigma]12", "2"]}], "-",
+ RowBox[{"4", " ", "q11d", " ", "z111", " ",
+ SuperscriptBox["\[Sigma]12", "2"]}], "+",
+ RowBox[{"2", " ", "z11d0", " ",
+ SuperscriptBox["\[Sigma]12", "2"]}], "-",
+ RowBox[{"4", " ", "q11d", " ", "z11d0", " ",
+ SuperscriptBox["\[Sigma]12", "2"]}], "-",
+ RowBox[{"2", " ", "z11d1", " ",
+ SuperscriptBox["\[Sigma]12", "2"]}], "+",
+ RowBox[{"4", " ", "q11d", " ", "z11d1", " ",
+ SuperscriptBox["\[Sigma]12", "2"]}], "-",
+ RowBox[{"4", " ", "q11d", " ", "z220", " ",
+ SuperscriptBox["\[Sigma]12", "2"]}], "+",
+ RowBox[{"4", " ", "q11d", " ", "z221", " ",
+ SuperscriptBox["\[Sigma]12", "2"]}], "+",
+ RowBox[{"4", " ", "y11d1", " ", "\[Lambda]0", " ",
+ SuperscriptBox["\[Sigma]12", "2"]}], "-",
+ RowBox[{"8", " ", "q11d", " ", "y11d1", " ", "\[Lambda]0", " ",
+ SuperscriptBox["\[Sigma]12", "2"]}], "-",
+ RowBox[{"4", " ", "q11d", " ", "y221", " ", "\[Lambda]0", " ",
+ SuperscriptBox["\[Sigma]12", "2"]}], "+",
+ RowBox[{"2", " ", "q11d", " ",
+ SuperscriptBox["\[Lambda]0", "2"], " ",
+ SuperscriptBox["\[Sigma]12", "2"]}], "-",
+ RowBox[{"2", " ",
+ SuperscriptBox["q11d", "2"], " ",
+ SuperscriptBox["\[Lambda]0", "2"], " ",
+ SuperscriptBox["\[Sigma]12", "2"]}], "+",
+ RowBox[{"2", " ", "y111", " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"-", "y11d0"}], "+", "y11d1", "+",
+ RowBox[{"2", " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"-", "1"}], "+", "q11d"}], ")"}], " ", "\[Lambda]0"}]}],
+ ")"}], " ",
+ SuperscriptBox["\[Sigma]12", "2"]}], "+",
+ RowBox[{"3", " ",
+ SuperscriptBox["y11d1", "2"], " ",
+ SuperscriptBox["\[Sigma]2", "2"]}], "+",
+ RowBox[{"4", " ", "y11d1", " ", "y221", " ",
+ SuperscriptBox["\[Sigma]2", "2"]}], "-",
+ RowBox[{"4", " ", "z11d0", " ",
+ SuperscriptBox["\[Sigma]2", "2"]}], "+",
+ RowBox[{"4", " ", "q11d", " ", "z11d0", " ",
+ SuperscriptBox["\[Sigma]2", "2"]}], "+",
+ RowBox[{"4", " ", "z11d1", " ",
+ SuperscriptBox["\[Sigma]2", "2"]}], "-",
+ RowBox[{"4", " ", "q11d", " ", "z11d1", " ",
+ SuperscriptBox["\[Sigma]2", "2"]}], "-",
+ RowBox[{"8", " ", "z220", " ",
+ SuperscriptBox["\[Sigma]2", "2"]}], "+",
+ RowBox[{"8", " ", "q11d", " ", "z220", " ",
+ SuperscriptBox["\[Sigma]2", "2"]}], "+",
+ RowBox[{"8", " ", "z221", " ",
+ SuperscriptBox["\[Sigma]2", "2"]}], "-",
+ RowBox[{"8", " ", "q11d", " ", "z221", " ",
+ SuperscriptBox["\[Sigma]2", "2"]}], "-",
+ RowBox[{"8", " ", "y11d1", " ", "\[Lambda]0", " ",
+ SuperscriptBox["\[Sigma]2", "2"]}], "+",
+ RowBox[{"8", " ", "q11d", " ", "y11d1", " ", "\[Lambda]0", " ",
+ SuperscriptBox["\[Sigma]2", "2"]}], "-",
+ RowBox[{"8", " ", "y221", " ", "\[Lambda]0", " ",
+ SuperscriptBox["\[Sigma]2", "2"]}], "+",
+ RowBox[{"8", " ", "q11d", " ", "y221", " ", "\[Lambda]0", " ",
+ SuperscriptBox["\[Sigma]2", "2"]}], "+",
+ RowBox[{"2", " ",
+ SuperscriptBox["\[Lambda]0", "2"], " ",
+ SuperscriptBox["\[Sigma]2", "2"]}], "-",
+ RowBox[{"4", " ", "q11d", " ",
+ SuperscriptBox["\[Lambda]0", "2"], " ",
+ SuperscriptBox["\[Sigma]2", "2"]}], "+",
+ RowBox[{"2", " ",
+ SuperscriptBox["q11d", "2"], " ",
+ SuperscriptBox["\[Lambda]0", "2"], " ",
+ SuperscriptBox["\[Sigma]2", "2"]}], "-",
+ RowBox[{
+ SuperscriptBox["y11d0", "2"], " ",
+ RowBox[{"(",
+ RowBox[{
+ SuperscriptBox["\[Sigma]1", "2"], "-",
+ SuperscriptBox["\[Sigma]12", "2"], "+",
+ SuperscriptBox["\[Sigma]2", "2"]}], ")"}]}], "+",
+ RowBox[{"2", " ", "y11d1", " ", "\[Omega]1"}], "+",
+ RowBox[{"2", " ", "q11d", " ", "\[Lambda]0", " ", "\[Omega]1"}], "-",
+ RowBox[{"2", " ", "y11d0", " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{
+ RowBox[{"-", "y221"}], " ",
+ SuperscriptBox["\[Sigma]12", "2"]}], "+",
+ RowBox[{"2", " ", "y221", " ",
+ SuperscriptBox["\[Sigma]2", "2"]}], "+",
+ RowBox[{"y11d1", " ",
+ RowBox[{"(",
+ RowBox[{
+ SuperscriptBox["\[Sigma]1", "2"], "-",
+ SuperscriptBox["\[Sigma]12", "2"], "+",
+ SuperscriptBox["\[Sigma]2", "2"]}], ")"}]}], "+", "\[Omega]1", "-",
+ "\[Omega]2"}], ")"}]}], "-",
+ RowBox[{"2", " ",
+ RowBox[{"(",
+ RowBox[{"y11d1", "+",
+ RowBox[{
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"-", "1"}], "+", "q11d"}], ")"}], " ", "\[Lambda]0"}]}],
+ ")"}], " ", "\[Omega]2"}], "+",
+ RowBox[{"Log", "[",
+ FractionBox[
+ RowBox[{"16", " ",
+ RowBox[{"(",
+ RowBox[{
+ SuperscriptBox[
+ RowBox[{"(",
+ RowBox[{"y111", "-", "y11d1"}], ")"}], "2"], "+",
+ RowBox[{"q11d", " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"2", " ", "z110"}], "-",
+ RowBox[{"2", " ", "z111"}], "-", "z11d0", "+", "z11d1"}],
+ ")"}]}]}], ")"}], " ",
+ RowBox[{"(",
+ RowBox[{
+ SuperscriptBox[
+ RowBox[{"(",
+ RowBox[{"y11d1", "+", "y221"}], ")"}], "2"], "-",
+ RowBox[{
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"-", "1"}], "+", "q11d"}], ")"}], " ",
+ RowBox[{"(",
+ RowBox[{"z11d0", "-", "z11d1", "+",
+ RowBox[{"2", " ", "z220"}], "-",
+ RowBox[{"2", " ", "z221"}]}], ")"}]}]}], ")"}]}],
+ RowBox[{
+ SuperscriptBox[
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{
+ RowBox[{"-", "2"}], " ", "y111"}], "+", "y11d0", "+", "y11d1"}],
+ ")"}], "2"], " ",
+ SuperscriptBox[
+ RowBox[{"(",
+ RowBox[{"y11d0", "+", "y11d1", "+",
+ RowBox[{"2", " ", "y221"}]}], ")"}], "2"]}]], "]"}]}],
+ ")"}]}]], "Output",
+ CellChangeTimes->{{3.9162992809993143`*^9, 3.916299314952043*^9}},
+ CellLabel->"Out[49]=",ExpressionUUID->"ef9ef3d0-78d5-4ee8-9f3f-0ea8bcf8e2ee"]
+}, Open ]],
+
+Cell[CellGroupData[{
+
+Cell[BoxData[
+ RowBox[{
+ RowBox[{"e5", "=",
+ RowBox[{"Solve", "[",
+ RowBox[{
+ RowBox[{"0", "==",
+ RowBox[{"D", "[",
+ RowBox[{
+ RowBox[{"e4", "/.",
+ RowBox[{"\[Sigma]12", "->", "0"}]}], ",",
+ RowBox[{"{",
+ RowBox[{"{",
+ RowBox[{
+ "\[Lambda]0", ",", "y111", ",", "y11d1", ",", "y221", ",", "q11d",
+ ",", "z110", ",", "z111", ",", "z11d0", ",", "z11d1", ",", "z220",
+ ",", "z221"}], "}"}], "}"}]}], "]"}]}], ",",
+ RowBox[{"{",
+ RowBox[{
+ "\[Lambda]0", ",", "y111", ",", "y11d1", ",", "y221", ",", "q11d", ",",
+ "z110", ",", "z111", ",", "z11d0", ",", "z11d1", ",", "z220", ",",
+ "z221"}], "}"}]}], "]"}]}], ";"}]], "Input",
+ CellChangeTimes->{{3.916299357672659*^9, 3.9162993963854647`*^9}, {
+ 3.9162994291231127`*^9, 3.916299436346179*^9}, {3.9162994947078943`*^9,
+ 3.916299497532009*^9}, {3.916300237985333*^9, 3.916300239561335*^9}},
+ CellLabel->"In[56]:=",ExpressionUUID->"aff1542a-e458-46e1-bc4e-b34eedfeafcd"],
+
+Cell[BoxData["$Aborted"], "Output",
+ CellChangeTimes->{3.916299421589814*^9, 3.9163002362939377`*^9,
+ 3.9163005755503674`*^9},
+ CellLabel->"Out[56]=",ExpressionUUID->"540af864-3347-4186-9e31-aa1340e04ef2"]
+}, Open ]],
+
+Cell[BoxData[
+ RowBox[{
+ RowBox[{"rules", "=",
+ RowBox[{"{",
+ RowBox[{
+ RowBox[{"q110", "->",
+ RowBox[{"q11d", "-",
+ RowBox[{"y11", "/", "\[Beta]"}], "-",
+ RowBox[{"z110", "/",
+ SuperscriptBox["\[Beta]", "2"]}]}]}], ",",
+ RowBox[{"q111", "->",
+ RowBox[{"q11d", "-",
+ RowBox[{"y11", "/", "\[Beta]"}], "-",
+ RowBox[{"z111", "/",
+ SuperscriptBox["\[Beta]", "2"]}]}]}], ",",
+ RowBox[{"q11d0", "->",
+ RowBox[{"q11d", "-", " ",
+ RowBox[{"y11d", "/", "\[Beta]"}], "-", " ",
+ RowBox[{"z11d0", "/",
+ SuperscriptBox["\[Beta]", "2"]}]}]}], ",",
+ RowBox[{"q11d1", "->",
+ RowBox[{"q11d", "-", " ",
+ RowBox[{"y11d", "/", "\[Beta]"}], "-", " ",
+ RowBox[{"z11d1", "/",
+ SuperscriptBox["\[Beta]", "2"]}]}]}], ",",
+ RowBox[{"q220", "->",
+ RowBox[{"q22d", "-",
+ RowBox[{"y22", "/", "\[Beta]"}], "-",
+ RowBox[{"z220", "/",
+ SuperscriptBox["\[Beta]", "2"]}]}]}], ",",
+ RowBox[{"q221", "->",
+ RowBox[{"q22d", "-",
+ RowBox[{"y22", "/", "\[Beta]"}], "-",
+ RowBox[{"z221", "/",
+ SuperscriptBox["\[Beta]", "2"]}]}]}], ",",
+ RowBox[{"q22d", "->",
+ RowBox[{"1", "-", "q11d"}]}]}], "}"}]}], ";"}]], "Input",
+ CellChangeTimes->{{3.905861542929487*^9, 3.905861546187963*^9}, {
+ 3.9058616088771887`*^9, 3.905861619740603*^9}, {3.9058616556854*^9,
+ 3.905861699276464*^9}, {3.905861855312809*^9, 3.905861857476181*^9}, {
+ 3.905912367239668*^9, 3.905912369548286*^9}, {3.905912613884484*^9,
+ 3.905912616896575*^9}, {3.90591332909175*^9, 3.9059133499069*^9}, {
+ 3.905913476003109*^9, 3.905913478780634*^9}, 3.905913510172113*^9, {
+ 3.905913658453998*^9, 3.905913661681223*^9}, {3.905918897671769*^9,
+ 3.905918933808075*^9}, {3.9059194397219048`*^9, 3.905919487154225*^9}, {
+ 3.905919971332117*^9, 3.905919981516094*^9}, {3.905921624987239*^9,
+ 3.905921647467622*^9}, {3.905921807702829*^9, 3.905921811630349*^9}, {
+ 3.905922272815454*^9, 3.9059222846000423`*^9}, {3.905931570960396*^9,
+ 3.905931578736177*^9}, {3.905931954887074*^9, 3.905931975071704*^9}, {
+ 3.906014772838179*^9, 3.90601477479656*^9}, {3.906014805045081*^9,
+ 3.906014807781166*^9}, {3.906014900111161*^9, 3.906014903118968*^9}, {
+ 3.906015113442898*^9, 3.906015153147285*^9}, {3.906016827027356*^9,
+ 3.906016885852555*^9}, 3.906187789048245*^9, {3.906189215794698*^9,
+ 3.906189222514817*^9}, {3.90619067192666*^9, 3.906190680838689*^9}},
+ CellLabel->"In[57]:=",ExpressionUUID->"b1a9bc1c-abed-43f0-a0e6-669043a8612a"],
+
+Cell[CellGroupData[{
+
+Cell[BoxData[
+ RowBox[{"e3", "=",
+ RowBox[{
+ RowBox[{"Limit", "[",
+ RowBox[{
+ RowBox[{
+ RowBox[{"e2", "/.",
+ RowBox[{"{",
+ RowBox[{
+ RowBox[{"q22d0", "->",
+ RowBox[{"1", "-", "q11d0"}]}], ",",
+ RowBox[{"q22d1", "->",
+ RowBox[{"1", "-", "q11d1"}]}]}], "}"}]}], "//.", "rules"}], ",",
+ RowBox[{"\[Beta]", "->", "\[Infinity]"}]}], "]"}], "//",
+ "Simplify"}]}]], "Input",
+ CellChangeTimes->{{3.916298569082382*^9, 3.9162985829299507`*^9},
+ 3.916298817983197*^9, {3.916298915120405*^9, 3.916298916200206*^9}, {
+ 3.916300766923294*^9, 3.916300771427061*^9}, {3.9163041453558598`*^9,
+ 3.9163041673552217`*^9}, {3.9163042081327744`*^9, 3.916304243700819*^9}, {
+ 3.916304301534183*^9, 3.916304302949992*^9}, {3.916306091096696*^9,
+ 3.916306093975955*^9}},
+ CellLabel->
+ "In[147]:=",ExpressionUUID->"d0e2a3ad-c754-4c6f-892c-e1eb7382819e"],
+
+Cell[BoxData[
+ TemplateBox[{
+ RowBox[{
+ RowBox[{"q11d", " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{
+ RowBox[{"-", "4"}], " ", "z110"}], "+",
+ RowBox[{"4", " ", "z111"}], "+",
+ RowBox[{"2", " ", "z11d0"}], "-",
+ RowBox[{"2", " ", "z11d1"}], "-",
+ RowBox[{"4", " ", "y11", " ", "\[Lambda]"}], "+",
+ RowBox[{"4", " ", "y11d", " ", "\[Lambda]"}], "+",
+ RowBox[{"q11d", " ",
+ SuperscriptBox["\[Lambda]", "2"]}]}], ")"}], " ",
+ SuperscriptBox["\[Sigma]1", "2"]}], "+",
+ RowBox[{
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"2", " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"-", "1"}], "+", "q11d"}], ")"}], " ", "z110"}], "-",
+ RowBox[{"2", " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"-", "1"}], "+", "q11d"}], ")"}], " ", "z111"}], "+",
+ "z11d0", "-",
+ RowBox[{"2", " ", "q11d", " ", "z11d0"}], "-", "z11d1", "+",
+ RowBox[{"2", " ", "q11d", " ", "z11d1"}], "-",
+ RowBox[{"2", " ", "q11d", " ", "z220"}], "+",
+ RowBox[{"2", " ", "q11d", " ", "z221"}], "-",
+ RowBox[{"2", " ", "y11", " ", "\[Lambda]"}], "+",
+ RowBox[{"2", " ", "q11d", " ", "y11", " ", "\[Lambda]"}], "+",
+ RowBox[{"2", " ", "y11d", " ", "\[Lambda]"}], "-",
+ RowBox[{"4", " ", "q11d", " ", "y11d", " ", "\[Lambda]"}], "-",
+ RowBox[{"2", " ", "q11d", " ", "y22", " ", "\[Lambda]"}], "+",
+ RowBox[{"q11d", " ",
+ SuperscriptBox["\[Lambda]", "2"]}], "-",
+ RowBox[{
+ SuperscriptBox["q11d", "2"], " ",
+ SuperscriptBox["\[Lambda]", "2"]}]}], ")"}], " ",
+ SuperscriptBox["\[Sigma]12", "2"]}], "+",
+ RowBox[{
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"-", "1"}], "+", "q11d"}], ")"}], " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"2", " ", "z11d0"}], "-",
+ RowBox[{"2", " ", "z11d1"}], "+",
+ RowBox[{"4", " ", "z220"}], "-",
+ RowBox[{"4", " ", "z221"}], "+",
+ RowBox[{"4", " ", "y11d", " ", "\[Lambda]"}], "+",
+ RowBox[{"4", " ", "y22", " ", "\[Lambda]"}], "-",
+ SuperscriptBox["\[Lambda]", "2"], "+",
+ RowBox[{"q11d", " ",
+ SuperscriptBox["\[Lambda]", "2"]}]}], ")"}], " ",
+ SuperscriptBox["\[Sigma]2", "2"]}], "+",
+ RowBox[{"\[Lambda]", " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"q11d", " ",
+ RowBox[{"(",
+ RowBox[{"\[Omega]1", "-", "\[Omega]2"}], ")"}]}], "+",
+ "\[Omega]2"}], ")"}]}], "+",
+ RowBox[{
+ FractionBox["1", "2"], " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{
+ RowBox[{"-", "2"}], " ",
+ RowBox[{"Log", "[",
+ RowBox[{
+ RowBox[{"(",
+ RowBox[{"y11", "-", "y11d"}], ")"}], " ",
+ RowBox[{"(",
+ RowBox[{"y11d", "+", "y22"}], ")"}]}], "]"}]}], "+",
+ RowBox[{"Log", "[",
+ RowBox[{
+ SuperscriptBox["y11", "2"], "-",
+ RowBox[{"2", " ", "y11", " ", "y11d"}], "+",
+ SuperscriptBox["y11d", "2"], "+",
+ RowBox[{"q11d", " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"2", " ", "z110"}], "-",
+ RowBox[{"2", " ", "z111"}], "-", "z11d0", "+", "z11d1"}],
+ ")"}]}]}], "]"}], "+",
+ RowBox[{"Log", "[",
+ RowBox[{
+ SuperscriptBox["y11d", "2"], "+",
+ RowBox[{"2", " ", "y11d", " ", "y22"}], "+",
+ SuperscriptBox["y22", "2"], "-",
+ RowBox[{
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"-", "1"}], "+", "q11d"}], ")"}], " ",
+ RowBox[{"(",
+ RowBox[{"z11d0", "-", "z11d1", "+",
+ RowBox[{"2", " ", "z220"}], "-",
+ RowBox[{"2", " ", "z221"}]}], ")"}]}]}], "]"}]}],
+ ")"}]}]}],
+ InterpretationBox[
+ DynamicModuleBox[{Typeset`open = False},
+ TemplateBox[{"Expression",
+ StyleBox[
+ TagBox[
+ TooltipBox["\"condition\"",
+ TagBox[
+ RowBox[{
+ RowBox[{
+ RowBox[{"(",
+ RowBox[{"\[Lambda]", "|",
+ SuperscriptBox["\[Sigma]1", "2"], "|",
+ SuperscriptBox["\[Sigma]12", "2"], "|",
+ SuperscriptBox["\[Sigma]2", "2"], "|",
+ RowBox[{"\[Omega]1", "-", "\[Omega]2"}], "|",
+ "\[Omega]2"}], ")"}], "\[Element]",
+ TemplateBox[{}, "Reals"]}], "&&",
+ RowBox[{
+ RowBox[{
+ RowBox[{"(",
+ RowBox[{"y11", "-", "y11d"}], ")"}], " ",
+ RowBox[{"(",
+ RowBox[{"y11d", "+", "y22"}], ")"}]}], ">", "0"}], "&&",
+ RowBox[{
+ RowBox[{
+ SuperscriptBox["y11", "2"], "+",
+ SuperscriptBox["y11d", "2"], "+",
+ RowBox[{"2", " ", "q11d", " ", "z110"}], "+",
+ RowBox[{"q11d", " ", "z11d1"}]}], ">",
+ RowBox[{
+ RowBox[{"2", " ", "y11", " ", "y11d"}], "+",
+ RowBox[{"2", " ", "q11d", " ", "z111"}], "+",
+ RowBox[{"q11d", " ", "z11d0"}]}]}], "&&",
+ RowBox[{
+ RowBox[{
+ RowBox[{"q11d", " ", "z11d0"}], "+", "z11d1", "+",
+ RowBox[{"2", " ", "q11d", " ", "z220"}], "+",
+ RowBox[{"2", " ", "z221"}]}], "<",
+ RowBox[{
+ SuperscriptBox["y11d", "2"], "+",
+ RowBox[{"2", " ", "y11d", " ", "y22"}], "+",
+ SuperscriptBox["y22", "2"], "+", "z11d0", "+",
+ RowBox[{"q11d", " ", "z11d1"}], "+",
+ RowBox[{"2", " ", "z220"}], "+",
+ RowBox[{"2", " ", "q11d", " ", "z221"}]}]}]}],
+ Short[#, 7]& ]], Annotation[#,
+ Short[
+ And[
+ Element[
+
+ Alternatives[$CellContext`\[Lambda], $CellContext`\[Sigma]1^2, \
+$CellContext`\[Sigma]12^2, $CellContext`\[Sigma]2^2, $CellContext`\[Omega]1 - \
+$CellContext`\[Omega]2, $CellContext`\[Omega]2],
+ Reals], ($CellContext`y11 - $CellContext`y11d) \
+($CellContext`y11d + $CellContext`y22) >
+ 0, $CellContext`y11^2 + $CellContext`y11d^2 +
+ 2 $CellContext`q11d $CellContext`z110 + $CellContext`q11d \
+$CellContext`z11d1 >
+ 2 $CellContext`y11 $CellContext`y11d +
+ 2 $CellContext`q11d $CellContext`z111 + $CellContext`q11d \
+$CellContext`z11d0, $CellContext`q11d $CellContext`z11d0 + $CellContext`z11d1 +
+ 2 $CellContext`q11d $CellContext`z220 +
+ 2 $CellContext`z221 < $CellContext`y11d^2 +
+ 2 $CellContext`y11d $CellContext`y22 + $CellContext`y22^2 + \
+$CellContext`z11d0 + $CellContext`q11d $CellContext`z11d1 +
+ 2 $CellContext`z220 + 2 $CellContext`q11d $CellContext`z221], 7],
+ "Tooltip"]& ], "IconizedCustomName", StripOnInput -> False],
+ GridBox[{{
+ RowBox[{
+ TagBox["\"Head: \"", "IconizedLabel"], "\[InvisibleSpace]",
+ TagBox["And", "IconizedItem"]}]}, {
+ RowBox[{
+ TagBox["\"Byte count: \"", "IconizedLabel"], "\[InvisibleSpace]",
+
+ TagBox["2424", "IconizedItem"]}]}},
+ GridBoxAlignment -> {"Columns" -> {{Left}}}, DefaultBaseStyle ->
+ "Column",
+ GridBoxItemSize -> {
+ "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}],
+ Dynamic[Typeset`open]}, "IconizedObject"]],
+ And[
+ Element[
+ Alternatives[$CellContext`\[Lambda], $CellContext`\[Sigma]1^2, \
+$CellContext`\[Sigma]12^2, $CellContext`\[Sigma]2^2, $CellContext`\[Omega]1 - \
+$CellContext`\[Omega]2, $CellContext`\[Omega]2],
+ Reals], ($CellContext`y11 - $CellContext`y11d) ($CellContext`y11d + \
+$CellContext`y22) >
+ 0, $CellContext`y11^2 + $CellContext`y11d^2 +
+ 2 $CellContext`q11d $CellContext`z110 + $CellContext`q11d \
+$CellContext`z11d1 >
+ 2 $CellContext`y11 $CellContext`y11d +
+ 2 $CellContext`q11d $CellContext`z111 + $CellContext`q11d \
+$CellContext`z11d0, $CellContext`q11d $CellContext`z11d0 + $CellContext`z11d1 +
+ 2 $CellContext`q11d $CellContext`z220 +
+ 2 $CellContext`z221 < $CellContext`y11d^2 +
+ 2 $CellContext`y11d $CellContext`y22 + $CellContext`y22^2 + \
+$CellContext`z11d0 + $CellContext`q11d $CellContext`z11d1 +
+ 2 $CellContext`z220 + 2 $CellContext`q11d $CellContext`z221],
+ SelectWithContents -> True, Selectable -> False]},
+ "ConditionalExpression"]], "Output",
+ CellChangeTimes->{{3.91629857167759*^9, 3.916298576072043*^9},
+ 3.9162986288507338`*^9, 3.916298913386046*^9, 3.916299048042665*^9,
+ 3.916300980766387*^9, {3.916304148260252*^9, 3.916304167644823*^9}, {
+ 3.916304209025281*^9, 3.916304244193405*^9}, 3.916304303361568*^9,
+ 3.916306100930346*^9},
+ CellLabel->
+ "Out[147]=",ExpressionUUID->"2ab0480a-d3ff-4a97-b7ed-5c8b82ae738f"]
+}, Open ]],
+
+Cell[CellGroupData[{
+
+Cell[BoxData[
+ RowBox[{"e4", "=",
+ RowBox[{
+ RowBox[{
+ RowBox[{"Simplify", "[",
+ RowBox[{
+ RowBox[{"Normal", "@", "e3"}], ",",
+ RowBox[{"Assumptions", "->",
+ RowBox[{"{",
+ RowBox[{
+ RowBox[{
+ RowBox[{
+ RowBox[{"2", " ", "y111"}], "-", "y11d0", "-", "y11d1"}], ">",
+ "0"}], ",",
+ RowBox[{
+ RowBox[{"y11d0", "+", "y11d1", "+",
+ RowBox[{"2", " ", "y221"}]}], ">", "0"}]}], "}"}]}]}], "]"}], "//.",
+ RowBox[{"{",
+ RowBox[{
+ RowBox[{
+ RowBox[{
+ RowBox[{"a_", " ",
+ RowBox[{"Log", "[", "x_", "]"}]}], "+",
+ RowBox[{"b_", " ",
+ RowBox[{"Log", "[", "y_", "]"}]}]}], ":>",
+ RowBox[{"Log", "[",
+ RowBox[{
+ SuperscriptBox["x", "a"],
+ SuperscriptBox["y", "b"]}], "]"}]}], ",",
+ RowBox[{
+ RowBox[{
+ RowBox[{"Log", "[", "x_", "]"}], "+",
+ RowBox[{"Log", "[", "y_", "]"}]}], ":>",
+ RowBox[{"Log", "[",
+ RowBox[{"x", " ", "y"}], "]"}]}], ",",
+ RowBox[{
+ RowBox[{
+ RowBox[{"a_", " ",
+ RowBox[{"Log", "[", "x_", "]"}]}], "+",
+ RowBox[{"Log", "[", "y_", "]"}]}], ":>",
+ RowBox[{"Log", "[",
+ RowBox[{
+ SuperscriptBox["x", "a"], "y"}], "]"}]}]}], "}"}]}], "//",
+ "FullSimplify"}]}]], "Input",
+ CellChangeTimes->{{3.9163061144090433`*^9, 3.916306128800597*^9}, {
+ 3.916306171306858*^9, 3.916306176994102*^9}},
+ CellLabel->
+ "In[149]:=",ExpressionUUID->"bb7b14e3-b7dc-4aab-b889-d2be5f9e5ca1"],
+
+Cell[BoxData[
+ RowBox[{
+ RowBox[{"q11d", " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{
+ RowBox[{"-", "4"}], " ", "z110"}], "+",
+ RowBox[{"4", " ", "z111"}], "+",
+ RowBox[{"2", " ", "z11d0"}], "-",
+ RowBox[{"2", " ", "z11d1"}], "+",
+ RowBox[{"\[Lambda]", " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{
+ RowBox[{"-", "4"}], " ", "y11"}], "+",
+ RowBox[{"4", " ", "y11d"}], "+",
+ RowBox[{"q11d", " ", "\[Lambda]"}]}], ")"}]}]}], ")"}], " ",
+ SuperscriptBox["\[Sigma]1", "2"]}], "+",
+ RowBox[{
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"2", " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"-", "1"}], "+", "q11d"}], ")"}], " ", "z110"}], "+",
+ RowBox[{"2", " ", "z111"}], "+", "z11d0", "-", "z11d1", "-",
+ RowBox[{"2", " ", "q11d", " ",
+ RowBox[{"(",
+ RowBox[{"z111", "+", "z11d0", "-", "z11d1", "+", "z220", "-", "z221"}],
+ ")"}]}], "-",
+ RowBox[{"2", " ", "y11", " ", "\[Lambda]"}], "+",
+ RowBox[{"2", " ",
+ RowBox[{"(",
+ RowBox[{"y11d", "+",
+ RowBox[{"q11d", " ",
+ RowBox[{"(",
+ RowBox[{"y11", "-",
+ RowBox[{"2", " ", "y11d"}], "-", "y22"}], ")"}]}]}], ")"}], " ",
+ "\[Lambda]"}], "-",
+ RowBox[{
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"-", "1"}], "+", "q11d"}], ")"}], " ", "q11d", " ",
+ SuperscriptBox["\[Lambda]", "2"]}]}], ")"}], " ",
+ SuperscriptBox["\[Sigma]12", "2"]}], "+",
+ RowBox[{
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"-", "1"}], "+", "q11d"}], ")"}], " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"2", " ", "z11d0"}], "-",
+ RowBox[{"2", " ", "z11d1"}], "+",
+ RowBox[{"4", " ", "z220"}], "-",
+ RowBox[{"4", " ", "z221"}], "+",
+ RowBox[{"4", " ",
+ RowBox[{"(",
+ RowBox[{"y11d", "+", "y22"}], ")"}], " ", "\[Lambda]"}], "+",
+ RowBox[{
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"-", "1"}], "+", "q11d"}], ")"}], " ",
+ SuperscriptBox["\[Lambda]", "2"]}]}], ")"}], " ",
+ SuperscriptBox["\[Sigma]2", "2"]}], "+",
+ RowBox[{"\[Lambda]", " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"q11d", " ",
+ RowBox[{"(",
+ RowBox[{"\[Omega]1", "-", "\[Omega]2"}], ")"}]}], "+", "\[Omega]2"}],
+ ")"}]}], "+",
+ RowBox[{
+ FractionBox["1", "2"], " ",
+ RowBox[{"Log", "[",
+ FractionBox[
+ RowBox[{
+ RowBox[{"(",
+ RowBox[{
+ SuperscriptBox[
+ RowBox[{"(",
+ RowBox[{"y11", "-", "y11d"}], ")"}], "2"], "+",
+ RowBox[{"q11d", " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"2", " ", "z110"}], "-",
+ RowBox[{"2", " ", "z111"}], "-", "z11d0", "+", "z11d1"}],
+ ")"}]}]}], ")"}], " ",
+ RowBox[{"(",
+ RowBox[{
+ SuperscriptBox[
+ RowBox[{"(",
+ RowBox[{"y11d", "+", "y22"}], ")"}], "2"], "-",
+ RowBox[{
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"-", "1"}], "+", "q11d"}], ")"}], " ",
+ RowBox[{"(",
+ RowBox[{"z11d0", "-", "z11d1", "+",
+ RowBox[{"2", " ", "z220"}], "-",
+ RowBox[{"2", " ", "z221"}]}], ")"}]}]}], ")"}]}],
+ RowBox[{
+ SuperscriptBox[
+ RowBox[{"(",
+ RowBox[{"y11", "-", "y11d"}], ")"}], "2"], " ",
+ SuperscriptBox[
+ RowBox[{"(",
+ RowBox[{"y11d", "+", "y22"}], ")"}], "2"]}]], "]"}]}]}]], "Output",
+ CellChangeTimes->{3.916306129445941*^9, 3.916306177534773*^9},
+ CellLabel->
+ "Out[149]=",ExpressionUUID->"dc4be792-83a9-4fbe-af25-cb419d9bd7f5"]
+}, Open ]],
+
+Cell[CellGroupData[{
+
+Cell[BoxData[
+ RowBox[{"e4b", "=",
+ RowBox[{"Simplify", "[",
+ RowBox[{"Expand", "[",
+ RowBox[{"e4", "/.",
+ RowBox[{"{",
+ RowBox[{
+ RowBox[{"z221", "->",
+ RowBox[{"\[CapitalDelta]z22", "+", "z220"}]}], ",",
+ RowBox[{"z111", "->",
+ RowBox[{"\[CapitalDelta]z11", "+", "z110"}]}], ",",
+ RowBox[{"z11d1", "->",
+ RowBox[{"\[CapitalDelta]z11d", "+", "z11d0"}]}]}], "}"}]}], "]"}],
+ "]"}]}]], "Input",
+ CellChangeTimes->{{3.9163074389935617`*^9, 3.916307451689497*^9}, {
+ 3.916307529018978*^9, 3.9163075884521923`*^9}, {3.916307619718061*^9,
+ 3.916307627004951*^9}},
+ CellLabel->
+ "In[190]:=",ExpressionUUID->"e749859b-f1bb-4500-b28b-6db621a38217"],
+
+Cell[BoxData[
+ RowBox[{
+ RowBox[{"2", " ", "\[CapitalDelta]z11", " ",
+ SuperscriptBox["\[Sigma]12", "2"]}], "-",
+ RowBox[{"\[CapitalDelta]z11d", " ",
+ SuperscriptBox["\[Sigma]12", "2"]}], "-",
+ RowBox[{"2", " ", "y11", " ", "\[Lambda]", " ",
+ SuperscriptBox["\[Sigma]12", "2"]}], "+",
+ RowBox[{"2", " ", "y11d", " ", "\[Lambda]", " ",
+ SuperscriptBox["\[Sigma]12", "2"]}], "+",
+ RowBox[{"2", " ", "\[CapitalDelta]z11d", " ",
+ SuperscriptBox["\[Sigma]2", "2"]}], "+",
+ RowBox[{"4", " ", "\[CapitalDelta]z22", " ",
+ SuperscriptBox["\[Sigma]2", "2"]}], "-",
+ RowBox[{"4", " ", "y11d", " ", "\[Lambda]", " ",
+ SuperscriptBox["\[Sigma]2", "2"]}], "-",
+ RowBox[{"4", " ", "y22", " ", "\[Lambda]", " ",
+ SuperscriptBox["\[Sigma]2", "2"]}], "+",
+ RowBox[{
+ SuperscriptBox["\[Lambda]", "2"], " ",
+ SuperscriptBox["\[Sigma]2", "2"]}], "+",
+ RowBox[{
+ SuperscriptBox["q11d", "2"], " ",
+ SuperscriptBox["\[Lambda]", "2"], " ",
+ RowBox[{"(",
+ RowBox[{
+ SuperscriptBox["\[Sigma]1", "2"], "-",
+ SuperscriptBox["\[Sigma]12", "2"], "+",
+ SuperscriptBox["\[Sigma]2", "2"]}], ")"}]}], "+",
+ RowBox[{"\[Lambda]", " ", "\[Omega]2"}], "+",
+ RowBox[{"q11d", " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{
+ RowBox[{"-", "4"}], " ", "y11", " ", "\[Lambda]", " ",
+ SuperscriptBox["\[Sigma]1", "2"]}], "+",
+ RowBox[{"4", " ", "y11d", " ", "\[Lambda]", " ",
+ SuperscriptBox["\[Sigma]1", "2"]}], "+",
+ RowBox[{"2", " ", "\[CapitalDelta]z22", " ",
+ SuperscriptBox["\[Sigma]12", "2"]}], "+",
+ RowBox[{"2", " ", "y11", " ", "\[Lambda]", " ",
+ SuperscriptBox["\[Sigma]12", "2"]}], "-",
+ RowBox[{"4", " ", "y11d", " ", "\[Lambda]", " ",
+ SuperscriptBox["\[Sigma]12", "2"]}], "-",
+ RowBox[{"2", " ", "y22", " ", "\[Lambda]", " ",
+ SuperscriptBox["\[Sigma]12", "2"]}], "+",
+ RowBox[{
+ SuperscriptBox["\[Lambda]", "2"], " ",
+ SuperscriptBox["\[Sigma]12", "2"]}], "+",
+ RowBox[{"\[CapitalDelta]z11", " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"4", " ",
+ SuperscriptBox["\[Sigma]1", "2"]}], "-",
+ RowBox[{"2", " ",
+ SuperscriptBox["\[Sigma]12", "2"]}]}], ")"}]}], "-",
+ RowBox[{"4", " ", "\[CapitalDelta]z22", " ",
+ SuperscriptBox["\[Sigma]2", "2"]}], "+",
+ RowBox[{"4", " ", "y11d", " ", "\[Lambda]", " ",
+ SuperscriptBox["\[Sigma]2", "2"]}], "+",
+ RowBox[{"4", " ", "y22", " ", "\[Lambda]", " ",
+ SuperscriptBox["\[Sigma]2", "2"]}], "-",
+ RowBox[{"2", " ",
+ SuperscriptBox["\[Lambda]", "2"], " ",
+ SuperscriptBox["\[Sigma]2", "2"]}], "-",
+ RowBox[{"2", " ", "\[CapitalDelta]z11d", " ",
+ RowBox[{"(",
+ RowBox[{
+ SuperscriptBox["\[Sigma]1", "2"], "-",
+ SuperscriptBox["\[Sigma]12", "2"], "+",
+ SuperscriptBox["\[Sigma]2", "2"]}], ")"}]}], "+",
+ RowBox[{"\[Lambda]", " ", "\[Omega]1"}], "-",
+ RowBox[{"\[Lambda]", " ", "\[Omega]2"}]}], ")"}]}], "+",
+ RowBox[{
+ FractionBox["1", "2"], " ",
+ RowBox[{"Log", "[",
+ FractionBox[
+ RowBox[{
+ RowBox[{"(",
+ RowBox[{
+ SuperscriptBox["y11", "2"], "-",
+ RowBox[{"2", " ", "y11", " ", "y11d"}], "+",
+ SuperscriptBox["y11d", "2"], "+",
+ RowBox[{"q11d", " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{
+ RowBox[{"-", "2"}], " ", "\[CapitalDelta]z11"}], "+",
+ "\[CapitalDelta]z11d"}], ")"}]}]}], ")"}], " ",
+ RowBox[{"(",
+ RowBox[{
+ SuperscriptBox["y11d", "2"], "+",
+ RowBox[{"2", " ", "y11d", " ", "y22"}], "+",
+ SuperscriptBox["y22", "2"], "+",
+ RowBox[{
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"-", "1"}], "+", "q11d"}], ")"}], " ",
+ RowBox[{"(",
+ RowBox[{"\[CapitalDelta]z11d", "+",
+ RowBox[{"2", " ", "\[CapitalDelta]z22"}]}], ")"}]}]}], ")"}]}],
+ RowBox[{
+ SuperscriptBox[
+ RowBox[{"(",
+ RowBox[{"y11", "-", "y11d"}], ")"}], "2"], " ",
+ SuperscriptBox[
+ RowBox[{"(",
+ RowBox[{"y11d", "+", "y22"}], ")"}], "2"]}]], "]"}]}]}]], "Output",
+ CellChangeTimes->{
+ 3.916307451989723*^9, {3.916307534293832*^9, 3.916307556879973*^9},
+ 3.9163075887662687`*^9, 3.91630762725112*^9},
+ CellLabel->
+ "Out[190]=",ExpressionUUID->"d7d109d7-3932-47b3-bf98-64b81ad6ca17"]
+}, Open ]],
+
+Cell[CellGroupData[{
+
+Cell[BoxData[
+ RowBox[{"vars", "=",
+ RowBox[{"DeleteCases", "[",
+ RowBox[{
+ RowBox[{"DeleteDuplicates", "[",
+ RowBox[{"Cases", "[",
+ RowBox[{"e4b", ",", "_Symbol", ",", "\[Infinity]"}], "]"}], "]"}], ",",
+
+ RowBox[{
+ "\[Sigma]1", "|", "\[Sigma]2", "|", "\[Sigma]12", "|", "\[Omega]1", "|",
+ "\[Omega]2"}]}], "]"}]}]], "Input",
+ CellChangeTimes->{{3.91630645323995*^9, 3.916306518055871*^9}, {
+ 3.916306548840878*^9, 3.916306571632999*^9}, {3.916306682771284*^9,
+ 3.9163066847951736`*^9}, 3.9163076714139023`*^9},
+ CellLabel->
+ "In[192]:=",ExpressionUUID->"1e958760-e7cd-4052-b9b9-908474376dba"],
+
+Cell[BoxData[
+ RowBox[{"{",
+ RowBox[{
+ "\[CapitalDelta]z11", ",", "\[CapitalDelta]z11d", ",", "y11", ",",
+ "\[Lambda]", ",", "y11d", ",", "\[CapitalDelta]z22", ",", "y22", ",",
+ "q11d"}], "}"}]], "Output",
+ CellChangeTimes->{{3.916306476040718*^9, 3.916306487378581*^9},
+ 3.9163065182673597`*^9, {3.916306549895364*^9, 3.916306571833789*^9},
+ 3.9163066850931463`*^9, 3.9163076715873632`*^9},
+ CellLabel->
+ "Out[192]=",ExpressionUUID->"2ad54e2e-1894-4c5a-b49c-69dc3d8f2778"]
+}, Open ]],
+
+Cell[CellGroupData[{
+
+Cell[BoxData[
+ RowBox[{"e5", "=",
+ RowBox[{"FullSimplify", "[",
+ RowBox[{"D", "[",
+ RowBox[{"e4b", ",",
+ RowBox[{"{", "vars", "}"}]}], "]"}], "]"}]}]], "Input",
+ CellChangeTimes->{{3.916306182930187*^9, 3.9163061983138933`*^9}, {
+ 3.9163062341868353`*^9, 3.916306245274665*^9}, {3.916306276772037*^9,
+ 3.916306302339899*^9}, {3.91630637323778*^9, 3.916306443895063*^9}, {
+ 3.9163065541449223`*^9, 3.9163065620247793`*^9}, {3.916306598561689*^9,
+ 3.916306617305822*^9}, {3.9163066786830597`*^9, 3.9163066797629766`*^9}, {
+ 3.91630743178557*^9, 3.916307437233692*^9}, {3.91630767551791*^9,
+ 3.916307676174046*^9}},
+ CellLabel->
+ "In[193]:=",ExpressionUUID->"e3e9458f-95e8-4772-8a74-726345ff1051"],
+
+Cell[BoxData[
+ RowBox[{"{",
+ RowBox[{
+ RowBox[{
+ RowBox[{"2", " ",
+ SuperscriptBox["\[Sigma]12", "2"]}], "+",
+ RowBox[{"q11d", " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"-",
+ FractionBox["1",
+ RowBox[{
+ SuperscriptBox[
+ RowBox[{"(",
+ RowBox[{"y11", "-", "y11d"}], ")"}], "2"], "+",
+ RowBox[{"q11d", " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{
+ RowBox[{"-", "2"}], " ", "\[CapitalDelta]z11"}], "+",
+ "\[CapitalDelta]z11d"}], ")"}]}]}]]}], "+",
+ RowBox[{"4", " ",
+ SuperscriptBox["\[Sigma]1", "2"]}], "-",
+ RowBox[{"2", " ",
+ SuperscriptBox["\[Sigma]12", "2"]}]}], ")"}]}]}], ",",
+ RowBox[{
+ FractionBox["1", "2"], " ",
+ RowBox[{"(",
+ RowBox[{
+ FractionBox["q11d",
+ RowBox[{
+ SuperscriptBox[
+ RowBox[{"(",
+ RowBox[{"y11", "-", "y11d"}], ")"}], "2"], "+",
+ RowBox[{"q11d", " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{
+ RowBox[{"-", "2"}], " ", "\[CapitalDelta]z11"}], "+",
+ "\[CapitalDelta]z11d"}], ")"}]}]}]], "+",
+ FractionBox[
+ RowBox[{
+ RowBox[{"-", "1"}], "+", "q11d"}],
+ RowBox[{
+ SuperscriptBox[
+ RowBox[{"(",
+ RowBox[{"y11d", "+", "y22"}], ")"}], "2"], "+",
+ RowBox[{
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"-", "1"}], "+", "q11d"}], ")"}], " ",
+ RowBox[{"(",
+ RowBox[{"\[CapitalDelta]z11d", "+",
+ RowBox[{"2", " ", "\[CapitalDelta]z22"}]}], ")"}]}]}]], "-",
+ RowBox[{"2", " ",
+ SuperscriptBox["\[Sigma]12", "2"]}], "+",
+ RowBox[{"4", " ",
+ SuperscriptBox["\[Sigma]2", "2"]}], "-",
+ RowBox[{"4", " ", "q11d", " ",
+ RowBox[{"(",
+ RowBox[{
+ SuperscriptBox["\[Sigma]1", "2"], "-",
+ SuperscriptBox["\[Sigma]12", "2"], "+",
+ SuperscriptBox["\[Sigma]2", "2"]}], ")"}]}]}], ")"}]}], ",",
+ FractionBox[
+ RowBox[{
+ RowBox[{
+ RowBox[{"-", "2"}], " ",
+ SuperscriptBox[
+ RowBox[{"(",
+ RowBox[{"y11", "-", "y11d"}], ")"}], "3"], " ", "\[Lambda]", " ",
+ SuperscriptBox["\[Sigma]12", "2"]}], "+",
+ RowBox[{"2", " ",
+ SuperscriptBox["q11d", "2"], " ",
+ RowBox[{"(",
+ RowBox[{"y11", "-", "y11d"}], ")"}], " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"2", " ", "\[CapitalDelta]z11"}], "-",
+ "\[CapitalDelta]z11d"}], ")"}], " ", "\[Lambda]", " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"2", " ",
+ SuperscriptBox["\[Sigma]1", "2"]}], "-",
+ SuperscriptBox["\[Sigma]12", "2"]}], ")"}]}], "+",
+ RowBox[{"q11d", " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"-", "\[CapitalDelta]z11d"}], "-",
+ RowBox[{"2", " ",
+ SuperscriptBox[
+ RowBox[{"(",
+ RowBox[{"y11", "-", "y11d"}], ")"}], "3"], " ", "\[Lambda]", " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"2", " ",
+ SuperscriptBox["\[Sigma]1", "2"]}], "-",
+ SuperscriptBox["\[Sigma]12", "2"]}], ")"}]}], "+",
+ RowBox[{"2", " ",
+ RowBox[{"(",
+ RowBox[{"\[CapitalDelta]z11", "+",
+ RowBox[{
+ RowBox[{"(",
+ RowBox[{"y11", "-", "y11d"}], ")"}], " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"2", " ", "\[CapitalDelta]z11"}], "-",
+ "\[CapitalDelta]z11d"}], ")"}], " ", "\[Lambda]", " ",
+ SuperscriptBox["\[Sigma]12", "2"]}]}], ")"}]}]}], ")"}]}]}],
+ RowBox[{
+ RowBox[{"(",
+ RowBox[{"y11", "-", "y11d"}], ")"}], " ",
+ RowBox[{"(",
+ RowBox[{
+ SuperscriptBox[
+ RowBox[{"(",
+ RowBox[{"y11", "-", "y11d"}], ")"}], "2"], "+",
+ RowBox[{"q11d", " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{
+ RowBox[{"-", "2"}], " ", "\[CapitalDelta]z11"}], "+",
+ "\[CapitalDelta]z11d"}], ")"}]}]}], ")"}]}]], ",",
+ RowBox[{
+ RowBox[{"2", " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"-", "y11"}], "+", "y11d"}], ")"}], " ",
+ SuperscriptBox["\[Sigma]12", "2"]}], "+",
+ RowBox[{"2", " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{
+ RowBox[{"-", "2"}], " ",
+ RowBox[{"(",
+ RowBox[{"y11d", "+", "y22"}], ")"}]}], "+", "\[Lambda]"}], ")"}],
+ " ",
+ SuperscriptBox["\[Sigma]2", "2"]}], "+",
+ RowBox[{"2", " ",
+ SuperscriptBox["q11d", "2"], " ", "\[Lambda]", " ",
+ RowBox[{"(",
+ RowBox[{
+ SuperscriptBox["\[Sigma]1", "2"], "-",
+ SuperscriptBox["\[Sigma]12", "2"], "+",
+ SuperscriptBox["\[Sigma]2", "2"]}], ")"}]}], "+",
+ RowBox[{"q11d", " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"2", " ", "y11", " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{
+ RowBox[{"-", "2"}], " ",
+ SuperscriptBox["\[Sigma]1", "2"]}], "+",
+ SuperscriptBox["\[Sigma]12", "2"]}], ")"}]}], "-",
+ RowBox[{"2", " ",
+ RowBox[{"(",
+ RowBox[{"y22", "-", "\[Lambda]"}], ")"}], " ",
+ RowBox[{"(",
+ RowBox[{
+ SuperscriptBox["\[Sigma]12", "2"], "-",
+ RowBox[{"2", " ",
+ SuperscriptBox["\[Sigma]2", "2"]}]}], ")"}]}], "+",
+ RowBox[{"4", " ", "y11d", " ",
+ RowBox[{"(",
+ RowBox[{
+ SuperscriptBox["\[Sigma]1", "2"], "-",
+ SuperscriptBox["\[Sigma]12", "2"], "+",
+ SuperscriptBox["\[Sigma]2", "2"]}], ")"}]}], "+", "\[Omega]1", "-",
+ "\[Omega]2"}], ")"}]}], "+", "\[Omega]2"}], ",",
+ RowBox[{
+ FractionBox["1",
+ RowBox[{"y11", "-", "y11d"}]], "-",
+ FractionBox["1",
+ RowBox[{"y11d", "+", "y22"}]], "+",
+ FractionBox[
+ RowBox[{
+ RowBox[{"-", "y11"}], "+", "y11d"}],
+ RowBox[{
+ SuperscriptBox[
+ RowBox[{"(",
+ RowBox[{"y11", "-", "y11d"}], ")"}], "2"], "+",
+ RowBox[{"q11d", " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{
+ RowBox[{"-", "2"}], " ", "\[CapitalDelta]z11"}], "+",
+ "\[CapitalDelta]z11d"}], ")"}]}]}]], "+",
+ FractionBox[
+ RowBox[{"y11d", "+", "y22"}],
+ RowBox[{
+ SuperscriptBox[
+ RowBox[{"(",
+ RowBox[{"y11d", "+", "y22"}], ")"}], "2"], "+",
+ RowBox[{
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"-", "1"}], "+", "q11d"}], ")"}], " ",
+ RowBox[{"(",
+ RowBox[{"\[CapitalDelta]z11d", "+",
+ RowBox[{"2", " ", "\[CapitalDelta]z22"}]}], ")"}]}]}]], "+",
+ RowBox[{"2", " ", "\[Lambda]", " ",
+ RowBox[{"(",
+ RowBox[{
+ SuperscriptBox["\[Sigma]12", "2"], "-",
+ RowBox[{"2", " ",
+ SuperscriptBox["\[Sigma]2", "2"]}], "+",
+ RowBox[{"2", " ", "q11d", " ",
+ RowBox[{"(",
+ RowBox[{
+ SuperscriptBox["\[Sigma]1", "2"], "-",
+ SuperscriptBox["\[Sigma]12", "2"], "+",
+ SuperscriptBox["\[Sigma]2", "2"]}], ")"}]}]}], ")"}]}]}], ",",
+ RowBox[{
+ FractionBox[
+ RowBox[{
+ RowBox[{"-", "1"}], "+", "q11d"}],
+ RowBox[{
+ SuperscriptBox[
+ RowBox[{"(",
+ RowBox[{"y11d", "+", "y22"}], ")"}], "2"], "+",
+ RowBox[{
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"-", "1"}], "+", "q11d"}], ")"}], " ",
+ RowBox[{"(",
+ RowBox[{"\[CapitalDelta]z11d", "+",
+ RowBox[{"2", " ", "\[CapitalDelta]z22"}]}], ")"}]}]}]], "+",
+ RowBox[{"4", " ",
+ SuperscriptBox["\[Sigma]2", "2"]}], "+",
+ RowBox[{"2", " ", "q11d", " ",
+ RowBox[{"(",
+ RowBox[{
+ SuperscriptBox["\[Sigma]12", "2"], "-",
+ RowBox[{"2", " ",
+ SuperscriptBox["\[Sigma]2", "2"]}]}], ")"}]}]}], ",",
+ RowBox[{
+ RowBox[{"-",
+ FractionBox["1",
+ RowBox[{"y11d", "+", "y22"}]]}], "+",
+ FractionBox[
+ RowBox[{"y11d", "+", "y22"}],
+ RowBox[{
+ SuperscriptBox[
+ RowBox[{"(",
+ RowBox[{"y11d", "+", "y22"}], ")"}], "2"], "+",
+ RowBox[{
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"-", "1"}], "+", "q11d"}], ")"}], " ",
+ RowBox[{"(",
+ RowBox[{"\[CapitalDelta]z11d", "+",
+ RowBox[{"2", " ", "\[CapitalDelta]z22"}]}], ")"}]}]}]], "-",
+ RowBox[{"2", " ", "q11d", " ", "\[Lambda]", " ",
+ SuperscriptBox["\[Sigma]12", "2"]}], "+",
+ RowBox[{"4", " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"-", "1"}], "+", "q11d"}], ")"}], " ", "\[Lambda]", " ",
+ SuperscriptBox["\[Sigma]2", "2"]}]}], ",",
+ RowBox[{
+ FractionBox[
+ RowBox[{
+ RowBox[{
+ RowBox[{"-", "2"}], " ", "\[CapitalDelta]z11"}], "+",
+ "\[CapitalDelta]z11d"}],
+ RowBox[{"2", " ",
+ RowBox[{"(",
+ RowBox[{
+ SuperscriptBox[
+ RowBox[{"(",
+ RowBox[{"y11", "-", "y11d"}], ")"}], "2"], "+",
+ RowBox[{"q11d", " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{
+ RowBox[{"-", "2"}], " ", "\[CapitalDelta]z11"}], "+",
+ "\[CapitalDelta]z11d"}], ")"}]}]}], ")"}]}]], "+",
+ FractionBox[
+ RowBox[{"\[CapitalDelta]z11d", "+",
+ RowBox[{"2", " ", "\[CapitalDelta]z22"}]}],
+ RowBox[{"2", " ",
+ RowBox[{"(",
+ RowBox[{
+ SuperscriptBox[
+ RowBox[{"(",
+ RowBox[{"y11d", "+", "y22"}], ")"}], "2"], "+",
+ RowBox[{
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"-", "1"}], "+", "q11d"}], ")"}], " ",
+ RowBox[{"(",
+ RowBox[{"\[CapitalDelta]z11d", "+",
+ RowBox[{"2", " ", "\[CapitalDelta]z22"}]}], ")"}]}]}], ")"}]}]],
+ "-",
+ RowBox[{"4", " ", "y11", " ", "\[Lambda]", " ",
+ SuperscriptBox["\[Sigma]1", "2"]}], "+",
+ RowBox[{"4", " ", "y11d", " ", "\[Lambda]", " ",
+ SuperscriptBox["\[Sigma]1", "2"]}], "+",
+ RowBox[{"2", " ", "\[CapitalDelta]z22", " ",
+ SuperscriptBox["\[Sigma]12", "2"]}], "+",
+ RowBox[{"2", " ", "y11", " ", "\[Lambda]", " ",
+ SuperscriptBox["\[Sigma]12", "2"]}], "-",
+ RowBox[{"4", " ", "y11d", " ", "\[Lambda]", " ",
+ SuperscriptBox["\[Sigma]12", "2"]}], "-",
+ RowBox[{"2", " ", "y22", " ", "\[Lambda]", " ",
+ SuperscriptBox["\[Sigma]12", "2"]}], "+",
+ RowBox[{
+ SuperscriptBox["\[Lambda]", "2"], " ",
+ SuperscriptBox["\[Sigma]12", "2"]}], "+",
+ RowBox[{"\[CapitalDelta]z11", " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"4", " ",
+ SuperscriptBox["\[Sigma]1", "2"]}], "-",
+ RowBox[{"2", " ",
+ SuperscriptBox["\[Sigma]12", "2"]}]}], ")"}]}], "-",
+ RowBox[{"4", " ", "\[CapitalDelta]z22", " ",
+ SuperscriptBox["\[Sigma]2", "2"]}], "+",
+ RowBox[{"4", " ", "y11d", " ", "\[Lambda]", " ",
+ SuperscriptBox["\[Sigma]2", "2"]}], "+",
+ RowBox[{"4", " ", "y22", " ", "\[Lambda]", " ",
+ SuperscriptBox["\[Sigma]2", "2"]}], "-",
+ RowBox[{"2", " ",
+ SuperscriptBox["\[Lambda]", "2"], " ",
+ SuperscriptBox["\[Sigma]2", "2"]}], "-",
+ RowBox[{"2", " ", "\[CapitalDelta]z11d", " ",
+ RowBox[{"(",
+ RowBox[{
+ SuperscriptBox["\[Sigma]1", "2"], "-",
+ SuperscriptBox["\[Sigma]12", "2"], "+",
+ SuperscriptBox["\[Sigma]2", "2"]}], ")"}]}], "+",
+ RowBox[{"2", " ", "q11d", " ",
+ SuperscriptBox["\[Lambda]", "2"], " ",
+ RowBox[{"(",
+ RowBox[{
+ SuperscriptBox["\[Sigma]1", "2"], "-",
+ SuperscriptBox["\[Sigma]12", "2"], "+",
+ SuperscriptBox["\[Sigma]2", "2"]}], ")"}]}], "+",
+ RowBox[{"\[Lambda]", " ", "\[Omega]1"}], "-",
+ RowBox[{"\[Lambda]", " ", "\[Omega]2"}]}]}], "}"}]], "Output",
+ CellChangeTimes->{
+ 3.916306314288726*^9, {3.916306389414822*^9, 3.916306432679513*^9}, {
+ 3.916306554797228*^9, 3.916306572968211*^9}, {3.916306608568012*^9,
+ 3.916306617767157*^9}, 3.9163066877696*^9, 3.916307679688073*^9},
+ CellLabel->
+ "Out[193]=",ExpressionUUID->"365b5ad7-7989-4846-bb39-0e6808cb0ccd"]
+}, Open ]],
+
+Cell[CellGroupData[{
+
+Cell[BoxData[
+ RowBox[{
+ RowBox[{"e6", "=",
+ RowBox[{"Solve", "[",
+ RowBox[{
+ RowBox[{"0", "==", "e5"}], ",", "vars"}], "]"}]}], ";"}]], "Input",
+ CellChangeTimes->{{3.916299357672659*^9, 3.9162993963854647`*^9}, {
+ 3.9162994291231127`*^9, 3.916299436346179*^9}, {3.9162994947078943`*^9,
+ 3.916299497532009*^9}, {3.916300237985333*^9, 3.916300239561335*^9}, {
+ 3.916301093498351*^9, 3.916301096825685*^9}, {3.916301280741534*^9,
+ 3.91630128409282*^9}, {3.916304185548315*^9, 3.916304185643602*^9}, {
+ 3.916306619882201*^9, 3.91630661997779*^9}, {3.916307689094699*^9,
+ 3.9163076903981667`*^9}},
+ CellLabel->
+ "In[195]:=",ExpressionUUID->"13c24c5e-bb61-4d7d-b2bf-3c3997d9edaa"],
+
+Cell[BoxData["$Aborted"], "Output",
+ CellChangeTimes->{3.916307376674399*^9, 3.916307687091338*^9,
+ 3.9163143688834*^9},
+ CellLabel->
+ "Out[195]=",ExpressionUUID->"98447f30-3d37-4177-8919-efee0d8245af"]
+}, Open ]],
+
+Cell[CellGroupData[{
+
+Cell[BoxData["e6"], "Input",
+ CellChangeTimes->{{3.916306622954783*^9, 3.916306623129745*^9}},
+ CellLabel->
+ "In[177]:=",ExpressionUUID->"af6aac65-5a4e-453d-b4b6-17d282a20e18"],
+
+Cell[BoxData[
+ RowBox[{"{",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{
+ RowBox[{"y11", "\[Rule]",
+ FractionBox[
+ RowBox[{
+ RowBox[{"4", " ", "q11d", " ", "y11d", " ",
+ SuperscriptBox["\[Sigma]1", "2"]}], "+",
+ RowBox[{"2", " ", "y11d", " ",
+ SuperscriptBox["\[Sigma]12", "2"]}], "-",
+ RowBox[{"2", " ", "q11d", " ", "y11d", " ",
+ SuperscriptBox["\[Sigma]12", "2"]}], "-",
+ RowBox[{
+ SqrtBox["2"], " ",
+ SqrtBox[
+ RowBox[{
+ RowBox[{"2", " ",
+ SuperscriptBox["q11d", "2"], " ",
+ SuperscriptBox["\[Sigma]1", "2"]}], "+",
+ RowBox[{"q11d", " ",
+ SuperscriptBox["\[Sigma]12", "2"]}], "-",
+ RowBox[{
+ SuperscriptBox["q11d", "2"], " ",
+ SuperscriptBox["\[Sigma]12", "2"]}]}]]}]}],
+ RowBox[{"2", " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"2", " ", "q11d", " ",
+ SuperscriptBox["\[Sigma]1", "2"]}], "+",
+ SuperscriptBox["\[Sigma]12", "2"], "-",
+ RowBox[{"q11d", " ",
+ SuperscriptBox["\[Sigma]12", "2"]}]}], ")"}]}]]}], ",",
+ RowBox[{"y22", "\[Rule]",
+ FractionBox[
+ RowBox[{
+ RowBox[{
+ RowBox[{"-", "2"}], " ", "q11d", " ", "y11d", " ",
+ SuperscriptBox["\[Sigma]12", "2"]}], "-",
+ RowBox[{"4", " ", "y11d", " ",
+ SuperscriptBox["\[Sigma]2", "2"]}], "+",
+ RowBox[{"4", " ", "q11d", " ", "y11d", " ",
+ SuperscriptBox["\[Sigma]2", "2"]}], "-",
+ RowBox[{
+ SqrtBox["2"], " ",
+ SqrtBox[
+ RowBox[{
+ RowBox[{"q11d", " ",
+ SuperscriptBox["\[Sigma]12", "2"]}], "-",
+ RowBox[{
+ SuperscriptBox["q11d", "2"], " ",
+ SuperscriptBox["\[Sigma]12", "2"]}], "+",
+ RowBox[{"2", " ",
+ SuperscriptBox["\[Sigma]2", "2"]}], "-",
+ RowBox[{"4", " ", "q11d", " ",
+ SuperscriptBox["\[Sigma]2", "2"]}], "+",
+ RowBox[{"2", " ",
+ SuperscriptBox["q11d", "2"], " ",
+ SuperscriptBox["\[Sigma]2", "2"]}]}]]}]}],
+ RowBox[{"2", " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"q11d", " ",
+ SuperscriptBox["\[Sigma]12", "2"]}], "+",
+ RowBox[{"2", " ",
+ SuperscriptBox["\[Sigma]2", "2"]}], "-",
+ RowBox[{"2", " ", "q11d", " ",
+ SuperscriptBox["\[Sigma]2", "2"]}]}], ")"}]}]]}], ",",
+ RowBox[{"z111", "\[Rule]",
+ RowBox[{
+ FractionBox["1", "2"], " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"2", " ", "z110"}], "-", "z11d0", "+", "z11d1"}], ")"}]}]}],
+ ",",
+ RowBox[{"z221", "\[Rule]",
+ RowBox[{
+ FractionBox["1", "2"], " ",
+ RowBox[{"(",
+ RowBox[{"z11d0", "-", "z11d1", "+",
+ RowBox[{"2", " ", "z220"}]}], ")"}]}]}]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{
+ RowBox[{"y11", "\[Rule]",
+ FractionBox[
+ RowBox[{
+ RowBox[{"4", " ", "q11d", " ", "y11d", " ",
+ SuperscriptBox["\[Sigma]1", "2"]}], "+",
+ RowBox[{"2", " ", "y11d", " ",
+ SuperscriptBox["\[Sigma]12", "2"]}], "-",
+ RowBox[{"2", " ", "q11d", " ", "y11d", " ",
+ SuperscriptBox["\[Sigma]12", "2"]}], "-",
+ RowBox[{
+ SqrtBox["2"], " ",
+ SqrtBox[
+ RowBox[{
+ RowBox[{"2", " ",
+ SuperscriptBox["q11d", "2"], " ",
+ SuperscriptBox["\[Sigma]1", "2"]}], "+",
+ RowBox[{"q11d", " ",
+ SuperscriptBox["\[Sigma]12", "2"]}], "-",
+ RowBox[{
+ SuperscriptBox["q11d", "2"], " ",
+ SuperscriptBox["\[Sigma]12", "2"]}]}]]}]}],
+ RowBox[{"2", " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"2", " ", "q11d", " ",
+ SuperscriptBox["\[Sigma]1", "2"]}], "+",
+ SuperscriptBox["\[Sigma]12", "2"], "-",
+ RowBox[{"q11d", " ",
+ SuperscriptBox["\[Sigma]12", "2"]}]}], ")"}]}]]}], ",",
+ RowBox[{"y22", "\[Rule]",
+ FractionBox[
+ RowBox[{
+ RowBox[{
+ RowBox[{"-", "2"}], " ", "q11d", " ", "y11d", " ",
+ SuperscriptBox["\[Sigma]12", "2"]}], "-",
+ RowBox[{"4", " ", "y11d", " ",
+ SuperscriptBox["\[Sigma]2", "2"]}], "+",
+ RowBox[{"4", " ", "q11d", " ", "y11d", " ",
+ SuperscriptBox["\[Sigma]2", "2"]}], "+",
+ RowBox[{
+ SqrtBox["2"], " ",
+ SqrtBox[
+ RowBox[{
+ RowBox[{"q11d", " ",
+ SuperscriptBox["\[Sigma]12", "2"]}], "-",
+ RowBox[{
+ SuperscriptBox["q11d", "2"], " ",
+ SuperscriptBox["\[Sigma]12", "2"]}], "+",
+ RowBox[{"2", " ",
+ SuperscriptBox["\[Sigma]2", "2"]}], "-",
+ RowBox[{"4", " ", "q11d", " ",
+ SuperscriptBox["\[Sigma]2", "2"]}], "+",
+ RowBox[{"2", " ",
+ SuperscriptBox["q11d", "2"], " ",
+ SuperscriptBox["\[Sigma]2", "2"]}]}]]}]}],
+ RowBox[{"2", " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"q11d", " ",
+ SuperscriptBox["\[Sigma]12", "2"]}], "+",
+ RowBox[{"2", " ",
+ SuperscriptBox["\[Sigma]2", "2"]}], "-",
+ RowBox[{"2", " ", "q11d", " ",
+ SuperscriptBox["\[Sigma]2", "2"]}]}], ")"}]}]]}], ",",
+ RowBox[{"z111", "\[Rule]",
+ RowBox[{
+ FractionBox["1", "2"], " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"2", " ", "z110"}], "-", "z11d0", "+", "z11d1"}], ")"}]}]}],
+ ",",
+ RowBox[{"z221", "\[Rule]",
+ RowBox[{
+ FractionBox["1", "2"], " ",
+ RowBox[{"(",
+ RowBox[{"z11d0", "-", "z11d1", "+",
+ RowBox[{"2", " ", "z220"}]}], ")"}]}]}]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{
+ RowBox[{"y11", "\[Rule]",
+ FractionBox[
+ RowBox[{
+ RowBox[{"4", " ", "q11d", " ", "y11d", " ",
+ SuperscriptBox["\[Sigma]1", "2"]}], "+",
+ RowBox[{"2", " ", "y11d", " ",
+ SuperscriptBox["\[Sigma]12", "2"]}], "-",
+ RowBox[{"2", " ", "q11d", " ", "y11d", " ",
+ SuperscriptBox["\[Sigma]12", "2"]}], "+",
+ RowBox[{
+ SqrtBox["2"], " ",
+ SqrtBox[
+ RowBox[{
+ RowBox[{"2", " ",
+ SuperscriptBox["q11d", "2"], " ",
+ SuperscriptBox["\[Sigma]1", "2"]}], "+",
+ RowBox[{"q11d", " ",
+ SuperscriptBox["\[Sigma]12", "2"]}], "-",
+ RowBox[{
+ SuperscriptBox["q11d", "2"], " ",
+ SuperscriptBox["\[Sigma]12", "2"]}]}]]}]}],
+ RowBox[{"2", " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"2", " ", "q11d", " ",
+ SuperscriptBox["\[Sigma]1", "2"]}], "+",
+ SuperscriptBox["\[Sigma]12", "2"], "-",
+ RowBox[{"q11d", " ",
+ SuperscriptBox["\[Sigma]12", "2"]}]}], ")"}]}]]}], ",",
+ RowBox[{"y22", "\[Rule]",
+ FractionBox[
+ RowBox[{
+ RowBox[{
+ RowBox[{"-", "2"}], " ", "q11d", " ", "y11d", " ",
+ SuperscriptBox["\[Sigma]12", "2"]}], "-",
+ RowBox[{"4", " ", "y11d", " ",
+ SuperscriptBox["\[Sigma]2", "2"]}], "+",
+ RowBox[{"4", " ", "q11d", " ", "y11d", " ",
+ SuperscriptBox["\[Sigma]2", "2"]}], "-",
+ RowBox[{
+ SqrtBox["2"], " ",
+ SqrtBox[
+ RowBox[{
+ RowBox[{"q11d", " ",
+ SuperscriptBox["\[Sigma]12", "2"]}], "-",
+ RowBox[{
+ SuperscriptBox["q11d", "2"], " ",
+ SuperscriptBox["\[Sigma]12", "2"]}], "+",
+ RowBox[{"2", " ",
+ SuperscriptBox["\[Sigma]2", "2"]}], "-",
+ RowBox[{"4", " ", "q11d", " ",
+ SuperscriptBox["\[Sigma]2", "2"]}], "+",
+ RowBox[{"2", " ",
+ SuperscriptBox["q11d", "2"], " ",
+ SuperscriptBox["\[Sigma]2", "2"]}]}]]}]}],
+ RowBox[{"2", " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"q11d", " ",
+ SuperscriptBox["\[Sigma]12", "2"]}], "+",
+ RowBox[{"2", " ",
+ SuperscriptBox["\[Sigma]2", "2"]}], "-",
+ RowBox[{"2", " ", "q11d", " ",
+ SuperscriptBox["\[Sigma]2", "2"]}]}], ")"}]}]]}], ",",
+ RowBox[{"z111", "\[Rule]",
+ RowBox[{
+ FractionBox["1", "2"], " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"2", " ", "z110"}], "-", "z11d0", "+", "z11d1"}], ")"}]}]}],
+ ",",
+ RowBox[{"z221", "\[Rule]",
+ RowBox[{
+ FractionBox["1", "2"], " ",
+ RowBox[{"(",
+ RowBox[{"z11d0", "-", "z11d1", "+",
+ RowBox[{"2", " ", "z220"}]}], ")"}]}]}]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{
+ RowBox[{"y11", "\[Rule]",
+ FractionBox[
+ RowBox[{
+ RowBox[{"4", " ", "q11d", " ", "y11d", " ",
+ SuperscriptBox["\[Sigma]1", "2"]}], "+",
+ RowBox[{"2", " ", "y11d", " ",
+ SuperscriptBox["\[Sigma]12", "2"]}], "-",
+ RowBox[{"2", " ", "q11d", " ", "y11d", " ",
+ SuperscriptBox["\[Sigma]12", "2"]}], "+",
+ RowBox[{
+ SqrtBox["2"], " ",
+ SqrtBox[
+ RowBox[{
+ RowBox[{"2", " ",
+ SuperscriptBox["q11d", "2"], " ",
+ SuperscriptBox["\[Sigma]1", "2"]}], "+",
+ RowBox[{"q11d", " ",
+ SuperscriptBox["\[Sigma]12", "2"]}], "-",
+ RowBox[{
+ SuperscriptBox["q11d", "2"], " ",
+ SuperscriptBox["\[Sigma]12", "2"]}]}]]}]}],
+ RowBox[{"2", " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"2", " ", "q11d", " ",
+ SuperscriptBox["\[Sigma]1", "2"]}], "+",
+ SuperscriptBox["\[Sigma]12", "2"], "-",
+ RowBox[{"q11d", " ",
+ SuperscriptBox["\[Sigma]12", "2"]}]}], ")"}]}]]}], ",",
+ RowBox[{"y22", "\[Rule]",
+ FractionBox[
+ RowBox[{
+ RowBox[{
+ RowBox[{"-", "2"}], " ", "q11d", " ", "y11d", " ",
+ SuperscriptBox["\[Sigma]12", "2"]}], "-",
+ RowBox[{"4", " ", "y11d", " ",
+ SuperscriptBox["\[Sigma]2", "2"]}], "+",
+ RowBox[{"4", " ", "q11d", " ", "y11d", " ",
+ SuperscriptBox["\[Sigma]2", "2"]}], "+",
+ RowBox[{
+ SqrtBox["2"], " ",
+ SqrtBox[
+ RowBox[{
+ RowBox[{"q11d", " ",
+ SuperscriptBox["\[Sigma]12", "2"]}], "-",
+ RowBox[{
+ SuperscriptBox["q11d", "2"], " ",
+ SuperscriptBox["\[Sigma]12", "2"]}], "+",
+ RowBox[{"2", " ",
+ SuperscriptBox["\[Sigma]2", "2"]}], "-",
+ RowBox[{"4", " ", "q11d", " ",
+ SuperscriptBox["\[Sigma]2", "2"]}], "+",
+ RowBox[{"2", " ",
+ SuperscriptBox["q11d", "2"], " ",
+ SuperscriptBox["\[Sigma]2", "2"]}]}]]}]}],
+ RowBox[{"2", " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"q11d", " ",
+ SuperscriptBox["\[Sigma]12", "2"]}], "+",
+ RowBox[{"2", " ",
+ SuperscriptBox["\[Sigma]2", "2"]}], "-",
+ RowBox[{"2", " ", "q11d", " ",
+ SuperscriptBox["\[Sigma]2", "2"]}]}], ")"}]}]]}], ",",
+ RowBox[{"z111", "\[Rule]",
+ RowBox[{
+ FractionBox["1", "2"], " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"2", " ", "z110"}], "-", "z11d0", "+", "z11d1"}], ")"}]}]}],
+ ",",
+ RowBox[{"z221", "\[Rule]",
+ RowBox[{
+ FractionBox["1", "2"], " ",
+ RowBox[{"(",
+ RowBox[{"z11d0", "-", "z11d1", "+",
+ RowBox[{"2", " ", "z220"}]}], ")"}]}]}]}], "}"}]}], "}"}]], "Output",\
+
+ CellChangeTimes->{3.916306623405658*^9},
+ CellLabel->
+ "Out[177]=",ExpressionUUID->"3e4a980e-1533-48dd-9ff1-621494d5b9c2"]
+}, Open ]],
+
+Cell[CellGroupData[{
+
+Cell[BoxData[
+ RowBox[{"Length", "[", "e6", "]"}]], "Input",
+ CellChangeTimes->{{3.916304187772374*^9, 3.916304196652034*^9},
+ 3.91630425246096*^9},
+ CellLabel->
+ "In[178]:=",ExpressionUUID->"f42329fb-b20f-4aaa-a8d2-db55af9748ac"],
+
+Cell[BoxData["4"], "Output",
+ CellChangeTimes->{{3.916304188583995*^9, 3.916304190812088*^9},
+ 3.916304252619479*^9, 3.916306624523417*^9},
+ CellLabel->
+ "Out[178]=",ExpressionUUID->"05e474ca-1e55-4d23-afd9-d0f3a09207a6"]
+}, Open ]],
+
+Cell[CellGroupData[{
+
+Cell[BoxData["e6"], "Input",
+ CellChangeTimes->{{3.9163042537897387`*^9, 3.916304254012751*^9}},
+ CellLabel->
+ "In[134]:=",ExpressionUUID->"d10961b8-b152-4e5e-9c29-4145a2972d3d"],
+
+Cell[BoxData[
+ RowBox[{"{",
+ RowBox[{"{",
+ RowBox[{
+ RowBox[{"y11", "\[Rule]",
+ FractionBox[
+ RowBox[{
+ RowBox[{"4", " ",
+ SuperscriptBox["q11d", "2"], " ", "y11d", " ",
+ SuperscriptBox["\[Sigma]1", "2"], " ",
+ SuperscriptBox["\[Sigma]12", "2"]}], "+",
+ RowBox[{"2", " ",
+ SuperscriptBox["q11d", "3"], " ", "\[Lambda]", " ",
+ SuperscriptBox["\[Sigma]1", "2"], " ",
+ SuperscriptBox["\[Sigma]12", "2"]}], "+",
+ RowBox[{"16", " ", "q11d", " ", "y11d", " ",
+ SuperscriptBox["\[Sigma]1", "2"], " ",
+ SuperscriptBox["\[Sigma]2", "2"]}], "-",
+ RowBox[{"16", " ",
+ SuperscriptBox["q11d", "2"], " ", "y11d", " ",
+ SuperscriptBox["\[Sigma]1", "2"], " ",
+ SuperscriptBox["\[Sigma]2", "2"]}], "+",
+ RowBox[{"8", " ",
+ SuperscriptBox["q11d", "2"], " ", "\[Lambda]", " ",
+ SuperscriptBox["\[Sigma]1", "2"], " ",
+ SuperscriptBox["\[Sigma]2", "2"]}], "-",
+ RowBox[{"8", " ",
+ SuperscriptBox["q11d", "3"], " ", "\[Lambda]", " ",
+ SuperscriptBox["\[Sigma]1", "2"], " ",
+ SuperscriptBox["\[Sigma]2", "2"]}], "+",
+ RowBox[{"4", " ", "y11d", " ",
+ SuperscriptBox["\[Sigma]12", "2"], " ",
+ SuperscriptBox["\[Sigma]2", "2"]}], "-",
+ RowBox[{"8", " ", "q11d", " ", "y11d", " ",
+ SuperscriptBox["\[Sigma]12", "2"], " ",
+ SuperscriptBox["\[Sigma]2", "2"]}], "+",
+ RowBox[{"4", " ",
+ SuperscriptBox["q11d", "2"], " ", "y11d", " ",
+ SuperscriptBox["\[Sigma]12", "2"], " ",
+ SuperscriptBox["\[Sigma]2", "2"]}], "+",
+ RowBox[{"2", " ", "q11d", " ", "\[Lambda]", " ",
+ SuperscriptBox["\[Sigma]12", "2"], " ",
+ SuperscriptBox["\[Sigma]2", "2"]}], "-",
+ RowBox[{"4", " ",
+ SuperscriptBox["q11d", "2"], " ", "\[Lambda]", " ",
+ SuperscriptBox["\[Sigma]12", "2"], " ",
+ SuperscriptBox["\[Sigma]2", "2"]}], "+",
+ RowBox[{"2", " ",
+ SuperscriptBox["q11d", "3"], " ", "\[Lambda]", " ",
+ SuperscriptBox["\[Sigma]12", "2"], " ",
+ SuperscriptBox["\[Sigma]2", "2"]}], "+",
+ RowBox[{
+ SuperscriptBox["q11d", "2"], " ",
+ SuperscriptBox["\[Sigma]12", "2"], " ", "\[Omega]1"}], "+",
+ RowBox[{"4", " ", "q11d", " ",
+ SuperscriptBox["\[Sigma]2", "2"], " ", "\[Omega]1"}], "-",
+ RowBox[{"4", " ",
+ SuperscriptBox["q11d", "2"], " ",
+ SuperscriptBox["\[Sigma]2", "2"], " ", "\[Omega]1"}], "-",
+ RowBox[{"q11d", " ",
+ SuperscriptBox["\[Sigma]12", "2"], " ", "\[Omega]2"}], "+",
+ RowBox[{
+ SuperscriptBox["q11d", "2"], " ",
+ SuperscriptBox["\[Sigma]12", "2"], " ", "\[Omega]2"}]}],
+ RowBox[{"4", " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{
+ SuperscriptBox["q11d", "2"], " ",
+ SuperscriptBox["\[Sigma]1", "2"], " ",
+ SuperscriptBox["\[Sigma]12", "2"]}], "+",
+ RowBox[{"4", " ", "q11d", " ",
+ SuperscriptBox["\[Sigma]1", "2"], " ",
+ SuperscriptBox["\[Sigma]2", "2"]}], "-",
+ RowBox[{"4", " ",
+ SuperscriptBox["q11d", "2"], " ",
+ SuperscriptBox["\[Sigma]1", "2"], " ",
+ SuperscriptBox["\[Sigma]2", "2"]}], "+",
+ RowBox[{
+ SuperscriptBox["\[Sigma]12", "2"], " ",
+ SuperscriptBox["\[Sigma]2", "2"]}], "-",
+ RowBox[{"2", " ", "q11d", " ",
+ SuperscriptBox["\[Sigma]12", "2"], " ",
+ SuperscriptBox["\[Sigma]2", "2"]}], "+",
+ RowBox[{
+ SuperscriptBox["q11d", "2"], " ",
+ SuperscriptBox["\[Sigma]12", "2"], " ",
+ SuperscriptBox["\[Sigma]2", "2"]}]}], ")"}]}]]}], ",",
+ RowBox[{"y22", "\[Rule]",
+ RowBox[{"-",
+ RowBox[{
+ FractionBox["1",
+ RowBox[{"4", " ",
+ SuperscriptBox["\[Sigma]12", "2"], " ",
+ SuperscriptBox["\[Sigma]2", "2"]}]],
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"4", " ", "q11d", " ", "y11d", " ",
+ SuperscriptBox["\[Sigma]1", "2"], " ",
+ SuperscriptBox["\[Sigma]12", "2"]}], "+",
+ RowBox[{"2", " ",
+ SuperscriptBox["q11d", "2"], " ", "\[Lambda]", " ",
+ SuperscriptBox["\[Sigma]1", "2"], " ",
+ SuperscriptBox["\[Sigma]12", "2"]}], "-",
+ RowBox[{"16", " ", "q11d", " ", "y11d", " ",
+ SuperscriptBox["\[Sigma]1", "2"], " ",
+ SuperscriptBox["\[Sigma]2", "2"]}], "-",
+ RowBox[{"8", " ",
+ SuperscriptBox["q11d", "2"], " ", "\[Lambda]", " ",
+ SuperscriptBox["\[Sigma]1", "2"], " ",
+ SuperscriptBox["\[Sigma]2", "2"]}], "+",
+ RowBox[{"4", " ", "q11d", " ", "y11d", " ",
+ SuperscriptBox["\[Sigma]12", "2"], " ",
+ SuperscriptBox["\[Sigma]2", "2"]}], "-",
+ RowBox[{"2", " ", "\[Lambda]", " ",
+ SuperscriptBox["\[Sigma]12", "2"], " ",
+ SuperscriptBox["\[Sigma]2", "2"]}], "+",
+ RowBox[{"2", " ",
+ SuperscriptBox["q11d", "2"], " ", "\[Lambda]", " ",
+ SuperscriptBox["\[Sigma]12", "2"], " ",
+ SuperscriptBox["\[Sigma]2", "2"]}], "+",
+ RowBox[{"q11d", " ",
+ SuperscriptBox["\[Sigma]12", "2"], " ", "\[Omega]1"}], "-",
+ RowBox[{"4", " ", "q11d", " ",
+ SuperscriptBox["\[Sigma]2", "2"], " ", "\[Omega]1"}], "-",
+ RowBox[{
+ SuperscriptBox["\[Sigma]12", "2"], " ", "\[Omega]2"}], "+",
+ RowBox[{"q11d", " ",
+ SuperscriptBox["\[Sigma]12", "2"], " ", "\[Omega]2"}], "-",
+ FractionBox[
+ RowBox[{"q11d", " ",
+ SuperscriptBox["\[Sigma]1", "2"], " ",
+ SuperscriptBox["\[Sigma]12", "2"], " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"4", " ",
+ SuperscriptBox["q11d", "2"], " ", "y11d", " ",
+ SuperscriptBox["\[Sigma]1", "2"], " ",
+ SuperscriptBox["\[Sigma]12", "2"]}], "+",
+ RowBox[{"2", " ",
+ SuperscriptBox["q11d", "3"], " ", "\[Lambda]", " ",
+ SuperscriptBox["\[Sigma]1", "2"], " ",
+ SuperscriptBox["\[Sigma]12", "2"]}], "+",
+ RowBox[{"16", " ", "q11d", " ", "y11d", " ",
+ SuperscriptBox["\[Sigma]1", "2"], " ",
+ SuperscriptBox["\[Sigma]2", "2"]}], "-",
+ RowBox[{"16", " ",
+ SuperscriptBox["q11d", "2"], " ", "y11d", " ",
+ SuperscriptBox["\[Sigma]1", "2"], " ",
+ SuperscriptBox["\[Sigma]2", "2"]}], "+",
+ RowBox[{"8", " ",
+ SuperscriptBox["q11d", "2"], " ", "\[Lambda]", " ",
+ SuperscriptBox["\[Sigma]1", "2"], " ",
+ SuperscriptBox["\[Sigma]2", "2"]}], "-",
+ RowBox[{"8", " ",
+ SuperscriptBox["q11d", "3"], " ", "\[Lambda]", " ",
+ SuperscriptBox["\[Sigma]1", "2"], " ",
+ SuperscriptBox["\[Sigma]2", "2"]}], "+",
+ RowBox[{"4", " ", "y11d", " ",
+ SuperscriptBox["\[Sigma]12", "2"], " ",
+ SuperscriptBox["\[Sigma]2", "2"]}], "-",
+ RowBox[{"8", " ", "q11d", " ", "y11d", " ",
+ SuperscriptBox["\[Sigma]12", "2"], " ",
+ SuperscriptBox["\[Sigma]2", "2"]}], "+",
+ RowBox[{"4", " ",
+ SuperscriptBox["q11d", "2"], " ", "y11d", " ",
+ SuperscriptBox["\[Sigma]12", "2"], " ",
+ SuperscriptBox["\[Sigma]2", "2"]}], "+",
+ RowBox[{"2", " ", "q11d", " ", "\[Lambda]", " ",
+ SuperscriptBox["\[Sigma]12", "2"], " ",
+ SuperscriptBox["\[Sigma]2", "2"]}], "-",
+ RowBox[{"4", " ",
+ SuperscriptBox["q11d", "2"], " ", "\[Lambda]", " ",
+ SuperscriptBox["\[Sigma]12", "2"], " ",
+ SuperscriptBox["\[Sigma]2", "2"]}], "+",
+ RowBox[{"2", " ",
+ SuperscriptBox["q11d", "3"], " ", "\[Lambda]", " ",
+ SuperscriptBox["\[Sigma]12", "2"], " ",
+ SuperscriptBox["\[Sigma]2", "2"]}], "+",
+ RowBox[{
+ SuperscriptBox["q11d", "2"], " ",
+ SuperscriptBox["\[Sigma]12", "2"], " ", "\[Omega]1"}], "+",
+ RowBox[{"4", " ", "q11d", " ",
+ SuperscriptBox["\[Sigma]2", "2"], " ", "\[Omega]1"}], "-",
+ RowBox[{"4", " ",
+ SuperscriptBox["q11d", "2"], " ",
+ SuperscriptBox["\[Sigma]2", "2"], " ", "\[Omega]1"}], "-",
+ RowBox[{"q11d", " ",
+ SuperscriptBox["\[Sigma]12", "2"], " ", "\[Omega]2"}], "+",
+ RowBox[{
+ SuperscriptBox["q11d", "2"], " ",
+ SuperscriptBox["\[Sigma]12", "2"], " ", "\[Omega]2"}]}],
+ ")"}]}],
+ RowBox[{
+ RowBox[{
+ SuperscriptBox["q11d", "2"], " ",
+ SuperscriptBox["\[Sigma]1", "2"], " ",
+ SuperscriptBox["\[Sigma]12", "2"]}], "+",
+ RowBox[{"4", " ", "q11d", " ",
+ SuperscriptBox["\[Sigma]1", "2"], " ",
+ SuperscriptBox["\[Sigma]2", "2"]}], "-",
+ RowBox[{"4", " ",
+ SuperscriptBox["q11d", "2"], " ",
+ SuperscriptBox["\[Sigma]1", "2"], " ",
+ SuperscriptBox["\[Sigma]2", "2"]}], "+",
+ RowBox[{
+ SuperscriptBox["\[Sigma]12", "2"], " ",
+ SuperscriptBox["\[Sigma]2", "2"]}], "-",
+ RowBox[{"2", " ", "q11d", " ",
+ SuperscriptBox["\[Sigma]12", "2"], " ",
+ SuperscriptBox["\[Sigma]2", "2"]}], "+",
+ RowBox[{
+ SuperscriptBox["q11d", "2"], " ",
+ SuperscriptBox["\[Sigma]12", "2"], " ",
+ SuperscriptBox["\[Sigma]2", "2"]}]}]], "+",
+ FractionBox[
+ RowBox[{"4", " ", "q11d", " ",
+ SuperscriptBox["\[Sigma]1", "2"], " ",
+ SuperscriptBox["\[Sigma]2", "2"], " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"4", " ",
+ SuperscriptBox["q11d", "2"], " ", "y11d", " ",
+ SuperscriptBox["\[Sigma]1", "2"], " ",
+ SuperscriptBox["\[Sigma]12", "2"]}], "+",
+ RowBox[{"2", " ",
+ SuperscriptBox["q11d", "3"], " ", "\[Lambda]", " ",
+ SuperscriptBox["\[Sigma]1", "2"], " ",
+ SuperscriptBox["\[Sigma]12", "2"]}], "+",
+ RowBox[{"16", " ", "q11d", " ", "y11d", " ",
+ SuperscriptBox["\[Sigma]1", "2"], " ",
+ SuperscriptBox["\[Sigma]2", "2"]}], "-",
+ RowBox[{"16", " ",
+ SuperscriptBox["q11d", "2"], " ", "y11d", " ",
+ SuperscriptBox["\[Sigma]1", "2"], " ",
+ SuperscriptBox["\[Sigma]2", "2"]}], "+",
+ RowBox[{"8", " ",
+ SuperscriptBox["q11d", "2"], " ", "\[Lambda]", " ",
+ SuperscriptBox["\[Sigma]1", "2"], " ",
+ SuperscriptBox["\[Sigma]2", "2"]}], "-",
+ RowBox[{"8", " ",
+ SuperscriptBox["q11d", "3"], " ", "\[Lambda]", " ",
+ SuperscriptBox["\[Sigma]1", "2"], " ",
+ SuperscriptBox["\[Sigma]2", "2"]}], "+",
+ RowBox[{"4", " ", "y11d", " ",
+ SuperscriptBox["\[Sigma]12", "2"], " ",
+ SuperscriptBox["\[Sigma]2", "2"]}], "-",
+ RowBox[{"8", " ", "q11d", " ", "y11d", " ",
+ SuperscriptBox["\[Sigma]12", "2"], " ",
+ SuperscriptBox["\[Sigma]2", "2"]}], "+",
+ RowBox[{"4", " ",
+ SuperscriptBox["q11d", "2"], " ", "y11d", " ",
+ SuperscriptBox["\[Sigma]12", "2"], " ",
+ SuperscriptBox["\[Sigma]2", "2"]}], "+",
+ RowBox[{"2", " ", "q11d", " ", "\[Lambda]", " ",
+ SuperscriptBox["\[Sigma]12", "2"], " ",
+ SuperscriptBox["\[Sigma]2", "2"]}], "-",
+ RowBox[{"4", " ",
+ SuperscriptBox["q11d", "2"], " ", "\[Lambda]", " ",
+ SuperscriptBox["\[Sigma]12", "2"], " ",
+ SuperscriptBox["\[Sigma]2", "2"]}], "+",
+ RowBox[{"2", " ",
+ SuperscriptBox["q11d", "3"], " ", "\[Lambda]", " ",
+ SuperscriptBox["\[Sigma]12", "2"], " ",
+ SuperscriptBox["\[Sigma]2", "2"]}], "+",
+ RowBox[{
+ SuperscriptBox["q11d", "2"], " ",
+ SuperscriptBox["\[Sigma]12", "2"], " ", "\[Omega]1"}], "+",
+ RowBox[{"4", " ", "q11d", " ",
+ SuperscriptBox["\[Sigma]2", "2"], " ", "\[Omega]1"}], "-",
+ RowBox[{"4", " ",
+ SuperscriptBox["q11d", "2"], " ",
+ SuperscriptBox["\[Sigma]2", "2"], " ", "\[Omega]1"}], "-",
+ RowBox[{"q11d", " ",
+ SuperscriptBox["\[Sigma]12", "2"], " ", "\[Omega]2"}], "+",
+ RowBox[{
+ SuperscriptBox["q11d", "2"], " ",
+ SuperscriptBox["\[Sigma]12", "2"], " ", "\[Omega]2"}]}],
+ ")"}]}],
+ RowBox[{
+ RowBox[{
+ SuperscriptBox["q11d", "2"], " ",
+ SuperscriptBox["\[Sigma]1", "2"], " ",
+ SuperscriptBox["\[Sigma]12", "2"]}], "+",
+ RowBox[{"4", " ", "q11d", " ",
+ SuperscriptBox["\[Sigma]1", "2"], " ",
+ SuperscriptBox["\[Sigma]2", "2"]}], "-",
+ RowBox[{"4", " ",
+ SuperscriptBox["q11d", "2"], " ",
+ SuperscriptBox["\[Sigma]1", "2"], " ",
+ SuperscriptBox["\[Sigma]2", "2"]}], "+",
+ RowBox[{
+ SuperscriptBox["\[Sigma]12", "2"], " ",
+ SuperscriptBox["\[Sigma]2", "2"]}], "-",
+ RowBox[{"2", " ", "q11d", " ",
+ SuperscriptBox["\[Sigma]12", "2"], " ",
+ SuperscriptBox["\[Sigma]2", "2"]}], "+",
+ RowBox[{
+ SuperscriptBox["q11d", "2"], " ",
+ SuperscriptBox["\[Sigma]12", "2"], " ",
+ SuperscriptBox["\[Sigma]2", "2"]}]}]], "+",
+ FractionBox[
+ RowBox[{
+ SuperscriptBox["\[Sigma]12", "2"], " ",
+ SuperscriptBox["\[Sigma]2", "2"], " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"4", " ",
+ SuperscriptBox["q11d", "2"], " ", "y11d", " ",
+ SuperscriptBox["\[Sigma]1", "2"], " ",
+ SuperscriptBox["\[Sigma]12", "2"]}], "+",
+ RowBox[{"2", " ",
+ SuperscriptBox["q11d", "3"], " ", "\[Lambda]", " ",
+ SuperscriptBox["\[Sigma]1", "2"], " ",
+ SuperscriptBox["\[Sigma]12", "2"]}], "+",
+ RowBox[{"16", " ", "q11d", " ", "y11d", " ",
+ SuperscriptBox["\[Sigma]1", "2"], " ",
+ SuperscriptBox["\[Sigma]2", "2"]}], "-",
+ RowBox[{"16", " ",
+ SuperscriptBox["q11d", "2"], " ", "y11d", " ",
+ SuperscriptBox["\[Sigma]1", "2"], " ",
+ SuperscriptBox["\[Sigma]2", "2"]}], "+",
+ RowBox[{"8", " ",
+ SuperscriptBox["q11d", "2"], " ", "\[Lambda]", " ",
+ SuperscriptBox["\[Sigma]1", "2"], " ",
+ SuperscriptBox["\[Sigma]2", "2"]}], "-",
+ RowBox[{"8", " ",
+ SuperscriptBox["q11d", "3"], " ", "\[Lambda]", " ",
+ SuperscriptBox["\[Sigma]1", "2"], " ",
+ SuperscriptBox["\[Sigma]2", "2"]}], "+",
+ RowBox[{"4", " ", "y11d", " ",
+ SuperscriptBox["\[Sigma]12", "2"], " ",
+ SuperscriptBox["\[Sigma]2", "2"]}], "-",
+ RowBox[{"8", " ", "q11d", " ", "y11d", " ",
+ SuperscriptBox["\[Sigma]12", "2"], " ",
+ SuperscriptBox["\[Sigma]2", "2"]}], "+",
+ RowBox[{"4", " ",
+ SuperscriptBox["q11d", "2"], " ", "y11d", " ",
+ SuperscriptBox["\[Sigma]12", "2"], " ",
+ SuperscriptBox["\[Sigma]2", "2"]}], "+",
+ RowBox[{"2", " ", "q11d", " ", "\[Lambda]", " ",
+ SuperscriptBox["\[Sigma]12", "2"], " ",
+ SuperscriptBox["\[Sigma]2", "2"]}], "-",
+ RowBox[{"4", " ",
+ SuperscriptBox["q11d", "2"], " ", "\[Lambda]", " ",
+ SuperscriptBox["\[Sigma]12", "2"], " ",
+ SuperscriptBox["\[Sigma]2", "2"]}], "+",
+ RowBox[{"2", " ",
+ SuperscriptBox["q11d", "3"], " ", "\[Lambda]", " ",
+ SuperscriptBox["\[Sigma]12", "2"], " ",
+ SuperscriptBox["\[Sigma]2", "2"]}], "+",
+ RowBox[{
+ SuperscriptBox["q11d", "2"], " ",
+ SuperscriptBox["\[Sigma]12", "2"], " ", "\[Omega]1"}], "+",
+ RowBox[{"4", " ", "q11d", " ",
+ SuperscriptBox["\[Sigma]2", "2"], " ", "\[Omega]1"}], "-",
+ RowBox[{"4", " ",
+ SuperscriptBox["q11d", "2"], " ",
+ SuperscriptBox["\[Sigma]2", "2"], " ", "\[Omega]1"}], "-",
+ RowBox[{"q11d", " ",
+ SuperscriptBox["\[Sigma]12", "2"], " ", "\[Omega]2"}], "+",
+ RowBox[{
+ SuperscriptBox["q11d", "2"], " ",
+ SuperscriptBox["\[Sigma]12", "2"], " ", "\[Omega]2"}]}],
+ ")"}]}],
+ RowBox[{
+ RowBox[{
+ SuperscriptBox["q11d", "2"], " ",
+ SuperscriptBox["\[Sigma]1", "2"], " ",
+ SuperscriptBox["\[Sigma]12", "2"]}], "+",
+ RowBox[{"4", " ", "q11d", " ",
+ SuperscriptBox["\[Sigma]1", "2"], " ",
+ SuperscriptBox["\[Sigma]2", "2"]}], "-",
+ RowBox[{"4", " ",
+ SuperscriptBox["q11d", "2"], " ",
+ SuperscriptBox["\[Sigma]1", "2"], " ",
+ SuperscriptBox["\[Sigma]2", "2"]}], "+",
+ RowBox[{
+ SuperscriptBox["\[Sigma]12", "2"], " ",
+ SuperscriptBox["\[Sigma]2", "2"]}], "-",
+ RowBox[{"2", " ", "q11d", " ",
+ SuperscriptBox["\[Sigma]12", "2"], " ",
+ SuperscriptBox["\[Sigma]2", "2"]}], "+",
+ RowBox[{
+ SuperscriptBox["q11d", "2"], " ",
+ SuperscriptBox["\[Sigma]12", "2"], " ",
+ SuperscriptBox["\[Sigma]2", "2"]}]}]], "-",
+ FractionBox[
+ RowBox[{"q11d", " ",
+ SuperscriptBox["\[Sigma]12", "2"], " ",
+ SuperscriptBox["\[Sigma]2", "2"], " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"4", " ",
+ SuperscriptBox["q11d", "2"], " ", "y11d", " ",
+ SuperscriptBox["\[Sigma]1", "2"], " ",
+ SuperscriptBox["\[Sigma]12", "2"]}], "+",
+ RowBox[{"2", " ",
+ SuperscriptBox["q11d", "3"], " ", "\[Lambda]", " ",
+ SuperscriptBox["\[Sigma]1", "2"], " ",
+ SuperscriptBox["\[Sigma]12", "2"]}], "+",
+ RowBox[{"16", " ", "q11d", " ", "y11d", " ",
+ SuperscriptBox["\[Sigma]1", "2"], " ",
+ SuperscriptBox["\[Sigma]2", "2"]}], "-",
+ RowBox[{"16", " ",
+ SuperscriptBox["q11d", "2"], " ", "y11d", " ",
+ SuperscriptBox["\[Sigma]1", "2"], " ",
+ SuperscriptBox["\[Sigma]2", "2"]}], "+",
+ RowBox[{"8", " ",
+ SuperscriptBox["q11d", "2"], " ", "\[Lambda]", " ",
+ SuperscriptBox["\[Sigma]1", "2"], " ",
+ SuperscriptBox["\[Sigma]2", "2"]}], "-",
+ RowBox[{"8", " ",
+ SuperscriptBox["q11d", "3"], " ", "\[Lambda]", " ",
+ SuperscriptBox["\[Sigma]1", "2"], " ",
+ SuperscriptBox["\[Sigma]2", "2"]}], "+",
+ RowBox[{"4", " ", "y11d", " ",
+ SuperscriptBox["\[Sigma]12", "2"], " ",
+ SuperscriptBox["\[Sigma]2", "2"]}], "-",
+ RowBox[{"8", " ", "q11d", " ", "y11d", " ",
+ SuperscriptBox["\[Sigma]12", "2"], " ",
+ SuperscriptBox["\[Sigma]2", "2"]}], "+",
+ RowBox[{"4", " ",
+ SuperscriptBox["q11d", "2"], " ", "y11d", " ",
+ SuperscriptBox["\[Sigma]12", "2"], " ",
+ SuperscriptBox["\[Sigma]2", "2"]}], "+",
+ RowBox[{"2", " ", "q11d", " ", "\[Lambda]", " ",
+ SuperscriptBox["\[Sigma]12", "2"], " ",
+ SuperscriptBox["\[Sigma]2", "2"]}], "-",
+ RowBox[{"4", " ",
+ SuperscriptBox["q11d", "2"], " ", "\[Lambda]", " ",
+ SuperscriptBox["\[Sigma]12", "2"], " ",
+ SuperscriptBox["\[Sigma]2", "2"]}], "+",
+ RowBox[{"2", " ",
+ SuperscriptBox["q11d", "3"], " ", "\[Lambda]", " ",
+ SuperscriptBox["\[Sigma]12", "2"], " ",
+ SuperscriptBox["\[Sigma]2", "2"]}], "+",
+ RowBox[{
+ SuperscriptBox["q11d", "2"], " ",
+ SuperscriptBox["\[Sigma]12", "2"], " ", "\[Omega]1"}], "+",
+ RowBox[{"4", " ", "q11d", " ",
+ SuperscriptBox["\[Sigma]2", "2"], " ", "\[Omega]1"}], "-",
+ RowBox[{"4", " ",
+ SuperscriptBox["q11d", "2"], " ",
+ SuperscriptBox["\[Sigma]2", "2"], " ", "\[Omega]1"}], "-",
+ RowBox[{"q11d", " ",
+ SuperscriptBox["\[Sigma]12", "2"], " ", "\[Omega]2"}], "+",
+ RowBox[{
+ SuperscriptBox["q11d", "2"], " ",
+ SuperscriptBox["\[Sigma]12", "2"], " ", "\[Omega]2"}]}],
+ ")"}]}],
+ RowBox[{
+ RowBox[{
+ SuperscriptBox["q11d", "2"], " ",
+ SuperscriptBox["\[Sigma]1", "2"], " ",
+ SuperscriptBox["\[Sigma]12", "2"]}], "+",
+ RowBox[{"4", " ", "q11d", " ",
+ SuperscriptBox["\[Sigma]1", "2"], " ",
+ SuperscriptBox["\[Sigma]2", "2"]}], "-",
+ RowBox[{"4", " ",
+ SuperscriptBox["q11d", "2"], " ",
+ SuperscriptBox["\[Sigma]1", "2"], " ",
+ SuperscriptBox["\[Sigma]2", "2"]}], "+",
+ RowBox[{
+ SuperscriptBox["\[Sigma]12", "2"], " ",
+ SuperscriptBox["\[Sigma]2", "2"]}], "-",
+ RowBox[{"2", " ", "q11d", " ",
+ SuperscriptBox["\[Sigma]12", "2"], " ",
+ SuperscriptBox["\[Sigma]2", "2"]}], "+",
+ RowBox[{
+ SuperscriptBox["q11d", "2"], " ",
+ SuperscriptBox["\[Sigma]12", "2"], " ",
+ SuperscriptBox["\[Sigma]2", "2"]}]}]]}], ")"}]}]}]}]}], "}"}],
+ "}"}]], "Output",
+ CellChangeTimes->{3.916304254576603*^9},
+ CellLabel->
+ "Out[134]=",ExpressionUUID->"c36222bd-4f89-4cc7-a993-0cf35af05bc7"]
+}, Open ]],
+
+Cell[CellGroupData[{
+
+Cell[BoxData[
+ RowBox[{"e4", "=",
+ RowBox[{"SeriesCoefficient", "[",
+ RowBox[{
+ RowBox[{"e3", "//.", "rules"}], ",",
+ RowBox[{"{",
+ RowBox[{"\[Beta]", ",", "\[Infinity]", ",",
+ RowBox[{"-", "2"}]}], "}"}]}], "]"}]}]], "Input",
+ CellChangeTimes->{
+ 3.906187797968542*^9, {3.906187865137899*^9, 3.906187871433025*^9}},
+ CellLabel->"In[19]:=",ExpressionUUID->"58abea83-2416-4b80-aea1-49c6f03cd553"],
+
+Cell[BoxData[
+ RowBox[{"{",
+ RowBox[{"0", ",",
+ RowBox[{
+ RowBox[{"-",
+ FractionBox["q11d",
+ RowBox[{
+ SuperscriptBox["y11", "2"], "-",
+ RowBox[{"2", " ", "y11", " ", "y11d"}], "+",
+ SuperscriptBox["y11d", "2"], "+",
+ RowBox[{"2", " ", "q11d", " ", "z110"}], "-",
+ RowBox[{"2", " ", "q11d", " ", "z111"}], "-",
+ RowBox[{"q11d", " ", "z11d0"}], "+",
+ RowBox[{"q11d", " ", "z11d1"}]}]]}], "+",
+ RowBox[{"4", " ", "q11d", " ",
+ SuperscriptBox["\[Sigma]1", "2"]}]}], ",",
+ RowBox[{"q11d", " ",
+ RowBox[{"(",
+ RowBox[{
+ FractionBox["1",
+ RowBox[{
+ SuperscriptBox["y11", "2"], "-",
+ RowBox[{"2", " ", "y11", " ", "y11d"}], "+",
+ SuperscriptBox["y11d", "2"], "+",
+ RowBox[{"2", " ", "q11d", " ", "z110"}], "-",
+ RowBox[{"2", " ", "q11d", " ", "z111"}], "-",
+ RowBox[{"q11d", " ", "z11d0"}], "+",
+ RowBox[{"q11d", " ", "z11d1"}]}]], "-",
+ RowBox[{"4", " ",
+ SuperscriptBox["\[Sigma]1", "2"]}]}], ")"}]}], ",",
+ RowBox[{
+ FractionBox["q11d",
+ RowBox[{"2", " ",
+ RowBox[{"(",
+ RowBox[{
+ SuperscriptBox["y11", "2"], "-",
+ RowBox[{"2", " ", "y11", " ", "y11d"}], "+",
+ SuperscriptBox["y11d", "2"], "+",
+ RowBox[{"2", " ", "q11d", " ", "z110"}], "-",
+ RowBox[{"2", " ", "q11d", " ", "z111"}], "-",
+ RowBox[{"q11d", " ", "z11d0"}], "+",
+ RowBox[{"q11d", " ", "z11d1"}]}], ")"}]}]], "+",
+ FractionBox[
+ RowBox[{
+ RowBox[{"-", "1"}], "+", "q11d"}],
+ RowBox[{"2", " ",
+ RowBox[{"(",
+ RowBox[{
+ SuperscriptBox["y11d", "2"], "+",
+ RowBox[{"2", " ", "y11d", " ", "y22"}], "+",
+ SuperscriptBox["y22", "2"], "+", "z11d0", "-",
+ RowBox[{"q11d", " ", "z11d0"}], "-", "z11d1", "+",
+ RowBox[{"q11d", " ", "z11d1"}], "+",
+ RowBox[{"2", " ", "z220"}], "-",
+ RowBox[{"2", " ", "q11d", " ", "z220"}], "-",
+ RowBox[{"2", " ", "z221"}], "+",
+ RowBox[{"2", " ", "q11d", " ", "z221"}]}], ")"}]}]], "-",
+ RowBox[{"2", " ", "q11d", " ",
+ SuperscriptBox["\[Sigma]1", "2"]}], "-",
+ RowBox[{"2", " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"-", "1"}], "+", "q11d"}], ")"}], " ",
+ SuperscriptBox["\[Sigma]2", "2"]}]}], ",",
+ RowBox[{
+ RowBox[{
+ FractionBox["1", "2"], " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"-",
+ FractionBox["q11d",
+ RowBox[{
+ SuperscriptBox["y11", "2"], "-",
+ RowBox[{"2", " ", "y11", " ", "y11d"}], "+",
+ SuperscriptBox["y11d", "2"], "+",
+ RowBox[{"2", " ", "q11d", " ", "z110"}], "-",
+ RowBox[{"2", " ", "q11d", " ", "z111"}], "-",
+ RowBox[{"q11d", " ", "z11d0"}], "+",
+ RowBox[{"q11d", " ", "z11d1"}]}]]}], "+",
+ FractionBox[
+ RowBox[{"1", "-", "q11d"}],
+ RowBox[{
+ SuperscriptBox["y11d", "2"], "+",
+ RowBox[{"2", " ", "y11d", " ", "y22"}], "+",
+ SuperscriptBox["y22", "2"], "+", "z11d0", "-",
+ RowBox[{"q11d", " ", "z11d0"}], "-", "z11d1", "+",
+ RowBox[{"q11d", " ", "z11d1"}], "+",
+ RowBox[{"2", " ", "z220"}], "-",
+ RowBox[{"2", " ", "q11d", " ", "z220"}], "-",
+ RowBox[{"2", " ", "z221"}], "+",
+ RowBox[{"2", " ", "q11d", " ", "z221"}]}]]}], ")"}]}], "+",
+ RowBox[{"2", " ", "q11d", " ",
+ SuperscriptBox["\[Sigma]1", "2"]}], "+",
+ RowBox[{"2", " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"-", "1"}], "+", "q11d"}], ")"}], " ",
+ SuperscriptBox["\[Sigma]2", "2"]}]}], ",",
+ RowBox[{
+ FractionBox[
+ RowBox[{
+ RowBox[{"-", "1"}], "+", "q11d"}],
+ RowBox[{
+ SuperscriptBox["y11d", "2"], "+",
+ RowBox[{"2", " ", "y11d", " ", "y22"}], "+",
+ SuperscriptBox["y22", "2"], "+", "z11d0", "-",
+ RowBox[{"q11d", " ", "z11d0"}], "-", "z11d1", "+",
+ RowBox[{"q11d", " ", "z11d1"}], "+",
+ RowBox[{"2", " ", "z220"}], "-",
+ RowBox[{"2", " ", "q11d", " ", "z220"}], "-",
+ RowBox[{"2", " ", "z221"}], "+",
+ RowBox[{"2", " ", "q11d", " ", "z221"}]}]], "-",
+ RowBox[{"4", " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"-", "1"}], "+", "q11d"}], ")"}], " ",
+ SuperscriptBox["\[Sigma]2", "2"]}]}], ",",
+ RowBox[{
+ RowBox[{"(",
+ RowBox[{"1", "-", "q11d"}], ")"}], " ",
+ RowBox[{"(",
+ RowBox[{
+ FractionBox["1",
+ RowBox[{
+ SuperscriptBox["y11d", "2"], "+",
+ RowBox[{"2", " ", "y11d", " ", "y22"}], "+",
+ SuperscriptBox["y22", "2"], "+", "z11d0", "-",
+ RowBox[{"q11d", " ", "z11d0"}], "-", "z11d1", "+",
+ RowBox[{"q11d", " ", "z11d1"}], "+",
+ RowBox[{"2", " ", "z220"}], "-",
+ RowBox[{"2", " ", "q11d", " ", "z220"}], "-",
+ RowBox[{"2", " ", "z221"}], "+",
+ RowBox[{"2", " ", "q11d", " ", "z221"}]}]], "-",
+ RowBox[{"4", " ",
+ SuperscriptBox["\[Sigma]2", "2"]}]}], ")"}]}]}], "}"}]], "Output",
+ CellChangeTimes->{
+ 3.906187758262377*^9, 3.906187802390731*^9, {3.906187867026927*^9,
+ 3.9061878721263776`*^9}, 3.906188383111711*^9, 3.906189229151506*^9,
+ 3.90619068735071*^9, 3.906445753142694*^9, 3.906526396982582*^9,
+ 3.907146536871374*^9, 3.907328416692205*^9, 3.908527776739359*^9,
+ 3.908535193733109*^9, 3.908603321580958*^9, 3.908613759558733*^9,
+ 3.908621342371894*^9, 3.908959029760838*^9, 3.909041262667035*^9,
+ 3.915532095652994*^9, 3.915532506920657*^9, 3.915771581205089*^9},
+ CellLabel->"Out[19]=",ExpressionUUID->"e15a4a61-3508-49a6-873c-f26ddee17deb"]
+}, Open ]],
+
+Cell[CellGroupData[{
+
+Cell[BoxData[
+ RowBox[{"e5", "=",
+ RowBox[{
+ RowBox[{"SeriesCoefficient", "[",
+ RowBox[{
+ RowBox[{"e3", "//.", "rules"}], ",",
+ RowBox[{"{",
+ RowBox[{"\[Beta]", ",", "\[Infinity]", ",",
+ RowBox[{"-", "1"}]}], "}"}]}], "]"}], "//", "Simplify"}]}]], "Input",
+ CellChangeTimes->{{3.906187873026173*^9, 3.906187899186184*^9}},
+ CellLabel->"In[20]:=",ExpressionUUID->"4538f42b-62c4-4651-9986-8bec11748d70"],
+
+Cell[BoxData[
+ RowBox[{"{",
+ RowBox[{"0", ",",
+ RowBox[{
+ FractionBox["1",
+ RowBox[{"y11", "-", "y11d"}]], "+",
+ FractionBox[
+ RowBox[{
+ RowBox[{"(",
+ RowBox[{"y11", "-", "y11d"}], ")"}], " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"y11", " ", "y11d"}], "-",
+ SuperscriptBox["y11d", "2"], "+",
+ RowBox[{"2", " ", "q11d", " ",
+ RowBox[{"(",
+ RowBox[{"z111", "-", "z11d1"}], ")"}]}]}], ")"}]}],
+ SuperscriptBox[
+ RowBox[{"(",
+ RowBox[{
+ SuperscriptBox["y11", "2"], "-",
+ RowBox[{"2", " ", "y11", " ", "y11d"}], "+",
+ SuperscriptBox["y11d", "2"], "+",
+ RowBox[{"q11d", " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"2", " ", "z110"}], "-",
+ RowBox[{"2", " ", "z111"}], "-", "z11d0", "+", "z11d1"}],
+ ")"}]}]}], ")"}], "2"]], "-",
+ RowBox[{"4", " ", "y11", " ",
+ SuperscriptBox["\[Sigma]1", "2"]}]}], ",",
+ RowBox[{
+ RowBox[{"-",
+ FractionBox["y11",
+ RowBox[{
+ SuperscriptBox["y11", "2"], "-",
+ RowBox[{"2", " ", "y11", " ", "y11d"}], "+",
+ SuperscriptBox["y11d", "2"], "+",
+ RowBox[{"q11d", " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"2", " ", "z110"}], "-",
+ RowBox[{"2", " ", "z111"}], "-", "z11d0", "+", "z11d1"}],
+ ")"}]}]}]]}], "-",
+ FractionBox[
+ RowBox[{"q11d", " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"2", " ", "y11", " ",
+ RowBox[{"(",
+ RowBox[{"z111", "-", "z11d1"}], ")"}]}], "+",
+ RowBox[{"y11d", " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{
+ RowBox[{"-", "2"}], " ", "z110"}], "+", "z11d0", "+", "z11d1"}],
+ ")"}]}]}], ")"}]}],
+ SuperscriptBox[
+ RowBox[{"(",
+ RowBox[{
+ SuperscriptBox["y11", "2"], "-",
+ RowBox[{"2", " ", "y11", " ", "y11d"}], "+",
+ SuperscriptBox["y11d", "2"], "+",
+ RowBox[{"q11d", " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"2", " ", "z110"}], "-",
+ RowBox[{"2", " ", "z111"}], "-", "z11d0", "+", "z11d1"}],
+ ")"}]}]}], ")"}], "2"]], "+",
+ RowBox[{"4", " ", "y11", " ",
+ SuperscriptBox["\[Sigma]1", "2"]}], "+",
+ RowBox[{"4", " ", "q11d", " ", "\[Lambda]", " ",
+ SuperscriptBox["\[Sigma]1", "2"]}]}], ",",
+ RowBox[{
+ FractionBox["1",
+ RowBox[{
+ RowBox[{"-", "y11"}], "+", "y11d"}]], "+",
+ FractionBox["1",
+ RowBox[{"y11d", "+", "y22"}]], "-",
+ FractionBox[
+ RowBox[{
+ RowBox[{"(",
+ RowBox[{"y11", "-", "y11d"}], ")"}], " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"y11", " ", "y11d"}], "-",
+ SuperscriptBox["y11d", "2"], "+",
+ RowBox[{"2", " ", "q11d", " ",
+ RowBox[{"(",
+ RowBox[{"z111", "-", "z11d1"}], ")"}]}]}], ")"}]}],
+ RowBox[{"2", " ",
+ SuperscriptBox[
+ RowBox[{"(",
+ RowBox[{
+ SuperscriptBox["y11", "2"], "-",
+ RowBox[{"2", " ", "y11", " ", "y11d"}], "+",
+ SuperscriptBox["y11d", "2"], "+",
+ RowBox[{"q11d", " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"2", " ", "z110"}], "-",
+ RowBox[{"2", " ", "z111"}], "-", "z11d0", "+", "z11d1"}],
+ ")"}]}]}], ")"}], "2"]}]], "-",
+ FractionBox[
+ RowBox[{
+ RowBox[{"(",
+ RowBox[{"y11d", "+", "y22"}], ")"}], " ",
+ RowBox[{"(",
+ RowBox[{
+ SuperscriptBox["y11d", "2"], "+",
+ RowBox[{"y11d", " ", "y22"}], "+",
+ RowBox[{"2", " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"-", "1"}], "+", "q11d"}], ")"}], " ",
+ RowBox[{"(",
+ RowBox[{"z11d1", "+", "z221"}], ")"}]}]}], ")"}]}],
+ RowBox[{"2", " ",
+ SuperscriptBox[
+ RowBox[{"(",
+ RowBox[{
+ SuperscriptBox["y11d", "2"], "+",
+ RowBox[{"2", " ", "y11d", " ", "y22"}], "+",
+ SuperscriptBox["y22", "2"], "-",
+ RowBox[{
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"-", "1"}], "+", "q11d"}], ")"}], " ",
+ RowBox[{"(",
+ RowBox[{"z11d0", "-", "z11d1", "+",
+ RowBox[{"2", " ", "z220"}], "-",
+ RowBox[{"2", " ", "z221"}]}], ")"}]}]}], ")"}], "2"]}]], "+",
+ RowBox[{"2", " ", "y11d", " ",
+ SuperscriptBox["\[Sigma]1", "2"]}], "+",
+ RowBox[{"2", " ", "y11d", " ",
+ SuperscriptBox["\[Sigma]2", "2"]}], "+", "\[Omega]1", "-", "\[Omega]2"}],
+ ",",
+ RowBox[{
+ RowBox[{
+ FractionBox["1", "2"], " ",
+ RowBox[{"(",
+ RowBox[{
+ FractionBox[
+ RowBox[{
+ RowBox[{"(",
+ RowBox[{"y11", "-", "y11d"}], ")"}], " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"2", " ",
+ SuperscriptBox["y11", "2"]}], "-",
+ RowBox[{"3", " ", "y11", " ", "y11d"}], "+",
+ SuperscriptBox["y11d", "2"], "+",
+ RowBox[{"4", " ", "q11d", " ", "z110"}], "-",
+ RowBox[{"2", " ", "q11d", " ", "z111"}], "-",
+ RowBox[{"2", " ", "q11d", " ", "z11d0"}]}], ")"}]}],
+ SuperscriptBox[
+ RowBox[{"(",
+ RowBox[{
+ SuperscriptBox["y11", "2"], "-",
+ RowBox[{"2", " ", "y11", " ", "y11d"}], "+",
+ SuperscriptBox["y11d", "2"], "+",
+ RowBox[{"q11d", " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"2", " ", "z110"}], "-",
+ RowBox[{"2", " ", "z111"}], "-", "z11d0", "+", "z11d1"}],
+ ")"}]}]}], ")"}], "2"]], "-",
+ FractionBox[
+ RowBox[{"y11d", "+",
+ RowBox[{"2", " ", "y22"}]}],
+ RowBox[{
+ SuperscriptBox["y11d", "2"], "+",
+ RowBox[{"2", " ", "y11d", " ", "y22"}], "+",
+ SuperscriptBox["y22", "2"], "-",
+ RowBox[{
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"-", "1"}], "+", "q11d"}], ")"}], " ",
+ RowBox[{"(",
+ RowBox[{"z11d0", "-", "z11d1", "+",
+ RowBox[{"2", " ", "z220"}], "-",
+ RowBox[{"2", " ", "z221"}]}], ")"}]}]}]], "+",
+ FractionBox[
+ RowBox[{
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"-", "1"}], "+", "q11d"}], ")"}], " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"y11d", " ",
+ RowBox[{"(",
+ RowBox[{"z11d0", "+", "z11d1", "+",
+ RowBox[{"2", " ", "z220"}]}], ")"}]}], "+",
+ RowBox[{"2", " ", "y22", " ",
+ RowBox[{"(",
+ RowBox[{"z11d1", "+", "z221"}], ")"}]}]}], ")"}]}],
+ SuperscriptBox[
+ RowBox[{"(",
+ RowBox[{
+ SuperscriptBox["y11d", "2"], "+",
+ RowBox[{"2", " ", "y11d", " ", "y22"}], "+",
+ SuperscriptBox["y22", "2"], "-",
+ RowBox[{
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"-", "1"}], "+", "q11d"}], ")"}], " ",
+ RowBox[{"(",
+ RowBox[{"z11d0", "-", "z11d1", "+",
+ RowBox[{"2", " ", "z220"}], "-",
+ RowBox[{"2", " ", "z221"}]}], ")"}]}]}], ")"}], "2"]]}],
+ ")"}]}], "-",
+ RowBox[{"2", " ",
+ RowBox[{"(",
+ RowBox[{"y11d", "+",
+ RowBox[{"2", " ", "q11d", " ", "\[Lambda]"}]}], ")"}], " ",
+ SuperscriptBox["\[Sigma]1", "2"]}], "-",
+ RowBox[{"2", " ",
+ RowBox[{"(",
+ RowBox[{"y11d", "+",
+ RowBox[{"2", " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"-", "1"}], "+", "q11d"}], ")"}], " ", "\[Lambda]"}]}],
+ ")"}], " ",
+ SuperscriptBox["\[Sigma]2", "2"]}], "-", "\[Omega]1", "+", "\[Omega]2"}],
+ ",",
+ RowBox[{
+ FractionBox["1",
+ RowBox[{"y11d", "+", "y22"}]], "-",
+ FractionBox[
+ RowBox[{
+ RowBox[{"(",
+ RowBox[{"y11d", "+", "y22"}], ")"}], " ",
+ RowBox[{"(",
+ RowBox[{
+ SuperscriptBox["y11d", "2"], "+",
+ RowBox[{"y11d", " ", "y22"}], "+",
+ RowBox[{"2", " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"-", "1"}], "+", "q11d"}], ")"}], " ",
+ RowBox[{"(",
+ RowBox[{"z11d1", "+", "z221"}], ")"}]}]}], ")"}]}],
+ SuperscriptBox[
+ RowBox[{"(",
+ RowBox[{
+ SuperscriptBox["y11d", "2"], "+",
+ RowBox[{"2", " ", "y11d", " ", "y22"}], "+",
+ SuperscriptBox["y22", "2"], "-",
+ RowBox[{
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"-", "1"}], "+", "q11d"}], ")"}], " ",
+ RowBox[{"(",
+ RowBox[{"z11d0", "-", "z11d1", "+",
+ RowBox[{"2", " ", "z220"}], "-",
+ RowBox[{"2", " ", "z221"}]}], ")"}]}]}], ")"}], "2"]], "-",
+ RowBox[{"4", " ", "y22", " ",
+ SuperscriptBox["\[Sigma]2", "2"]}]}], ",",
+ RowBox[{
+ RowBox[{
+ RowBox[{"-", "y22"}], " ",
+ RowBox[{"(",
+ RowBox[{
+ FractionBox["1",
+ RowBox[{
+ SuperscriptBox["y11d", "2"], "+",
+ RowBox[{"2", " ", "y11d", " ", "y22"}], "+",
+ SuperscriptBox["y22", "2"], "-",
+ RowBox[{
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"-", "1"}], "+", "q11d"}], ")"}], " ",
+ RowBox[{"(",
+ RowBox[{"z11d0", "-", "z11d1", "+",
+ RowBox[{"2", " ", "z220"}], "-",
+ RowBox[{"2", " ", "z221"}]}], ")"}]}]}]], "-",
+ RowBox[{"4", " ",
+ SuperscriptBox["\[Sigma]2", "2"]}]}], ")"}]}], "+",
+ RowBox[{
+ RowBox[{"(",
+ RowBox[{"1", "-", "q11d"}], ")"}], " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"-",
+ FractionBox[
+ RowBox[{
+ RowBox[{"y11d", " ",
+ RowBox[{"(",
+ RowBox[{"z11d0", "+", "z11d1", "+",
+ RowBox[{"2", " ", "z220"}]}], ")"}]}], "+",
+ RowBox[{"2", " ", "y22", " ",
+ RowBox[{"(",
+ RowBox[{"z11d1", "+", "z221"}], ")"}]}]}],
+ SuperscriptBox[
+ RowBox[{"(",
+ RowBox[{
+ SuperscriptBox["y11d", "2"], "+",
+ RowBox[{"2", " ", "y11d", " ", "y22"}], "+",
+ SuperscriptBox["y22", "2"], "-",
+ RowBox[{
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"-", "1"}], "+", "q11d"}], ")"}], " ",
+ RowBox[{"(",
+ RowBox[{"z11d0", "-", "z11d1", "+",
+ RowBox[{"2", " ", "z220"}], "-",
+ RowBox[{"2", " ", "z221"}]}], ")"}]}]}], ")"}], "2"]]}], "+",
+ RowBox[{"4", " ", "\[Lambda]", " ",
+ SuperscriptBox["\[Sigma]2", "2"]}]}], ")"}]}]}]}], "}"}]], "Output",
+ CellChangeTimes->{{3.9061878924875402`*^9, 3.906187907449717*^9},
+ 3.906188395619846*^9, 3.9061892307700033`*^9, 3.906190699743403*^9,
+ 3.906445765588705*^9, 3.906526409231572*^9, 3.907146549327018*^9,
+ 3.9073284290518627`*^9, 3.9085278141653852`*^9, 3.908535231005335*^9,
+ 3.908603358180184*^9, 3.908613796140329*^9, 3.9086213853239603`*^9,
+ 3.908959065638323*^9, 3.909041299813568*^9, 3.915532108906477*^9,
+ 3.915532519605406*^9, 3.9157715941794653`*^9},
+ CellLabel->"Out[20]=",ExpressionUUID->"7c39a957-cd36-48d3-a034-eee66c14231d"]
+}, Open ]],
+
+Cell[CellGroupData[{
+
+Cell[BoxData[
+ RowBox[{"e6", "=",
+ RowBox[{
+ RowBox[{"SeriesCoefficient", "[",
+ RowBox[{
+ RowBox[{
+ RowBox[{"e3", "[",
+ RowBox[{"[", "1", "]"}], "]"}], "//.", "rules"}], ",",
+ RowBox[{"{",
+ RowBox[{"\[Beta]", ",", "\[Infinity]", ",", "0"}], "}"}]}], "]"}], "//",
+ "Simplify"}]}]], "Input",
+ CellChangeTimes->{{3.906187902458308*^9, 3.906187917954363*^9}},
+ CellLabel->"In[21]:=",ExpressionUUID->"b2530e76-38c3-48b8-85fb-23b713cd8c3c"],
+
+Cell[BoxData[
+ RowBox[{
+ RowBox[{"2", " ", "q11d", " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{
+ RowBox[{"-", "2"}], " ", "y11"}], "+",
+ RowBox[{"2", " ", "y11d"}], "+",
+ RowBox[{"q11d", " ", "\[Lambda]"}]}], ")"}], " ",
+ SuperscriptBox["\[Sigma]1", "2"]}], "+",
+ RowBox[{"2", " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"-", "1"}], "+", "q11d"}], ")"}], " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"2", " ",
+ RowBox[{"(",
+ RowBox[{"y11d", "+", "y22"}], ")"}]}], "+",
+ RowBox[{
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"-", "1"}], "+", "q11d"}], ")"}], " ", "\[Lambda]"}]}], ")"}],
+ " ",
+ SuperscriptBox["\[Sigma]2", "2"]}], "+",
+ RowBox[{"q11d", " ",
+ RowBox[{"(",
+ RowBox[{"\[Omega]1", "-", "\[Omega]2"}], ")"}]}], "+",
+ "\[Omega]2"}]], "Output",
+ CellChangeTimes->{3.906187918228827*^9, 3.906188395740288*^9,
+ 3.906189231662617*^9, 3.906190699863659*^9, 3.906445765679088*^9,
+ 3.9065264093386173`*^9, 3.907146549432131*^9, 3.907328429169303*^9,
+ 3.908527814198004*^9, 3.908535231041009*^9, 3.908603358210541*^9,
+ 3.90861379620579*^9, 3.90862138535625*^9, 3.909041299849929*^9,
+ 3.915532115920799*^9, 3.9155325197505903`*^9, 3.9157715942701187`*^9},
+ CellLabel->"Out[21]=",ExpressionUUID->"abded75c-64eb-402a-9a69-78d296d1035c"]
+}, Open ]],
+
+Cell[CellGroupData[{
+
+Cell[BoxData[
+ RowBox[{
+ RowBox[{"s6", "=",
+ RowBox[{"Simplify", "[",
+ RowBox[{"Solve", "[",
+ RowBox[{
+ RowBox[{"0", "==",
+ RowBox[{"Join", "[",
+ RowBox[{"e4", ",", "e5", ",",
+ RowBox[{"{", "e6", "}"}]}], "]"}]}], ",",
+ RowBox[{"{",
+ RowBox[{
+ "\[Lambda]", ",", "y11", ",", "y11d", ",", "y22", ",", "q11d", ",",
+ "z110", ",", "z111", ",", "z11d0", ",", "z11d1", ",", "z220", ",",
+ "z221"}], "}"}]}], "]"}], "]"}]}], ";"}]], "Input",
+ CellChangeTimes->{{3.906187633925405*^9, 3.9061876626932497`*^9}, {
+ 3.906187731847047*^9, 3.906187753167115*^9}, {3.90618781156046*^9,
+ 3.906187831432788*^9}, {3.906187923675535*^9, 3.906187969649603*^9}, {
+ 3.906188000516306*^9, 3.9061880008675756`*^9}, {3.906188709249345*^9,
+ 3.906188738449854*^9}, {3.906190696079129*^9, 3.9061906986149282`*^9}},
+ CellLabel->"In[22]:=",ExpressionUUID->"583ab52e-3647-429c-9c33-fd12ede259b8"],
+
+Cell[BoxData[
+ TemplateBox[{
+ "Solve", "svars",
+ "\"Equations may not give solutions for all \\\"solve\\\" variables.\"", 2,
+ 22, 1, 23800662333952606617, "Local"},
+ "MessageTemplate"]], "Message", "MSG",
+ CellChangeTimes->{3.906188768978856*^9, 3.906189233017943*^9,
+ 3.906190730289953*^9, 3.906445795758022*^9, 3.906455280766007*^9,
+ 3.9065264390893784`*^9, 3.9071465797681427`*^9, 3.907328458968724*^9,
+ 3.908527846938418*^9, 3.90853526395877*^9, 3.908603390307139*^9,
+ 3.908613828558267*^9, 3.908615455337167*^9, 3.90862142384585*^9,
+ 3.908959097492876*^9, 3.909041332451538*^9, 3.915532146769128*^9,
+ 3.915532550417849*^9, 3.915771624173337*^9},
+ CellLabel->
+ "During evaluation of \
+In[22]:=",ExpressionUUID->"2f4c2728-fd8d-46d6-a68a-371b7c8a7ba9"]
+}, Open ]],
+
+Cell[BoxData[
+ RowBox[{
+ RowBox[{"testparams", "=",
+ RowBox[{"{",
+ RowBox[{
+ RowBox[{"\[Sigma]1", "->", "1"}], ",",
+ RowBox[{"\[Sigma]2", "->", "1"}], ",",
+ RowBox[{"\[Omega]1", "->", "3"}], ",",
+ RowBox[{"\[Omega]2", "->",
+ RowBox[{"200005", "/", "100000"}]}], ",",
+ RowBox[{"\[Epsilon]", "->",
+ RowBox[{"1", "/", "100"}]}]}], "}"}]}], ";"}]], "Input",
+ CellChangeTimes->{{3.907245948262267*^9, 3.907245950646895*^9}, {
+ 3.908611448200711*^9, 3.908611448896093*^9}, {3.908614445394108*^9,
+ 3.908614446153916*^9}, {3.908615875779113*^9, 3.908615877987123*^9}, {
+ 3.908616482086334*^9, 3.908616482206256*^9}, 3.908616534687642*^9, {
+ 3.908616963967916*^9, 3.908616965983852*^9}, 3.908617191179674*^9,
+ 3.908962534254868*^9, 3.908963027542485*^9, {3.908963083415245*^9,
+ 3.908963089503387*^9}, 3.9089631790945587`*^9, {3.908963292075355*^9,
+ 3.908963292187259*^9}},
+ CellLabel->"In[23]:=",ExpressionUUID->"e570420b-e9e0-4c23-ae5b-1941f99cb727"],
+
+Cell[BoxData[
+ RowBox[{
+ RowBox[{"rules2", "=",
+ RowBox[{"{",
+ RowBox[{
+ RowBox[{"q110", "->",
+ RowBox[{"q11d", "-",
+ RowBox[{"y110", "/", "\[Beta]"}], "-",
+ RowBox[{"z110", "/",
+ SuperscriptBox["\[Beta]", "2"]}]}]}], ",",
+ RowBox[{"q111", "->",
+ RowBox[{"q11d", "-",
+ RowBox[{"y111", "/", "\[Beta]"}], "-",
+ RowBox[{"z111", "/",
+ SuperscriptBox["\[Beta]", "2"]}]}]}], ",",
+ RowBox[{"q11d0", "->",
+ RowBox[{"q11d", "-", " ",
+ RowBox[{"y11d0", "/", "\[Beta]"}], "-",
+ RowBox[{"z11d0", "/",
+ SuperscriptBox["\[Beta]", "2"]}]}]}], ",",
+ RowBox[{"q11d1", "->",
+ RowBox[{"q11d", "-",
+ RowBox[{"y11d1", "/", "\[Beta]"}], "-",
+ RowBox[{"z11d1", "/",
+ SuperscriptBox["\[Beta]", "2"]}]}]}], ",",
+ RowBox[{"q220", "->",
+ RowBox[{"q22d", "-",
+ RowBox[{"y220", "/", "\[Beta]"}], "-",
+ RowBox[{"z220", "/",
+ SuperscriptBox["\[Beta]", "2"]}]}]}], ",",
+ RowBox[{"q221", "->",
+ RowBox[{"q22d", "-",
+ RowBox[{"y221", "/", "\[Beta]"}], "-",
+ RowBox[{"z221", "/",
+ SuperscriptBox["\[Beta]", "2"]}]}]}], ",",
+ RowBox[{"q12d1", "->",
+ RowBox[{"q12", "-",
+ RowBox[{"y12d1", "/", "\[Beta]"}], "-",
+ RowBox[{"z12d1", "/",
+ SuperscriptBox["\[Beta]", "2"]}]}]}], ",",
+ RowBox[{"q12d0", "->",
+ RowBox[{"q12", "-",
+ RowBox[{"y12d0", "/", "\[Beta]"}], "-",
+ RowBox[{"z12d0", "/",
+ SuperscriptBox["\[Beta]", "2"]}]}]}], ",",
+ RowBox[{"q121", "->",
+ RowBox[{"q12", "-",
+ RowBox[{"y121", "/", "\[Beta]"}], "-",
+ RowBox[{"z121", "/",
+ SuperscriptBox["\[Beta]", "2"]}]}]}], ",",
+ RowBox[{"q120", "->",
+ RowBox[{"q12", "-",
+ RowBox[{"y120", "/", "\[Beta]"}], "-",
+ RowBox[{"z120", "/",
+ SuperscriptBox["\[Beta]", "2"]}]}]}], ",",
+ RowBox[{"q22d", "->",
+ RowBox[{"1", "-", "q11d"}]}], ",",
+ RowBox[{"\[Lambda]", "->",
+ RowBox[{"\[Lambda]0", "-",
+ RowBox[{"\[Lambda]1", "/", "\[Beta]"}], "-",
+ RowBox[{"\[Lambda]2", "/",
+ SuperscriptBox["\[Beta]", "2"]}]}]}]}], "}"}]}], ";"}]], "Input",
+ CellChangeTimes->{{3.905861542929487*^9, 3.905861546187963*^9}, {
+ 3.9058616088771887`*^9, 3.905861619740603*^9}, {3.9058616556854*^9,
+ 3.905861699276464*^9}, {3.905861855312809*^9, 3.905861857476181*^9}, {
+ 3.905912367239668*^9, 3.905912369548286*^9}, {3.905912613884484*^9,
+ 3.905912616896575*^9}, {3.90591332909175*^9, 3.9059133499069*^9}, {
+ 3.905913476003109*^9, 3.905913478780634*^9}, 3.905913510172113*^9, {
+ 3.905913658453998*^9, 3.905913661681223*^9}, {3.905918897671769*^9,
+ 3.905918933808075*^9}, {3.9059194397219048`*^9, 3.905919487154225*^9}, {
+ 3.905919971332117*^9, 3.905919981516094*^9}, {3.905921624987239*^9,
+ 3.905921647467622*^9}, {3.905921807702829*^9, 3.905921811630349*^9}, {
+ 3.905922272815454*^9, 3.9059222846000423`*^9}, {3.905931570960396*^9,
+ 3.905931578736177*^9}, {3.905931954887074*^9, 3.905931975071704*^9}, {
+ 3.906014772838179*^9, 3.90601477479656*^9}, {3.906014805045081*^9,
+ 3.906014807781166*^9}, {3.906014900111161*^9, 3.906014903118968*^9}, {
+ 3.906015113442898*^9, 3.906015153147285*^9}, {3.906016827027356*^9,
+ 3.906016885852555*^9}, 3.906190615589766*^9, {3.906192507465321*^9,
+ 3.9061925793946037`*^9}, {3.906195398887929*^9, 3.906195399407722*^9}, {
+ 3.906195767951429*^9, 3.9061957720793056`*^9}, {3.906195840496765*^9,
+ 3.906195919154381*^9}, {3.906213868718033*^9, 3.906213885938034*^9}, {
+ 3.906449467308639*^9, 3.906449467504347*^9}, {3.906458374848988*^9,
+ 3.90645838768067*^9}, 3.907244382872212*^9, 3.908959048467206*^9},
+ CellLabel->"In[24]:=",ExpressionUUID->"83b8cb66-7a5d-443e-8848-d633f7da5d42"],
+
+Cell[CellGroupData[{
+
+Cell[BoxData[
+ RowBox[{"stest2", "=",
+ RowBox[{"Solve", "[",
+ RowBox[{
+ RowBox[{"0", "==",
+ RowBox[{"{",
+ RowBox[{
+ RowBox[{
+ RowBox[{"2", " ", "y120"}], "-",
+ RowBox[{"2", " ", "y121"}], "-", "y12d0", "+", "y12d1"}], ",",
+ RowBox[{
+ RowBox[{"2", " ", "y110"}], "-",
+ RowBox[{"2", " ", "y111"}], "-", "y11d0", "+", "y11d1"}], ",",
+ RowBox[{"y11d0", "-", "y11d1", "+",
+ RowBox[{"2", " ", "y220"}], "-",
+ RowBox[{"2", " ", "y221"}]}]}], "}"}]}], ",",
+ RowBox[{"{",
+ RowBox[{"y110", ",", "y120", ",", "y220"}], "}"}]}], "]"}]}]], "Input",
+ CellChangeTimes->{{3.906209108534292*^9, 3.906209142918777*^9}, {
+ 3.906209281514675*^9, 3.906209401810359*^9}, {3.906209557442634*^9,
+ 3.90620956311773*^9}, {3.906210598464419*^9, 3.906210622697938*^9}, {
+ 3.90621490877896*^9, 3.906214961058323*^9}, {3.906215011570169*^9,
+ 3.906215011869331*^9}, {3.90621511367527*^9, 3.906215113937558*^9}, {
+ 3.906449850271374*^9, 3.906449864831753*^9}, {3.906452288389834*^9,
+ 3.906452349678601*^9}, {3.906452536307121*^9, 3.906452536562147*^9}, {
+ 3.90724443620947*^9, 3.907244488412445*^9}},
+ CellLabel->"In[25]:=",ExpressionUUID->"408b9498-9f18-42c3-a258-3358b138cc65"],
+
+Cell[BoxData[
+ RowBox[{"{",
+ RowBox[{"{",
+ RowBox[{
+ RowBox[{"y110", "\[Rule]",
+ RowBox[{
+ FractionBox["1", "2"], " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"2", " ", "y111"}], "+", "y11d0", "-", "y11d1"}], ")"}]}]}],
+ ",",
+ RowBox[{"y120", "\[Rule]",
+ RowBox[{
+ FractionBox["1", "2"], " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"2", " ", "y121"}], "+", "y12d0", "-", "y12d1"}], ")"}]}]}],
+ ",",
+ RowBox[{"y220", "\[Rule]",
+ RowBox[{
+ FractionBox["1", "2"], " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"-", "y11d0"}], "+", "y11d1", "+",
+ RowBox[{"2", " ", "y221"}]}], ")"}]}]}]}], "}"}], "}"}]], "Output",
+ CellChangeTimes->{{3.906209114847683*^9, 3.906209134528015*^9}, {
+ 3.9062092861324043`*^9, 3.906209307644665*^9}, {3.906209348694558*^9,
+ 3.906209402069257*^9}, 3.906209567919038*^9, {3.906210599059472*^9,
+ 3.906210623077407*^9}, {3.906214910275611*^9, 3.906214961402548*^9},
+ 3.906215012221205*^9, 3.906215114141577*^9, 3.906449865837833*^9, {
+ 3.906452290224807*^9, 3.906452324323553*^9}, 3.9064523548160133`*^9,
+ 3.906452536825111*^9, 3.906452992821587*^9, 3.906535913473673*^9, {
+ 3.907244450027872*^9, 3.9072444889943857`*^9}, 3.907329066028408*^9,
+ 3.908528771220576*^9, 3.908535928499719*^9, 3.908604043703294*^9,
+ 3.908611456149561*^9, 3.9086144305920887`*^9, 3.908621428030292*^9,
+ 3.9089591306410522`*^9, 3.909041335868808*^9, 3.915532186836844*^9,
+ 3.915532553880711*^9, 3.915771627638197*^9},
+ CellLabel->"Out[25]=",ExpressionUUID->"e46e4e60-dba7-4188-9de8-05742c779360"]
+}, Open ]],
+
+Cell[BoxData[
+ RowBox[{
+ RowBox[{"e9", "=",
+ RowBox[{"Simplify", "[",
+ RowBox[{
+ RowBox[{
+ RowBox[{
+ RowBox[{"e1", "/.",
+ RowBox[{
+ RowBox[{
+ RowBox[{
+ RowBox[{"-", "2"}],
+ RowBox[{"Log", "[", "x_", "]"}]}], "+",
+ RowBox[{"Log", "[", "y_", "]"}]}], ":>",
+ RowBox[{"Log", "[",
+ RowBox[{"y", " ",
+ SuperscriptBox["x",
+ RowBox[{"-", "2"}]]}], "]"}]}]}], "//.", "rules2"}], "/.",
+ RowBox[{"stest2", "[",
+ RowBox[{"[", "1", "]"}], "]"}]}], ",",
+ RowBox[{"TimeConstraint", "->", "600"}]}], "]"}]}], ";"}]], "Input",
+ CellChangeTimes->{{3.906460267036875*^9, 3.906460376670369*^9}, {
+ 3.906460777446906*^9, 3.906460792814526*^9}, {3.90724455188748*^9,
+ 3.907244564134206*^9}, {3.908530577362788*^9, 3.908530577674566*^9},
+ 3.908533636339531*^9},
+ CellLabel->"In[26]:=",ExpressionUUID->"59c41cae-4e24-4a51-a7a3-7d500a289340"],
+
+Cell[BoxData[
+ RowBox[{
+ RowBox[{"e10", "=",
+ RowBox[{"Simplify", "[",
+ RowBox[{"Limit", "[",
+ RowBox[{"e9", ",",
+ RowBox[{"\[Beta]", "->", "\[Infinity]"}]}], "]"}], "]"}]}],
+ ";"}]], "Input",
+ CellChangeTimes->{{3.908529782124156*^9, 3.908529796140355*^9}},
+ CellLabel->"In[27]:=",ExpressionUUID->"10d3cd49-4d16-4520-bb58-ea59fc8d7b92"],
+
+Cell[BoxData[
+ RowBox[{
+ RowBox[{"e11", "=",
+ RowBox[{"Simplify", "[",
+ RowBox[{"D", "[",
+ RowBox[{"e10", ",",
+ RowBox[{"{",
+ RowBox[{"{",
+ RowBox[{
+ "q11d", ",", "q12", ",", "y111", ",", "y221", ",", "y12d1", ",",
+ "y11d0", ",", "y11d1", ",", "y121", ",", "y12d0", ",", "z110", ",",
+ "z111", ",", "z11d0", ",", "z11d1", ",", "z220", ",", "z221", ",",
+ "z120", ",", "z121", ",", "z12d0", ",", "z12d1", ",", "\[Lambda]0"}],
+ "}"}], "}"}]}], "]"}], "]"}]}], ";"}]], "Input",
+ CellChangeTimes->{{3.908534070987885*^9, 3.908534106731855*^9}, {
+ 3.908534493867115*^9, 3.908534503451172*^9}, {3.908534639469946*^9,
+ 3.908534652366032*^9}, {3.908534769136189*^9, 3.908534784840426*^9}, {
+ 3.908534838729506*^9, 3.908534842369544*^9}},
+ CellLabel->"In[28]:=",ExpressionUUID->"93de0c72-ab3d-4e0e-91df-edd506da949b"],
+
+Cell[CellGroupData[{
+
+Cell[BoxData[{
+ RowBox[{
+ RowBox[{"iniTest", "=",
+ RowBox[{"Thread", "[",
+ RowBox[{"{",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{
+ "q11d", ",", "q12", ",", "y111", ",", "y221", ",", "y12d1", ",",
+ "y11d0", ",", "y11d1", ",", "y121", ",", "y12d0", ",", "z110", ",",
+ "z111", ",", "z11d0", ",", "z11d1", ",", "z220", ",", "z221", ",",
+ "z120", ",", "z121", ",", "z12d0", ",", "z12d1", ",", "\[Lambda]0"}],
+ "}"}], ",", "\[IndentingNewLine]",
+ RowBox[{
+ RowBox[{
+ RowBox[{
+ RowBox[{
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{
+ "q11d", ",", "q12", ",", "y111", ",", "y221", ",", "y12d1", ",",
+ "y11d0", ",", "y11d1", ",", "y121", ",", "y12d0", ",", "z110",
+ ",", "z111", ",", "z11d0", ",", "z11d1", ",", "z220", ",",
+ "z221", ",", "z120", ",", "z121", ",", "z12d0", ",", "z12d1",
+ ",", "\[Lambda]0"}], "}"}], "/.",
+ RowBox[{"{", "\[IndentingNewLine]",
+ RowBox[{
+ RowBox[{"\[Lambda]0", "->", " ", "\[Lambda]"}], ",",
+ RowBox[{"y110", "->", "y11"}], ",",
+ RowBox[{"y111", "->", "y11"}], ",",
+ RowBox[{"y220", "->", "y22"}], ",",
+ RowBox[{"y221", "->", "y22"}], ",",
+ RowBox[{"y11d0", "->", "y11d"}], ",",
+ RowBox[{"y11d1", "->", "y11d"}]}], "\[IndentingNewLine]",
+ "}"}]}], "/.",
+ RowBox[{"s6", "[",
+ RowBox[{"[", "3", "]"}], "]"}]}], "/.",
+ RowBox[{"{",
+ RowBox[{
+ RowBox[{"z111", "->", "0"}], ",",
+ RowBox[{"z110", "->", "0"}], ",",
+ RowBox[{"z11d0", "->", "0"}], ",",
+ RowBox[{"z220", "->", "0"}], ",",
+ RowBox[{"z221", "->", "0"}], ",",
+ RowBox[{"z11d1", "->", "0"}], ",",
+ RowBox[{"q12", "->", "0"}], ",",
+ RowBox[{"y12d1", "->", "0"}], ",",
+ RowBox[{"y121", "->", "0"}], ",",
+ RowBox[{"y12d0", "->", "0"}], ",",
+ RowBox[{"z120", "->", "0"}], ",",
+ RowBox[{"z121", "->", "0"}], ",",
+ RowBox[{"z12d0", "->", "0"}], ",",
+ RowBox[{"z12d1", "->", "0"}]}], "}"}]}], "/.",
+ RowBox[{"Append", "[",
+ RowBox[{
+ RowBox[{"Most", "[", "testparams", "]"}], ",",
+ RowBox[{"\[Epsilon]", "->",
+ SuperscriptBox["10",
+ RowBox[{"-", "2"}]]}]}], "]"}]}], "/.", " ",
+ RowBox[{"0", ":>",
+ RowBox[{
+ RowBox[{"RandomReal", "[", "]"}],
+ SuperscriptBox["10",
+ RowBox[{"-", "5"}]]}]}]}]}], "\[IndentingNewLine]", "}"}], "]"}]}],
+ ";"}], "\[IndentingNewLine]",
+ RowBox[{"newsol", "=",
+ RowBox[{"FindRoot", "[",
+ RowBox[{
+ RowBox[{"e11", "/.",
+ RowBox[{"Append", "[",
+ RowBox[{
+ RowBox[{"Most", "[", "testparams", "]"}], ",",
+ RowBox[{"\[Epsilon]", "->",
+ SuperscriptBox["10",
+ RowBox[{"-", "2"}]]}]}], "]"}]}], ",", "iniTest", ",",
+ RowBox[{"WorkingPrecision", "->", "20"}], ",",
+ RowBox[{"MaxIterations", "->", "1000"}]}], "]"}]}]}], "Input",
+ CellChangeTimes->CompressedData["
+1:eJxTTMoPSmViYGAQA2IQLdE9S/2D3FtH5vuy2iDa/tFuQxC9p1/FCETPEk1y
+ANElVcaOIFqlcf0/Ufm3jkcyp/0H0aFtxzXFgbTYUh5dEP1IWO4WiHbJ2nYP
+RGtxijJJAGmpRWfZQXRSG1vBfiD9I9YeTFtYn1I/AKTl2M+A6RkRci4g+tlC
+BTAt9O3pNRCdUv3zNoh+tE7zI4hWLM8G041iFT9A9KTblWA6pYiP7yCQFrAV
+BNMpeqFyIPpDhb0uiP4S89oRRLfMfuAMok9IVkWDaIWz68C0gbx+Coh+7qKd
+BqJlptqVguiZffMqQHT/pUm1IHrDSp86EP2u7nALiK5mmdUGojfn3esH0Tqe
+XDNANACqiaYp
+ "],
+ CellLabel->"In[29]:=",ExpressionUUID->"9e5141ea-32bd-48b0-8277-cb026f090ea9"],
+
+Cell[BoxData[
+ RowBox[{"{",
+ RowBox[{
+ RowBox[{
+ "q11d", "\[Rule]", "0.00001719918305512310846812066162581739`20."}], ",",
+ RowBox[{"q12", "\[Rule]",
+ RowBox[{"-", "0.00383281097181573630367754982616161269`20."}]}], ",",
+ RowBox[{"y111", "\[Rule]",
+ RowBox[{"-", "0.00035195692931336096614732113808739622`20."}]}], ",",
+ RowBox[{
+ "y221", "\[Rule]", "0.68962883518266681666929540111765532089`20."}], ",",
+ RowBox[{
+ "y12d1", "\[Rule]", "0.00001195902976122081536376878225626195`20."}], ",",
+
+ RowBox[{"y11d0", "\[Rule]",
+ RowBox[{"-", "0.19134347483798316542575123636469573829`20."}]}], ",",
+ RowBox[{"y11d1", "\[Rule]",
+ RowBox[{"-", "0.19134347443763013996154143114836188033`20."}]}], ",",
+ RowBox[{"y121", "\[Rule]",
+ RowBox[{"-", "0.00189131160660317551985182544384737973`20."}]}], ",",
+ RowBox[{
+ "y12d0", "\[Rule]", "0.00001200394654371134792896803900053015`20."}], ",",
+
+ RowBox[{"z110", "\[Rule]",
+ RowBox[{"-", "0.00138209065735460074830929170551699655`20."}]}], ",",
+ RowBox[{"z111", "\[Rule]",
+ RowBox[{"-", "0.0001686535286287455946870050826902343`20."}]}], ",",
+ RowBox[{"z11d0", "\[Rule]",
+ RowBox[{"-", "0.00314607804000348555647997344240855575`20."}]}], ",",
+ RowBox[{"z11d1", "\[Rule]",
+ RowBox[{"-", "0.00006310263942843852237249424597109737`20."}]}], ",",
+ RowBox[{
+ "z220", "\[Rule]", "0.00097124584745275979735801286096830154`20."}], ",",
+ RowBox[{"z221", "\[Rule]",
+ RowBox[{"-", "0.00142610628812969058090698304397392349`20."}]}], ",",
+ RowBox[{"z120", "\[Rule]",
+ RowBox[{"-", "2.91776898432395453655741051424094`20.*^-6"}]}], ",",
+ RowBox[{"z121", "\[Rule]", "1.95468917188534837593456156001892`20.*^-6"}],
+ ",",
+ RowBox[{"z12d0", "\[Rule]", "3.53440597451910610968988171731731`20.*^-6"}],
+ ",",
+ RowBox[{"z12d1", "\[Rule]", "6.76382789044256168528622755187207`20.*^-6"}],
+ ",",
+ RowBox[{"\[Lambda]0", "\[Rule]",
+ RowBox[{"-", "0.00343523813242614214746524692591004446`20."}]}]}],
+ "}"}]], "Output",
+ CellChangeTimes->{
+ 3.908534617165332*^9, 3.908534760405347*^9, 3.9085347944529567`*^9,
+ 3.9085362696996202`*^9, 3.908604381422617*^9, 3.908612093101529*^9,
+ 3.908614449703895*^9, {3.908614481344686*^9, 3.908614504811044*^9}, {
+ 3.908616210963707*^9, 3.908616254842885*^9}, {3.908616312237392*^9,
+ 3.9086163170447197`*^9}, 3.908616970303256*^9, 3.908621789726719*^9, {
+ 3.90862195734993*^9, 3.908621968286858*^9}, 3.908959467170705*^9, {
+ 3.908960499329819*^9, 3.908960526670731*^9}, {3.908960574847391*^9,
+ 3.9089606038254843`*^9}, {3.908960782913903*^9, 3.908960813745655*^9}, {
+ 3.908961757784819*^9, 3.908961770114484*^9}, 3.90896180984956*^9, {
+ 3.908961981727275*^9, 3.908962027694907*^9}, {3.908962188993072*^9,
+ 3.908962209399077*^9}, {3.908962244124213*^9, 3.908962284221075*^9},
+ 3.908962342678248*^9, {3.9089624171398773`*^9, 3.908962455324469*^9}, {
+ 3.9089625398547907`*^9, 3.9089626737739773`*^9}, {3.908962847416065*^9,
+ 3.908962888610635*^9}, {3.908962952419513*^9, 3.90896296095532*^9}, {
+ 3.9089630322598047`*^9, 3.908963121645569*^9}, {3.9089631813370247`*^9,
+ 3.908963207296228*^9}, {3.908963248759201*^9, 3.90896338669203*^9}, {
+ 3.908963452507598*^9, 3.908963523634545*^9}, {3.909041670516673*^9,
+ 3.909041694543151*^9}, 3.909042006145735*^9, {3.915532160299971*^9,
+ 3.915532168934849*^9}, 3.9155327735576057`*^9, 3.915771847507398*^9},
+ CellLabel->"Out[30]=",ExpressionUUID->"0ec956b2-4200-4dbd-bf3a-8e1ba4f9fb29"]
+}, Open ]],
+
+Cell[CellGroupData[{
+
+Cell[BoxData[
+ RowBox[{
+ RowBox[{"e12", "=",
+ RowBox[{"FoldList", "[",
+ RowBox[{
+ RowBox[{"Function", "[",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"sol", ",", "\[Omega]22"}], "}"}], ",",
+ RowBox[{"Join", "[",
+ RowBox[{
+ RowBox[{"Append", "[",
+ RowBox[{
+ RowBox[{"Delete", "[",
+ RowBox[{"testparams", ",",
+ RowBox[{"{", "4", "}"}]}], "]"}], ",",
+ RowBox[{"\[Omega]2", "->", "\[Omega]22"}]}], "]"}], ",",
+ RowBox[{"FindRoot", "[",
+ RowBox[{
+ RowBox[{"e11", "/.",
+ RowBox[{"Append", "[",
+ RowBox[{
+ RowBox[{"Delete", "[",
+ RowBox[{"testparams", ",",
+ RowBox[{"{", "4", "}"}]}], "]"}], ",",
+ RowBox[{"\[Omega]2", "->", "\[Omega]22"}]}], "]"}]}], ",",
+ RowBox[{
+ RowBox[{"Drop", "[",
+ RowBox[{"sol", ",", "5"}], "]"}], "/.",
+ RowBox[{"Rule", "->", "List"}]}], ",",
+ RowBox[{"WorkingPrecision", "->", "20"}]}], "]"}]}], "]"}]}],
+ "]"}], ",",
+ RowBox[{"Join", "[",
+ RowBox[{
+ RowBox[{"Append", "[",
+ RowBox[{
+ RowBox[{"Most", "[", "testparams", "]"}], ",",
+ RowBox[{"\[Epsilon]", "->",
+ SuperscriptBox["10",
+ RowBox[{"-", "2"}]]}]}], "]"}], ",", "newsol"}], "]"}], ",",
+ RowBox[{"Range", "[",
+ RowBox[{
+ RowBox[{"200005", "/", "100000"}], ",",
+ RowBox[{"200003", "/", "100000"}], ",",
+ RowBox[{"-",
+ SuperscriptBox["10",
+ RowBox[{"-", "6"}]]}]}], "]"}]}], "]"}]}], ";"}]], "Input",
+ CellChangeTimes->{{3.908612319761338*^9, 3.908612417546509*^9}, {
+ 3.9086124874051113`*^9, 3.90861254511722*^9}, {3.908612745906377*^9,
+ 3.908612793106409*^9}, {3.908612832420323*^9, 3.908612861411959*^9}, {
+ 3.908613309205525*^9, 3.908613364644801*^9}, {3.90861342802299*^9,
+ 3.908613519839675*^9}, 3.9086135669615602`*^9, {3.90861449347665*^9,
+ 3.908614589381097*^9}, {3.908614669654983*^9, 3.908614697639248*^9}, {
+ 3.9086147913854*^9, 3.908614791473036*^9}, {3.908614898533624*^9,
+ 3.908614898571179*^9}, {3.908616326011752*^9, 3.908616327083562*^9}, {
+ 3.908616469198354*^9, 3.908616512344514*^9}, {3.908616543200011*^9,
+ 3.9086165541439466`*^9}, {3.908616606713204*^9, 3.908616607505047*^9}, {
+ 3.908616705004503*^9, 3.908616705122736*^9}, {3.9086168341272717`*^9,
+ 3.908616895070513*^9}, {3.908617028003454*^9, 3.908617065841843*^9}, {
+ 3.908964574277124*^9, 3.908964612668378*^9}, {3.908965377762587*^9,
+ 3.90896537784248*^9}, {3.909042427724539*^9, 3.90904242782031*^9}, {
+ 3.909042471277335*^9, 3.909042532246409*^9}},
+ CellLabel->"In[31]:=",ExpressionUUID->"15a4bc43-3d38-4bf8-ab87-9fe6c3c52fd5"],
+
+Cell[BoxData[
+ TemplateBox[{
+ "FindRoot", "lstol",
+ "\"The line search decreased the step size to within tolerance specified \
+by AccuracyGoal and PrecisionGoal but was unable to find a sufficient \
+decrease in the merit function. You may need more than \
+\\!\\(\\*RowBox[{\\\"20.`\\\"}]\\) digits of working precision to meet these \
+tolerances.\"", 2, 31, 2, 23800662333952606617, "Local"},
+ "MessageTemplate"]], "Message", "MSG",
+ CellChangeTimes->{3.909042535149797*^9, 3.9155328751204443`*^9,
+ 3.915771850129451*^9},
+ CellLabel->
+ "During evaluation of \
+In[31]:=",ExpressionUUID->"021c4989-876c-4967-bcac-1f978a0f6419"],
+
+Cell[BoxData[
+ TemplateBox[{
+ "FindRoot", "lstol",
+ "\"The line search decreased the step size to within tolerance specified \
+by AccuracyGoal and PrecisionGoal but was unable to find a sufficient \
+decrease in the merit function. You may need more than \
+\\!\\(\\*RowBox[{\\\"20.`\\\"}]\\) digits of working precision to meet these \
+tolerances.\"", 2, 31, 3, 23800662333952606617, "Local"},
+ "MessageTemplate"]], "Message", "MSG",
+ CellChangeTimes->{3.909042535149797*^9, 3.9155328751204443`*^9,
+ 3.915771850522373*^9},
+ CellLabel->
+ "During evaluation of \
+In[31]:=",ExpressionUUID->"4c8cb9d5-8149-4cd8-9ae8-7fb98ffaf525"],
+
+Cell[BoxData[
+ TemplateBox[{
+ "FindRoot", "lstol",
+ "\"The line search decreased the step size to within tolerance specified \
+by AccuracyGoal and PrecisionGoal but was unable to find a sufficient \
+decrease in the merit function. You may need more than \
+\\!\\(\\*RowBox[{\\\"20.`\\\"}]\\) digits of working precision to meet these \
+tolerances.\"", 2, 31, 4, 23800662333952606617, "Local"},
+ "MessageTemplate"]], "Message", "MSG",
+ CellChangeTimes->{3.909042535149797*^9, 3.9155328751204443`*^9,
+ 3.915771850670816*^9},
+ CellLabel->
+ "During evaluation of \
+In[31]:=",ExpressionUUID->"9bc6aaf1-acad-42a4-8e8c-3d1bc23999cc"],
+
+Cell[BoxData[
+ TemplateBox[{
+ "General", "stop",
+ "\"Further output of \\!\\(\\*StyleBox[RowBox[{\\\"FindRoot\\\", \
+\\\"::\\\", \\\"lstol\\\"}], \\\"MessageName\\\"]\\) will be suppressed \
+during this calculation.\"", 2, 31, 5, 23800662333952606617, "Local"},
+ "MessageTemplate"]], "Message", "MSG",
+ CellChangeTimes->{3.909042535149797*^9, 3.9155328751204443`*^9,
+ 3.915771850675591*^9},
+ CellLabel->
+ "During evaluation of \
+In[31]:=",ExpressionUUID->"f629becb-1a0a-41c4-982d-075455cd242a"]
+}, Open ]],
+
+Cell[CellGroupData[{
+
+Cell[BoxData[{
+ RowBox[{
+ RowBox[{"testzero", "=",
+ RowBox[{"SelectFirst", "[",
+ RowBox[{"e12", ",",
+ RowBox[{
+ RowBox[{
+ RowBox[{
+ RowBox[{"Abs", "[", "\[Lambda]0", "]"}], "<",
+ SuperscriptBox["10",
+ RowBox[{"-", "2"}]]}], "/.", "#"}], "&"}]}], "]"}]}],
+ ";"}], "\[IndentingNewLine]",
+ RowBox[{"solzero", "=",
+ RowBox[{"Join", "[",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"\[Lambda]0", "->", "0"}], "}"}], ",",
+ RowBox[{"Delete", "[",
+ RowBox[{
+ RowBox[{"Take", "[",
+ RowBox[{"testzero", ",", "5"}], "]"}], ",",
+ RowBox[{"{", "4", "}"}]}], "]"}], ",",
+ RowBox[{"FindRoot", "[",
+ RowBox[{
+ RowBox[{
+ RowBox[{"e11", "/.",
+ RowBox[{"Delete", "[",
+ RowBox[{
+ RowBox[{"Take", "[",
+ RowBox[{"testzero", ",", "5"}], "]"}], ",",
+ RowBox[{"{", "4", "}"}]}], "]"}]}], "/.",
+ RowBox[{"\[Lambda]0", "->", "0"}]}], ",",
+ RowBox[{
+ RowBox[{"Prepend", "[",
+ RowBox[{
+ RowBox[{"Delete", "[",
+ RowBox[{
+ RowBox[{"Drop", "[",
+ RowBox[{"testzero", ",", "5"}], "]"}], ",",
+ RowBox[{"{",
+ RowBox[{"-", "1"}], "}"}]}], "]"}], ",",
+ RowBox[{"\[Omega]2", "->",
+ RowBox[{"(",
+ RowBox[{"\[Omega]2", "/.", "testzero"}], ")"}]}]}], "]"}], "/.",
+ RowBox[{"Rule", "->", "List"}]}], ",",
+ RowBox[{"WorkingPrecision", "->", "30"}]}], "]"}]}], "]"}]}]}], "Input",\
+
+ CellChangeTimes->{{3.908622224176259*^9, 3.908622421996703*^9}, {
+ 3.908961708782144*^9, 3.908961740141968*^9}, {3.908965836484462*^9,
+ 3.908965836578917*^9}, {3.909042567863147*^9, 3.909042711337614*^9}, {
+ 3.909042759667089*^9, 3.90904277613109*^9}, {3.909042894757884*^9,
+ 3.909042904805442*^9}},
+ CellLabel->"In[32]:=",ExpressionUUID->"a6ab04f8-b182-4e06-87d3-44cf4d55f296"],
+
+Cell[BoxData[
+ RowBox[{"{",
+ RowBox[{
+ RowBox[{"\[Lambda]0", "\[Rule]", "0"}], ",",
+ RowBox[{"\[Sigma]1", "\[Rule]", "1"}], ",",
+ RowBox[{"\[Sigma]2", "\[Rule]", "1"}], ",",
+ RowBox[{"\[Omega]1", "\[Rule]", "3"}], ",",
+ RowBox[{"\[Epsilon]", "\[Rule]",
+ FractionBox["1", "100"]}], ",",
+ RowBox[{
+ "\[Omega]2", "\[Rule]",
+ "2.0000381968503537617864731671808729605325080144764559775944`30."}], ",",
+ RowBox[{
+ "q11d", "\[Rule]",
+ "0.0000170822314380834927572226081181288574675382698548629537`30."}], ",",
+ RowBox[{"q12", "\[Rule]",
+ RowBox[{
+ "-", "0.0038196447095974041482929032765487177645431829999483482005`30."}]}\
+], ",",
+ RowBox[{"y111", "\[Rule]",
+ RowBox[{
+ "-", "0.0003519276719374559692910087876122558545974667489420526399`30."}]}\
+], ",",
+ RowBox[{
+ "y221", "\[Rule]",
+ "0.6913434743753216630427656669722923098544593773636691701013`30."}], ",",
+ RowBox[{
+ "y12d1", "\[Rule]",
+ "0.0000120039465437113479289680390005301546806664944032453276`30."}], ",",
+ RowBox[{"y11d0", "\[Rule]",
+ RowBox[{
+ "-", "0.1913434744376301399615414311483618803321916514469416379969`30."}]}\
+], ",",
+ RowBox[{"y11d1", "\[Rule]",
+ RowBox[{
+ "-", "0.1913434744376301399615414311483618803322315216064453125`30."}]}],
+ ",",
+ RowBox[{"y121", "\[Rule]",
+ RowBox[{
+ "-", "0.0018978385709063784423964020016173749045875148205681706019`30."}]}\
+], ",",
+ RowBox[{
+ "y12d0", "\[Rule]",
+ "0.0000120039465437113479289680390005301546807459089905023575`30."}], ",",
+ RowBox[{"z110", "\[Rule]",
+ RowBox[{
+ "-", "0.0025660056642111959729520009876324593280142607890710954488`30."}]}\
+], ",",
+ RowBox[{"z111", "\[Rule]",
+ RowBox[{
+ "-", "0.0001686535286287455946870050826902343032998032867908477783`30."}]}\
+], ",",
+ RowBox[{"z11d0", "\[Rule]",
+ RowBox[{
+ "-", "0.0048578069105933392789024860558555474202180867340514728639`30."}]}\
+], ",",
+ RowBox[{"z11d1", "\[Rule]",
+ RowBox[{
+ "-", "0.0000631026394284385223724942459710973707842640578746795654`30."}]}\
+], ",",
+ RowBox[{
+ "z220", "\[Rule]",
+ "0.0009712458474527597973580128609683015383780002593994140625`30."}], ",",
+ RowBox[{"z221", "\[Rule]",
+ RowBox[{
+ "-", "0.0014261062881296905809069830439739234861917793750762939453`30."}]}\
+], ",",
+ RowBox[{
+ "z120", "\[Rule]",
+ "3.3997821392362058813638864274153661503214492588533`30.*^-7"}], ",",
+ RowBox[{
+ "z121", "\[Rule]",
+ "1.9546891718853483759345615600189205451897578313946724`30.*^-6"}], ",",
+ RowBox[{
+ "z12d0", "\[Rule]",
+ "3.5344059745191061096898817173173057426538434810936451`30.*^-6"}], ",",
+ RowBox[{
+ "z12d1", "\[Rule]",
+ "6.7638278904425616852862275518720736044997465796768665`30.*^-6"}]}],
+ "}"}]], "Output",
+ CellChangeTimes->{{3.908622258019921*^9, 3.908622282010366*^9}, {
+ 3.908622358176366*^9, 3.908622423275463*^9}, 3.908960404757339*^9,
+ 3.9089619597735023`*^9, 3.90896216556334*^9, 3.908965839807811*^9,
+ 3.909041910725379*^9, 3.909041952412874*^9, 3.909042132178347*^9, {
+ 3.9090426426640863`*^9, 3.909042703605441*^9}, 3.909042794897882*^9,
+ 3.909042920676709*^9, {3.915532883718834*^9, 3.9155328867105827`*^9},
+ 3.915771852468653*^9},
+ CellLabel->"Out[33]=",ExpressionUUID->"e43b3e00-885a-43e1-b26b-8b1a2615d3fc"]
+}, Open ]],
+
+Cell[BoxData[
+ RowBox[{
+ RowBox[{"solzeros", "=",
+ RowBox[{"FoldList", "[",
+ RowBox[{
+ RowBox[{"Function", "[",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"sol", ",", "\[Epsilon]\[Epsilon]"}], "}"}], ",",
+ RowBox[{"Join", "[",
+ RowBox[{
+ RowBox[{"Append", "[",
+ RowBox[{
+ RowBox[{"Take", "[",
+ RowBox[{"sol", ",", "4"}], "]"}], ",",
+ RowBox[{"\[Epsilon]", "->", "\[Epsilon]\[Epsilon]"}]}], "]"}], ",",
+ RowBox[{"FindRoot", "[",
+ RowBox[{
+ RowBox[{"e11", "/.",
+ RowBox[{"Append", "[",
+ RowBox[{
+ RowBox[{"Take", "[",
+ RowBox[{"sol", ",", "4"}], "]"}], ",",
+ RowBox[{"\[Epsilon]", "->", "\[Epsilon]\[Epsilon]"}]}], "]"}]}],
+ ",",
+ RowBox[{
+ RowBox[{"Drop", "[",
+ RowBox[{"sol", ",", "5"}], "]"}], "/.",
+ RowBox[{"Rule", "->", "List"}]}], ",",
+ RowBox[{"WorkingPrecision", "->", "20"}], ",",
+ RowBox[{"MaxIterations", "->", "500"}]}], "]"}]}], "]"}]}], "]"}],
+ ",", "solzero", ",",
+ RowBox[{"Range", "[",
+ RowBox[{
+ RowBox[{"1", "/", "100"}], ",", "1.6", ",",
+ SuperscriptBox["10",
+ RowBox[{"-", "3"}]]}], "]"}]}], "]"}]}], ";"}]], "Input",
+ CellChangeTimes->{{3.909043333070065*^9, 3.909043451649344*^9}, {
+ 3.9090464238882*^9, 3.909046424128012*^9}, {3.909046458976687*^9,
+ 3.909046460128731*^9}},
+ CellLabel->"In[34]:=",ExpressionUUID->"cc4f2eca-a54d-413e-8b18-94ba1c2bbbc2"],
+
+Cell[CellGroupData[{
+
+Cell[BoxData[
+ RowBox[{"ListPlot", "[",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"\[Epsilon]", ",", "\[Omega]2"}], "}"}], "/.", "solzeros"}],
+ "]"}]], "Input",
+ CellChangeTimes->{{3.909043941257431*^9, 3.909043955169023*^9}},
+ CellLabel->"In[35]:=",ExpressionUUID->"971b5a9c-8ceb-429f-9eab-88056cb74ad9"],
+
+Cell[BoxData[
+ GraphicsBox[{{},
+ InterpretationBox[{
+ TagBox[
+ TagBox[
+ {RGBColor[0.368417, 0.506779, 0.709798], PointSize[
+ 0.0055000000000000005`], AbsoluteThickness[2],
+ PointBox[CompressedData["
+1:eJxd12VYVN3bBXDO9CCCgmIrJgZ2oKIuRMEERVHswG5Fxe5W7G7FDmxRQhFB
+UBqkQ7prkhnEeI889/5/ePnidV+DZ845e+/1W7R1WzNpkcDAwGCgxMDg37/b
+Gj0blbN1P358fSlpZGBg+/9nvzFGgm6HDqK38QSbpvz8c+fygA1nD2O5mUdS
+S34e9Oarx8ebR1GvsWVKW37eUtKpt+ypJzJd3Gwt+fl96wNlzu9PoKRZZ5Pu
+/PzrkTLe0e0UdrzYPLIvP18LsXjhvvQ0rJa7ZA/iZ5usCccvrj6DiOv+ubb8
+nF5T94VY/+DZuNH/u79z2F/cvcVEfm7RM7ODZM953Aob5Dztf/d7Ac9exFfM
+4+cZC+uuiLRGNYpl/7v/Szi33HvGen6+crnuB2e7K7ru+N/zXEHcj6D5h/g5
+NVo3Oe/eVZwStf97+n/Pdw1TuzYSXufnZqKpxt1fXUdV9vlVD//3vDew+uPD
+YW/4edp/F0S3OY4en/73/LcQOm9/oyh+Hm99ZPi8glvotNKpWdr/3sdtbOr2
+dH8RP5c7/7vibfSacGOq9n/vxwv1j3c8KeQMbI+tLKp9pPSC2S27HqYce193
+cHJ0dd+2/NztkDn/CHfQZPzwW7049v7u4vDGDutt+Tnitr2P+vdd1D9/6+lE
+jr3Pe2i022f8fH7+97aaiu5jZsMlk9059n7vo6jz60/7+Nkw+c7aoYYPIHt6
+9dx5jr3vB5hxoG3MA35+/O9xGzxE8F37tX4ce/8P4fFXtjmKn8f+u5z5IyhO
+rizM5th6PMLfKev8Nfxc97pbPobv1KY6mYCtz2Psu+Z2uRU//3t7se2ewNTa
+2auPgK3XEyyxKWg4mp+7zDr5Wdv5KeKD2xTPFrD1ewplFddxAz9/46/WvKc3
+3uR7fj0qYOvpjRmRQfG3+Xnp6Yrt6P8M7km3R/gK2Po+Q6Z1jxZx/MzfHP/I
+zxHZden0EgFb7+cIrpz4hxMa2Lrwm4dfUlz+WiJvIWTr/wIegn7b+/HzXf7t
+Jd95gdSyXlOchGw/vMDp1JxzS/lZ8zthc0mnlwjtONpmn5Dtj5dQ9Fw0+gY/
+j6zbAC+RO2twgK+Q7ZeX+Gz+7UIiP/OL9++BUD/KNEUpZPvnFa5omu42FhnY
+/nd7r3Bemnmim4jtp1c4cGCeaAw/9637eY3R6rvZi0Vsf71Gs/Qn7Q/w875P
+4fwOeo1jkR5Rd0Rsv73G8VnSH5/5+Tu/+vw7wfKOc6fkitj+e4Nvobv6CsQG
+tu3rLvgGzwuWb24nZvvxDXZateswgp/X1y3AW+jHPhiwUMz251vYVNc+P8DP
+wdrO/Aq/xbfitqceiNl+9cHe3ObJ3/jZ9L8bxIOHxfvLxWz/+iBTfPyyicTA
+tu7uvvqgW7i8cV8J28/vUBs+TzeVn19dr3oQOu4dWuSdtd0mYfv7HT6p7ipu
+8rOg7oHfYV/WeekXCdvv77Ho3NIDpfw86b8Ng0iuzfIGUrb/3+NIK/+3A/jZ
+69/jJrxHQu6wpbOl7Dz4wnnS0z37+Vn173LTfGHkLhY8lbLz4YudjuNLvvOz
+3b/tn+4LT+1e619Sdl78cGT3k/IOMgPbuu07xw/9Db/KnGTs/Pgh8HXasU38
+nLP134L4IfROwcbbMnae/DFdUhYawc+96za4P2qNKnZWy9j58seNyorrbeUG
+tnvOj+C3jD8eFVW1d5Sz8xaAmkHaBlv4Oa5d3QIj08pg0T05O38BaFXfzCKe
+n9v+S/+KAFRb9bL7K2fn8QNa50+PsDI0sF3373is/YAvJ8/4zzBk5/MDzp3J
+MD3Cz0H/Vlf9Ac9cBse9M2Tn9SPejHhWXcjPDf47kAiJH7zPvB47vx+xaWuu
+hwM/172+mo8off8gzqMeO8+BeNvw+NkH/Fx3e9sDoa1/PiClHjvfgRg15PN4
+QyMDnqh/P58Q2avJyCFG7Lx/QpcDF7xW8/PD0HH8if6Eoyl2S28bsfP/Cbdi
+Wp9P4OeJ/Gnk9yi8GnXvIqvP8uATJruu7TCEn/X/9An5hD/jyw6urc/y4RM2
+v7g18R4/32r+70AEoaPd2T1p9VleBEET9qVZA2MD29F1CxwEt/o2zRyMWX4E
+YUeedtd2flY8+HeDQci3qHF8bczyJAhfbo/aV8rPl/7dXTj/+aj8Nu1MWL4E
+4fLPuPYz+Pnf5hpj9Bmx981OnjFhefMZRng6P4Kf/6VJvONnLPO/cVXUgOXP
+Z1xvVjlkGD//2y38loF21nX7zQ1YHn3GrBPP377i57rHjf2MmQGWxysasHz6
+jCa1ssjODQ1s6y5nGoypC6e6L2zI8ioYO5uY7b7Fz3VxNDkYFwbZaTMasvwK
+hqO2MK6ZqYHtf/UhGMqtInNXU5ZnwdhicCPoHD/XxUFyMPYH+STEm7J8C8b0
+v84TGpoZ2O6qC5wQFBus7z3RjOVdCGJMW207yc+WdQcoBK6HJlvFmLH8C8Em
+n2b2Jo0MbGPq6kUIUn+7f5nQiOVhCBI+uXmf4udN/45DZgjWLy3/FdeI5SP/
+/xeYvTFrbGDb5t92bv0FLp3S46c0Znn5BQO6jZp+iZ/D/m2/eV/AqWaMSm/M
+8vMLJhk0v97a3MB2TV1AfsH+nEMz3MxZnn7B004Pd93n5yZ1B/4LbizeaVRm
+zvI1FIqhxlyvJga2dbfXIRTVTjNnb2zC8jYU34Yva+vPz4vrfkIxKsTGkWvK
+8jcUDY8mZY/i53/liU9YnB0/NONEU5bHoeAi1iOJn/+l4+aSUEwP32HYuhnL
+5zAsajx36GJ+nlN3wTAEbm+R8qwZy+swRCf5pOn4WVIXUGGI+tvPfnhzlt9h
+CEu93OQYP/9bjUbPwnB9fIlzYnOW52GQOFhq2rQwsK1rd1VhOOPr+md5C5bv
+X/Hg1s61Pvz8599x6/0VR37eHCtoyfL+K98fAj2d+Pn+v+3s/hXmbXMHXG3J
+8v8rbsjrjSnmZ6f/Hhivrg0L7t+KefAVNdW77+3j5+p/y6H9itrBSVVxrZgP
+39DttJ2XRWsD2xv/Htf6G/IswwPWtGZefMPyvusQyM8OdS/wG1QVNl1N2jA/
+vuHqxR475vJzZR0P37DJw3HgizbMk284knRtJmdhYHvhX7zXfsNXeduiSRbM
+l3C0W/oj7S4/18Xz0HBsnZA6QGfBvAnHi/bmtWPaGtjWxevOcFxzumx5vS3z
+JxxNbJcEKPj5v/gLR/Wq/b4j2zGPwtHQRdv6Mj/XxYsgAsM3fCyvaMd8isDS
+qfntRrQ3sK07viMisPzwiqBL7ZlXERh4Y9rXSn6uOx4HIhDZ+4W1fQfmVwR6
+5HmYXOPn/7ZfBNynvZyg7sA8i0DQ0IX6sR0NbBP/La8sEi725+R3OjLfIrHV
+0mFfLT/vqAvASFz22rnIpRPzLhK9t9m98ObnjnUbMBJp2y4skFoy/yIxfuOu
+XfP5OSqy7gdzhglEAZbMw0jI3rRXmnc2sN1YF6hRWOhb7ODemfkYhbfWU8XR
+/NyqbkNHYX7rdVZduzAvo/DbbVjAQX7+UvfnVRQcuOA3eV2Yn1HoWis0H97V
+wHZVXUBH4cs0SfaNrszTKCztHGP6m5/r4qpRNC7sXPBsZjfmazTqe3x95cfP
+dXEwNRqBPYUWza2Yt9H4Ed+0egs///fnVzSSPY37p1kxf6Mx/XRJxuDuBrZG
+/x04uDR/XnG1O/M4Gr+XLFzym5/rtkvzGER/Mh47twfzOQYn1r0+H8TPdcsx
+Kwbjo1zHdujJvI7Bku7c0kP8/N+fZzE4rnxTWdqT+R2DwF2bfzj1MrCtu1xW
+DCaNdLZ+3Yt5HgvNy5E1TXqz8x6LJ8OnddjRm/kei3T30+9ze7PzHwv7CO3b
+0X2Y97Gol3y05fM+LA9i8abz1PLGfZn/seg6fXbHHX1ZPsTis/R+WH5f1gdi
+MSSt//fx/Vhe8J9vNx39th/rB7FQ3x7eqXV/lh/8/Qi+rTrUn/WFWPyd86y1
+sj/Lk1hM364bOHMA6w+xmGv5OODLAJYvseD6Rj7qZc36RBxebV5gcM2a5U0c
+3FI2fpIOZP0iDscGykvXD2T5E4cuB9vvyB7I+kYcQt6Eb3EcxPIoDus+irL9
+BrH+EYf4O8nPOw9m+RSHVivHlFwYzPpIHJp3nOcptmF5FYdueW0vb7Bh/SQO
+Y4LOmeTbsPyKQ72cj1WTh7C+Eof7y+8PChnC8iwOWk/nin5DWX+Jg/uOUMP7
+Q1m+xWHE5npnmgxjfSYe1p867TsyjOVdPCJutP5RO4z1m3h0XVjjtRos/+LR
+b8mHuBywvhOPneJ1y6fYsjyMx9Q7zVd9s2X9Jx6hTz6lDh3O8jEe508te/Fq
+OOtD8Rgf3kJpacfyMh6DUjKvXrdj/Sge62x9XpiNYPkZj/iTT3oeHcH6UjwM
+Z4Q05UayPI3H2UHSlZtHsv4Ujw8xW7soRrJ8/Y7nIR2dl9qzPvUdi8OM87Lt
+Wd5+x8fjQ7KmO7B+9R1rE97af3dg+fsdLebuMXccxfrWd0B/zzlsFMvj7xi9
+rqtu+GjWv77D06ux9MNols/fMXHF6j0Dx7A+9h3hL20WvxnD8vo7Oi/Y/7bX
+WNbPvuPE+glrvMey/Oa//8eds13Hsb72HZV3D7d7OI7l+Xd0iRO17DSe9bfv
+qHJvs/vueJbvCVh7O8upvSPrcwko3Dr+sJcjy/sEXOywyqqdE+t3CcgJH23j
+5cTyPwF9bhe+aTeB9b0ENMp1vHxnAvMgAVYxB4o7TGT9LwG2L8973Z/IfEiA
+dcr+sM7OrA8moM3VGa5PnJkXCeg9rfWkHpNYP0xA/Ibkdy8nMT8ScGH28cP9
+J7O+mIAxB0eF+E5mniSgdFn9FcNcWH9MwLujhduDXZgviejqnlYzegrrk4kw
+eKnIiZ7CvEnE4Kxe/adMZf0yER2ueanTpzJ/EuF6wrHVAlfWNxPht2DQq1JX
+5lEijsSteuU+jfXPREw/p2pVO435lAjztTGafdNZH02ESS8j6/ozmFeJUN9/
+kX9hBuuniUh5FvLbYibzKxFDu0zc+2Qm66uJaPB3hvuAWcyzRHhbVEQFzWL9
+NQmlB4zPO85mviWhQY+wsNTZrM8mobhNm8WL5zDvkhCwrPVa9RzWb5MwrW1U
+we65zL8kmCzsG2Y8j/XdJARPnd7o+jzmYRIKOo6K6jaf9d8keIjFKr/5zMck
+mPW+unesG+vDSVCVNdyV5sa85O9n97qi5QtYP07CGrvP/rULmJ9JeHDU6Jfn
+QtaXkzDTf9rD1ouYp0mQDHv+6cUi1p+Tkbyvqf2IxczXZLwUX++ftJj16WQM
+GGl/ZtkS5m0yQsOazfy9hPXrZBywaH/q9FLmbzLmFC7r3WkZ69vJkPpWD/Nf
+xjxOhtw2/v3E5ax/J+NDV/HNwuXM52RM73VJuX0F6+PJKDM598JsJfM6GYtO
+cRmPV7J+noxru0vW261ifidjwjuXzWmrWF9PRjez8SXuq5nnKYjZmhJabw3z
+PAWxGYKG99Ywz1Pg3zMhbNha5nkK2rpPKUtZyzxPwenHJ7etX8c8T8G9omOb
+jd2Z5ykQ2k7OfeTOPE/B3PjK9/brmecpOPBlya+c9czzFEwfHfZ05wbmeQoy
+TpuHt9jIPE9Bv5w5Lr4bmecpeLrj0ThXD+Y5f78+f59rPZjnKZDnL99zbhPz
+PAXuizSBfTczz1NR7869Fd83M89T0bn+4f3rtzDPUzG35T3DRluZ56k44Sz5
+82Yr8zwVWf3fzpm6jXmeiogZ/lb6bczzVLSf0W7ple3M81Q0TFI3GLqDeZ6K
+1lsGWWbvYJ6nYmD1r8f7djLPU/FWNvqa5S7meSpcN3SojdjFPE/FFPG1sLW7
+meepmHXqPWe+h3meivOqfY/89zDPU/G4oSxw/l7meRqi0p3sZPuY52nwHeXW
+9/k+5nka/FzGn5m6n3mehpeGTeb+2c88T0PTrZGX7x9gnqfBMMDDbsJB5nka
+7FVtpusPMs/T0GdUfObtQ8zzNBRUXIwdd5h5noZu7bb1rj7MPE/D/s4HDW4f
+YZ6noa9T8NDxR5nnaRhSMqREd5R5nobl034L7h5jnqdhhtDk2ERP5nk6Ns3Y
+vue3J/M8HbLkCYWPjzPP09Gr9qzvtBPM83TonCfXSk4yz9Mxds2lJ29PMs/5
+/69YFb7wFPM8HX+3/HBtdJp5no6f/prJIaeZ5+n4uMr/44YzzPN0NJ049FLH
+s8zzdKRZHchOOss8T0dR0vWLh88xz9Nh3fXMh8Hnmef879dbNaniPPM8HYLl
+g6beusA8T4dwiODb5IvM8wzM2Rv/WHqJeZ6BEIe3tf6XmOcZaHXtrf/ay8zz
+DHje+FHa8QrzPAMe622OpF9hnmfg8JjkC6evMs8zEDDtg9noa8zzDMzN1f/9
+c415noGmvc/P9LnOPM9A+aXrnVbfYJ5nwH5Tq/mdbjLPM6DvY1Ev6ybzPAPj
+h7zscOkW8zwDv40yvJ1vM88zMLLz0/v1vJjnGfjRvLtJqBfzPBMNty0v2n2H
+eZ6Jl8Vreg65yzzPhGX9MUW6u8zzTGy5ypm8ucc8z4TjxHv3195nnmdCqcSz
+7g+Y55lwm5jZsewB8zwTE+yP1H/0kHmeiQ5vJixa8oh5ngmjo0O6d3rMPM/E
+zw8zFxU8Zp5n4sVE3/r3njDPMxE4fn6nRU+Z55m4HDr3eUdv5nkmjmV8eljo
+zTz/gSifU6YPnzHPf2D/ofTyZc+Z5z8QdtTb2uoF8/wHnkjM1JUvmOc/4DCu
+aZtXL5nnP/Dm1Tf/ja+Y5z/Q9nbfb4NeM89/IHa/26g/r5nnP9A6yW1A8Bvm
++Q8cazL8wuG3zPMf+JwoX+Lkwzz/gesPvj1s9I55/gM9exyfmf6Oec7fb6P5
+u7zeM89/4FeDSY2W+zLPf+Bp7srmffyY51kwdvl4+qcf8zwLzwZN3hrszzzP
+wnb3gQmeAczzLEQVbb059QPzPAtLjltmWHxknmfh0PxxR8s+Ms+zkL9S/cgn
+kHmeBf/PVjZ7PzHPs5C0WzTMKYh5noVTMYdeNf/MPM/Cj5zgS0WfmedZcNV+
+UbwJZp5nYdCkq357Q5jnWdg4zrl64hfmeRZeDtPeaRPKPM/GpHPngitD2XnP
+xr7AIVM+hjHfszFsWO20E1/Z+c+G8+XM6DnfmPfZWLJQ6dMznOVBNkyGjWzI
+RTD/s/ElJi8zPoLlQzZ0UZkt70WyPpANYz2iN0WxvMjGlqZNVWOjWT/Ihrdo
+w+HWMSw/stH/+vzTqhjWF7LxNqrSKCyW5Uk21J5daq/Gsf6QjeyMNrPWxbN8
+ycbV8Kyeo76zPsE/7+pNHq0SWN5ko2+5pqcmgfWLbJx1XzwrIpHlTzYybdJq
+vZJY38iG1/E5xtuSWR5lI+U9d25yCusf2fjRLN7TKpXlUzYONP2hF6exPpKN
+Zp37pWSlsbzKxrKw3K5+6ayfZCN2t15xLoPlVzYGl+7rujaT9ZVs9Ll3Nnnc
+D5Zn2cibM0BvmcX6Sza6xm71FGWzfMvGuQ9rzuVksz6Tg7W69g0Cc1je5SB2
++v2/13JZv8nBxUjxgm15LP9ysHOE8+AZ+azv5KDNx4sHBhWwPMzB71HFI5sV
+sv6Tg6N65801hSwfc2CtzmuTVsT6UA42LvG28S9meZmDT6c+RFwrYf0oB099
+2sfuLGX5mYNiq6rR88tYX8qB4+SeA0aWszzNQc559UXLCtafcpC3ctzqepUs
+X3OQNMvBt6qS9akcHKxWb06oYnmbg8bJC7x9Faxf5YB7eG/qTSXL3xz0avNt
+wwEV61s50P3JlK5UszzOQUdzjclkDetfOahn2+L4YC3L5xwcWrhgV7tq1sdy
+YLQ5o9BQx/I6B97bLgSrdayf5aDDjtuNM/Usv3OQdaF+ZmgN62s5kCpKm738
+yfKcf98BYyKv1rL+loNOQwdrDv5i+Z4L98DI0+6/WZ/LRfH1hvfm/GF5n4tK
+NOsx7i/rd7nIbqaxGmjAUf7nooX3q9sdOY76Xi6khxd5mgk48iAXbRxaVXBC
+jvpfLv6cLA1W8PN/PuRiSYsfDbJFHPXBXEx8IkuIEXPkRS5KTLbV/yThqB/m
+4lknhw8vpBz5kYtlaVvzbss46ou5GN6+6+6zco48yUWQZNHZA4Yc9Uf+eheH
+tNpcjyNfctFTF9RqhRFHfTIXpydJzs+pz5E3ubhR0HzfJGOO+mUudtY0KHYw
+4cifXPzOrwm2acBR38zFVaMi894NOfIoFydzS7I7mXLUP3ORXGjWrpUZRz7x
+9/vAI82sEUd9NBebAtsb1mvMkVe5kKdavRSYc9RPc7H5yZ2Yn/z8n1+5sP11
+eZG6CUd9NReFN9quL2/KkWe54DaO1xc046i/5sF+tZU2qzlHvuXh5OHvy9Ja
+cNRn86CMmTw1sSVH3uUhYE6gX2wrjvptHo7O7nwxsjVH/uXBSXi77Gsbjvpu
+Hmaet3n/xYIjD/PgvsTw9+e2HPXfPP7vhTZ+n9px5GMeui44UfWxPUd9OA/J
+25de/9CBIy/zEOjzKTigI0f9OA/rvR+5BXTiyM88DDIasDXAkqO+nIfGxzcb
+fujMkad5SNXvM/vYhaP+nAcryxXnA7ty5GseLv+xPRXUjaM+nYdrG5qKQqw4
+8jYPj4+LlKHdOerXebCb3dQ1vAdH/uZBJ14yILonR307D9t9hSfje3HkcR5e
+vefmJ/fmqH/z8+QNTzP6cORzHjJKVq/L7ctRH89DXonoRXE/jrzOQ1LcmKVV
+/Tnq53no19P5SvUAjvzm1+tGD4c/1hz19TwcjtKukAziyPN8SDb51TMZzJHn
++TBfcqpjUxuOPM+HyZZjvm2HcOR5PoSXAsO6DeXI83x8/Wg7ccAwjjznr6dv
+N3k4OPI8H2PmbI0db8uR5/mQtpz5ddpwjjzPx5sVqYMX2XHkOX+9i/LO7iM4
+8jwfST//ntw1kiPP83Hyb6z7cXuOPM9HqsXp2KsOHHnO/36Jy6PHozjyPB9q
+ba/fvqM58jwfNYpBkd/GcOR5Pppd3G+eNpYjz/NR/aZjRuk4jjzPh69ln1a/
+xnPkeT5aZH5Mre/Ekef58Pie3dBiAkee5yO2mfeXPhM58jwfpTEDtfbOHHme
+j4mdLt+aPokjz/OxZE5e2KrJHHmej83hViv2unDkeT6Co44evTiFI8/z+f5t
+2sl7Kkee56P99rShwa4cec6vzwhdXOo0jjzPR3TKzlzFdI48z8fS6oNrZDM5
+8rwAfxd13GIxiyPPC2AhXPt34GyOPC9AkN92waQ5HHlegEnH5u9dMZcjzwsQ
+sb/frgPzOPK8AIFf69XcnM+R5wVYfPR3lZ8bR54X4JmxxcKkBRx5XgDHp0em
+qBZy5HkBoiImhhgv5sjzAtwoOvai2xKOPC9AB0/n5mOWcuR5AcJc33NLlnHk
+eQFEtUmLDyznyPMCbBsYMubuCo485583/8Lj4JUceV6Ah0WLjuSt4sjzAuQM
+Gl0oXMOR5wXYXOQS1GEtR54X4IXxneYO6zjyvAATsseolrhz5Dn/+c15o4+u
+58jzAiR4/WnpvYEjzwuwdpLN2tiNHHlegD9dethpPDjyvABx7yrPNN3Mkef8
+elw/5zZ0C0eeF6DlCeuXbls58px/HueqnYe3ceQ5/3nw94hn2znyvADK6F8X
+E3dw5HkhBnjszfu1kyPPC6GO3P6sw26OPC/EsZ/CmvF7OPK8EAmDegVv3Ms8
+L0S71Gb1b+5jnhdi9uDUpK/7meeFaPD9oIX6APO8ENusbEpbHWKeF+JBnnG/
+MYeZ54XweNT8z4YjzPNCvLbbNPr2UeZ5ITofHmoWfYx5Xoiniw/OqfVknhdi
+cNbyrl1OMM8L8Vsi2uR6knleiKXSFSMPnmKeF8Khte+Zt6eZ54UIvy51KzjD
+POfvr3zNq8bnmOeFaHOw3n6H88zzQjT+qU7adIF5zr+PCrsnjy4yz/n/39SU
+y7jEPC9EzthtKcZXmOeFqF18qbfdVeZ5ISwW7TPyuMY8L+T7xdRlj68zzwvh
+49xtdNYN5nkh+l5p+ajRLeY5f73NIz3H3maeF2LBxA/K3V7M8yIMuHQ79d0d
+5nkRwjPrjay6yzwvgmmIeW/L+8zzIrwWZt6a+4B5XoRmK7acvfSQeV6Ewz8k
+8vhHzPMi9J92izN6wjwvwpTieTscnjLPi2D9dsH2Pd7M8yJMrg3+E/CMeV4E
+t/rXRTXPmedF2OBieKL/S+Z5EbiJllfdXzHPi2BwwcTqxWvmeRF+xf+wrXzD
+PC9C1/AXqVY+zPMibJ9yu3rFO+Z5Ed4virz45D3zvAjHBU4fynyZ50V4MNZu
+iZU/87wI39Z/Ob8qgHlehMxw9ejnH5jnRTB+U7Jb+ZF5XoSMx8FD+31inheh
+n92NXZuCmOdF2NfhgoP/Z+Z5EaLNvp75G8w857+vZOLCkV+Y50Uov+jofySU
+eV6EY5bpF2PCmOf8577mPxt/Y54XY9bhVrmzwpnnxRibbzTxbgTzvBjTrQUj
+yyOZ58XYJmzxsV8087wYkrwNH3fEMM+LEXW4u31YLPO8GAM+uU1qGM88L8ak
+VX0KZ35nnhfzf0/7GTxIYJ4XI6xfMy9VIvO8GGvOrgwflsw8L8ZZRfyWYynM
+82IYeC9/kZLKPC9GgN2k1Z3SmefFsLB/+HpDBvO8GIp5x3YHZzLPi7F+VvNE
+0yzmeTE8m2x46ZbNPC9G4rF3jV/nMM+L8TpSKBDlMc+LsUG62WNKPvO8GAv3
+9V3/oIB5XozS21P0NYXM82Jc//Fb7FjMPC/Ggphx126VMM+Lsb/DXH9NKfO8
+GOEPXReMKWeeF+PC8CnnblQwz4vxp3KTk6aSeV6MvIis02MVzPNi1Df2nnNb
+yTwvxiiJwVu9inlegk0WNecmapjnJfDLe//noZZ5XoLtqrkqTsc8L8FFQ5O1
+M/XM8xKsFBdtelvDPC/Br2SZYYNa5nkJJGfPd1rxi3legvYLnkWF/maelyDj
+1Ia/7f4yz0sQuVsesMtAQJ6XwPf1CWEmJyDPS/A8tGPSYKGAPC9Bq/WKvpdF
+AvK8BMoTDVrpxQLyvARvjR6edpUKyPMSPKhNOf1OJiDPS5B56EurpoYC8rwE
+s36e7L+lnoA8L0F/3xmpaUYC8rwE90eNlg81FpDnJejtsO3LTRMBeV6CD+7m
+xsKGAvK8BD4Ph+QtNhWQ5yVol9PAPsJMQJ6XIKyPT99ejQXkeQlGxk94ft5c
+QJ7z1zfl3tc2EZDnJbBZUOHo1kxAnvO/7zJw3bfmAvK8BHvOiNv1bikgz0tw
+oWTzvMutBOR5KXxH+FgJ2gjI81JEPco5uMJCQJ6XYs+INmsS2wrI81Kscz1b
+gPYC8rwUI8e5lT7uICDP+f9/58UO804C8rwUncR3bu61FJDnpUjoM2diVWcB
+eV6KfBPpqVldBeR5Kerf/DwnvJuAPC9FjMAnYGB3AXleijM7JI8f9BCQ56X4
+ti61U5NeAvK8FCZuLn0P9RaQ56UYr7wWo+sjIM9LEZubUru0n4A8L8WW5j3e
+p/UXkOf8/V37LHK0FpDnpRh4MiAncKCAPC+F0tpuQt/BAvK8FK5/tjg+sBGQ
+56WoXX40o8VQAXleig+WV36dGiYgz0uh/xvjLbEVkOeluJk9SbF9uIA8L8W8
+lDEhajsBeV6KsCYZXVaMFJDnpZiv7NU2z15AnpciM3XN45mjBOR5Kfos/fQl
+YbSAPC9F4JSx653GCsjzMqzb2f/113EC8rwMBdmPDoxwFJDnZTh2I6b0o5OA
+PC9DRG107uCJAvK8DF3mxa565ywgz8uwZOqvY/0mC8jzMjz13Db0lYuAPC/D
+owSPvb2mCsjzMvi1bzLzuauAPC+D0dkDYT2mC8jzMnyZWxb2bIaAPC9Dp7J1
+s3rOEpDnZXjpZ3fgxWwBeV4Gp82H7PrMFZDnZVivWnbuzTwBeV6GUS0bbbN2
+E5DnZfha/0W13wIBeV4GrXCpFIsE5HkZ78Fi7+DFAvK8DB2fJhaPXiogz8uw
+4Uy2b/QyAXleBpfClxZTVgjI8zL8ubmhVcZKAXlehlOZk18sWC0gz8swIG9r
+atkaAXlehsktGl/esE5AnpfhoblT1W93AXlehu2ezhmHNgjI8zJ8njFunqmH
+gDwvg/3BJduubxKQ52WIHhzfvcsWAXleDseId5vebhWQ5+UQvBo53W67gDwv
+x4NT9+JjdgjI83Jc7iXNn71LQJ6X4+/eC8fLdwvI83Lobu2O2bZXQJ6X42OE
+6lG9/QLyvBzpK5u3unZAQJ6Xw8G8Y5fuhwTkOX/9vbbRHw8LyPNy9Dl/xcj5
+qIA8L8eiGfPz844JyPNy3JUGT9l0XECel+NhbcW8eicF5Hk5vD42kNw6JSDP
+yzFfMMO+/xkBeV6O3V761hFnBeR5OU7fbXF2/nkBeV6O8QNVt/UXBOR5Od6/
+ezLu1CUBeV6OaQ82nep8RUCel2O6z4G1QVcF5Hk5Aj+Ky2dcF5Dn5Tj1xVKo
+vSEgz8shrG3hc/KWgDwvxzM/U3E3LwF5Xo7Xx4YoQu8IyPNylFmEb1pwT0Ce
+l6PF9PKrBg8E5Dk/I2HWjYcC8rwccsPXfkMeC8jzcni08nub/kRAnlfgvLyF
+0zZvAXlegZXHpPtbPBeQ5xUwOP7SNeCFgDyvwMGO477NfiUgz/n/f1mS+ve1
+gDyvgPNM80NebwXkeQW8DL2/278TkOcVmLPx98eS9wLyvALbLg4ec8JPQJ5X
+wO7qRfe+AczzCuxOHWWT+oF5XoG3qTvv7ApknlfAftLaJ52CmOcV8O48cXL0
+Z+Z5BV6tm3TVI4R5XoGz657saxPKPK8Arp00+hbGPOe/73zfAeu/Mc8rYN07
+0qB1BPOcf/71J1Z+i2SeV6De6edbNkYzzytgVLWwc7tY5nkFXrbP3xwTxzyv
+QL9qtxU7vjPPK9BobhMDq0TmeQWcDltbpycxzytwLKqmwbEU5nkFZgWcO26T
+xjyvwNJG8C5PZ55X4E5Yz7U3MpnnFTj083rSxCzmeSXsRUHZwhzmeSV+r449
+8S6XeV4JlU6YsyKfeV6J4JNnky0KmeeVuDHjnXtSEfO8EltfPHjlWcI8r8S4
+Vtcvjihjnldi8PzYtrXlzPNKZKzd6vy6knleiZUbEzqtVDDPK/EnsolXRxXz
+vBL+hjuDs9TM80qY62yPXdEyzyshPXWlZoqOeV6J4fIvxqY1zPNKrIr8GR79
+k3leiYVbPHp4/mKeV8Kt0H3Q2D/M80qMsuhWLjMQkueViFqe5vCVE5LnlQiy
+DRhzWCgkzyth62KkHS0WkueVqDwhGWMoFZLnlehnWmQfKROS55XYZF1adsJQ
+SJ5XwvXUeJtJRkLyvBJFhWP78Y2QPK9E6dB2yWkmQvK8EsZxJh1uNRSS55Ww
+bOzcYrGZkDyvxJr37T9YNRaS51UI8Poi15gLyfMqfNZu4AKaCsnzKjjWX3t3
+f3MheV6F3bu0KseWQvK8CiatRlY0aS0kz6uwS3nlbG4bIXlehfkjBhV6txWS
+51W4cG5OwZb2QvK8Cvu8xp526Cgkz6swffHQUjNLIXleBafGmxQ5nYXkeRUy
+LAbefdFVSJ5XQWgdJN5tJSTPq7DfbnLjiT2E5HkV2q/o+d2il5A8r0JR44tQ
+9RaS51WYWhAxI6SvkDyvgp+vSceL/YXkeRVmv7x7Y7m1kDyvQmTnqLBhg4Tk
+eRXM/SNumdkIyfMqGNvldSkZIiTPq3A0aeqCwGFC8rwKj2KXOV6wFZLnVaj/
+dW7xKjsheV6Fdue293MYKSTPqzBnvKhPGwcheV6Fg6NtcvSjhOR5FUotFtt9
+HyMkz6vw9Nm3Kc/GCcnzKoiMnrQ46igkzxXYfm7CucUThHTeFRhS8CtwhLOQ
+fFdgZKb+RtvJQjr/Cry/fqS3wRQhea9A66PaTVlThZQHCniN3uceOE1I/isw
+6/OWtrdmCCkfFDjX3uLAnllC6gMKSDI+XF8wR0h5oUCHm1dWOMwTUj9QYO7C
+P5Vd3ISUHwosW9K7s/FCIfUFBbZ23t5EvUhIeaLAhZWWH1KWCKk/KJAwdHuz
+wGVCyhcFbpUFW91fIaQ+oYCo3mjd8VVCyhsFyjwmbfFYI6R+ocDyid1fz10n
+pPxRQPy33b0x64XUNxRQ99o5od9GIeWRAkvTj7xqs0lI/UOBzMGno+ttEVI+
+KTDhe9Yd/VYh9REFTq8N6lO4XUh5pcDhTnu3JewUUj9RYIfz6p3Bu4WUXwrM
+vBBv83qvkPqKAn9ya1/f2S+kPFPAY7V10bmDQuov/Pf5xicePCykfFPgx/EW
+u7ccFVKfUWCfwbzClZ5CyjsFNGsqZfNPCKnfKHDwQOPiKaeElH8KbOjfYf+4
+M0LqOwp0DVyWOfyckPKQv3/v/pqBF4TUfxTol5z8tdcllo8KpM+5NbPLFSH1
+IX7/vc562u4ay0sF3p4qDGh5Q0j9iN8ff8WeTW6x/FSgrcvJ5mZeQupLCnTv
+m7DU5C7LUwUaH++0yei+kPqTAlG3UuwNH7J8VeBm7ZBE2WMh9SkF1m+531H2
+lOWtAi3tl1rLngmpXylwJSXRUP6C5a8Cq3/b3TJ8JaS+xb/PSKHe6A3LYwWG
+vlhp2sBHSP2Ln+fHV5m9Z/msQO/SI6ea+gmpj/Hn436xplUAy2sFBtuNbNXh
+o5D6mQJh/ip5t08svxWIcxvr3+ezkPqaAoNSb/e2CWF5rsAIs4mrRoYKqb8p
+kOP6dLXTV5bvSuhsjQdMDxdSn1PC2z8qeGEky3slXslGNF0XLaR+p8SJgNC+
+O2NZ/itREPjS3DNeSH1PiZAJs4OuJDAPlCj/3a7f4yQh9T8lWryctcYvhfmg
+hOu9hesj0oTUB5Xot/K8bWYG80KJThVjkqt+CKkfKhG0KNNamMP8UMJw+RO3
+JnlC6otKBOabTLMqYJ4oca3JkqZ2RULqj/zzXa1/d1oJ84V/nvnzateUCalP
+KhHwMqD14QrmjRKpVruNb1cJqV/y7ytCFuGnZP4okZX9xiVRLaS+qcQ887wn
+Ci3zSAnPtapYI72Q+qcS9R3tQrr8ZD4psWBBn4OjfgmpjyrR90u7Jov/MK+U
+OPJj/aYDBiLqp/z78Dj44J5ARH4p8cnb/0GoSER9VQlnwcbNxRIReabEtPGN
+mteTi6i/KtH2U61nj3oi8o2/n8rjcZPqi6jPKpH8uXvxJhMReadE+qFhcdcb
+iqjfKjE9r/3xEDMR+ce/75ThLcsbi6jvKlH09dfORk1F5KESi9x93w5tLqL+
+q8RnZcanJS1F5KMSoUGRt860FlEf5t+/f+WUjxYi8lKJ500eZZe2E1E/VsJn
+pdvwph1F5KcSvV7u2exgKaK+rITcZvXBjV1E5KkSNYEnV9zrJqL+rETkFKfO
+Sd1F5KsSl91NP0h7iahPK2FcMbLr4D4i8laJe7+c1q7qJ6J+rUTFoCsnbw8Q
+kb/889w4dThpoIj6thKnDl6baWQjIo/5+Vln+YihIurfSogG3Dq9FSLyWYnN
+N1ZrXw0XUR9X4mfE337lI0TkNb9+4k8TOzmIqJ8rMVvTYsz80SLym3/e+7tb
+Xx8ror6uRNTRmXGp40XkuQohHs3dmkwQkecqVNzuFjfFWUSeqzD34e/W5yeL
+yHMVjhz9Oy5xiog85z/3vjXNfJqIPFfhctpE+2kzROS5Crm2u02vzhKR5yo0
+3HDz0485IvJchVmr2kxsP19EnvPXP7YuaOkCEXmuQoez0sbPF4nIcxWeP5s8
+rnqJiDxXIW7114XDlovIcxWOhafMP7RSRJ6rsKCN3i5utYg8V+F07yuylutE
+5LkK/az6vl6yXkSeq+Bx23rEm40i8lyFgKMtfbnNIvJchdjRro0nbhWR5yrU
+uzt72s3tIvJche2R9/ZW7RSR5yqYzrh/znaPiDxX4fP4pBNn9onIcxWeGnmv
+KzggIs9VwHKvoYMOi8hzFebc6KE+flREnquwb2z4mTxPEXmuQtbmypaDT4rI
+cxU2X2t05vRpEXmuwvjTPqqSsyLyXIXV15ww4oKIPFfBYqXr5uuXROS5Csom
+42/or4jIcxUSLR6+dLkuIs/5+1tX9OrlTRF5roLN7INeJl4i8lyFnV7cntV3
+ReS5CruXJjlF3xeR5yqctN1r1PORiDzn77/jPr9TT0TkuQrXdrhOV3uLyHMV
+asx3lkx9ISLP+e/v5rHC/5WIPOfvb3ZglsVbEXmuwqSAVIdD70TkOf/9H+1v
+V/qKyHMVFjvsr5oaICLPVZhwy7zPp48i8lyFqL07l3UNEpHnKnwwHnbhfLCI
+PFdhVEzyey5URJ6rkO0bzW9BEXmugn2P+zkZ4SLyXIUt1TnF46JE5Dl/PQdJ
+sX+MiDxX4fiHi1lW8SLyXIWzC1rE3kgQkef8+3hi7tcwWUSe87/vbnLjQKqI
+PFfB5e+x7T/TReS5CgkCs6lrf4jIcxVSLnbrVpQtIs/VqLGb/WtOnog8V+OY
+qmd4coGIPFdjz59u552LReS5Gi6d02ZHlorIczVKrwR3GF0hIs/VWF26rjSk
+SkSeqzGw0ZrndioRea7GvZ32G4I0IvJcDaV+16DhOhF5roaZ/6O/QTUi8lyN
+k4ucwkb8EpHnakzgfp4K/SMiz9VY9Xfg7LGcmDxXQz7oklWMUEye89eruvvX
+RSImz9UwDy9PSpeJyXM1/qT+frWgnpg8VyPn/OJz5fXF5LkaH9PfbvNoICbP
+1bBTbF3GmYnJczX27bSfc7yxmDxXI+DivRnNm4rJczXEr7vNfdhcTJ6rYeS9
+dKV1KzF5rkZoWMXesDZi8lyNto/H35nWTkyeq/FybpPo0g5i8lyNWdOyhTst
+xeQ5f/2lg+1Nu4rJczV6hL4/88BKTJ6rcb1+VfnQnmLynH9em3Uuib3F5Lka
+215+/7aqn5g8V2NmryeOUmsxea7G1QzP7NuDxOQ5//s2xvuGDhGT52o06ful
+f9owMXmuhko+umbTcDF5rsbexd2jzUeKyXM13jsZvfVxEJPnahy03P7MdYyY
+PFdj/ptG/jXjxOS5GoHmq9OvOYnJczXORlk0GO4sJs/VCHvzZXrhZDF5rsZz
+UfV7z6li8lyNnc7jevSbLibP+c+PzvXLmCkmz9XY+jNy9sE5YvJcjd72PZr1
+ni8mz/nfX9q6ImOBmDxX44X/wLQji8XkuRrWFU1zrJeJyXM18oQzBUUrxOS5
+GqNmXx12cbWYPFdjuLfHhdHrxOS5GiN/HzGsXS8mz9V4/MT96jMPMXmuRu3y
+6DELtojJc/7+htuYN9suJs/V+HnQlYvdKSbP1dAXBtU7vEdMnmtQO6vZgOH7
+xeS5Bv37/95de1BMnmuwrl79Cp8jYvJcg+HhxVvXe4rJcw0sH/fq1vukmDzX
+ILjXgT9Vp8XkuQbKnoe0z8+JyXMNykOSG6y7KCbPNVjt2tS57xUxea7B50ul
+PtXXxOS5Bj/2Kuz8b4rJcw08XCO1u73E5LkG3E2L2FH3xOS5BtGWp+JNHorJ
+cw3+ij7+TnksJs81OHPccdIdbzF5rsHsmbmxq1+IyXMNpGMtttq8FpPnGvze
++MRJ7iMmzzVYatN5Qsp7MXmuQfP+Ntsf+ovJcw022RxJ2vJRTJ5rMH3Buznj
+g8TkuQa/fi1vbBEiJs81iD0zplYTKibPNZhTrG8Q8U1MnmvQtKa1q1ekmDzX
+oLdufvTWGDF5rsGSsUs3ucSLyXMN4k6kTOqZKCbPNbhzdvr8eili8lyD6uln
+7hSniclzDfaadW0elikmzzWY0fbrl/vZYvJcg/umjR4cyhOT5xpMvvP247JC
+MXmuQYifS33HEjF5rsGu5ZfP9i4Xk+caxJR3m9SkSkyea7Dqzpsxf5Ri8lyD
+NuYZWws1YvJcg0nKsYUxOjF5rsEr0WNPv59i8lyDT8O9Vt//LSbPNXDzy/A8
+ayAhz/n9dFNQvEcoIc81sMaH3eskEvJcA0ORj6ubXEKea+DnfmGVi5GEPNeg
+URdZ8CgTCXmuwbyMN9OGmErIcw3iXR169mksIc81MNi2eFSXphLyXAPngYG3
+27aQkOcaLD77c1iL1hLyXIMDNz+3MW8rIc/587cjaKRpBwl5rsGOWbefmVhK
+yHMNDq03mmPcVUKea/BO5D3ZuLuEPOff3/Tup0x6SchzDW4EWjcy7SshzzXo
+dswju/EACXmuRceG57TNB0nIcy2uPxjs0naIhDzX4vKdRr87Q0KeazHDNVLR
+205CnmtxrYFRryH2EvJci+/mO/1HjZaQ51q4PYo86zJOQp5rkfz7tq+bk4Q8
+16L1sIfd3Z0l5LkWLw4eUex1kZDnWgTnVwnOu0rIcy02uxxY9HCGhDzXQhCo
+bvphtoQ81yJSn9/q+zwJea7FrUDBxtIFEvJciy/vq1sLl0jIcy06rFnestVy
+CXmuxSxn6eqBqyTkuRYFzz0aTVkrIc+1aO8/v8H69RLyXIs9e9a5nfGQkOda
+7Khwqvd6i4Q81yIk2Kte4nYJea7FwNuNF+p3SchzLWQ1Exq32ichz7V4bfqz
+zYiDEvJci2aygP3Lj0jIc/77goeOPOspIc+18Prdae6HkxLyXIv7Nm2Sis9I
+yHMtekdFPWp8QUKe8+sRnpo24rKEPOfXo2HpsvXXJOS5Fk8c7rnevSkhz7Xw
+iH55N8lLQp5r4Rjz1tnwvoQ818K/u+tcPJKQ5/zzHrWJ3vhUQp5rkTZcdtP7
+uYQ81yJzsVt84SsJea6FaUjl0rY+EvJcC4sU5wWzfSXkuRaShJ6frwRIyHMt
+Gl+2OpgaKCHPtSj3KXveLFhCnmuxalkD25mhEvJci7cXhlrf+CYhz7VoHtX4
+Qm6khDzXotVwm9mdYyXkuRZLIiYcX/NdQp5r8blQ0+l9koQ816Lhs4iugjQJ
+ea7FuLQNlx0zJeS5Fps+nVp/JVtCnmtxd0Kgb3GehDzXosz41sqBRRLyXIsF
+LeI9j5RKyHMtunbSNM+okJDn/Hlzv9ukl1JCnvPv6/vufQc0EvJcizWPOs3N
+0EnIcy0u5vZ50q9WQp5X4712+NITfyTkeTVMcqsulHBS8rwaSqsUawexlDyv
+xves8+PuyqTkeTWmHgyOFxpJyfNqTLaqjVpoIiXPq1E+M2lomKmUPK/G1RaV
+7bqZS8nzaowqT9txqpmUPK/G9LB+E3QtpeR5NZJbnr0410JKnldja5yn67f2
+UvK8GnFD3p/sZyklz6sxw/KJ7e2uUvK8Gs++/lxu0kNKnlfjxhcbk129peR5
+NRb2EPRQ9JOS59UI3Z4T5jZQSp5XY8KZlZlJNlLyvBpbfPqvGQ8peV6N4nPR
+O4LtpOR5NW7afJUPcZCS59UY3uy1mc8YKXnOX6+29bXejlLyvBqrjK7eeTZR
+Sp5X42H8267dXaTkeTW+dP/d29tVSp5Xw3PKH98eM6XkeTXapdgHv5wjJc/5
+578012mAm5Q8r0azyKSZAYuk5Hk1vH/2Lx+xTEqeV2NwrcQgaqWUPK+GhTr+
+outaKXlejaUu7d7krZeS59Wwztg+Zd0mKXleDfvTy7YbbJOS5/z3f17d5fRO
+KXlejSiR6ez2e6XkeTUM+6Y0eXdASp5Xo+UK+xnjj0jJ82oMrZ/ZIc9TSp5X
+Y4Vf283bTknJ82pwk8+7ND4nJc+r4aJ97/fiopQ8r8bsX0ZPHK9KyfNqzPzT
+oFP5DSl5Xo2DESOsPL2k5Hk1Qla2/9j9vpQ8r8b8dt0zYh9JyfNqRLtlHtzo
+LSXPq7Es9fnHFi+l5Hk17Ba12R/8RkqeV0PV5H7yyvdS8py//34ffJsESMnz
+aqR0z+waEiglz6ux4/6Obu7BUvKc35+rGwe0DZOS5/z+2Nc8Mz5cSp5X4099
+wckD0VLyvBrD3GzjB8VLyfNq6H6PflCVKCXP+fd/6ITxg1Qpea7DlOi9snmZ
+UvJch+ZhF843z5GS5zoEHh/sk5QvJc91aLogc/m5Yil5rsO4pxWvJ5dLyXMd
+BKqU040UUvJch3NZ9cTJail5roOtnar+VZ2UPNdhqUz3dF6tlDzXId52f67l
+Xyl5roOumfC5QiAjz3UYn5Nu6i+Rkec63BB4GB8ylJHnOiyRDvRyMZaR5zoM
+vHAour2pjDzXoaX7t7OaxjLyXId6W+erQpvJyHMdZjx8VXqllYw812GYaZsd
+a9vKyHMdRhVJH4/qKCPPdShdG7XOoouMPNfBzDQm4aeVjDzXwcdhxfekXjLy
+nH/eO39XveknI891ECcW3z07UEae8+txa+/mDUNk5LkOvjmWJVNtZeS5Dtme
+fXSDR8rIcx12PK31shgtI891MHZLL5eOl5HnOlwt6JyomCAjz3U4eGDwrPTJ
+MvJchzn3F+0Nc5WR5zq8/vxn1NuZMvJch5/Lp3vfnSsjz3VYYf/11fkFMvJc
+B1X969MOL5GR5/z+uND55vYVMvJchz8hfgfd18jIcx2mX/QyWb5eRp7rsK5N
+j8ELNsnIcx0sDzyWzNkmI891kEsWbpyxS0ae8/ervXdw2j4Zec7vpwC/wdMO
+ychzHT6klp2efkxGnutQk7vHc9ZJGXmug8u+kK7zz8rIcx2ub/+5cslFGXnO
+r++DZZPXXJWR5/z7U039sfmmjDzX4e9CifH+OzLyXIcBLf1zTz2Qkec6PHZ8
+N+vmExl5zq+fw5Dtz5/LyHMdjFYdHR70Wkae8/tnWM7ThHcy8lyHa5N3fSzx
+l5HnOkTM9PIw+CQjz3UoaXsosWmIjDzn9//RZel9vsrIcx2sz+8/7BQpI8/1
+aDXLNHNFrIw812Ni4/GpRxNk5LkehabLdzxJkZHnengG3/kWlSEjz/Vo+Lrn
+R2W2jDzXQ3V0xMwmBTLyXI9S00a3h5XIyHM9DvVOPLmkQkae6/Gl3NfyjFJG
+nuvxeLlm6UetjDzXo1j5dnJ5jYw812NPaY/iFn9k5LkeHj9OdHIUyMlzPdZs
+FZnslsjJcz1Wn/hw+42hnDznv9+46EepsZw81+O8mXdoOzM5ea5HTfrg6bOa
+yMlzPWZE+l242EJOnuuxbO3UXQlt5OS5Hg+2DTAz6yAnz/XoGb530uTOcvJc
+j6Pz3Yaet5KT53psXFf7PaWXnDzX47PLevPW/eXkuR6WZypFiwbJyXM9WmSe
+uuk9VE6e6/HWfEehbricPNfjmFNi6ggHOXmux8Vgvy2nx8rJcz2aFziGZjvJ
+yXN+/SY/C+w9WU6e67Ez5+ei/a5y8lyPU+ecfVNmyslzPebfj/HtMU9Onuux
+68DpJQcXyslzPeYkvfqctVROnusxaYNTxOBVcvJcjyPuO/dcXCcnz/WQtJpV
+oN0oJ8/18Kr5Wz1lq5w818Po2x6fdzvl5Lke4Yf07Vvsk5PneoxYsxW7D8nJ
+c/79VbeUFx2Tk+d67E7Q7J5wSk6e6/HsT+MHvufk5LkeB56e3dbxspw812OC
+6+4/Z67LyXM9NvtX9BR4yclz/v5Sy03W35eT53q80x2/UfBYTp7r8fN2dvr0
+53LyXI+2T9VhMa/l5Lkey/skuo16LyfP9Xh55czTTwFy8px/3+cH3rMJkpPn
+eqxv8338+y9y8lwPnz2r7gwIl5Pn/HmZbPrIJ1pOnusxYHvE7IHf5eS5HiW9
+vYL8k+XkuR6df99IsM2Qk+c1+Pr+24WwbDl5XoNxZ7vIJhbIyfMa/DX50jmt
+RE6e18BS5qVfVCknz2vQ5OmXTWqVnDyvwdz9/e7v1cnJ8xqUuav2mf2Sk+c1
+6PZG0PC+gSF5XoOB2UscB4sNyfMa6MvaD4qVG5Ln/P10HZiwxNiQPK9BZ8d7
+rTkzQ/K8BlGLVzS91sSQPK9BTumRoIEtDcnzGtx6/rdZsoUheV6DP5XhbTd1
+NCTPaxA/qiSlaVdD8rwGvz66IqCHIXleg5OfTKfM72tIntegxsK8uWygIXnO
+30/r2SdeDDEkz2vwdl7uyxnDDcnzGsh/39wvcTAkz2tweMNJyZuxhuR5DXx8
+HlkvmGBIntdgVruiJo1cDMnzGrw5iAeh0wzJ8xqc6PC4YOtsQ/K8Buuet/re
+y82QPK/BN6dTa4oXG5LnNZDc1PndXmFIntcg9NXot7PWGpLnNdCabZ7TbKMh
+eV4DdcgWn+QthuR5DXyHD/9wcacheV6D2t1B7tP3GZLnNRitLU9qediQPK9B
+rxNvS3I8DW3/D8t6RRQ=
+ "]]},
+ Annotation[#, "Charting`Private`Tag#1"]& ],
+ {"WolframDynamicHighlight", <|
+ "Label" -> {"XYLabel"}, "Ball" -> {"IndicatedBall"}|>}],
+ StyleBox[
+ DynamicBox[(Charting`HighlightActionBox["DynamicHighlight", {},
+ Slot["HighlightElements"],
+ Slot["LayoutOptions"],
+ Slot["Meta"],
+ Charting`HighlightActionFunction["DynamicHighlight", {{
+ Annotation[{
+ Directive[
+ PointSize[0.0055000000000000005`],
+ RGBColor[0.368417, 0.506779, 0.709798],
+ AbsoluteThickness[2]],
+ Point[CompressedData["
+1:eJxd12VYVN3bBXDO9CCCgmIrJgZ2oKIuRMEERVHswG5Fxe5W7G7FDmxRQhFB
+UBqkQ7prkhnEeI889/5/ePnidV+DZ845e+/1W7R1WzNpkcDAwGCgxMDg37/b
+Gj0blbN1P358fSlpZGBg+/9nvzFGgm6HDqK38QSbpvz8c+fygA1nD2O5mUdS
+S34e9Oarx8ebR1GvsWVKW37eUtKpt+ypJzJd3Gwt+fl96wNlzu9PoKRZZ5Pu
+/PzrkTLe0e0UdrzYPLIvP18LsXjhvvQ0rJa7ZA/iZ5usCccvrj6DiOv+ubb8
+nF5T94VY/+DZuNH/u79z2F/cvcVEfm7RM7ODZM953Aob5Dztf/d7Ac9exFfM
+4+cZC+uuiLRGNYpl/7v/Szi33HvGen6+crnuB2e7K7ru+N/zXEHcj6D5h/g5
+NVo3Oe/eVZwStf97+n/Pdw1TuzYSXufnZqKpxt1fXUdV9vlVD//3vDew+uPD
+YW/4edp/F0S3OY4en/73/LcQOm9/oyh+Hm99ZPi8glvotNKpWdr/3sdtbOr2
+dH8RP5c7/7vibfSacGOq9n/vxwv1j3c8KeQMbI+tLKp9pPSC2S27HqYce193
+cHJ0dd+2/NztkDn/CHfQZPzwW7049v7u4vDGDutt+Tnitr2P+vdd1D9/6+lE
+jr3Pe2i022f8fH7+97aaiu5jZsMlk9059n7vo6jz60/7+Nkw+c7aoYYPIHt6
+9dx5jr3vB5hxoG3MA35+/O9xGzxE8F37tX4ce/8P4fFXtjmKn8f+u5z5IyhO
+rizM5th6PMLfKev8Nfxc97pbPobv1KY6mYCtz2Psu+Z2uRU//3t7se2ewNTa
+2auPgK3XEyyxKWg4mp+7zDr5Wdv5KeKD2xTPFrD1ewplFddxAz9/46/WvKc3
+3uR7fj0qYOvpjRmRQfG3+Xnp6Yrt6P8M7km3R/gK2Po+Q6Z1jxZx/MzfHP/I
+zxHZden0EgFb7+cIrpz4hxMa2Lrwm4dfUlz+WiJvIWTr/wIegn7b+/HzXf7t
+Jd95gdSyXlOchGw/vMDp1JxzS/lZ8zthc0mnlwjtONpmn5Dtj5dQ9Fw0+gY/
+j6zbAC+RO2twgK+Q7ZeX+Gz+7UIiP/OL9++BUD/KNEUpZPvnFa5omu42FhnY
+/nd7r3Bemnmim4jtp1c4cGCeaAw/9637eY3R6rvZi0Vsf71Gs/Qn7Q/w875P
+4fwOeo1jkR5Rd0Rsv73G8VnSH5/5+Tu/+vw7wfKOc6fkitj+e4Nvobv6CsQG
+tu3rLvgGzwuWb24nZvvxDXZateswgp/X1y3AW+jHPhiwUMz251vYVNc+P8DP
+wdrO/Aq/xbfitqceiNl+9cHe3ObJ3/jZ9L8bxIOHxfvLxWz/+iBTfPyyicTA
+tu7uvvqgW7i8cV8J28/vUBs+TzeVn19dr3oQOu4dWuSdtd0mYfv7HT6p7ipu
+8rOg7oHfYV/WeekXCdvv77Ho3NIDpfw86b8Ng0iuzfIGUrb/3+NIK/+3A/jZ
+69/jJrxHQu6wpbOl7Dz4wnnS0z37+Vn173LTfGHkLhY8lbLz4YudjuNLvvOz
+3b/tn+4LT+1e619Sdl78cGT3k/IOMgPbuu07xw/9Db/KnGTs/Pgh8HXasU38
+nLP134L4IfROwcbbMnae/DFdUhYawc+96za4P2qNKnZWy9j58seNyorrbeUG
+tnvOj+C3jD8eFVW1d5Sz8xaAmkHaBlv4Oa5d3QIj08pg0T05O38BaFXfzCKe
+n9v+S/+KAFRb9bL7K2fn8QNa50+PsDI0sF3373is/YAvJ8/4zzBk5/MDzp3J
+MD3Cz0H/Vlf9Ac9cBse9M2Tn9SPejHhWXcjPDf47kAiJH7zPvB47vx+xaWuu
+hwM/172+mo8off8gzqMeO8+BeNvw+NkH/Fx3e9sDoa1/PiClHjvfgRg15PN4
+QyMDnqh/P58Q2avJyCFG7Lx/QpcDF7xW8/PD0HH8if6Eoyl2S28bsfP/Cbdi
+Wp9P4OeJ/Gnk9yi8GnXvIqvP8uATJruu7TCEn/X/9An5hD/jyw6urc/y4RM2
+v7g18R4/32r+70AEoaPd2T1p9VleBEET9qVZA2MD29F1CxwEt/o2zRyMWX4E
+YUeedtd2flY8+HeDQci3qHF8bczyJAhfbo/aV8rPl/7dXTj/+aj8Nu1MWL4E
+4fLPuPYz+Pnf5hpj9Bmx981OnjFhefMZRng6P4Kf/6VJvONnLPO/cVXUgOXP
+Z1xvVjlkGD//2y38loF21nX7zQ1YHn3GrBPP377i57rHjf2MmQGWxysasHz6
+jCa1ssjODQ1s6y5nGoypC6e6L2zI8ioYO5uY7b7Fz3VxNDkYFwbZaTMasvwK
+hqO2MK6ZqYHtf/UhGMqtInNXU5ZnwdhicCPoHD/XxUFyMPYH+STEm7J8C8b0
+v84TGpoZ2O6qC5wQFBus7z3RjOVdCGJMW207yc+WdQcoBK6HJlvFmLH8C8Em
+n2b2Jo0MbGPq6kUIUn+7f5nQiOVhCBI+uXmf4udN/45DZgjWLy3/FdeI5SP/
+/xeYvTFrbGDb5t92bv0FLp3S46c0Znn5BQO6jZp+iZ/D/m2/eV/AqWaMSm/M
+8vMLJhk0v97a3MB2TV1AfsH+nEMz3MxZnn7B004Pd93n5yZ1B/4LbizeaVRm
+zvI1FIqhxlyvJga2dbfXIRTVTjNnb2zC8jYU34Yva+vPz4vrfkIxKsTGkWvK
+8jcUDY8mZY/i53/liU9YnB0/NONEU5bHoeAi1iOJn/+l4+aSUEwP32HYuhnL
+5zAsajx36GJ+nlN3wTAEbm+R8qwZy+swRCf5pOn4WVIXUGGI+tvPfnhzlt9h
+CEu93OQYP/9bjUbPwnB9fIlzYnOW52GQOFhq2rQwsK1rd1VhOOPr+md5C5bv
+X/Hg1s61Pvz8599x6/0VR37eHCtoyfL+K98fAj2d+Pn+v+3s/hXmbXMHXG3J
+8v8rbsjrjSnmZ6f/Hhivrg0L7t+KefAVNdW77+3j5+p/y6H9itrBSVVxrZgP
+39DttJ2XRWsD2xv/Htf6G/IswwPWtGZefMPyvusQyM8OdS/wG1QVNl1N2jA/
+vuHqxR475vJzZR0P37DJw3HgizbMk284knRtJmdhYHvhX7zXfsNXeduiSRbM
+l3C0W/oj7S4/18Xz0HBsnZA6QGfBvAnHi/bmtWPaGtjWxevOcFxzumx5vS3z
+JxxNbJcEKPj5v/gLR/Wq/b4j2zGPwtHQRdv6Mj/XxYsgAsM3fCyvaMd8isDS
+qfntRrQ3sK07viMisPzwiqBL7ZlXERh4Y9rXSn6uOx4HIhDZ+4W1fQfmVwR6
+5HmYXOPn/7ZfBNynvZyg7sA8i0DQ0IX6sR0NbBP/La8sEi725+R3OjLfIrHV
+0mFfLT/vqAvASFz22rnIpRPzLhK9t9m98ObnjnUbMBJp2y4skFoy/yIxfuOu
+XfP5OSqy7gdzhglEAZbMw0jI3rRXmnc2sN1YF6hRWOhb7ODemfkYhbfWU8XR
+/NyqbkNHYX7rdVZduzAvo/DbbVjAQX7+UvfnVRQcuOA3eV2Yn1HoWis0H97V
+wHZVXUBH4cs0SfaNrszTKCztHGP6m5/r4qpRNC7sXPBsZjfmazTqe3x95cfP
+dXEwNRqBPYUWza2Yt9H4Ed+0egs///fnVzSSPY37p1kxf6Mx/XRJxuDuBrZG
+/x04uDR/XnG1O/M4Gr+XLFzym5/rtkvzGER/Mh47twfzOQYn1r0+H8TPdcsx
+Kwbjo1zHdujJvI7Bku7c0kP8/N+fZzE4rnxTWdqT+R2DwF2bfzj1MrCtu1xW
+DCaNdLZ+3Yt5HgvNy5E1TXqz8x6LJ8OnddjRm/kei3T30+9ze7PzHwv7CO3b
+0X2Y97Gol3y05fM+LA9i8abz1PLGfZn/seg6fXbHHX1ZPsTis/R+WH5f1gdi
+MSSt//fx/Vhe8J9vNx39th/rB7FQ3x7eqXV/lh/8/Qi+rTrUn/WFWPyd86y1
+sj/Lk1hM364bOHMA6w+xmGv5OODLAJYvseD6Rj7qZc36RBxebV5gcM2a5U0c
+3FI2fpIOZP0iDscGykvXD2T5E4cuB9vvyB7I+kYcQt6Eb3EcxPIoDus+irL9
+BrH+EYf4O8nPOw9m+RSHVivHlFwYzPpIHJp3nOcptmF5FYdueW0vb7Bh/SQO
+Y4LOmeTbsPyKQ72cj1WTh7C+Eof7y+8PChnC8iwOWk/nin5DWX+Jg/uOUMP7
+Q1m+xWHE5npnmgxjfSYe1p867TsyjOVdPCJutP5RO4z1m3h0XVjjtRos/+LR
+b8mHuBywvhOPneJ1y6fYsjyMx9Q7zVd9s2X9Jx6hTz6lDh3O8jEe508te/Fq
+OOtD8Rgf3kJpacfyMh6DUjKvXrdj/Sge62x9XpiNYPkZj/iTT3oeHcH6UjwM
+Z4Q05UayPI3H2UHSlZtHsv4Ujw8xW7soRrJ8/Y7nIR2dl9qzPvUdi8OM87Lt
+Wd5+x8fjQ7KmO7B+9R1rE97af3dg+fsdLebuMXccxfrWd0B/zzlsFMvj7xi9
+rqtu+GjWv77D06ux9MNols/fMXHF6j0Dx7A+9h3hL20WvxnD8vo7Oi/Y/7bX
+WNbPvuPE+glrvMey/Oa//8eds13Hsb72HZV3D7d7OI7l+Xd0iRO17DSe9bfv
+qHJvs/vueJbvCVh7O8upvSPrcwko3Dr+sJcjy/sEXOywyqqdE+t3CcgJH23j
+5cTyPwF9bhe+aTeB9b0ENMp1vHxnAvMgAVYxB4o7TGT9LwG2L8973Z/IfEiA
+dcr+sM7OrA8moM3VGa5PnJkXCeg9rfWkHpNYP0xA/Ibkdy8nMT8ScGH28cP9
+J7O+mIAxB0eF+E5mniSgdFn9FcNcWH9MwLujhduDXZgviejqnlYzegrrk4kw
+eKnIiZ7CvEnE4Kxe/adMZf0yER2ueanTpzJ/EuF6wrHVAlfWNxPht2DQq1JX
+5lEijsSteuU+jfXPREw/p2pVO435lAjztTGafdNZH02ESS8j6/ozmFeJUN9/
+kX9hBuuniUh5FvLbYibzKxFDu0zc+2Qm66uJaPB3hvuAWcyzRHhbVEQFzWL9
+NQmlB4zPO85mviWhQY+wsNTZrM8mobhNm8WL5zDvkhCwrPVa9RzWb5MwrW1U
+we65zL8kmCzsG2Y8j/XdJARPnd7o+jzmYRIKOo6K6jaf9d8keIjFKr/5zMck
+mPW+unesG+vDSVCVNdyV5sa85O9n97qi5QtYP07CGrvP/rULmJ9JeHDU6Jfn
+QtaXkzDTf9rD1ouYp0mQDHv+6cUi1p+Tkbyvqf2IxczXZLwUX++ftJj16WQM
+GGl/ZtkS5m0yQsOazfy9hPXrZBywaH/q9FLmbzLmFC7r3WkZ69vJkPpWD/Nf
+xjxOhtw2/v3E5ax/J+NDV/HNwuXM52RM73VJuX0F6+PJKDM598JsJfM6GYtO
+cRmPV7J+noxru0vW261ifidjwjuXzWmrWF9PRjez8SXuq5nnKYjZmhJabw3z
+PAWxGYKG99Ywz1Pg3zMhbNha5nkK2rpPKUtZyzxPwenHJ7etX8c8T8G9omOb
+jd2Z5ykQ2k7OfeTOPE/B3PjK9/brmecpOPBlya+c9czzFEwfHfZ05wbmeQoy
+TpuHt9jIPE9Bv5w5Lr4bmecpeLrj0ThXD+Y5f78+f59rPZjnKZDnL99zbhPz
+PAXuizSBfTczz1NR7869Fd83M89T0bn+4f3rtzDPUzG35T3DRluZ56k44Sz5
+82Yr8zwVWf3fzpm6jXmeiogZ/lb6bczzVLSf0W7ple3M81Q0TFI3GLqDeZ6K
+1lsGWWbvYJ6nYmD1r8f7djLPU/FWNvqa5S7meSpcN3SojdjFPE/FFPG1sLW7
+meepmHXqPWe+h3meivOqfY/89zDPU/G4oSxw/l7meRqi0p3sZPuY52nwHeXW
+9/k+5nka/FzGn5m6n3mehpeGTeb+2c88T0PTrZGX7x9gnqfBMMDDbsJB5nka
+7FVtpusPMs/T0GdUfObtQ8zzNBRUXIwdd5h5noZu7bb1rj7MPE/D/s4HDW4f
+YZ6noa9T8NDxR5nnaRhSMqREd5R5nobl034L7h5jnqdhhtDk2ERP5nk6Ns3Y
+vue3J/M8HbLkCYWPjzPP09Gr9qzvtBPM83TonCfXSk4yz9Mxds2lJ29PMs/5
+/69YFb7wFPM8HX+3/HBtdJp5no6f/prJIaeZ5+n4uMr/44YzzPN0NJ049FLH
+s8zzdKRZHchOOss8T0dR0vWLh88xz9Nh3fXMh8Hnmef879dbNaniPPM8HYLl
+g6beusA8T4dwiODb5IvM8wzM2Rv/WHqJeZ6BEIe3tf6XmOcZaHXtrf/ay8zz
+DHje+FHa8QrzPAMe622OpF9hnmfg8JjkC6evMs8zEDDtg9noa8zzDMzN1f/9
+c415noGmvc/P9LnOPM9A+aXrnVbfYJ5nwH5Tq/mdbjLPM6DvY1Ev6ybzPAPj
+h7zscOkW8zwDv40yvJ1vM88zMLLz0/v1vJjnGfjRvLtJqBfzPBMNty0v2n2H
+eZ6Jl8Vreg65yzzPhGX9MUW6u8zzTGy5ypm8ucc8z4TjxHv3195nnmdCqcSz
+7g+Y55lwm5jZsewB8zwTE+yP1H/0kHmeiQ5vJixa8oh5ngmjo0O6d3rMPM/E
+zw8zFxU8Zp5n4sVE3/r3njDPMxE4fn6nRU+Z55m4HDr3eUdv5nkmjmV8eljo
+zTz/gSifU6YPnzHPf2D/ofTyZc+Z5z8QdtTb2uoF8/wHnkjM1JUvmOc/4DCu
+aZtXL5nnP/Dm1Tf/ja+Y5z/Q9nbfb4NeM89/IHa/26g/r5nnP9A6yW1A8Bvm
++Q8cazL8wuG3zPMf+JwoX+Lkwzz/gesPvj1s9I55/gM9exyfmf6Oec7fb6P5
+u7zeM89/4FeDSY2W+zLPf+Bp7srmffyY51kwdvl4+qcf8zwLzwZN3hrszzzP
+wnb3gQmeAczzLEQVbb059QPzPAtLjltmWHxknmfh0PxxR8s+Ms+zkL9S/cgn
+kHmeBf/PVjZ7PzHPs5C0WzTMKYh5noVTMYdeNf/MPM/Cj5zgS0WfmedZcNV+
+UbwJZp5nYdCkq357Q5jnWdg4zrl64hfmeRZeDtPeaRPKPM/GpHPngitD2XnP
+xr7AIVM+hjHfszFsWO20E1/Z+c+G8+XM6DnfmPfZWLJQ6dMznOVBNkyGjWzI
+RTD/s/ElJi8zPoLlQzZ0UZkt70WyPpANYz2iN0WxvMjGlqZNVWOjWT/Ihrdo
+w+HWMSw/stH/+vzTqhjWF7LxNqrSKCyW5Uk21J5daq/Gsf6QjeyMNrPWxbN8
+ycbV8Kyeo76zPsE/7+pNHq0SWN5ko2+5pqcmgfWLbJx1XzwrIpHlTzYybdJq
+vZJY38iG1/E5xtuSWR5lI+U9d25yCusf2fjRLN7TKpXlUzYONP2hF6exPpKN
+Zp37pWSlsbzKxrKw3K5+6ayfZCN2t15xLoPlVzYGl+7rujaT9ZVs9Ll3Nnnc
+D5Zn2cibM0BvmcX6Sza6xm71FGWzfMvGuQ9rzuVksz6Tg7W69g0Cc1je5SB2
++v2/13JZv8nBxUjxgm15LP9ysHOE8+AZ+azv5KDNx4sHBhWwPMzB71HFI5sV
+sv6Tg6N65801hSwfc2CtzmuTVsT6UA42LvG28S9meZmDT6c+RFwrYf0oB099
+2sfuLGX5mYNiq6rR88tYX8qB4+SeA0aWszzNQc559UXLCtafcpC3ctzqepUs
+X3OQNMvBt6qS9akcHKxWb06oYnmbg8bJC7x9Faxf5YB7eG/qTSXL3xz0avNt
+wwEV61s50P3JlK5UszzOQUdzjclkDetfOahn2+L4YC3L5xwcWrhgV7tq1sdy
+YLQ5o9BQx/I6B97bLgSrdayf5aDDjtuNM/Usv3OQdaF+ZmgN62s5kCpKm738
+yfKcf98BYyKv1rL+loNOQwdrDv5i+Z4L98DI0+6/WZ/LRfH1hvfm/GF5n4tK
+NOsx7i/rd7nIbqaxGmjAUf7nooX3q9sdOY76Xi6khxd5mgk48iAXbRxaVXBC
+jvpfLv6cLA1W8PN/PuRiSYsfDbJFHPXBXEx8IkuIEXPkRS5KTLbV/yThqB/m
+4lknhw8vpBz5kYtlaVvzbss46ou5GN6+6+6zco48yUWQZNHZA4Yc9Uf+eheH
+tNpcjyNfctFTF9RqhRFHfTIXpydJzs+pz5E3ubhR0HzfJGOO+mUudtY0KHYw
+4cifXPzOrwm2acBR38zFVaMi894NOfIoFydzS7I7mXLUP3ORXGjWrpUZRz7x
+9/vAI82sEUd9NBebAtsb1mvMkVe5kKdavRSYc9RPc7H5yZ2Yn/z8n1+5sP11
+eZG6CUd9NReFN9quL2/KkWe54DaO1xc046i/5sF+tZU2qzlHvuXh5OHvy9Ja
+cNRn86CMmTw1sSVH3uUhYE6gX2wrjvptHo7O7nwxsjVH/uXBSXi77Gsbjvpu
+Hmaet3n/xYIjD/PgvsTw9+e2HPXfPP7vhTZ+n9px5GMeui44UfWxPUd9OA/J
+25de/9CBIy/zEOjzKTigI0f9OA/rvR+5BXTiyM88DDIasDXAkqO+nIfGxzcb
+fujMkad5SNXvM/vYhaP+nAcryxXnA7ty5GseLv+xPRXUjaM+nYdrG5qKQqw4
+8jYPj4+LlKHdOerXebCb3dQ1vAdH/uZBJ14yILonR307D9t9hSfje3HkcR5e
+vefmJ/fmqH/z8+QNTzP6cORzHjJKVq/L7ctRH89DXonoRXE/jrzOQ1LcmKVV
+/Tnq53no19P5SvUAjvzm1+tGD4c/1hz19TwcjtKukAziyPN8SDb51TMZzJHn
++TBfcqpjUxuOPM+HyZZjvm2HcOR5PoSXAsO6DeXI83x8/Wg7ccAwjjznr6dv
+N3k4OPI8H2PmbI0db8uR5/mQtpz5ddpwjjzPx5sVqYMX2XHkOX+9i/LO7iM4
+8jwfST//ntw1kiPP83Hyb6z7cXuOPM9HqsXp2KsOHHnO/36Jy6PHozjyPB9q
+ba/fvqM58jwfNYpBkd/GcOR5Pppd3G+eNpYjz/NR/aZjRuk4jjzPh69ln1a/
+xnPkeT5aZH5Mre/Ekef58Pie3dBiAkee5yO2mfeXPhM58jwfpTEDtfbOHHme
+j4mdLt+aPokjz/OxZE5e2KrJHHmej83hViv2unDkeT6Co44evTiFI8/z+f5t
+2sl7Kkee56P99rShwa4cec6vzwhdXOo0jjzPR3TKzlzFdI48z8fS6oNrZDM5
+8rwAfxd13GIxiyPPC2AhXPt34GyOPC9AkN92waQ5HHlegEnH5u9dMZcjzwsQ
+sb/frgPzOPK8AIFf69XcnM+R5wVYfPR3lZ8bR54X4JmxxcKkBRx5XgDHp0em
+qBZy5HkBoiImhhgv5sjzAtwoOvai2xKOPC9AB0/n5mOWcuR5AcJc33NLlnHk
+eQFEtUmLDyznyPMCbBsYMubuCo485583/8Lj4JUceV6Ah0WLjuSt4sjzAuQM
+Gl0oXMOR5wXYXOQS1GEtR54X4IXxneYO6zjyvAATsseolrhz5Dn/+c15o4+u
+58jzAiR4/WnpvYEjzwuwdpLN2tiNHHlegD9dethpPDjyvABx7yrPNN3Mkef8
+elw/5zZ0C0eeF6DlCeuXbls58px/HueqnYe3ceQ5/3nw94hn2znyvADK6F8X
+E3dw5HkhBnjszfu1kyPPC6GO3P6sw26OPC/EsZ/CmvF7OPK8EAmDegVv3Ms8
+L0S71Gb1b+5jnhdi9uDUpK/7meeFaPD9oIX6APO8ENusbEpbHWKeF+JBnnG/
+MYeZ54XweNT8z4YjzPNCvLbbNPr2UeZ5ITofHmoWfYx5Xoiniw/OqfVknhdi
+cNbyrl1OMM8L8Vsi2uR6knleiKXSFSMPnmKeF8Khte+Zt6eZ54UIvy51KzjD
+POfvr3zNq8bnmOeFaHOw3n6H88zzQjT+qU7adIF5zr+PCrsnjy4yz/n/39SU
+y7jEPC9EzthtKcZXmOeFqF18qbfdVeZ5ISwW7TPyuMY8L+T7xdRlj68zzwvh
+49xtdNYN5nkh+l5p+ajRLeY5f73NIz3H3maeF2LBxA/K3V7M8yIMuHQ79d0d
+5nkRwjPrjay6yzwvgmmIeW/L+8zzIrwWZt6a+4B5XoRmK7acvfSQeV6Ewz8k
+8vhHzPMi9J92izN6wjwvwpTieTscnjLPi2D9dsH2Pd7M8yJMrg3+E/CMeV4E
+t/rXRTXPmedF2OBieKL/S+Z5EbiJllfdXzHPi2BwwcTqxWvmeRF+xf+wrXzD
+PC9C1/AXqVY+zPMibJ9yu3rFO+Z5Ed4virz45D3zvAjHBU4fynyZ50V4MNZu
+iZU/87wI39Z/Ob8qgHlehMxw9ejnH5jnRTB+U7Jb+ZF5XoSMx8FD+31inheh
+n92NXZuCmOdF2NfhgoP/Z+Z5EaLNvp75G8w857+vZOLCkV+Y50Uov+jofySU
+eV6EY5bpF2PCmOf8577mPxt/Y54XY9bhVrmzwpnnxRibbzTxbgTzvBjTrQUj
+yyOZ58XYJmzxsV8087wYkrwNH3fEMM+LEXW4u31YLPO8GAM+uU1qGM88L8ak
+VX0KZ35nnhfzf0/7GTxIYJ4XI6xfMy9VIvO8GGvOrgwflsw8L8ZZRfyWYynM
+82IYeC9/kZLKPC9GgN2k1Z3SmefFsLB/+HpDBvO8GIp5x3YHZzLPi7F+VvNE
+0yzmeTE8m2x46ZbNPC9G4rF3jV/nMM+L8TpSKBDlMc+LsUG62WNKPvO8GAv3
+9V3/oIB5XozS21P0NYXM82Jc//Fb7FjMPC/Ggphx126VMM+Lsb/DXH9NKfO8
+GOEPXReMKWeeF+PC8CnnblQwz4vxp3KTk6aSeV6MvIis02MVzPNi1Df2nnNb
+yTwvxiiJwVu9inlegk0WNecmapjnJfDLe//noZZ5XoLtqrkqTsc8L8FFQ5O1
+M/XM8xKsFBdtelvDPC/Br2SZYYNa5nkJJGfPd1rxi3legvYLnkWF/maelyDj
+1Ia/7f4yz0sQuVsesMtAQJ6XwPf1CWEmJyDPS/A8tGPSYKGAPC9Bq/WKvpdF
+AvK8BMoTDVrpxQLyvARvjR6edpUKyPMSPKhNOf1OJiDPS5B56EurpoYC8rwE
+s36e7L+lnoA8L0F/3xmpaUYC8rwE90eNlg81FpDnJejtsO3LTRMBeV6CD+7m
+xsKGAvK8BD4Ph+QtNhWQ5yVol9PAPsJMQJ6XIKyPT99ejQXkeQlGxk94ft5c
+QJ7z1zfl3tc2EZDnJbBZUOHo1kxAnvO/7zJw3bfmAvK8BHvOiNv1bikgz0tw
+oWTzvMutBOR5KXxH+FgJ2gjI81JEPco5uMJCQJ6XYs+INmsS2wrI81Kscz1b
+gPYC8rwUI8e5lT7uICDP+f9/58UO804C8rwUncR3bu61FJDnpUjoM2diVWcB
+eV6KfBPpqVldBeR5Kerf/DwnvJuAPC9FjMAnYGB3AXleijM7JI8f9BCQ56X4
+ti61U5NeAvK8FCZuLn0P9RaQ56UYr7wWo+sjIM9LEZubUru0n4A8L8WW5j3e
+p/UXkOf8/V37LHK0FpDnpRh4MiAncKCAPC+F0tpuQt/BAvK8FK5/tjg+sBGQ
+56WoXX40o8VQAXleig+WV36dGiYgz0uh/xvjLbEVkOeluJk9SbF9uIA8L8W8
+lDEhajsBeV6KsCYZXVaMFJDnpZiv7NU2z15AnpciM3XN45mjBOR5Kfos/fQl
+YbSAPC9F4JSx653GCsjzMqzb2f/113EC8rwMBdmPDoxwFJDnZTh2I6b0o5OA
+PC9DRG107uCJAvK8DF3mxa565ywgz8uwZOqvY/0mC8jzMjz13Db0lYuAPC/D
+owSPvb2mCsjzMvi1bzLzuauAPC+D0dkDYT2mC8jzMnyZWxb2bIaAPC9Dp7J1
+s3rOEpDnZXjpZ3fgxWwBeV4Gp82H7PrMFZDnZVivWnbuzTwBeV6GUS0bbbN2
+E5DnZfha/0W13wIBeV4GrXCpFIsE5HkZ78Fi7+DFAvK8DB2fJhaPXiogz8uw
+4Uy2b/QyAXleBpfClxZTVgjI8zL8ubmhVcZKAXlehlOZk18sWC0gz8swIG9r
+atkaAXlehsktGl/esE5AnpfhoblT1W93AXlehu2ezhmHNgjI8zJ8njFunqmH
+gDwvg/3BJduubxKQ52WIHhzfvcsWAXleDseId5vebhWQ5+UQvBo53W67gDwv
+x4NT9+JjdgjI83Jc7iXNn71LQJ6X4+/eC8fLdwvI83Lobu2O2bZXQJ6X42OE
+6lG9/QLyvBzpK5u3unZAQJ6Xw8G8Y5fuhwTkOX/9vbbRHw8LyPNy9Dl/xcj5
+qIA8L8eiGfPz844JyPNy3JUGT9l0XECel+NhbcW8eicF5Hk5vD42kNw6JSDP
+yzFfMMO+/xkBeV6O3V761hFnBeR5OU7fbXF2/nkBeV6O8QNVt/UXBOR5Od6/
+ezLu1CUBeV6OaQ82nep8RUCel2O6z4G1QVcF5Hk5Aj+Ky2dcF5Dn5Tj1xVKo
+vSEgz8shrG3hc/KWgDwvxzM/U3E3LwF5Xo7Xx4YoQu8IyPNylFmEb1pwT0Ce
+l6PF9PKrBg8E5Dk/I2HWjYcC8rwccsPXfkMeC8jzcni08nub/kRAnlfgvLyF
+0zZvAXlegZXHpPtbPBeQ5xUwOP7SNeCFgDyvwMGO477NfiUgz/n/f1mS+ve1
+gDyvgPNM80NebwXkeQW8DL2/278TkOcVmLPx98eS9wLyvALbLg4ec8JPQJ5X
+wO7qRfe+AczzCuxOHWWT+oF5XoG3qTvv7ApknlfAftLaJ52CmOcV8O48cXL0
+Z+Z5BV6tm3TVI4R5XoGz657saxPKPK8Arp00+hbGPOe/73zfAeu/Mc8rYN07
+0qB1BPOcf/71J1Z+i2SeV6De6edbNkYzzytgVLWwc7tY5nkFXrbP3xwTxzyv
+QL9qtxU7vjPPK9BobhMDq0TmeQWcDltbpycxzytwLKqmwbEU5nkFZgWcO26T
+xjyvwNJG8C5PZ55X4E5Yz7U3MpnnFTj083rSxCzmeSXsRUHZwhzmeSV+r449
+8S6XeV4JlU6YsyKfeV6J4JNnky0KmeeVuDHjnXtSEfO8EltfPHjlWcI8r8S4
+Vtcvjihjnldi8PzYtrXlzPNKZKzd6vy6knleiZUbEzqtVDDPK/EnsolXRxXz
+vBL+hjuDs9TM80qY62yPXdEyzyshPXWlZoqOeV6J4fIvxqY1zPNKrIr8GR79
+k3leiYVbPHp4/mKeV8Kt0H3Q2D/M80qMsuhWLjMQkueViFqe5vCVE5LnlQiy
+DRhzWCgkzyth62KkHS0WkueVqDwhGWMoFZLnlehnWmQfKROS55XYZF1adsJQ
+SJ5XwvXUeJtJRkLyvBJFhWP78Y2QPK9E6dB2yWkmQvK8EsZxJh1uNRSS55Ww
+bOzcYrGZkDyvxJr37T9YNRaS51UI8Poi15gLyfMqfNZu4AKaCsnzKjjWX3t3
+f3MheV6F3bu0KseWQvK8CiatRlY0aS0kz6uwS3nlbG4bIXlehfkjBhV6txWS
+51W4cG5OwZb2QvK8Cvu8xp526Cgkz6swffHQUjNLIXleBafGmxQ5nYXkeRUy
+LAbefdFVSJ5XQWgdJN5tJSTPq7DfbnLjiT2E5HkV2q/o+d2il5A8r0JR44tQ
+9RaS51WYWhAxI6SvkDyvgp+vSceL/YXkeRVmv7x7Y7m1kDyvQmTnqLBhg4Tk
+eRXM/SNumdkIyfMqGNvldSkZIiTPq3A0aeqCwGFC8rwKj2KXOV6wFZLnVaj/
+dW7xKjsheV6Fdue293MYKSTPqzBnvKhPGwcheV6Fg6NtcvSjhOR5FUotFtt9
+HyMkz6vw9Nm3Kc/GCcnzKoiMnrQ46igkzxXYfm7CucUThHTeFRhS8CtwhLOQ
+fFdgZKb+RtvJQjr/Cry/fqS3wRQhea9A66PaTVlThZQHCniN3uceOE1I/isw
+6/OWtrdmCCkfFDjX3uLAnllC6gMKSDI+XF8wR0h5oUCHm1dWOMwTUj9QYO7C
+P5Vd3ISUHwosW9K7s/FCIfUFBbZ23t5EvUhIeaLAhZWWH1KWCKk/KJAwdHuz
+wGVCyhcFbpUFW91fIaQ+oYCo3mjd8VVCyhsFyjwmbfFYI6R+ocDyid1fz10n
+pPxRQPy33b0x64XUNxRQ99o5od9GIeWRAkvTj7xqs0lI/UOBzMGno+ttEVI+
+KTDhe9Yd/VYh9REFTq8N6lO4XUh5pcDhTnu3JewUUj9RYIfz6p3Bu4WUXwrM
+vBBv83qvkPqKAn9ya1/f2S+kPFPAY7V10bmDQuov/Pf5xicePCykfFPgx/EW
+u7ccFVKfUWCfwbzClZ5CyjsFNGsqZfNPCKnfKHDwQOPiKaeElH8KbOjfYf+4
+M0LqOwp0DVyWOfyckPKQv3/v/pqBF4TUfxTol5z8tdcllo8KpM+5NbPLFSH1
+IX7/vc562u4ay0sF3p4qDGh5Q0j9iN8ff8WeTW6x/FSgrcvJ5mZeQupLCnTv
+m7DU5C7LUwUaH++0yei+kPqTAlG3UuwNH7J8VeBm7ZBE2WMh9SkF1m+531H2
+lOWtAi3tl1rLngmpXylwJSXRUP6C5a8Cq3/b3TJ8JaS+xb/PSKHe6A3LYwWG
+vlhp2sBHSP2Ln+fHV5m9Z/msQO/SI6ea+gmpj/Hn436xplUAy2sFBtuNbNXh
+o5D6mQJh/ip5t08svxWIcxvr3+ezkPqaAoNSb/e2CWF5rsAIs4mrRoYKqb8p
+kOP6dLXTV5bvSuhsjQdMDxdSn1PC2z8qeGEky3slXslGNF0XLaR+p8SJgNC+
+O2NZ/itREPjS3DNeSH1PiZAJs4OuJDAPlCj/3a7f4yQh9T8lWryctcYvhfmg
+hOu9hesj0oTUB5Xot/K8bWYG80KJThVjkqt+CKkfKhG0KNNamMP8UMJw+RO3
+JnlC6otKBOabTLMqYJ4oca3JkqZ2RULqj/zzXa1/d1oJ84V/nvnzateUCalP
+KhHwMqD14QrmjRKpVruNb1cJqV/y7ytCFuGnZP4okZX9xiVRLaS+qcQ887wn
+Ci3zSAnPtapYI72Q+qcS9R3tQrr8ZD4psWBBn4OjfgmpjyrR90u7Jov/MK+U
+OPJj/aYDBiLqp/z78Dj44J5ARH4p8cnb/0GoSER9VQlnwcbNxRIReabEtPGN
+mteTi6i/KtH2U61nj3oi8o2/n8rjcZPqi6jPKpH8uXvxJhMReadE+qFhcdcb
+iqjfKjE9r/3xEDMR+ce/75ThLcsbi6jvKlH09dfORk1F5KESi9x93w5tLqL+
+q8RnZcanJS1F5KMSoUGRt860FlEf5t+/f+WUjxYi8lKJ500eZZe2E1E/VsJn
+pdvwph1F5KcSvV7u2exgKaK+rITcZvXBjV1E5KkSNYEnV9zrJqL+rETkFKfO
+Sd1F5KsSl91NP0h7iahPK2FcMbLr4D4i8laJe7+c1q7qJ6J+rUTFoCsnbw8Q
+kb/889w4dThpoIj6thKnDl6baWQjIo/5+Vln+YihIurfSogG3Dq9FSLyWYnN
+N1ZrXw0XUR9X4mfE337lI0TkNb9+4k8TOzmIqJ8rMVvTYsz80SLym3/e+7tb
+Xx8ror6uRNTRmXGp40XkuQohHs3dmkwQkecqVNzuFjfFWUSeqzD34e/W5yeL
+yHMVjhz9Oy5xiog85z/3vjXNfJqIPFfhctpE+2kzROS5Crm2u02vzhKR5yo0
+3HDz0485IvJchVmr2kxsP19EnvPXP7YuaOkCEXmuQoez0sbPF4nIcxWeP5s8
+rnqJiDxXIW7114XDlovIcxWOhafMP7RSRJ6rsKCN3i5utYg8V+F07yuylutE
+5LkK/az6vl6yXkSeq+Bx23rEm40i8lyFgKMtfbnNIvJchdjRro0nbhWR5yrU
+uzt72s3tIvJche2R9/ZW7RSR5yqYzrh/znaPiDxX4fP4pBNn9onIcxWeGnmv
+KzggIs9VwHKvoYMOi8hzFebc6KE+flREnquwb2z4mTxPEXmuQtbmypaDT4rI
+cxU2X2t05vRpEXmuwvjTPqqSsyLyXIXV15ww4oKIPFfBYqXr5uuXROS5Csom
+42/or4jIcxUSLR6+dLkuIs/5+1tX9OrlTRF5roLN7INeJl4i8lyFnV7cntV3
+ReS5CruXJjlF3xeR5yqctN1r1PORiDzn77/jPr9TT0TkuQrXdrhOV3uLyHMV
+asx3lkx9ISLP+e/v5rHC/5WIPOfvb3ZglsVbEXmuwqSAVIdD70TkOf/9H+1v
+V/qKyHMVFjvsr5oaICLPVZhwy7zPp48i8lyFqL07l3UNEpHnKnwwHnbhfLCI
+PFdhVEzyey5URJ6rkO0bzW9BEXmugn2P+zkZ4SLyXIUt1TnF46JE5Dl/PQdJ
+sX+MiDxX4fiHi1lW8SLyXIWzC1rE3kgQkef8+3hi7tcwWUSe87/vbnLjQKqI
+PFfB5e+x7T/TReS5CgkCs6lrf4jIcxVSLnbrVpQtIs/VqLGb/WtOnog8V+OY
+qmd4coGIPFdjz59u552LReS5Gi6d02ZHlorIczVKrwR3GF0hIs/VWF26rjSk
+SkSeqzGw0ZrndioRea7GvZ32G4I0IvJcDaV+16DhOhF5roaZ/6O/QTUi8lyN
+k4ucwkb8EpHnakzgfp4K/SMiz9VY9Xfg7LGcmDxXQz7oklWMUEye89eruvvX
+RSImz9UwDy9PSpeJyXM1/qT+frWgnpg8VyPn/OJz5fXF5LkaH9PfbvNoICbP
+1bBTbF3GmYnJczX27bSfc7yxmDxXI+DivRnNm4rJczXEr7vNfdhcTJ6rYeS9
+dKV1KzF5rkZoWMXesDZi8lyNto/H35nWTkyeq/FybpPo0g5i8lyNWdOyhTst
+xeQ5f/2lg+1Nu4rJczV6hL4/88BKTJ6rcb1+VfnQnmLynH9em3Uuib3F5Lka
+215+/7aqn5g8V2NmryeOUmsxea7G1QzP7NuDxOQ5//s2xvuGDhGT52o06ful
+f9owMXmuhko+umbTcDF5rsbexd2jzUeKyXM13jsZvfVxEJPnahy03P7MdYyY
+PFdj/ptG/jXjxOS5GoHmq9OvOYnJczXORlk0GO4sJs/VCHvzZXrhZDF5rsZz
+UfV7z6li8lyNnc7jevSbLibP+c+PzvXLmCkmz9XY+jNy9sE5YvJcjd72PZr1
+ni8mz/nfX9q6ImOBmDxX44X/wLQji8XkuRrWFU1zrJeJyXM18oQzBUUrxOS5
+GqNmXx12cbWYPFdjuLfHhdHrxOS5GiN/HzGsXS8mz9V4/MT96jMPMXmuRu3y
+6DELtojJc/7+htuYN9suJs/V+HnQlYvdKSbP1dAXBtU7vEdMnmtQO6vZgOH7
+xeS5Bv37/95de1BMnmuwrl79Cp8jYvJcg+HhxVvXe4rJcw0sH/fq1vukmDzX
+ILjXgT9Vp8XkuQbKnoe0z8+JyXMNykOSG6y7KCbPNVjt2tS57xUxea7B50ul
+PtXXxOS5Bj/2Kuz8b4rJcw08XCO1u73E5LkG3E2L2FH3xOS5BtGWp+JNHorJ
+cw3+ij7+TnksJs81OHPccdIdbzF5rsHsmbmxq1+IyXMNpGMtttq8FpPnGvze
++MRJ7iMmzzVYatN5Qsp7MXmuQfP+Ntsf+ovJcw022RxJ2vJRTJ5rMH3Buznj
+g8TkuQa/fi1vbBEiJs81iD0zplYTKibPNZhTrG8Q8U1MnmvQtKa1q1ekmDzX
+oLdufvTWGDF5rsGSsUs3ucSLyXMN4k6kTOqZKCbPNbhzdvr8eili8lyD6uln
+7hSniclzDfaadW0elikmzzWY0fbrl/vZYvJcg/umjR4cyhOT5xpMvvP247JC
+MXmuQYifS33HEjF5rsGu5ZfP9i4Xk+caxJR3m9SkSkyea7Dqzpsxf5Ri8lyD
+NuYZWws1YvJcg0nKsYUxOjF5rsEr0WNPv59i8lyDT8O9Vt//LSbPNXDzy/A8
+ayAhz/n9dFNQvEcoIc81sMaH3eskEvJcA0ORj6ubXEKea+DnfmGVi5GEPNeg
+URdZ8CgTCXmuwbyMN9OGmErIcw3iXR169mksIc81MNi2eFSXphLyXAPngYG3
+27aQkOcaLD77c1iL1hLyXIMDNz+3MW8rIc/587cjaKRpBwl5rsGOWbefmVhK
+yHMNDq03mmPcVUKea/BO5D3ZuLuEPOff3/Tup0x6SchzDW4EWjcy7SshzzXo
+dswju/EACXmuRceG57TNB0nIcy2uPxjs0naIhDzX4vKdRr87Q0KeazHDNVLR
+205CnmtxrYFRryH2EvJci+/mO/1HjZaQ51q4PYo86zJOQp5rkfz7tq+bk4Q8
+16L1sIfd3Z0l5LkWLw4eUex1kZDnWgTnVwnOu0rIcy02uxxY9HCGhDzXQhCo
+bvphtoQ81yJSn9/q+zwJea7FrUDBxtIFEvJciy/vq1sLl0jIcy06rFnestVy
+CXmuxSxn6eqBqyTkuRYFzz0aTVkrIc+1aO8/v8H69RLyXIs9e9a5nfGQkOda
+7Khwqvd6i4Q81yIk2Kte4nYJea7FwNuNF+p3SchzLWQ1Exq32ichz7V4bfqz
+zYiDEvJci2aygP3Lj0jIc/77goeOPOspIc+18Prdae6HkxLyXIv7Nm2Sis9I
+yHMtekdFPWp8QUKe8+sRnpo24rKEPOfXo2HpsvXXJOS5Fk8c7rnevSkhz7Xw
+iH55N8lLQp5r4Rjz1tnwvoQ818K/u+tcPJKQ5/zzHrWJ3vhUQp5rkTZcdtP7
+uYQ81yJzsVt84SsJea6FaUjl0rY+EvJcC4sU5wWzfSXkuRaShJ6frwRIyHMt
+Gl+2OpgaKCHPtSj3KXveLFhCnmuxalkD25mhEvJci7cXhlrf+CYhz7VoHtX4
+Qm6khDzXotVwm9mdYyXkuRZLIiYcX/NdQp5r8blQ0+l9koQ816Lhs4iugjQJ
+ea7FuLQNlx0zJeS5Fps+nVp/JVtCnmtxd0Kgb3GehDzXosz41sqBRRLyXIsF
+LeI9j5RKyHMtunbSNM+okJDn/Hlzv9ukl1JCnvPv6/vufQc0EvJcizWPOs3N
+0EnIcy0u5vZ50q9WQp5X4712+NITfyTkeTVMcqsulHBS8rwaSqsUawexlDyv
+xves8+PuyqTkeTWmHgyOFxpJyfNqTLaqjVpoIiXPq1E+M2lomKmUPK/G1RaV
+7bqZS8nzaowqT9txqpmUPK/G9LB+E3QtpeR5NZJbnr0410JKnldja5yn67f2
+UvK8GnFD3p/sZyklz6sxw/KJ7e2uUvK8Gs++/lxu0kNKnlfjxhcbk129peR5
+NRb2EPRQ9JOS59UI3Z4T5jZQSp5XY8KZlZlJNlLyvBpbfPqvGQ8peV6N4nPR
+O4LtpOR5NW7afJUPcZCS59UY3uy1mc8YKXnOX6+29bXejlLyvBqrjK7eeTZR
+Sp5X42H8267dXaTkeTW+dP/d29tVSp5Xw3PKH98eM6XkeTXapdgHv5wjJc/5
+578012mAm5Q8r0azyKSZAYuk5Hk1vH/2Lx+xTEqeV2NwrcQgaqWUPK+GhTr+
+outaKXlejaUu7d7krZeS59Wwztg+Zd0mKXleDfvTy7YbbJOS5/z3f17d5fRO
+KXlejSiR6ez2e6XkeTUM+6Y0eXdASp5Xo+UK+xnjj0jJ82oMrZ/ZIc9TSp5X
+Y4Vf283bTknJ82pwk8+7ND4nJc+r4aJ97/fiopQ8r8bsX0ZPHK9KyfNqzPzT
+oFP5DSl5Xo2DESOsPL2k5Hk1Qla2/9j9vpQ8r8b8dt0zYh9JyfNqRLtlHtzo
+LSXPq7Es9fnHFi+l5Hk17Ba12R/8RkqeV0PV5H7yyvdS8py//34ffJsESMnz
+aqR0z+waEiglz6ux4/6Obu7BUvKc35+rGwe0DZOS5/z+2Nc8Mz5cSp5X4099
+wckD0VLyvBrD3GzjB8VLyfNq6H6PflCVKCXP+fd/6ITxg1Qpea7DlOi9snmZ
+UvJch+ZhF843z5GS5zoEHh/sk5QvJc91aLogc/m5Yil5rsO4pxWvJ5dLyXMd
+BKqU040UUvJch3NZ9cTJail5roOtnar+VZ2UPNdhqUz3dF6tlDzXId52f67l
+Xyl5roOumfC5QiAjz3UYn5Nu6i+Rkec63BB4GB8ylJHnOiyRDvRyMZaR5zoM
+vHAour2pjDzXoaX7t7OaxjLyXId6W+erQpvJyHMdZjx8VXqllYw812GYaZsd
+a9vKyHMdRhVJH4/qKCPPdShdG7XOoouMPNfBzDQm4aeVjDzXwcdhxfekXjLy
+nH/eO39XveknI891ECcW3z07UEae8+txa+/mDUNk5LkOvjmWJVNtZeS5Dtme
+fXSDR8rIcx12PK31shgtI891MHZLL5eOl5HnOlwt6JyomCAjz3U4eGDwrPTJ
+MvJchzn3F+0Nc5WR5zq8/vxn1NuZMvJch5/Lp3vfnSsjz3VYYf/11fkFMvJc
+B1X969MOL5GR5/z+uND55vYVMvJchz8hfgfd18jIcx2mX/QyWb5eRp7rsK5N
+j8ELNsnIcx0sDzyWzNkmI891kEsWbpyxS0ae8/ervXdw2j4Zec7vpwC/wdMO
+ychzHT6klp2efkxGnutQk7vHc9ZJGXmug8u+kK7zz8rIcx2ub/+5cslFGXnO
+r++DZZPXXJWR5/z7U039sfmmjDzX4e9CifH+OzLyXIcBLf1zTz2Qkec6PHZ8
+N+vmExl5zq+fw5Dtz5/LyHMdjFYdHR70Wkae8/tnWM7ThHcy8lyHa5N3fSzx
+l5HnOkTM9PIw+CQjz3UoaXsosWmIjDzn9//RZel9vsrIcx2sz+8/7BQpI8/1
+aDXLNHNFrIw812Ni4/GpRxNk5LkehabLdzxJkZHnengG3/kWlSEjz/Vo+Lrn
+R2W2jDzXQ3V0xMwmBTLyXI9S00a3h5XIyHM9DvVOPLmkQkae6/Gl3NfyjFJG
+nuvxeLlm6UetjDzXo1j5dnJ5jYw812NPaY/iFn9k5LkeHj9OdHIUyMlzPdZs
+FZnslsjJcz1Wn/hw+42hnDznv9+46EepsZw81+O8mXdoOzM5ea5HTfrg6bOa
+yMlzPWZE+l242EJOnuuxbO3UXQlt5OS5Hg+2DTAz6yAnz/XoGb530uTOcvJc
+j6Pz3Yaet5KT53psXFf7PaWXnDzX47PLevPW/eXkuR6WZypFiwbJyXM9WmSe
+uuk9VE6e6/HWfEehbricPNfjmFNi6ggHOXmux8Vgvy2nx8rJcz2aFziGZjvJ
+yXN+/SY/C+w9WU6e67Ez5+ei/a5y8lyPU+ecfVNmyslzPebfj/HtMU9Onuux
+68DpJQcXyslzPeYkvfqctVROnusxaYNTxOBVcvJcjyPuO/dcXCcnz/WQtJpV
+oN0oJ8/18Kr5Wz1lq5w818Po2x6fdzvl5Lke4Yf07Vvsk5PneoxYsxW7D8nJ
+c/79VbeUFx2Tk+d67E7Q7J5wSk6e6/HsT+MHvufk5LkeB56e3dbxspw812OC
+6+4/Z67LyXM9NvtX9BR4yclz/v5Sy03W35eT53q80x2/UfBYTp7r8fN2dvr0
+53LyXI+2T9VhMa/l5Lkey/skuo16LyfP9Xh55czTTwFy8px/3+cH3rMJkpPn
+eqxv8338+y9y8lwPnz2r7gwIl5Pn/HmZbPrIJ1pOnusxYHvE7IHf5eS5HiW9
+vYL8k+XkuR6df99IsM2Qk+c1+Pr+24WwbDl5XoNxZ7vIJhbIyfMa/DX50jmt
+RE6e18BS5qVfVCknz2vQ5OmXTWqVnDyvwdz9/e7v1cnJ8xqUuav2mf2Sk+c1
+6PZG0PC+gSF5XoOB2UscB4sNyfMa6MvaD4qVG5Ln/P10HZiwxNiQPK9BZ8d7
+rTkzQ/K8BlGLVzS91sSQPK9BTumRoIEtDcnzGtx6/rdZsoUheV6DP5XhbTd1
+NCTPaxA/qiSlaVdD8rwGvz66IqCHIXleg5OfTKfM72tIntegxsK8uWygIXnO
+30/r2SdeDDEkz2vwdl7uyxnDDcnzGsh/39wvcTAkz2tweMNJyZuxhuR5DXx8
+HlkvmGBIntdgVruiJo1cDMnzGrw5iAeh0wzJ8xqc6PC4YOtsQ/K8Buuet/re
+y82QPK/BN6dTa4oXG5LnNZDc1PndXmFIntcg9NXot7PWGpLnNdCabZ7TbKMh
+eV4DdcgWn+QthuR5DXyHD/9wcacheV6D2t1B7tP3GZLnNRitLU9qediQPK9B
+rxNvS3I8DW3/D8t6RRQ=
+ "]]}, "Charting`Private`Tag#1"]}}, <|
+ "HighlightElements" -> <|
+ "Label" -> {"XYLabel"}, "Ball" -> {"IndicatedBall"}|>,
+ "LayoutOptions" -> <|
+ "PanelPlotLayout" -> <||>,
+ "PlotRange" -> {{0, 1.6}, {1.9267741928025102`,
+ 3.31879026971162}}, "Frame" -> {{True, True}, {True, True}},
+ "AxesOrigin" -> {0, 1.9267741928025102`},
+ "ImageSize" -> {360, 360/GoldenRatio}, "Axes" -> {True, True},
+ "LabelStyle" -> {FontFamily -> "Times",
+ GrayLevel[0], FontSize -> 12}, "AspectRatio" ->
+ GoldenRatio^(-1), "DefaultStyle" -> {
+ Directive[
+ PointSize[0.0055000000000000005`],
+ RGBColor[0.368417, 0.506779, 0.709798],
+ AbsoluteThickness[2]]},
+ "HighlightLabelingFunctions" -> <|
+ "CoordinatesToolOptions" -> Identity,
+ "ScalingFunctions" -> {{Identity, Identity}, {
+ Identity, Identity}}|>, "Primitives" -> {}, "GCFlag" ->
+ False|>,
+ "Meta" -> <|
+ "DefaultHighlight" -> {"Dynamic", None}, "Index" -> {}, "Function" ->
+ ListPlot, "GroupHighlight" -> False|>|>]]& )[<|
+ "HighlightElements" -> <|
+ "Label" -> {"XYLabel"}, "Ball" -> {"IndicatedBall"}|>,
+ "LayoutOptions" -> <|
+ "PanelPlotLayout" -> <||>,
+ "PlotRange" -> {{0, 1.6}, {1.9267741928025102`, 3.31879026971162}},
+ "Frame" -> {{True, True}, {True, True}},
+ "AxesOrigin" -> {0, 1.9267741928025102`},
+ "ImageSize" -> {360, 360/GoldenRatio}, "Axes" -> {True, True},
+ "LabelStyle" -> {FontFamily -> "Times",
+ GrayLevel[0], FontSize -> 12}, "AspectRatio" -> GoldenRatio^(-1),
+ "DefaultStyle" -> {
+ Directive[
+ PointSize[0.0055000000000000005`],
+ RGBColor[0.368417, 0.506779, 0.709798],
+ AbsoluteThickness[2]]},
+ "HighlightLabelingFunctions" -> <|
+ "CoordinatesToolOptions" -> Identity,
+ "ScalingFunctions" -> {{Identity, Identity}, {
+ Identity, Identity}}|>, "Primitives" -> {}, "GCFlag" ->
+ False|>,
+ "Meta" -> <|
+ "DefaultHighlight" -> {"Dynamic", None}, "Index" -> {}, "Function" ->
+ ListPlot, "GroupHighlight" -> False|>|>],
+ ImageSizeCache->{{4.503599627370496*^15, -4.503599627370496*^15}, {
+ 4.503599627370496*^15, -4.503599627370496*^15}}],
+ Selectable->False]},
+ Annotation[{{
+ Annotation[{
+ Directive[
+ PointSize[0.0055000000000000005`],
+ RGBColor[0.368417, 0.506779, 0.709798],
+ AbsoluteThickness[2]],
+ Point[CompressedData["
+1:eJxd12VYVN3bBXDO9CCCgmIrJgZ2oKIuRMEERVHswG5Fxe5W7G7FDmxRQhFB
+UBqkQ7prkhnEeI889/5/ePnidV+DZ845e+/1W7R1WzNpkcDAwGCgxMDg37/b
+Gj0blbN1P358fSlpZGBg+/9nvzFGgm6HDqK38QSbpvz8c+fygA1nD2O5mUdS
+S34e9Oarx8ebR1GvsWVKW37eUtKpt+ypJzJd3Gwt+fl96wNlzu9PoKRZZ5Pu
+/PzrkTLe0e0UdrzYPLIvP18LsXjhvvQ0rJa7ZA/iZ5usCccvrj6DiOv+ubb8
+nF5T94VY/+DZuNH/u79z2F/cvcVEfm7RM7ODZM953Aob5Dztf/d7Ac9exFfM
+4+cZC+uuiLRGNYpl/7v/Szi33HvGen6+crnuB2e7K7ru+N/zXEHcj6D5h/g5
+NVo3Oe/eVZwStf97+n/Pdw1TuzYSXufnZqKpxt1fXUdV9vlVD//3vDew+uPD
+YW/4edp/F0S3OY4en/73/LcQOm9/oyh+Hm99ZPi8glvotNKpWdr/3sdtbOr2
+dH8RP5c7/7vibfSacGOq9n/vxwv1j3c8KeQMbI+tLKp9pPSC2S27HqYce193
+cHJ0dd+2/NztkDn/CHfQZPzwW7049v7u4vDGDutt+Tnitr2P+vdd1D9/6+lE
+jr3Pe2i022f8fH7+97aaiu5jZsMlk9059n7vo6jz60/7+Nkw+c7aoYYPIHt6
+9dx5jr3vB5hxoG3MA35+/O9xGzxE8F37tX4ce/8P4fFXtjmKn8f+u5z5IyhO
+rizM5th6PMLfKev8Nfxc97pbPobv1KY6mYCtz2Psu+Z2uRU//3t7se2ewNTa
+2auPgK3XEyyxKWg4mp+7zDr5Wdv5KeKD2xTPFrD1ewplFddxAz9/46/WvKc3
+3uR7fj0qYOvpjRmRQfG3+Xnp6Yrt6P8M7km3R/gK2Po+Q6Z1jxZx/MzfHP/I
+zxHZden0EgFb7+cIrpz4hxMa2Lrwm4dfUlz+WiJvIWTr/wIegn7b+/HzXf7t
+Jd95gdSyXlOchGw/vMDp1JxzS/lZ8zthc0mnlwjtONpmn5Dtj5dQ9Fw0+gY/
+j6zbAC+RO2twgK+Q7ZeX+Gz+7UIiP/OL9++BUD/KNEUpZPvnFa5omu42FhnY
+/nd7r3Bemnmim4jtp1c4cGCeaAw/9637eY3R6rvZi0Vsf71Gs/Qn7Q/w875P
+4fwOeo1jkR5Rd0Rsv73G8VnSH5/5+Tu/+vw7wfKOc6fkitj+e4Nvobv6CsQG
+tu3rLvgGzwuWb24nZvvxDXZateswgp/X1y3AW+jHPhiwUMz251vYVNc+P8DP
+wdrO/Aq/xbfitqceiNl+9cHe3ObJ3/jZ9L8bxIOHxfvLxWz/+iBTfPyyicTA
+tu7uvvqgW7i8cV8J28/vUBs+TzeVn19dr3oQOu4dWuSdtd0mYfv7HT6p7ipu
+8rOg7oHfYV/WeekXCdvv77Ho3NIDpfw86b8Ng0iuzfIGUrb/3+NIK/+3A/jZ
+69/jJrxHQu6wpbOl7Dz4wnnS0z37+Vn173LTfGHkLhY8lbLz4YudjuNLvvOz
+3b/tn+4LT+1e619Sdl78cGT3k/IOMgPbuu07xw/9Db/KnGTs/Pgh8HXasU38
+nLP134L4IfROwcbbMnae/DFdUhYawc+96za4P2qNKnZWy9j58seNyorrbeUG
+tnvOj+C3jD8eFVW1d5Sz8xaAmkHaBlv4Oa5d3QIj08pg0T05O38BaFXfzCKe
+n9v+S/+KAFRb9bL7K2fn8QNa50+PsDI0sF3373is/YAvJ8/4zzBk5/MDzp3J
+MD3Cz0H/Vlf9Ac9cBse9M2Tn9SPejHhWXcjPDf47kAiJH7zPvB47vx+xaWuu
+hwM/172+mo8off8gzqMeO8+BeNvw+NkH/Fx3e9sDoa1/PiClHjvfgRg15PN4
+QyMDnqh/P58Q2avJyCFG7Lx/QpcDF7xW8/PD0HH8if6Eoyl2S28bsfP/Cbdi
+Wp9P4OeJ/Gnk9yi8GnXvIqvP8uATJruu7TCEn/X/9An5hD/jyw6urc/y4RM2
+v7g18R4/32r+70AEoaPd2T1p9VleBEET9qVZA2MD29F1CxwEt/o2zRyMWX4E
+YUeedtd2flY8+HeDQci3qHF8bczyJAhfbo/aV8rPl/7dXTj/+aj8Nu1MWL4E
+4fLPuPYz+Pnf5hpj9Bmx981OnjFhefMZRng6P4Kf/6VJvONnLPO/cVXUgOXP
+Z1xvVjlkGD//2y38loF21nX7zQ1YHn3GrBPP377i57rHjf2MmQGWxysasHz6
+jCa1ssjODQ1s6y5nGoypC6e6L2zI8ioYO5uY7b7Fz3VxNDkYFwbZaTMasvwK
+hqO2MK6ZqYHtf/UhGMqtInNXU5ZnwdhicCPoHD/XxUFyMPYH+STEm7J8C8b0
+v84TGpoZ2O6qC5wQFBus7z3RjOVdCGJMW207yc+WdQcoBK6HJlvFmLH8C8Em
+n2b2Jo0MbGPq6kUIUn+7f5nQiOVhCBI+uXmf4udN/45DZgjWLy3/FdeI5SP/
+/xeYvTFrbGDb5t92bv0FLp3S46c0Znn5BQO6jZp+iZ/D/m2/eV/AqWaMSm/M
+8vMLJhk0v97a3MB2TV1AfsH+nEMz3MxZnn7B004Pd93n5yZ1B/4LbizeaVRm
+zvI1FIqhxlyvJga2dbfXIRTVTjNnb2zC8jYU34Yva+vPz4vrfkIxKsTGkWvK
+8jcUDY8mZY/i53/liU9YnB0/NONEU5bHoeAi1iOJn/+l4+aSUEwP32HYuhnL
+5zAsajx36GJ+nlN3wTAEbm+R8qwZy+swRCf5pOn4WVIXUGGI+tvPfnhzlt9h
+CEu93OQYP/9bjUbPwnB9fIlzYnOW52GQOFhq2rQwsK1rd1VhOOPr+md5C5bv
+X/Hg1s61Pvz8599x6/0VR37eHCtoyfL+K98fAj2d+Pn+v+3s/hXmbXMHXG3J
+8v8rbsjrjSnmZ6f/Hhivrg0L7t+KefAVNdW77+3j5+p/y6H9itrBSVVxrZgP
+39DttJ2XRWsD2xv/Htf6G/IswwPWtGZefMPyvusQyM8OdS/wG1QVNl1N2jA/
+vuHqxR475vJzZR0P37DJw3HgizbMk284knRtJmdhYHvhX7zXfsNXeduiSRbM
+l3C0W/oj7S4/18Xz0HBsnZA6QGfBvAnHi/bmtWPaGtjWxevOcFxzumx5vS3z
+JxxNbJcEKPj5v/gLR/Wq/b4j2zGPwtHQRdv6Mj/XxYsgAsM3fCyvaMd8isDS
+qfntRrQ3sK07viMisPzwiqBL7ZlXERh4Y9rXSn6uOx4HIhDZ+4W1fQfmVwR6
+5HmYXOPn/7ZfBNynvZyg7sA8i0DQ0IX6sR0NbBP/La8sEi725+R3OjLfIrHV
+0mFfLT/vqAvASFz22rnIpRPzLhK9t9m98ObnjnUbMBJp2y4skFoy/yIxfuOu
+XfP5OSqy7gdzhglEAZbMw0jI3rRXmnc2sN1YF6hRWOhb7ODemfkYhbfWU8XR
+/NyqbkNHYX7rdVZduzAvo/DbbVjAQX7+UvfnVRQcuOA3eV2Yn1HoWis0H97V
+wHZVXUBH4cs0SfaNrszTKCztHGP6m5/r4qpRNC7sXPBsZjfmazTqe3x95cfP
+dXEwNRqBPYUWza2Yt9H4Ed+0egs///fnVzSSPY37p1kxf6Mx/XRJxuDuBrZG
+/x04uDR/XnG1O/M4Gr+XLFzym5/rtkvzGER/Mh47twfzOQYn1r0+H8TPdcsx
+Kwbjo1zHdujJvI7Bku7c0kP8/N+fZzE4rnxTWdqT+R2DwF2bfzj1MrCtu1xW
+DCaNdLZ+3Yt5HgvNy5E1TXqz8x6LJ8OnddjRm/kei3T30+9ze7PzHwv7CO3b
+0X2Y97Gol3y05fM+LA9i8abz1PLGfZn/seg6fXbHHX1ZPsTis/R+WH5f1gdi
+MSSt//fx/Vhe8J9vNx39th/rB7FQ3x7eqXV/lh/8/Qi+rTrUn/WFWPyd86y1
+sj/Lk1hM364bOHMA6w+xmGv5OODLAJYvseD6Rj7qZc36RBxebV5gcM2a5U0c
+3FI2fpIOZP0iDscGykvXD2T5E4cuB9vvyB7I+kYcQt6Eb3EcxPIoDus+irL9
+BrH+EYf4O8nPOw9m+RSHVivHlFwYzPpIHJp3nOcptmF5FYdueW0vb7Bh/SQO
+Y4LOmeTbsPyKQ72cj1WTh7C+Eof7y+8PChnC8iwOWk/nin5DWX+Jg/uOUMP7
+Q1m+xWHE5npnmgxjfSYe1p867TsyjOVdPCJutP5RO4z1m3h0XVjjtRos/+LR
+b8mHuBywvhOPneJ1y6fYsjyMx9Q7zVd9s2X9Jx6hTz6lDh3O8jEe508te/Fq
+OOtD8Rgf3kJpacfyMh6DUjKvXrdj/Sge62x9XpiNYPkZj/iTT3oeHcH6UjwM
+Z4Q05UayPI3H2UHSlZtHsv4Ujw8xW7soRrJ8/Y7nIR2dl9qzPvUdi8OM87Lt
+Wd5+x8fjQ7KmO7B+9R1rE97af3dg+fsdLebuMXccxfrWd0B/zzlsFMvj7xi9
+rqtu+GjWv77D06ux9MNols/fMXHF6j0Dx7A+9h3hL20WvxnD8vo7Oi/Y/7bX
+WNbPvuPE+glrvMey/Oa//8eds13Hsb72HZV3D7d7OI7l+Xd0iRO17DSe9bfv
+qHJvs/vueJbvCVh7O8upvSPrcwko3Dr+sJcjy/sEXOywyqqdE+t3CcgJH23j
+5cTyPwF9bhe+aTeB9b0ENMp1vHxnAvMgAVYxB4o7TGT9LwG2L8973Z/IfEiA
+dcr+sM7OrA8moM3VGa5PnJkXCeg9rfWkHpNYP0xA/Ibkdy8nMT8ScGH28cP9
+J7O+mIAxB0eF+E5mniSgdFn9FcNcWH9MwLujhduDXZgviejqnlYzegrrk4kw
+eKnIiZ7CvEnE4Kxe/adMZf0yER2ueanTpzJ/EuF6wrHVAlfWNxPht2DQq1JX
+5lEijsSteuU+jfXPREw/p2pVO435lAjztTGafdNZH02ESS8j6/ozmFeJUN9/
+kX9hBuuniUh5FvLbYibzKxFDu0zc+2Qm66uJaPB3hvuAWcyzRHhbVEQFzWL9
+NQmlB4zPO85mviWhQY+wsNTZrM8mobhNm8WL5zDvkhCwrPVa9RzWb5MwrW1U
+we65zL8kmCzsG2Y8j/XdJARPnd7o+jzmYRIKOo6K6jaf9d8keIjFKr/5zMck
+mPW+unesG+vDSVCVNdyV5sa85O9n97qi5QtYP07CGrvP/rULmJ9JeHDU6Jfn
+QtaXkzDTf9rD1ouYp0mQDHv+6cUi1p+Tkbyvqf2IxczXZLwUX++ftJj16WQM
+GGl/ZtkS5m0yQsOazfy9hPXrZBywaH/q9FLmbzLmFC7r3WkZ69vJkPpWD/Nf
+xjxOhtw2/v3E5ax/J+NDV/HNwuXM52RM73VJuX0F6+PJKDM598JsJfM6GYtO
+cRmPV7J+noxru0vW261ifidjwjuXzWmrWF9PRjez8SXuq5nnKYjZmhJabw3z
+PAWxGYKG99Ywz1Pg3zMhbNha5nkK2rpPKUtZyzxPwenHJ7etX8c8T8G9omOb
+jd2Z5ykQ2k7OfeTOPE/B3PjK9/brmecpOPBlya+c9czzFEwfHfZ05wbmeQoy
+TpuHt9jIPE9Bv5w5Lr4bmecpeLrj0ThXD+Y5f78+f59rPZjnKZDnL99zbhPz
+PAXuizSBfTczz1NR7869Fd83M89T0bn+4f3rtzDPUzG35T3DRluZ56k44Sz5
+82Yr8zwVWf3fzpm6jXmeiogZ/lb6bczzVLSf0W7ple3M81Q0TFI3GLqDeZ6K
+1lsGWWbvYJ6nYmD1r8f7djLPU/FWNvqa5S7meSpcN3SojdjFPE/FFPG1sLW7
+meepmHXqPWe+h3meivOqfY/89zDPU/G4oSxw/l7meRqi0p3sZPuY52nwHeXW
+9/k+5nka/FzGn5m6n3mehpeGTeb+2c88T0PTrZGX7x9gnqfBMMDDbsJB5nka
+7FVtpusPMs/T0GdUfObtQ8zzNBRUXIwdd5h5noZu7bb1rj7MPE/D/s4HDW4f
+YZ6noa9T8NDxR5nnaRhSMqREd5R5nobl034L7h5jnqdhhtDk2ERP5nk6Ns3Y
+vue3J/M8HbLkCYWPjzPP09Gr9qzvtBPM83TonCfXSk4yz9Mxds2lJ29PMs/5
+/69YFb7wFPM8HX+3/HBtdJp5no6f/prJIaeZ5+n4uMr/44YzzPN0NJ049FLH
+s8zzdKRZHchOOss8T0dR0vWLh88xz9Nh3fXMh8Hnmef879dbNaniPPM8HYLl
+g6beusA8T4dwiODb5IvM8wzM2Rv/WHqJeZ6BEIe3tf6XmOcZaHXtrf/ay8zz
+DHje+FHa8QrzPAMe622OpF9hnmfg8JjkC6evMs8zEDDtg9noa8zzDMzN1f/9
+c415noGmvc/P9LnOPM9A+aXrnVbfYJ5nwH5Tq/mdbjLPM6DvY1Ev6ybzPAPj
+h7zscOkW8zwDv40yvJ1vM88zMLLz0/v1vJjnGfjRvLtJqBfzPBMNty0v2n2H
+eZ6Jl8Vreg65yzzPhGX9MUW6u8zzTGy5ypm8ucc8z4TjxHv3195nnmdCqcSz
+7g+Y55lwm5jZsewB8zwTE+yP1H/0kHmeiQ5vJixa8oh5ngmjo0O6d3rMPM/E
+zw8zFxU8Zp5n4sVE3/r3njDPMxE4fn6nRU+Z55m4HDr3eUdv5nkmjmV8eljo
+zTz/gSifU6YPnzHPf2D/ofTyZc+Z5z8QdtTb2uoF8/wHnkjM1JUvmOc/4DCu
+aZtXL5nnP/Dm1Tf/ja+Y5z/Q9nbfb4NeM89/IHa/26g/r5nnP9A6yW1A8Bvm
++Q8cazL8wuG3zPMf+JwoX+Lkwzz/gesPvj1s9I55/gM9exyfmf6Oec7fb6P5
+u7zeM89/4FeDSY2W+zLPf+Bp7srmffyY51kwdvl4+qcf8zwLzwZN3hrszzzP
+wnb3gQmeAczzLEQVbb059QPzPAtLjltmWHxknmfh0PxxR8s+Ms+zkL9S/cgn
+kHmeBf/PVjZ7PzHPs5C0WzTMKYh5noVTMYdeNf/MPM/Cj5zgS0WfmedZcNV+
+UbwJZp5nYdCkq357Q5jnWdg4zrl64hfmeRZeDtPeaRPKPM/GpHPngitD2XnP
+xr7AIVM+hjHfszFsWO20E1/Z+c+G8+XM6DnfmPfZWLJQ6dMznOVBNkyGjWzI
+RTD/s/ElJi8zPoLlQzZ0UZkt70WyPpANYz2iN0WxvMjGlqZNVWOjWT/Ihrdo
+w+HWMSw/stH/+vzTqhjWF7LxNqrSKCyW5Uk21J5daq/Gsf6QjeyMNrPWxbN8
+ycbV8Kyeo76zPsE/7+pNHq0SWN5ko2+5pqcmgfWLbJx1XzwrIpHlTzYybdJq
+vZJY38iG1/E5xtuSWR5lI+U9d25yCusf2fjRLN7TKpXlUzYONP2hF6exPpKN
+Zp37pWSlsbzKxrKw3K5+6ayfZCN2t15xLoPlVzYGl+7rujaT9ZVs9Ll3Nnnc
+D5Zn2cibM0BvmcX6Sza6xm71FGWzfMvGuQ9rzuVksz6Tg7W69g0Cc1je5SB2
++v2/13JZv8nBxUjxgm15LP9ysHOE8+AZ+azv5KDNx4sHBhWwPMzB71HFI5sV
+sv6Tg6N65801hSwfc2CtzmuTVsT6UA42LvG28S9meZmDT6c+RFwrYf0oB099
+2sfuLGX5mYNiq6rR88tYX8qB4+SeA0aWszzNQc559UXLCtafcpC3ctzqepUs
+X3OQNMvBt6qS9akcHKxWb06oYnmbg8bJC7x9Faxf5YB7eG/qTSXL3xz0avNt
+wwEV61s50P3JlK5UszzOQUdzjclkDetfOahn2+L4YC3L5xwcWrhgV7tq1sdy
+YLQ5o9BQx/I6B97bLgSrdayf5aDDjtuNM/Usv3OQdaF+ZmgN62s5kCpKm738
+yfKcf98BYyKv1rL+loNOQwdrDv5i+Z4L98DI0+6/WZ/LRfH1hvfm/GF5n4tK
+NOsx7i/rd7nIbqaxGmjAUf7nooX3q9sdOY76Xi6khxd5mgk48iAXbRxaVXBC
+jvpfLv6cLA1W8PN/PuRiSYsfDbJFHPXBXEx8IkuIEXPkRS5KTLbV/yThqB/m
+4lknhw8vpBz5kYtlaVvzbss46ou5GN6+6+6zco48yUWQZNHZA4Yc9Uf+eheH
+tNpcjyNfctFTF9RqhRFHfTIXpydJzs+pz5E3ubhR0HzfJGOO+mUudtY0KHYw
+4cifXPzOrwm2acBR38zFVaMi894NOfIoFydzS7I7mXLUP3ORXGjWrpUZRz7x
+9/vAI82sEUd9NBebAtsb1mvMkVe5kKdavRSYc9RPc7H5yZ2Yn/z8n1+5sP11
+eZG6CUd9NReFN9quL2/KkWe54DaO1xc046i/5sF+tZU2qzlHvuXh5OHvy9Ja
+cNRn86CMmTw1sSVH3uUhYE6gX2wrjvptHo7O7nwxsjVH/uXBSXi77Gsbjvpu
+Hmaet3n/xYIjD/PgvsTw9+e2HPXfPP7vhTZ+n9px5GMeui44UfWxPUd9OA/J
+25de/9CBIy/zEOjzKTigI0f9OA/rvR+5BXTiyM88DDIasDXAkqO+nIfGxzcb
+fujMkad5SNXvM/vYhaP+nAcryxXnA7ty5GseLv+xPRXUjaM+nYdrG5qKQqw4
+8jYPj4+LlKHdOerXebCb3dQ1vAdH/uZBJ14yILonR307D9t9hSfje3HkcR5e
+vefmJ/fmqH/z8+QNTzP6cORzHjJKVq/L7ctRH89DXonoRXE/jrzOQ1LcmKVV
+/Tnq53no19P5SvUAjvzm1+tGD4c/1hz19TwcjtKukAziyPN8SDb51TMZzJHn
++TBfcqpjUxuOPM+HyZZjvm2HcOR5PoSXAsO6DeXI83x8/Wg7ccAwjjznr6dv
+N3k4OPI8H2PmbI0db8uR5/mQtpz5ddpwjjzPx5sVqYMX2XHkOX+9i/LO7iM4
+8jwfST//ntw1kiPP83Hyb6z7cXuOPM9HqsXp2KsOHHnO/36Jy6PHozjyPB9q
+ba/fvqM58jwfNYpBkd/GcOR5Pppd3G+eNpYjz/NR/aZjRuk4jjzPh69ln1a/
+xnPkeT5aZH5Mre/Ekef58Pie3dBiAkee5yO2mfeXPhM58jwfpTEDtfbOHHme
+j4mdLt+aPokjz/OxZE5e2KrJHHmej83hViv2unDkeT6Co44evTiFI8/z+f5t
+2sl7Kkee56P99rShwa4cec6vzwhdXOo0jjzPR3TKzlzFdI48z8fS6oNrZDM5
+8rwAfxd13GIxiyPPC2AhXPt34GyOPC9AkN92waQ5HHlegEnH5u9dMZcjzwsQ
+sb/frgPzOPK8AIFf69XcnM+R5wVYfPR3lZ8bR54X4JmxxcKkBRx5XgDHp0em
+qBZy5HkBoiImhhgv5sjzAtwoOvai2xKOPC9AB0/n5mOWcuR5AcJc33NLlnHk
+eQFEtUmLDyznyPMCbBsYMubuCo485583/8Lj4JUceV6Ah0WLjuSt4sjzAuQM
+Gl0oXMOR5wXYXOQS1GEtR54X4IXxneYO6zjyvAATsseolrhz5Dn/+c15o4+u
+58jzAiR4/WnpvYEjzwuwdpLN2tiNHHlegD9dethpPDjyvABx7yrPNN3Mkef8
+elw/5zZ0C0eeF6DlCeuXbls58px/HueqnYe3ceQ5/3nw94hn2znyvADK6F8X
+E3dw5HkhBnjszfu1kyPPC6GO3P6sw26OPC/EsZ/CmvF7OPK8EAmDegVv3Ms8
+L0S71Gb1b+5jnhdi9uDUpK/7meeFaPD9oIX6APO8ENusbEpbHWKeF+JBnnG/
+MYeZ54XweNT8z4YjzPNCvLbbNPr2UeZ5ITofHmoWfYx5Xoiniw/OqfVknhdi
+cNbyrl1OMM8L8Vsi2uR6knleiKXSFSMPnmKeF8Khte+Zt6eZ54UIvy51KzjD
+POfvr3zNq8bnmOeFaHOw3n6H88zzQjT+qU7adIF5zr+PCrsnjy4yz/n/39SU
+y7jEPC9EzthtKcZXmOeFqF18qbfdVeZ5ISwW7TPyuMY8L+T7xdRlj68zzwvh
+49xtdNYN5nkh+l5p+ajRLeY5f73NIz3H3maeF2LBxA/K3V7M8yIMuHQ79d0d
+5nkRwjPrjay6yzwvgmmIeW/L+8zzIrwWZt6a+4B5XoRmK7acvfSQeV6Ewz8k
+8vhHzPMi9J92izN6wjwvwpTieTscnjLPi2D9dsH2Pd7M8yJMrg3+E/CMeV4E
+t/rXRTXPmedF2OBieKL/S+Z5EbiJllfdXzHPi2BwwcTqxWvmeRF+xf+wrXzD
+PC9C1/AXqVY+zPMibJ9yu3rFO+Z5Ed4virz45D3zvAjHBU4fynyZ50V4MNZu
+iZU/87wI39Z/Ob8qgHlehMxw9ejnH5jnRTB+U7Jb+ZF5XoSMx8FD+31inheh
+n92NXZuCmOdF2NfhgoP/Z+Z5EaLNvp75G8w857+vZOLCkV+Y50Uov+jofySU
+eV6EY5bpF2PCmOf8577mPxt/Y54XY9bhVrmzwpnnxRibbzTxbgTzvBjTrQUj
+yyOZ58XYJmzxsV8087wYkrwNH3fEMM+LEXW4u31YLPO8GAM+uU1qGM88L8ak
+VX0KZ35nnhfzf0/7GTxIYJ4XI6xfMy9VIvO8GGvOrgwflsw8L8ZZRfyWYynM
+82IYeC9/kZLKPC9GgN2k1Z3SmefFsLB/+HpDBvO8GIp5x3YHZzLPi7F+VvNE
+0yzmeTE8m2x46ZbNPC9G4rF3jV/nMM+L8TpSKBDlMc+LsUG62WNKPvO8GAv3
+9V3/oIB5XozS21P0NYXM82Jc//Fb7FjMPC/Ggphx126VMM+Lsb/DXH9NKfO8
+GOEPXReMKWeeF+PC8CnnblQwz4vxp3KTk6aSeV6MvIis02MVzPNi1Df2nnNb
+yTwvxiiJwVu9inlegk0WNecmapjnJfDLe//noZZ5XoLtqrkqTsc8L8FFQ5O1
+M/XM8xKsFBdtelvDPC/Br2SZYYNa5nkJJGfPd1rxi3legvYLnkWF/maelyDj
+1Ia/7f4yz0sQuVsesMtAQJ6XwPf1CWEmJyDPS/A8tGPSYKGAPC9Bq/WKvpdF
+AvK8BMoTDVrpxQLyvARvjR6edpUKyPMSPKhNOf1OJiDPS5B56EurpoYC8rwE
+s36e7L+lnoA8L0F/3xmpaUYC8rwE90eNlg81FpDnJejtsO3LTRMBeV6CD+7m
+xsKGAvK8BD4Ph+QtNhWQ5yVol9PAPsJMQJ6XIKyPT99ejQXkeQlGxk94ft5c
+QJ7z1zfl3tc2EZDnJbBZUOHo1kxAnvO/7zJw3bfmAvK8BHvOiNv1bikgz0tw
+oWTzvMutBOR5KXxH+FgJ2gjI81JEPco5uMJCQJ6XYs+INmsS2wrI81Kscz1b
+gPYC8rwUI8e5lT7uICDP+f9/58UO804C8rwUncR3bu61FJDnpUjoM2diVWcB
+eV6KfBPpqVldBeR5Kerf/DwnvJuAPC9FjMAnYGB3AXleijM7JI8f9BCQ56X4
+ti61U5NeAvK8FCZuLn0P9RaQ56UYr7wWo+sjIM9LEZubUru0n4A8L8WW5j3e
+p/UXkOf8/V37LHK0FpDnpRh4MiAncKCAPC+F0tpuQt/BAvK8FK5/tjg+sBGQ
+56WoXX40o8VQAXleig+WV36dGiYgz0uh/xvjLbEVkOeluJk9SbF9uIA8L8W8
+lDEhajsBeV6KsCYZXVaMFJDnpZiv7NU2z15AnpciM3XN45mjBOR5Kfos/fQl
+YbSAPC9F4JSx653GCsjzMqzb2f/113EC8rwMBdmPDoxwFJDnZTh2I6b0o5OA
+PC9DRG107uCJAvK8DF3mxa565ywgz8uwZOqvY/0mC8jzMjz13Db0lYuAPC/D
+owSPvb2mCsjzMvi1bzLzuauAPC+D0dkDYT2mC8jzMnyZWxb2bIaAPC9Dp7J1
+s3rOEpDnZXjpZ3fgxWwBeV4Gp82H7PrMFZDnZVivWnbuzTwBeV6GUS0bbbN2
+E5DnZfha/0W13wIBeV4GrXCpFIsE5HkZ78Fi7+DFAvK8DB2fJhaPXiogz8uw
+4Uy2b/QyAXleBpfClxZTVgjI8zL8ubmhVcZKAXlehlOZk18sWC0gz8swIG9r
+atkaAXlehsktGl/esE5AnpfhoblT1W93AXlehu2ezhmHNgjI8zJ8njFunqmH
+gDwvg/3BJduubxKQ52WIHhzfvcsWAXleDseId5vebhWQ5+UQvBo53W67gDwv
+x4NT9+JjdgjI83Jc7iXNn71LQJ6X4+/eC8fLdwvI83Lobu2O2bZXQJ6X42OE
+6lG9/QLyvBzpK5u3unZAQJ6Xw8G8Y5fuhwTkOX/9vbbRHw8LyPNy9Dl/xcj5
+qIA8L8eiGfPz844JyPNy3JUGT9l0XECel+NhbcW8eicF5Hk5vD42kNw6JSDP
+yzFfMMO+/xkBeV6O3V761hFnBeR5OU7fbXF2/nkBeV6O8QNVt/UXBOR5Od6/
+ezLu1CUBeV6OaQ82nep8RUCel2O6z4G1QVcF5Hk5Aj+Ky2dcF5Dn5Tj1xVKo
+vSEgz8shrG3hc/KWgDwvxzM/U3E3LwF5Xo7Xx4YoQu8IyPNylFmEb1pwT0Ce
+l6PF9PKrBg8E5Dk/I2HWjYcC8rwccsPXfkMeC8jzcni08nub/kRAnlfgvLyF
+0zZvAXlegZXHpPtbPBeQ5xUwOP7SNeCFgDyvwMGO477NfiUgz/n/f1mS+ve1
+gDyvgPNM80NebwXkeQW8DL2/278TkOcVmLPx98eS9wLyvALbLg4ec8JPQJ5X
+wO7qRfe+AczzCuxOHWWT+oF5XoG3qTvv7ApknlfAftLaJ52CmOcV8O48cXL0
+Z+Z5BV6tm3TVI4R5XoGz657saxPKPK8Arp00+hbGPOe/73zfAeu/Mc8rYN07
+0qB1BPOcf/71J1Z+i2SeV6De6edbNkYzzytgVLWwc7tY5nkFXrbP3xwTxzyv
+QL9qtxU7vjPPK9BobhMDq0TmeQWcDltbpycxzytwLKqmwbEU5nkFZgWcO26T
+xjyvwNJG8C5PZ55X4E5Yz7U3MpnnFTj083rSxCzmeSXsRUHZwhzmeSV+r449
+8S6XeV4JlU6YsyKfeV6J4JNnky0KmeeVuDHjnXtSEfO8EltfPHjlWcI8r8S4
+Vtcvjihjnldi8PzYtrXlzPNKZKzd6vy6knleiZUbEzqtVDDPK/EnsolXRxXz
+vBL+hjuDs9TM80qY62yPXdEyzyshPXWlZoqOeV6J4fIvxqY1zPNKrIr8GR79
+k3leiYVbPHp4/mKeV8Kt0H3Q2D/M80qMsuhWLjMQkueViFqe5vCVE5LnlQiy
+DRhzWCgkzyth62KkHS0WkueVqDwhGWMoFZLnlehnWmQfKROS55XYZF1adsJQ
+SJ5XwvXUeJtJRkLyvBJFhWP78Y2QPK9E6dB2yWkmQvK8EsZxJh1uNRSS55Ww
+bOzcYrGZkDyvxJr37T9YNRaS51UI8Poi15gLyfMqfNZu4AKaCsnzKjjWX3t3
+f3MheV6F3bu0KseWQvK8CiatRlY0aS0kz6uwS3nlbG4bIXlehfkjBhV6txWS
+51W4cG5OwZb2QvK8Cvu8xp526Cgkz6swffHQUjNLIXleBafGmxQ5nYXkeRUy
+LAbefdFVSJ5XQWgdJN5tJSTPq7DfbnLjiT2E5HkV2q/o+d2il5A8r0JR44tQ
+9RaS51WYWhAxI6SvkDyvgp+vSceL/YXkeRVmv7x7Y7m1kDyvQmTnqLBhg4Tk
+eRXM/SNumdkIyfMqGNvldSkZIiTPq3A0aeqCwGFC8rwKj2KXOV6wFZLnVaj/
+dW7xKjsheV6Fdue293MYKSTPqzBnvKhPGwcheV6Fg6NtcvSjhOR5FUotFtt9
+HyMkz6vw9Nm3Kc/GCcnzKoiMnrQ46igkzxXYfm7CucUThHTeFRhS8CtwhLOQ
+fFdgZKb+RtvJQjr/Cry/fqS3wRQhea9A66PaTVlThZQHCniN3uceOE1I/isw
+6/OWtrdmCCkfFDjX3uLAnllC6gMKSDI+XF8wR0h5oUCHm1dWOMwTUj9QYO7C
+P5Vd3ISUHwosW9K7s/FCIfUFBbZ23t5EvUhIeaLAhZWWH1KWCKk/KJAwdHuz
+wGVCyhcFbpUFW91fIaQ+oYCo3mjd8VVCyhsFyjwmbfFYI6R+ocDyid1fz10n
+pPxRQPy33b0x64XUNxRQ99o5od9GIeWRAkvTj7xqs0lI/UOBzMGno+ttEVI+
+KTDhe9Yd/VYh9REFTq8N6lO4XUh5pcDhTnu3JewUUj9RYIfz6p3Bu4WUXwrM
+vBBv83qvkPqKAn9ya1/f2S+kPFPAY7V10bmDQuov/Pf5xicePCykfFPgx/EW
+u7ccFVKfUWCfwbzClZ5CyjsFNGsqZfNPCKnfKHDwQOPiKaeElH8KbOjfYf+4
+M0LqOwp0DVyWOfyckPKQv3/v/pqBF4TUfxTol5z8tdcllo8KpM+5NbPLFSH1
+IX7/vc562u4ay0sF3p4qDGh5Q0j9iN8ff8WeTW6x/FSgrcvJ5mZeQupLCnTv
+m7DU5C7LUwUaH++0yei+kPqTAlG3UuwNH7J8VeBm7ZBE2WMh9SkF1m+531H2
+lOWtAi3tl1rLngmpXylwJSXRUP6C5a8Cq3/b3TJ8JaS+xb/PSKHe6A3LYwWG
+vlhp2sBHSP2Ln+fHV5m9Z/msQO/SI6ea+gmpj/Hn436xplUAy2sFBtuNbNXh
+o5D6mQJh/ip5t08svxWIcxvr3+ezkPqaAoNSb/e2CWF5rsAIs4mrRoYKqb8p
+kOP6dLXTV5bvSuhsjQdMDxdSn1PC2z8qeGEky3slXslGNF0XLaR+p8SJgNC+
+O2NZ/itREPjS3DNeSH1PiZAJs4OuJDAPlCj/3a7f4yQh9T8lWryctcYvhfmg
+hOu9hesj0oTUB5Xot/K8bWYG80KJThVjkqt+CKkfKhG0KNNamMP8UMJw+RO3
+JnlC6otKBOabTLMqYJ4oca3JkqZ2RULqj/zzXa1/d1oJ84V/nvnzateUCalP
+KhHwMqD14QrmjRKpVruNb1cJqV/y7ytCFuGnZP4okZX9xiVRLaS+qcQ887wn
+Ci3zSAnPtapYI72Q+qcS9R3tQrr8ZD4psWBBn4OjfgmpjyrR90u7Jov/MK+U
+OPJj/aYDBiLqp/z78Dj44J5ARH4p8cnb/0GoSER9VQlnwcbNxRIReabEtPGN
+mteTi6i/KtH2U61nj3oi8o2/n8rjcZPqi6jPKpH8uXvxJhMReadE+qFhcdcb
+iqjfKjE9r/3xEDMR+ce/75ThLcsbi6jvKlH09dfORk1F5KESi9x93w5tLqL+
+q8RnZcanJS1F5KMSoUGRt860FlEf5t+/f+WUjxYi8lKJ500eZZe2E1E/VsJn
+pdvwph1F5KcSvV7u2exgKaK+rITcZvXBjV1E5KkSNYEnV9zrJqL+rETkFKfO
+Sd1F5KsSl91NP0h7iahPK2FcMbLr4D4i8laJe7+c1q7qJ6J+rUTFoCsnbw8Q
+kb/889w4dThpoIj6thKnDl6baWQjIo/5+Vln+YihIurfSogG3Dq9FSLyWYnN
+N1ZrXw0XUR9X4mfE337lI0TkNb9+4k8TOzmIqJ8rMVvTYsz80SLym3/e+7tb
+Xx8ror6uRNTRmXGp40XkuQohHs3dmkwQkecqVNzuFjfFWUSeqzD34e/W5yeL
+yHMVjhz9Oy5xiog85z/3vjXNfJqIPFfhctpE+2kzROS5Crm2u02vzhKR5yo0
+3HDz0485IvJchVmr2kxsP19EnvPXP7YuaOkCEXmuQoez0sbPF4nIcxWeP5s8
+rnqJiDxXIW7114XDlovIcxWOhafMP7RSRJ6rsKCN3i5utYg8V+F07yuylutE
+5LkK/az6vl6yXkSeq+Bx23rEm40i8lyFgKMtfbnNIvJchdjRro0nbhWR5yrU
+uzt72s3tIvJche2R9/ZW7RSR5yqYzrh/znaPiDxX4fP4pBNn9onIcxWeGnmv
+KzggIs9VwHKvoYMOi8hzFebc6KE+flREnquwb2z4mTxPEXmuQtbmypaDT4rI
+cxU2X2t05vRpEXmuwvjTPqqSsyLyXIXV15ww4oKIPFfBYqXr5uuXROS5Csom
+42/or4jIcxUSLR6+dLkuIs/5+1tX9OrlTRF5roLN7INeJl4i8lyFnV7cntV3
+ReS5CruXJjlF3xeR5yqctN1r1PORiDzn77/jPr9TT0TkuQrXdrhOV3uLyHMV
+asx3lkx9ISLP+e/v5rHC/5WIPOfvb3ZglsVbEXmuwqSAVIdD70TkOf/9H+1v
+V/qKyHMVFjvsr5oaICLPVZhwy7zPp48i8lyFqL07l3UNEpHnKnwwHnbhfLCI
+PFdhVEzyey5URJ6rkO0bzW9BEXmugn2P+zkZ4SLyXIUt1TnF46JE5Dl/PQdJ
+sX+MiDxX4fiHi1lW8SLyXIWzC1rE3kgQkef8+3hi7tcwWUSe87/vbnLjQKqI
+PFfB5e+x7T/TReS5CgkCs6lrf4jIcxVSLnbrVpQtIs/VqLGb/WtOnog8V+OY
+qmd4coGIPFdjz59u552LReS5Gi6d02ZHlorIczVKrwR3GF0hIs/VWF26rjSk
+SkSeqzGw0ZrndioRea7GvZ32G4I0IvJcDaV+16DhOhF5roaZ/6O/QTUi8lyN
+k4ucwkb8EpHnakzgfp4K/SMiz9VY9Xfg7LGcmDxXQz7oklWMUEye89eruvvX
+RSImz9UwDy9PSpeJyXM1/qT+frWgnpg8VyPn/OJz5fXF5LkaH9PfbvNoICbP
+1bBTbF3GmYnJczX27bSfc7yxmDxXI+DivRnNm4rJczXEr7vNfdhcTJ6rYeS9
+dKV1KzF5rkZoWMXesDZi8lyNto/H35nWTkyeq/FybpPo0g5i8lyNWdOyhTst
+xeQ5f/2lg+1Nu4rJczV6hL4/88BKTJ6rcb1+VfnQnmLynH9em3Uuib3F5Lka
+215+/7aqn5g8V2NmryeOUmsxea7G1QzP7NuDxOQ5//s2xvuGDhGT52o06ful
+f9owMXmuhko+umbTcDF5rsbexd2jzUeKyXM13jsZvfVxEJPnahy03P7MdYyY
+PFdj/ptG/jXjxOS5GoHmq9OvOYnJczXORlk0GO4sJs/VCHvzZXrhZDF5rsZz
+UfV7z6li8lyNnc7jevSbLibP+c+PzvXLmCkmz9XY+jNy9sE5YvJcjd72PZr1
+ni8mz/nfX9q6ImOBmDxX44X/wLQji8XkuRrWFU1zrJeJyXM18oQzBUUrxOS5
+GqNmXx12cbWYPFdjuLfHhdHrxOS5GiN/HzGsXS8mz9V4/MT96jMPMXmuRu3y
+6DELtojJc/7+htuYN9suJs/V+HnQlYvdKSbP1dAXBtU7vEdMnmtQO6vZgOH7
+xeS5Bv37/95de1BMnmuwrl79Cp8jYvJcg+HhxVvXe4rJcw0sH/fq1vukmDzX
+ILjXgT9Vp8XkuQbKnoe0z8+JyXMNykOSG6y7KCbPNVjt2tS57xUxea7B50ul
+PtXXxOS5Bj/2Kuz8b4rJcw08XCO1u73E5LkG3E2L2FH3xOS5BtGWp+JNHorJ
+cw3+ij7+TnksJs81OHPccdIdbzF5rsHsmbmxq1+IyXMNpGMtttq8FpPnGvze
++MRJ7iMmzzVYatN5Qsp7MXmuQfP+Ntsf+ovJcw022RxJ2vJRTJ5rMH3Buznj
+g8TkuQa/fi1vbBEiJs81iD0zplYTKibPNZhTrG8Q8U1MnmvQtKa1q1ekmDzX
+oLdufvTWGDF5rsGSsUs3ucSLyXMN4k6kTOqZKCbPNbhzdvr8eili8lyD6uln
+7hSniclzDfaadW0elikmzzWY0fbrl/vZYvJcg/umjR4cyhOT5xpMvvP247JC
+MXmuQYifS33HEjF5rsGu5ZfP9i4Xk+caxJR3m9SkSkyea7Dqzpsxf5Ri8lyD
+NuYZWws1YvJcg0nKsYUxOjF5rsEr0WNPv59i8lyDT8O9Vt//LSbPNXDzy/A8
+ayAhz/n9dFNQvEcoIc81sMaH3eskEvJcA0ORj6ubXEKea+DnfmGVi5GEPNeg
+URdZ8CgTCXmuwbyMN9OGmErIcw3iXR169mksIc81MNi2eFSXphLyXAPngYG3
+27aQkOcaLD77c1iL1hLyXIMDNz+3MW8rIc/587cjaKRpBwl5rsGOWbefmVhK
+yHMNDq03mmPcVUKea/BO5D3ZuLuEPOff3/Tup0x6SchzDW4EWjcy7SshzzXo
+dswju/EACXmuRceG57TNB0nIcy2uPxjs0naIhDzX4vKdRr87Q0KeazHDNVLR
+205CnmtxrYFRryH2EvJci+/mO/1HjZaQ51q4PYo86zJOQp5rkfz7tq+bk4Q8
+16L1sIfd3Z0l5LkWLw4eUex1kZDnWgTnVwnOu0rIcy02uxxY9HCGhDzXQhCo
+bvphtoQ81yJSn9/q+zwJea7FrUDBxtIFEvJciy/vq1sLl0jIcy06rFnestVy
+CXmuxSxn6eqBqyTkuRYFzz0aTVkrIc+1aO8/v8H69RLyXIs9e9a5nfGQkOda
+7Khwqvd6i4Q81yIk2Kte4nYJea7FwNuNF+p3SchzLWQ1Exq32ichz7V4bfqz
+zYiDEvJci2aygP3Lj0jIc/77goeOPOspIc+18Prdae6HkxLyXIv7Nm2Sis9I
+yHMtekdFPWp8QUKe8+sRnpo24rKEPOfXo2HpsvXXJOS5Fk8c7rnevSkhz7Xw
+iH55N8lLQp5r4Rjz1tnwvoQ818K/u+tcPJKQ5/zzHrWJ3vhUQp5rkTZcdtP7
+uYQ81yJzsVt84SsJea6FaUjl0rY+EvJcC4sU5wWzfSXkuRaShJ6frwRIyHMt
+Gl+2OpgaKCHPtSj3KXveLFhCnmuxalkD25mhEvJci7cXhlrf+CYhz7VoHtX4
+Qm6khDzXotVwm9mdYyXkuRZLIiYcX/NdQp5r8blQ0+l9koQ816Lhs4iugjQJ
+ea7FuLQNlx0zJeS5Fps+nVp/JVtCnmtxd0Kgb3GehDzXosz41sqBRRLyXIsF
+LeI9j5RKyHMtunbSNM+okJDn/Hlzv9ukl1JCnvPv6/vufQc0EvJcizWPOs3N
+0EnIcy0u5vZ50q9WQp5X4712+NITfyTkeTVMcqsulHBS8rwaSqsUawexlDyv
+xves8+PuyqTkeTWmHgyOFxpJyfNqTLaqjVpoIiXPq1E+M2lomKmUPK/G1RaV
+7bqZS8nzaowqT9txqpmUPK/G9LB+E3QtpeR5NZJbnr0410JKnldja5yn67f2
+UvK8GnFD3p/sZyklz6sxw/KJ7e2uUvK8Gs++/lxu0kNKnlfjxhcbk129peR5
+NRb2EPRQ9JOS59UI3Z4T5jZQSp5XY8KZlZlJNlLyvBpbfPqvGQ8peV6N4nPR
+O4LtpOR5NW7afJUPcZCS59UY3uy1mc8YKXnOX6+29bXejlLyvBqrjK7eeTZR
+Sp5X42H8267dXaTkeTW+dP/d29tVSp5Xw3PKH98eM6XkeTXapdgHv5wjJc/5
+578012mAm5Q8r0azyKSZAYuk5Hk1vH/2Lx+xTEqeV2NwrcQgaqWUPK+GhTr+
+outaKXlejaUu7d7krZeS59Wwztg+Zd0mKXleDfvTy7YbbJOS5/z3f17d5fRO
+KXlejSiR6ez2e6XkeTUM+6Y0eXdASp5Xo+UK+xnjj0jJ82oMrZ/ZIc9TSp5X
+Y4Vf283bTknJ82pwk8+7ND4nJc+r4aJ97/fiopQ8r8bsX0ZPHK9KyfNqzPzT
+oFP5DSl5Xo2DESOsPL2k5Hk1Qla2/9j9vpQ8r8b8dt0zYh9JyfNqRLtlHtzo
+LSXPq7Es9fnHFi+l5Hk17Ba12R/8RkqeV0PV5H7yyvdS8py//34ffJsESMnz
+aqR0z+waEiglz6ux4/6Obu7BUvKc35+rGwe0DZOS5/z+2Nc8Mz5cSp5X4099
+wckD0VLyvBrD3GzjB8VLyfNq6H6PflCVKCXP+fd/6ITxg1Qpea7DlOi9snmZ
+UvJch+ZhF843z5GS5zoEHh/sk5QvJc91aLogc/m5Yil5rsO4pxWvJ5dLyXMd
+BKqU040UUvJch3NZ9cTJail5roOtnar+VZ2UPNdhqUz3dF6tlDzXId52f67l
+Xyl5roOumfC5QiAjz3UYn5Nu6i+Rkec63BB4GB8ylJHnOiyRDvRyMZaR5zoM
+vHAour2pjDzXoaX7t7OaxjLyXId6W+erQpvJyHMdZjx8VXqllYw812GYaZsd
+a9vKyHMdRhVJH4/qKCPPdShdG7XOoouMPNfBzDQm4aeVjDzXwcdhxfekXjLy
+nH/eO39XveknI891ECcW3z07UEae8+txa+/mDUNk5LkOvjmWJVNtZeS5Dtme
+fXSDR8rIcx12PK31shgtI891MHZLL5eOl5HnOlwt6JyomCAjz3U4eGDwrPTJ
+MvJchzn3F+0Nc5WR5zq8/vxn1NuZMvJch5/Lp3vfnSsjz3VYYf/11fkFMvJc
+B1X969MOL5GR5/z+uND55vYVMvJchz8hfgfd18jIcx2mX/QyWb5eRp7rsK5N
+j8ELNsnIcx0sDzyWzNkmI891kEsWbpyxS0ae8/ervXdw2j4Zec7vpwC/wdMO
+ychzHT6klp2efkxGnutQk7vHc9ZJGXmug8u+kK7zz8rIcx2ub/+5cslFGXnO
+r++DZZPXXJWR5/z7U039sfmmjDzX4e9CifH+OzLyXIcBLf1zTz2Qkec6PHZ8
+N+vmExl5zq+fw5Dtz5/LyHMdjFYdHR70Wkae8/tnWM7ThHcy8lyHa5N3fSzx
+l5HnOkTM9PIw+CQjz3UoaXsosWmIjDzn9//RZel9vsrIcx2sz+8/7BQpI8/1
+aDXLNHNFrIw812Ni4/GpRxNk5LkehabLdzxJkZHnengG3/kWlSEjz/Vo+Lrn
+R2W2jDzXQ3V0xMwmBTLyXI9S00a3h5XIyHM9DvVOPLmkQkae6/Gl3NfyjFJG
+nuvxeLlm6UetjDzXo1j5dnJ5jYw812NPaY/iFn9k5LkeHj9OdHIUyMlzPdZs
+FZnslsjJcz1Wn/hw+42hnDznv9+46EepsZw81+O8mXdoOzM5ea5HTfrg6bOa
+yMlzPWZE+l242EJOnuuxbO3UXQlt5OS5Hg+2DTAz6yAnz/XoGb530uTOcvJc
+j6Pz3Yaet5KT53psXFf7PaWXnDzX47PLevPW/eXkuR6WZypFiwbJyXM9WmSe
+uuk9VE6e6/HWfEehbricPNfjmFNi6ggHOXmux8Vgvy2nx8rJcz2aFziGZjvJ
+yXN+/SY/C+w9WU6e67Ez5+ei/a5y8lyPU+ecfVNmyslzPebfj/HtMU9Onuux
+68DpJQcXyslzPeYkvfqctVROnusxaYNTxOBVcvJcjyPuO/dcXCcnz/WQtJpV
+oN0oJ8/18Kr5Wz1lq5w818Po2x6fdzvl5Lke4Yf07Vvsk5PneoxYsxW7D8nJ
+c/79VbeUFx2Tk+d67E7Q7J5wSk6e6/HsT+MHvufk5LkeB56e3dbxspw812OC
+6+4/Z67LyXM9NvtX9BR4yclz/v5Sy03W35eT53q80x2/UfBYTp7r8fN2dvr0
+53LyXI+2T9VhMa/l5Lkey/skuo16LyfP9Xh55czTTwFy8px/3+cH3rMJkpPn
+eqxv8338+y9y8lwPnz2r7gwIl5Pn/HmZbPrIJ1pOnusxYHvE7IHf5eS5HiW9
+vYL8k+XkuR6df99IsM2Qk+c1+Pr+24WwbDl5XoNxZ7vIJhbIyfMa/DX50jmt
+RE6e18BS5qVfVCknz2vQ5OmXTWqVnDyvwdz9/e7v1cnJ8xqUuav2mf2Sk+c1
+6PZG0PC+gSF5XoOB2UscB4sNyfMa6MvaD4qVG5Ln/P10HZiwxNiQPK9BZ8d7
+rTkzQ/K8BlGLVzS91sSQPK9BTumRoIEtDcnzGtx6/rdZsoUheV6DP5XhbTd1
+NCTPaxA/qiSlaVdD8rwGvz66IqCHIXleg5OfTKfM72tIntegxsK8uWygIXnO
+30/r2SdeDDEkz2vwdl7uyxnDDcnzGsh/39wvcTAkz2tweMNJyZuxhuR5DXx8
+HlkvmGBIntdgVruiJo1cDMnzGrw5iAeh0wzJ8xqc6PC4YOtsQ/K8Buuet/re
+y82QPK/BN6dTa4oXG5LnNZDc1PndXmFIntcg9NXot7PWGpLnNdCabZ7TbKMh
+eV4DdcgWn+QthuR5DXyHD/9wcacheV6D2t1B7tP3GZLnNRitLU9qediQPK9B
+rxNvS3I8DW3/D8t6RRQ=
+ "]]}, "Charting`Private`Tag#1"]}}, <|
+ "HighlightElements" -> <|
+ "Label" -> {"XYLabel"}, "Ball" -> {"IndicatedBall"}|>,
+ "LayoutOptions" -> <|
+ "PanelPlotLayout" -> <||>,
+ "PlotRange" -> {{0, 1.6}, {1.9267741928025102`, 3.31879026971162}},
+ "Frame" -> {{True, True}, {True, True}},
+ "AxesOrigin" -> {0, 1.9267741928025102`},
+ "ImageSize" -> {360, 360/GoldenRatio}, "Axes" -> {True, True},
+ "LabelStyle" -> {FontFamily -> "Times",
+ GrayLevel[0], FontSize -> 12}, "AspectRatio" -> GoldenRatio^(-1),
+ "DefaultStyle" -> {
+ Directive[
+ PointSize[0.0055000000000000005`],
+ RGBColor[0.368417, 0.506779, 0.709798],
+ AbsoluteThickness[2]]},
+ "HighlightLabelingFunctions" -> <|
+ "CoordinatesToolOptions" -> Identity,
+ "ScalingFunctions" -> {{Identity, Identity}, {
+ Identity, Identity}}|>, "Primitives" -> {}, "GCFlag" -> False|>,
+ "Meta" -> <|
+ "DefaultHighlight" -> {"Dynamic", None}, "Index" -> {}, "Function" ->
+ ListPlot, "GroupHighlight" -> False|>|>,
+ "DynamicHighlight"]], {{}, {}}},
+ AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948],
+ Axes->{True, True},
+ AxesLabel->{None, None},
+ AxesOrigin->{0, 1.9267741928025102`},
+ DisplayFunction->Identity,
+ Frame->{{True, True}, {True, True}},
+ FrameLabel->{{None, None}, {None, None}},
+ FrameStyle->GrayLevel[0],
+ FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}},
+ GridLines->{None, None},
+ GridLinesStyle->Directive[
+ GrayLevel[0.5, 0.4]],
+ LabelStyle->{FontFamily -> "Times",
+ GrayLevel[0], FontSize -> 12},
+ Method->{
+ "AxisPadding" -> Scaled[0.02], "DefaultBoundaryStyle" -> Automatic,
+ "DefaultGraphicsInteraction" -> {
+ "Version" -> 1.2, "TrackMousePosition" -> {True, False},
+ "Effects" -> {
+ "Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2},
+ "Droplines" -> {
+ "freeformCursorMode" -> True,
+ "placement" -> {"x" -> "All", "y" -> "None"}}}}, "DefaultMeshStyle" ->
+ AbsolutePointSize[6], "DefaultPlotStyle" -> {
+ Directive[
+ RGBColor[0.368417, 0.506779, 0.709798],
+ AbsoluteThickness[2]],
+ Directive[
+ RGBColor[0.880722, 0.611041, 0.142051],
+ AbsoluteThickness[2]],
+ Directive[
+ RGBColor[0.560181, 0.691569, 0.194885],
+ AbsoluteThickness[2]],
+ Directive[
+ RGBColor[0.922526, 0.385626, 0.209179],
+ AbsoluteThickness[2]],
+ Directive[
+ RGBColor[0.528488, 0.470624, 0.701351],
+ AbsoluteThickness[2]],
+ Directive[
+ RGBColor[0.772079, 0.431554, 0.102387],
+ AbsoluteThickness[2]],
+ Directive[
+ RGBColor[0.363898, 0.618501, 0.782349],
+ AbsoluteThickness[2]],
+ Directive[
+ RGBColor[1, 0.75, 0],
+ AbsoluteThickness[2]],
+ Directive[
+ RGBColor[0.647624, 0.37816, 0.614037],
+ AbsoluteThickness[2]],
+ Directive[
+ RGBColor[0.571589, 0.586483, 0.],
+ AbsoluteThickness[2]],
+ Directive[
+ RGBColor[0.915, 0.3325, 0.2125],
+ AbsoluteThickness[2]],
+ Directive[
+ RGBColor[0.40082222609352647`, 0.5220066643438841, 0.85],
+ AbsoluteThickness[2]],
+ Directive[
+ RGBColor[0.9728288904374106, 0.621644452187053, 0.07336199581899142],
+ AbsoluteThickness[2]],
+ Directive[
+ RGBColor[0.736782672705901, 0.358, 0.5030266573755369],
+ AbsoluteThickness[2]],
+ Directive[
+ RGBColor[0.28026441037696703`, 0.715, 0.4292089322474965],
+ AbsoluteThickness[2]]}, "DomainPadding" -> Scaled[0.02],
+ "PointSizeFunction" -> "SmallPointSize", "RangePadding" -> Scaled[0.05],
+ "OptimizePlotMarkers" -> True, "IncludeHighlighting" -> "CurrentPoint",
+ "HighlightStyle" -> Automatic, "OptimizePlotMarkers" -> True,
+ "CoordinatesToolOptions" -> {"DisplayFunction" -> ({
+ Identity[
+ Part[#, 1]],
+ Identity[
+ Part[#, 2]]}& ), "CopiedValueFunction" -> ({
+ Identity[
+ Part[#, 1]],
+ Identity[
+ Part[#, 2]]}& )}},
+ PlotRange->{{0, 1.6}, {1.9267741928025102`, 3.31879026971162}},
+ PlotRangeClipping->True,
+ PlotRangePadding->{{
+ Scaled[0.02],
+ Scaled[0.02]}, {
+ Scaled[0.05],
+ Scaled[0.05]}},
+ Ticks->{Automatic, Automatic}]], "Output",
+ CellChangeTimes->{3.909043955430275*^9, 3.909046701012884*^9,
+ 3.915533054748672*^9, 3.915772001814284*^9},
+ CellLabel->"Out[35]=",ExpressionUUID->"e2ba4c38-edde-4b75-bc95-88dc47d04160"]
+}, Open ]],
+
+Cell[BoxData[
+ GraphicsBox[{{},
+ {RGBColor[0.368417, 0.506779, 0.709798], PointSize[0.0055000000000000005`],
+ AbsoluteThickness[1.6], PointBox[CompressedData["
+1:eJxd12VYVN3bBXDO9CCCgmIrJgZ2oKIuRMEERVHswG5Fxe5W7G7FDmxRQhFB
+UBqkQ7prkhnEeI889/5/ePnidV+DZ845e+/1W7R1WzNpkcDAwGCgxMDg37/b
+Gj0blbN1P358fSlpZGBg+/9nvzFGgm6HDqK38QSbpvz8c+fygA1nD2O5mUdS
+S34e9Oarx8ebR1GvsWVKW37eUtKpt+ypJzJd3Gwt+fl96wNlzu9PoKRZZ5Pu
+/PzrkTLe0e0UdrzYPLIvP18LsXjhvvQ0rJa7ZA/iZ5usCccvrj6DiOv+ubb8
+nF5T94VY/+DZuNH/u79z2F/cvcVEfm7RM7ODZM953Aob5Dztf/d7Ac9exFfM
+4+cZC+uuiLRGNYpl/7v/Szi33HvGen6+crnuB2e7K7ru+N/zXEHcj6D5h/g5
+NVo3Oe/eVZwStf97+n/Pdw1TuzYSXufnZqKpxt1fXUdV9vlVD//3vDew+uPD
+YW/4edp/F0S3OY4en/73/LcQOm9/oyh+Hm99ZPi8glvotNKpWdr/3sdtbOr2
+dH8RP5c7/7vibfSacGOq9n/vxwv1j3c8KeQMbI+tLKp9pPSC2S27HqYce193
+cHJ0dd+2/NztkDn/CHfQZPzwW7049v7u4vDGDutt+Tnitr2P+vdd1D9/6+lE
+jr3Pe2i022f8fH7+97aaiu5jZsMlk9059n7vo6jz60/7+Nkw+c7aoYYPIHt6
+9dx5jr3vB5hxoG3MA35+/O9xGzxE8F37tX4ce/8P4fFXtjmKn8f+u5z5IyhO
+rizM5th6PMLfKev8Nfxc97pbPobv1KY6mYCtz2Psu+Z2uRU//3t7se2ewNTa
+2auPgK3XEyyxKWg4mp+7zDr5Wdv5KeKD2xTPFrD1ewplFddxAz9/46/WvKc3
+3uR7fj0qYOvpjRmRQfG3+Xnp6Yrt6P8M7km3R/gK2Po+Q6Z1jxZx/MzfHP/I
+zxHZden0EgFb7+cIrpz4hxMa2Lrwm4dfUlz+WiJvIWTr/wIegn7b+/HzXf7t
+Jd95gdSyXlOchGw/vMDp1JxzS/lZ8zthc0mnlwjtONpmn5Dtj5dQ9Fw0+gY/
+j6zbAC+RO2twgK+Q7ZeX+Gz+7UIiP/OL9++BUD/KNEUpZPvnFa5omu42FhnY
+/nd7r3Bemnmim4jtp1c4cGCeaAw/9637eY3R6rvZi0Vsf71Gs/Qn7Q/w875P
+4fwOeo1jkR5Rd0Rsv73G8VnSH5/5+Tu/+vw7wfKOc6fkitj+e4Nvobv6CsQG
+tu3rLvgGzwuWb24nZvvxDXZateswgp/X1y3AW+jHPhiwUMz251vYVNc+P8DP
+wdrO/Aq/xbfitqceiNl+9cHe3ObJ3/jZ9L8bxIOHxfvLxWz/+iBTfPyyicTA
+tu7uvvqgW7i8cV8J28/vUBs+TzeVn19dr3oQOu4dWuSdtd0mYfv7HT6p7ipu
+8rOg7oHfYV/WeekXCdvv77Ho3NIDpfw86b8Ng0iuzfIGUrb/3+NIK/+3A/jZ
+69/jJrxHQu6wpbOl7Dz4wnnS0z37+Vn173LTfGHkLhY8lbLz4YudjuNLvvOz
+3b/tn+4LT+1e619Sdl78cGT3k/IOMgPbuu07xw/9Db/KnGTs/Pgh8HXasU38
+nLP134L4IfROwcbbMnae/DFdUhYawc+96za4P2qNKnZWy9j58seNyorrbeUG
+tnvOj+C3jD8eFVW1d5Sz8xaAmkHaBlv4Oa5d3QIj08pg0T05O38BaFXfzCKe
+n9v+S/+KAFRb9bL7K2fn8QNa50+PsDI0sF3373is/YAvJ8/4zzBk5/MDzp3J
+MD3Cz0H/Vlf9Ac9cBse9M2Tn9SPejHhWXcjPDf47kAiJH7zPvB47vx+xaWuu
+hwM/172+mo8off8gzqMeO8+BeNvw+NkH/Fx3e9sDoa1/PiClHjvfgRg15PN4
+QyMDnqh/P58Q2avJyCFG7Lx/QpcDF7xW8/PD0HH8if6Eoyl2S28bsfP/Cbdi
+Wp9P4OeJ/Gnk9yi8GnXvIqvP8uATJruu7TCEn/X/9An5hD/jyw6urc/y4RM2
+v7g18R4/32r+70AEoaPd2T1p9VleBEET9qVZA2MD29F1CxwEt/o2zRyMWX4E
+YUeedtd2flY8+HeDQci3qHF8bczyJAhfbo/aV8rPl/7dXTj/+aj8Nu1MWL4E
+4fLPuPYz+Pnf5hpj9Bmx981OnjFhefMZRng6P4Kf/6VJvONnLPO/cVXUgOXP
+Z1xvVjlkGD//2y38loF21nX7zQ1YHn3GrBPP377i57rHjf2MmQGWxysasHz6
+jCa1ssjODQ1s6y5nGoypC6e6L2zI8ioYO5uY7b7Fz3VxNDkYFwbZaTMasvwK
+hqO2MK6ZqYHtf/UhGMqtInNXU5ZnwdhicCPoHD/XxUFyMPYH+STEm7J8C8b0
+v84TGpoZ2O6qC5wQFBus7z3RjOVdCGJMW207yc+WdQcoBK6HJlvFmLH8C8Em
+n2b2Jo0MbGPq6kUIUn+7f5nQiOVhCBI+uXmf4udN/45DZgjWLy3/FdeI5SP/
+/xeYvTFrbGDb5t92bv0FLp3S46c0Znn5BQO6jZp+iZ/D/m2/eV/AqWaMSm/M
+8vMLJhk0v97a3MB2TV1AfsH+nEMz3MxZnn7B004Pd93n5yZ1B/4LbizeaVRm
+zvI1FIqhxlyvJga2dbfXIRTVTjNnb2zC8jYU34Yva+vPz4vrfkIxKsTGkWvK
+8jcUDY8mZY/i53/liU9YnB0/NONEU5bHoeAi1iOJn/+l4+aSUEwP32HYuhnL
+5zAsajx36GJ+nlN3wTAEbm+R8qwZy+swRCf5pOn4WVIXUGGI+tvPfnhzlt9h
+CEu93OQYP/9bjUbPwnB9fIlzYnOW52GQOFhq2rQwsK1rd1VhOOPr+md5C5bv
+X/Hg1s61Pvz8599x6/0VR37eHCtoyfL+K98fAj2d+Pn+v+3s/hXmbXMHXG3J
+8v8rbsjrjSnmZ6f/Hhivrg0L7t+KefAVNdW77+3j5+p/y6H9itrBSVVxrZgP
+39DttJ2XRWsD2xv/Htf6G/IswwPWtGZefMPyvusQyM8OdS/wG1QVNl1N2jA/
+vuHqxR475vJzZR0P37DJw3HgizbMk284knRtJmdhYHvhX7zXfsNXeduiSRbM
+l3C0W/oj7S4/18Xz0HBsnZA6QGfBvAnHi/bmtWPaGtjWxevOcFxzumx5vS3z
+JxxNbJcEKPj5v/gLR/Wq/b4j2zGPwtHQRdv6Mj/XxYsgAsM3fCyvaMd8isDS
+qfntRrQ3sK07viMisPzwiqBL7ZlXERh4Y9rXSn6uOx4HIhDZ+4W1fQfmVwR6
+5HmYXOPn/7ZfBNynvZyg7sA8i0DQ0IX6sR0NbBP/La8sEi725+R3OjLfIrHV
+0mFfLT/vqAvASFz22rnIpRPzLhK9t9m98ObnjnUbMBJp2y4skFoy/yIxfuOu
+XfP5OSqy7gdzhglEAZbMw0jI3rRXmnc2sN1YF6hRWOhb7ODemfkYhbfWU8XR
+/NyqbkNHYX7rdVZduzAvo/DbbVjAQX7+UvfnVRQcuOA3eV2Yn1HoWis0H97V
+wHZVXUBH4cs0SfaNrszTKCztHGP6m5/r4qpRNC7sXPBsZjfmazTqe3x95cfP
+dXEwNRqBPYUWza2Yt9H4Ed+0egs///fnVzSSPY37p1kxf6Mx/XRJxuDuBrZG
+/x04uDR/XnG1O/M4Gr+XLFzym5/rtkvzGER/Mh47twfzOQYn1r0+H8TPdcsx
+Kwbjo1zHdujJvI7Bku7c0kP8/N+fZzE4rnxTWdqT+R2DwF2bfzj1MrCtu1xW
+DCaNdLZ+3Yt5HgvNy5E1TXqz8x6LJ8OnddjRm/kei3T30+9ze7PzHwv7CO3b
+0X2Y97Gol3y05fM+LA9i8abz1PLGfZn/seg6fXbHHX1ZPsTis/R+WH5f1gdi
+MSSt//fx/Vhe8J9vNx39th/rB7FQ3x7eqXV/lh/8/Qi+rTrUn/WFWPyd86y1
+sj/Lk1hM364bOHMA6w+xmGv5OODLAJYvseD6Rj7qZc36RBxebV5gcM2a5U0c
+3FI2fpIOZP0iDscGykvXD2T5E4cuB9vvyB7I+kYcQt6Eb3EcxPIoDus+irL9
+BrH+EYf4O8nPOw9m+RSHVivHlFwYzPpIHJp3nOcptmF5FYdueW0vb7Bh/SQO
+Y4LOmeTbsPyKQ72cj1WTh7C+Eof7y+8PChnC8iwOWk/nin5DWX+Jg/uOUMP7
+Q1m+xWHE5npnmgxjfSYe1p867TsyjOVdPCJutP5RO4z1m3h0XVjjtRos/+LR
+b8mHuBywvhOPneJ1y6fYsjyMx9Q7zVd9s2X9Jx6hTz6lDh3O8jEe508te/Fq
+OOtD8Rgf3kJpacfyMh6DUjKvXrdj/Sge62x9XpiNYPkZj/iTT3oeHcH6UjwM
+Z4Q05UayPI3H2UHSlZtHsv4Ujw8xW7soRrJ8/Y7nIR2dl9qzPvUdi8OM87Lt
+Wd5+x8fjQ7KmO7B+9R1rE97af3dg+fsdLebuMXccxfrWd0B/zzlsFMvj7xi9
+rqtu+GjWv77D06ux9MNols/fMXHF6j0Dx7A+9h3hL20WvxnD8vo7Oi/Y/7bX
+WNbPvuPE+glrvMey/Oa//8eds13Hsb72HZV3D7d7OI7l+Xd0iRO17DSe9bfv
+qHJvs/vueJbvCVh7O8upvSPrcwko3Dr+sJcjy/sEXOywyqqdE+t3CcgJH23j
+5cTyPwF9bhe+aTeB9b0ENMp1vHxnAvMgAVYxB4o7TGT9LwG2L8973Z/IfEiA
+dcr+sM7OrA8moM3VGa5PnJkXCeg9rfWkHpNYP0xA/Ibkdy8nMT8ScGH28cP9
+J7O+mIAxB0eF+E5mniSgdFn9FcNcWH9MwLujhduDXZgviejqnlYzegrrk4kw
+eKnIiZ7CvEnE4Kxe/adMZf0yER2ueanTpzJ/EuF6wrHVAlfWNxPht2DQq1JX
+5lEijsSteuU+jfXPREw/p2pVO435lAjztTGafdNZH02ESS8j6/ozmFeJUN9/
+kX9hBuuniUh5FvLbYibzKxFDu0zc+2Qm66uJaPB3hvuAWcyzRHhbVEQFzWL9
+NQmlB4zPO85mviWhQY+wsNTZrM8mobhNm8WL5zDvkhCwrPVa9RzWb5MwrW1U
+we65zL8kmCzsG2Y8j/XdJARPnd7o+jzmYRIKOo6K6jaf9d8keIjFKr/5zMck
+mPW+unesG+vDSVCVNdyV5sa85O9n97qi5QtYP07CGrvP/rULmJ9JeHDU6Jfn
+QtaXkzDTf9rD1ouYp0mQDHv+6cUi1p+Tkbyvqf2IxczXZLwUX++ftJj16WQM
+GGl/ZtkS5m0yQsOazfy9hPXrZBywaH/q9FLmbzLmFC7r3WkZ69vJkPpWD/Nf
+xjxOhtw2/v3E5ax/J+NDV/HNwuXM52RM73VJuX0F6+PJKDM598JsJfM6GYtO
+cRmPV7J+noxru0vW261ifidjwjuXzWmrWF9PRjez8SXuq5nnKYjZmhJabw3z
+PAWxGYKG99Ywz1Pg3zMhbNha5nkK2rpPKUtZyzxPwenHJ7etX8c8T8G9omOb
+jd2Z5ykQ2k7OfeTOPE/B3PjK9/brmecpOPBlya+c9czzFEwfHfZ05wbmeQoy
+TpuHt9jIPE9Bv5w5Lr4bmecpeLrj0ThXD+Y5f78+f59rPZjnKZDnL99zbhPz
+PAXuizSBfTczz1NR7869Fd83M89T0bn+4f3rtzDPUzG35T3DRluZ56k44Sz5
+82Yr8zwVWf3fzpm6jXmeiogZ/lb6bczzVLSf0W7ple3M81Q0TFI3GLqDeZ6K
+1lsGWWbvYJ6nYmD1r8f7djLPU/FWNvqa5S7meSpcN3SojdjFPE/FFPG1sLW7
+meepmHXqPWe+h3meivOqfY/89zDPU/G4oSxw/l7meRqi0p3sZPuY52nwHeXW
+9/k+5nka/FzGn5m6n3mehpeGTeb+2c88T0PTrZGX7x9gnqfBMMDDbsJB5nka
+7FVtpusPMs/T0GdUfObtQ8zzNBRUXIwdd5h5noZu7bb1rj7MPE/D/s4HDW4f
+YZ6noa9T8NDxR5nnaRhSMqREd5R5nobl034L7h5jnqdhhtDk2ERP5nk6Ns3Y
+vue3J/M8HbLkCYWPjzPP09Gr9qzvtBPM83TonCfXSk4yz9Mxds2lJ29PMs/5
+/69YFb7wFPM8HX+3/HBtdJp5no6f/prJIaeZ5+n4uMr/44YzzPN0NJ049FLH
+s8zzdKRZHchOOss8T0dR0vWLh88xz9Nh3fXMh8Hnmef879dbNaniPPM8HYLl
+g6beusA8T4dwiODb5IvM8wzM2Rv/WHqJeZ6BEIe3tf6XmOcZaHXtrf/ay8zz
+DHje+FHa8QrzPAMe622OpF9hnmfg8JjkC6evMs8zEDDtg9noa8zzDMzN1f/9
+c415noGmvc/P9LnOPM9A+aXrnVbfYJ5nwH5Tq/mdbjLPM6DvY1Ev6ybzPAPj
+h7zscOkW8zwDv40yvJ1vM88zMLLz0/v1vJjnGfjRvLtJqBfzPBMNty0v2n2H
+eZ6Jl8Vreg65yzzPhGX9MUW6u8zzTGy5ypm8ucc8z4TjxHv3195nnmdCqcSz
+7g+Y55lwm5jZsewB8zwTE+yP1H/0kHmeiQ5vJixa8oh5ngmjo0O6d3rMPM/E
+zw8zFxU8Zp5n4sVE3/r3njDPMxE4fn6nRU+Z55m4HDr3eUdv5nkmjmV8eljo
+zTz/gSifU6YPnzHPf2D/ofTyZc+Z5z8QdtTb2uoF8/wHnkjM1JUvmOc/4DCu
+aZtXL5nnP/Dm1Tf/ja+Y5z/Q9nbfb4NeM89/IHa/26g/r5nnP9A6yW1A8Bvm
++Q8cazL8wuG3zPMf+JwoX+Lkwzz/gesPvj1s9I55/gM9exyfmf6Oec7fb6P5
+u7zeM89/4FeDSY2W+zLPf+Bp7srmffyY51kwdvl4+qcf8zwLzwZN3hrszzzP
+wnb3gQmeAczzLEQVbb059QPzPAtLjltmWHxknmfh0PxxR8s+Ms+zkL9S/cgn
+kHmeBf/PVjZ7PzHPs5C0WzTMKYh5noVTMYdeNf/MPM/Cj5zgS0WfmedZcNV+
+UbwJZp5nYdCkq357Q5jnWdg4zrl64hfmeRZeDtPeaRPKPM/GpHPngitD2XnP
+xr7AIVM+hjHfszFsWO20E1/Z+c+G8+XM6DnfmPfZWLJQ6dMznOVBNkyGjWzI
+RTD/s/ElJi8zPoLlQzZ0UZkt70WyPpANYz2iN0WxvMjGlqZNVWOjWT/Ihrdo
+w+HWMSw/stH/+vzTqhjWF7LxNqrSKCyW5Uk21J5daq/Gsf6QjeyMNrPWxbN8
+ycbV8Kyeo76zPsE/7+pNHq0SWN5ko2+5pqcmgfWLbJx1XzwrIpHlTzYybdJq
+vZJY38iG1/E5xtuSWR5lI+U9d25yCusf2fjRLN7TKpXlUzYONP2hF6exPpKN
+Zp37pWSlsbzKxrKw3K5+6ayfZCN2t15xLoPlVzYGl+7rujaT9ZVs9Ll3Nnnc
+D5Zn2cibM0BvmcX6Sza6xm71FGWzfMvGuQ9rzuVksz6Tg7W69g0Cc1je5SB2
++v2/13JZv8nBxUjxgm15LP9ysHOE8+AZ+azv5KDNx4sHBhWwPMzB71HFI5sV
+sv6Tg6N65801hSwfc2CtzmuTVsT6UA42LvG28S9meZmDT6c+RFwrYf0oB099
+2sfuLGX5mYNiq6rR88tYX8qB4+SeA0aWszzNQc559UXLCtafcpC3ctzqepUs
+X3OQNMvBt6qS9akcHKxWb06oYnmbg8bJC7x9Faxf5YB7eG/qTSXL3xz0avNt
+wwEV61s50P3JlK5UszzOQUdzjclkDetfOahn2+L4YC3L5xwcWrhgV7tq1sdy
+YLQ5o9BQx/I6B97bLgSrdayf5aDDjtuNM/Usv3OQdaF+ZmgN62s5kCpKm738
+yfKcf98BYyKv1rL+loNOQwdrDv5i+Z4L98DI0+6/WZ/LRfH1hvfm/GF5n4tK
+NOsx7i/rd7nIbqaxGmjAUf7nooX3q9sdOY76Xi6khxd5mgk48iAXbRxaVXBC
+jvpfLv6cLA1W8PN/PuRiSYsfDbJFHPXBXEx8IkuIEXPkRS5KTLbV/yThqB/m
+4lknhw8vpBz5kYtlaVvzbss46ou5GN6+6+6zco48yUWQZNHZA4Yc9Uf+eheH
+tNpcjyNfctFTF9RqhRFHfTIXpydJzs+pz5E3ubhR0HzfJGOO+mUudtY0KHYw
+4cifXPzOrwm2acBR38zFVaMi894NOfIoFydzS7I7mXLUP3ORXGjWrpUZRz7x
+9/vAI82sEUd9NBebAtsb1mvMkVe5kKdavRSYc9RPc7H5yZ2Yn/z8n1+5sP11
+eZG6CUd9NReFN9quL2/KkWe54DaO1xc046i/5sF+tZU2qzlHvuXh5OHvy9Ja
+cNRn86CMmTw1sSVH3uUhYE6gX2wrjvptHo7O7nwxsjVH/uXBSXi77Gsbjvpu
+Hmaet3n/xYIjD/PgvsTw9+e2HPXfPP7vhTZ+n9px5GMeui44UfWxPUd9OA/J
+25de/9CBIy/zEOjzKTigI0f9OA/rvR+5BXTiyM88DDIasDXAkqO+nIfGxzcb
+fujMkad5SNXvM/vYhaP+nAcryxXnA7ty5GseLv+xPRXUjaM+nYdrG5qKQqw4
+8jYPj4+LlKHdOerXebCb3dQ1vAdH/uZBJ14yILonR307D9t9hSfje3HkcR5e
+vefmJ/fmqH/z8+QNTzP6cORzHjJKVq/L7ctRH89DXonoRXE/jrzOQ1LcmKVV
+/Tnq53no19P5SvUAjvzm1+tGD4c/1hz19TwcjtKukAziyPN8SDb51TMZzJHn
++TBfcqpjUxuOPM+HyZZjvm2HcOR5PoSXAsO6DeXI83x8/Wg7ccAwjjznr6dv
+N3k4OPI8H2PmbI0db8uR5/mQtpz5ddpwjjzPx5sVqYMX2XHkOX+9i/LO7iM4
+8jwfST//ntw1kiPP83Hyb6z7cXuOPM9HqsXp2KsOHHnO/36Jy6PHozjyPB9q
+ba/fvqM58jwfNYpBkd/GcOR5Pppd3G+eNpYjz/NR/aZjRuk4jjzPh69ln1a/
+xnPkeT5aZH5Mre/Ekef58Pie3dBiAkee5yO2mfeXPhM58jwfpTEDtfbOHHme
+j4mdLt+aPokjz/OxZE5e2KrJHHmej83hViv2unDkeT6Co44evTiFI8/z+f5t
+2sl7Kkee56P99rShwa4cec6vzwhdXOo0jjzPR3TKzlzFdI48z8fS6oNrZDM5
+8rwAfxd13GIxiyPPC2AhXPt34GyOPC9AkN92waQ5HHlegEnH5u9dMZcjzwsQ
+sb/frgPzOPK8AIFf69XcnM+R5wVYfPR3lZ8bR54X4JmxxcKkBRx5XgDHp0em
+qBZy5HkBoiImhhgv5sjzAtwoOvai2xKOPC9AB0/n5mOWcuR5AcJc33NLlnHk
+eQFEtUmLDyznyPMCbBsYMubuCo485583/8Lj4JUceV6Ah0WLjuSt4sjzAuQM
+Gl0oXMOR5wXYXOQS1GEtR54X4IXxneYO6zjyvAATsseolrhz5Dn/+c15o4+u
+58jzAiR4/WnpvYEjzwuwdpLN2tiNHHlegD9dethpPDjyvABx7yrPNN3Mkef8
+elw/5zZ0C0eeF6DlCeuXbls58px/HueqnYe3ceQ5/3nw94hn2znyvADK6F8X
+E3dw5HkhBnjszfu1kyPPC6GO3P6sw26OPC/EsZ/CmvF7OPK8EAmDegVv3Ms8
+L0S71Gb1b+5jnhdi9uDUpK/7meeFaPD9oIX6APO8ENusbEpbHWKeF+JBnnG/
+MYeZ54XweNT8z4YjzPNCvLbbNPr2UeZ5ITofHmoWfYx5Xoiniw/OqfVknhdi
+cNbyrl1OMM8L8Vsi2uR6knleiKXSFSMPnmKeF8Khte+Zt6eZ54UIvy51KzjD
+POfvr3zNq8bnmOeFaHOw3n6H88zzQjT+qU7adIF5zr+PCrsnjy4yz/n/39SU
+y7jEPC9EzthtKcZXmOeFqF18qbfdVeZ5ISwW7TPyuMY8L+T7xdRlj68zzwvh
+49xtdNYN5nkh+l5p+ajRLeY5f73NIz3H3maeF2LBxA/K3V7M8yIMuHQ79d0d
+5nkRwjPrjay6yzwvgmmIeW/L+8zzIrwWZt6a+4B5XoRmK7acvfSQeV6Ewz8k
+8vhHzPMi9J92izN6wjwvwpTieTscnjLPi2D9dsH2Pd7M8yJMrg3+E/CMeV4E
+t/rXRTXPmedF2OBieKL/S+Z5EbiJllfdXzHPi2BwwcTqxWvmeRF+xf+wrXzD
+PC9C1/AXqVY+zPMibJ9yu3rFO+Z5Ed4virz45D3zvAjHBU4fynyZ50V4MNZu
+iZU/87wI39Z/Ob8qgHlehMxw9ejnH5jnRTB+U7Jb+ZF5XoSMx8FD+31inheh
+n92NXZuCmOdF2NfhgoP/Z+Z5EaLNvp75G8w857+vZOLCkV+Y50Uov+jofySU
+eV6EY5bpF2PCmOf8577mPxt/Y54XY9bhVrmzwpnnxRibbzTxbgTzvBjTrQUj
+yyOZ58XYJmzxsV8087wYkrwNH3fEMM+LEXW4u31YLPO8GAM+uU1qGM88L8ak
+VX0KZ35nnhfzf0/7GTxIYJ4XI6xfMy9VIvO8GGvOrgwflsw8L8ZZRfyWYynM
+82IYeC9/kZLKPC9GgN2k1Z3SmefFsLB/+HpDBvO8GIp5x3YHZzLPi7F+VvNE
+0yzmeTE8m2x46ZbNPC9G4rF3jV/nMM+L8TpSKBDlMc+LsUG62WNKPvO8GAv3
+9V3/oIB5XozS21P0NYXM82Jc//Fb7FjMPC/Ggphx126VMM+Lsb/DXH9NKfO8
+GOEPXReMKWeeF+PC8CnnblQwz4vxp3KTk6aSeV6MvIis02MVzPNi1Df2nnNb
+yTwvxiiJwVu9inlegk0WNecmapjnJfDLe//noZZ5XoLtqrkqTsc8L8FFQ5O1
+M/XM8xKsFBdtelvDPC/Br2SZYYNa5nkJJGfPd1rxi3legvYLnkWF/maelyDj
+1Ia/7f4yz0sQuVsesMtAQJ6XwPf1CWEmJyDPS/A8tGPSYKGAPC9Bq/WKvpdF
+AvK8BMoTDVrpxQLyvARvjR6edpUKyPMSPKhNOf1OJiDPS5B56EurpoYC8rwE
+s36e7L+lnoA8L0F/3xmpaUYC8rwE90eNlg81FpDnJejtsO3LTRMBeV6CD+7m
+xsKGAvK8BD4Ph+QtNhWQ5yVol9PAPsJMQJ6XIKyPT99ejQXkeQlGxk94ft5c
+QJ7z1zfl3tc2EZDnJbBZUOHo1kxAnvO/7zJw3bfmAvK8BHvOiNv1bikgz0tw
+oWTzvMutBOR5KXxH+FgJ2gjI81JEPco5uMJCQJ6XYs+INmsS2wrI81Kscz1b
+gPYC8rwUI8e5lT7uICDP+f9/58UO804C8rwUncR3bu61FJDnpUjoM2diVWcB
+eV6KfBPpqVldBeR5Kerf/DwnvJuAPC9FjMAnYGB3AXleijM7JI8f9BCQ56X4
+ti61U5NeAvK8FCZuLn0P9RaQ56UYr7wWo+sjIM9LEZubUru0n4A8L8WW5j3e
+p/UXkOf8/V37LHK0FpDnpRh4MiAncKCAPC+F0tpuQt/BAvK8FK5/tjg+sBGQ
+56WoXX40o8VQAXleig+WV36dGiYgz0uh/xvjLbEVkOeluJk9SbF9uIA8L8W8
+lDEhajsBeV6KsCYZXVaMFJDnpZiv7NU2z15AnpciM3XN45mjBOR5Kfos/fQl
+YbSAPC9F4JSx653GCsjzMqzb2f/113EC8rwMBdmPDoxwFJDnZTh2I6b0o5OA
+PC9DRG107uCJAvK8DF3mxa565ywgz8uwZOqvY/0mC8jzMjz13Db0lYuAPC/D
+owSPvb2mCsjzMvi1bzLzuauAPC+D0dkDYT2mC8jzMnyZWxb2bIaAPC9Dp7J1
+s3rOEpDnZXjpZ3fgxWwBeV4Gp82H7PrMFZDnZVivWnbuzTwBeV6GUS0bbbN2
+E5DnZfha/0W13wIBeV4GrXCpFIsE5HkZ78Fi7+DFAvK8DB2fJhaPXiogz8uw
+4Uy2b/QyAXleBpfClxZTVgjI8zL8ubmhVcZKAXlehlOZk18sWC0gz8swIG9r
+atkaAXlehsktGl/esE5AnpfhoblT1W93AXlehu2ezhmHNgjI8zJ8njFunqmH
+gDwvg/3BJduubxKQ52WIHhzfvcsWAXleDseId5vebhWQ5+UQvBo53W67gDwv
+x4NT9+JjdgjI83Jc7iXNn71LQJ6X4+/eC8fLdwvI83Lobu2O2bZXQJ6X42OE
+6lG9/QLyvBzpK5u3unZAQJ6Xw8G8Y5fuhwTkOX/9vbbRHw8LyPNy9Dl/xcj5
+qIA8L8eiGfPz844JyPNy3JUGT9l0XECel+NhbcW8eicF5Hk5vD42kNw6JSDP
+yzFfMMO+/xkBeV6O3V761hFnBeR5OU7fbXF2/nkBeV6O8QNVt/UXBOR5Od6/
+ezLu1CUBeV6OaQ82nep8RUCel2O6z4G1QVcF5Hk5Aj+Ky2dcF5Dn5Tj1xVKo
+vSEgz8shrG3hc/KWgDwvxzM/U3E3LwF5Xo7Xx4YoQu8IyPNylFmEb1pwT0Ce
+l6PF9PKrBg8E5Dk/I2HWjYcC8rwccsPXfkMeC8jzcni08nub/kRAnlfgvLyF
+0zZvAXlegZXHpPtbPBeQ5xUwOP7SNeCFgDyvwMGO477NfiUgz/n/f1mS+ve1
+gDyvgPNM80NebwXkeQW8DL2/278TkOcVmLPx98eS9wLyvALbLg4ec8JPQJ5X
+wO7qRfe+AczzCuxOHWWT+oF5XoG3qTvv7ApknlfAftLaJ52CmOcV8O48cXL0
+Z+Z5BV6tm3TVI4R5XoGz657saxPKPK8Arp00+hbGPOe/73zfAeu/Mc8rYN07
+0qB1BPOcf/71J1Z+i2SeV6De6edbNkYzzytgVLWwc7tY5nkFXrbP3xwTxzyv
+QL9qtxU7vjPPK9BobhMDq0TmeQWcDltbpycxzytwLKqmwbEU5nkFZgWcO26T
+xjyvwNJG8C5PZ55X4E5Yz7U3MpnnFTj083rSxCzmeSXsRUHZwhzmeSV+r449
+8S6XeV4JlU6YsyKfeV6J4JNnky0KmeeVuDHjnXtSEfO8EltfPHjlWcI8r8S4
+Vtcvjihjnldi8PzYtrXlzPNKZKzd6vy6knleiZUbEzqtVDDPK/EnsolXRxXz
+vBL+hjuDs9TM80qY62yPXdEyzyshPXWlZoqOeV6J4fIvxqY1zPNKrIr8GR79
+k3leiYVbPHp4/mKeV8Kt0H3Q2D/M80qMsuhWLjMQkueViFqe5vCVE5LnlQiy
+DRhzWCgkzyth62KkHS0WkueVqDwhGWMoFZLnlehnWmQfKROS55XYZF1adsJQ
+SJ5XwvXUeJtJRkLyvBJFhWP78Y2QPK9E6dB2yWkmQvK8EsZxJh1uNRSS55Ww
+bOzcYrGZkDyvxJr37T9YNRaS51UI8Poi15gLyfMqfNZu4AKaCsnzKjjWX3t3
+f3MheV6F3bu0KseWQvK8CiatRlY0aS0kz6uwS3nlbG4bIXlehfkjBhV6txWS
+51W4cG5OwZb2QvK8Cvu8xp526Cgkz6swffHQUjNLIXleBafGmxQ5nYXkeRUy
+LAbefdFVSJ5XQWgdJN5tJSTPq7DfbnLjiT2E5HkV2q/o+d2il5A8r0JR44tQ
+9RaS51WYWhAxI6SvkDyvgp+vSceL/YXkeRVmv7x7Y7m1kDyvQmTnqLBhg4Tk
+eRXM/SNumdkIyfMqGNvldSkZIiTPq3A0aeqCwGFC8rwKj2KXOV6wFZLnVaj/
+dW7xKjsheV6Fdue293MYKSTPqzBnvKhPGwcheV6Fg6NtcvSjhOR5FUotFtt9
+HyMkz6vw9Nm3Kc/GCcnzKoiMnrQ46igkzxXYfm7CucUThHTeFRhS8CtwhLOQ
+fFdgZKb+RtvJQjr/Cry/fqS3wRQhea9A66PaTVlThZQHCniN3uceOE1I/isw
+6/OWtrdmCCkfFDjX3uLAnllC6gMKSDI+XF8wR0h5oUCHm1dWOMwTUj9QYO7C
+P5Vd3ISUHwosW9K7s/FCIfUFBbZ23t5EvUhIeaLAhZWWH1KWCKk/KJAwdHuz
+wGVCyhcFbpUFW91fIaQ+oYCo3mjd8VVCyhsFyjwmbfFYI6R+ocDyid1fz10n
+pPxRQPy33b0x64XUNxRQ99o5od9GIeWRAkvTj7xqs0lI/UOBzMGno+ttEVI+
+KTDhe9Yd/VYh9REFTq8N6lO4XUh5pcDhTnu3JewUUj9RYIfz6p3Bu4WUXwrM
+vBBv83qvkPqKAn9ya1/f2S+kPFPAY7V10bmDQuov/Pf5xicePCykfFPgx/EW
+u7ccFVKfUWCfwbzClZ5CyjsFNGsqZfNPCKnfKHDwQOPiKaeElH8KbOjfYf+4
+M0LqOwp0DVyWOfyckPKQv3/v/pqBF4TUfxTol5z8tdcllo8KpM+5NbPLFSH1
+IX7/vc562u4ay0sF3p4qDGh5Q0j9iN8ff8WeTW6x/FSgrcvJ5mZeQupLCnTv
+m7DU5C7LUwUaH++0yei+kPqTAlG3UuwNH7J8VeBm7ZBE2WMh9SkF1m+531H2
+lOWtAi3tl1rLngmpXylwJSXRUP6C5a8Cq3/b3TJ8JaS+xb/PSKHe6A3LYwWG
+vlhp2sBHSP2Ln+fHV5m9Z/msQO/SI6ea+gmpj/Hn436xplUAy2sFBtuNbNXh
+o5D6mQJh/ip5t08svxWIcxvr3+ezkPqaAoNSb/e2CWF5rsAIs4mrRoYKqb8p
+kOP6dLXTV5bvSuhsjQdMDxdSn1PC2z8qeGEky3slXslGNF0XLaR+p8SJgNC+
+O2NZ/itREPjS3DNeSH1PiZAJs4OuJDAPlCj/3a7f4yQh9T8lWryctcYvhfmg
+hOu9hesj0oTUB5Xot/K8bWYG80KJThVjkqt+CKkfKhG0KNNamMP8UMJw+RO3
+JnlC6otKBOabTLMqYJ4oca3JkqZ2RULqj/zzXa1/d1oJ84V/nvnzateUCalP
+KhHwMqD14QrmjRKpVruNb1cJqV/y7ytCFuGnZP4okZX9xiVRLaS+qcQ887wn
+Ci3zSAnPtapYI72Q+qcS9R3tQrr8ZD4psWBBn4OjfgmpjyrR90u7Jov/MK+U
+OPJj/aYDBiLqp/z78Dj44J5ARH4p8cnb/0GoSER9VQlnwcbNxRIReabEtPGN
+mteTi6i/KtH2U61nj3oi8o2/n8rjcZPqi6jPKpH8uXvxJhMReadE+qFhcdcb
+iqjfKjE9r/3xEDMR+ce/75ThLcsbi6jvKlH09dfORk1F5KESi9x93w5tLqL+
+q8RnZcanJS1F5KMSoUGRt860FlEf5t+/f+WUjxYi8lKJ500eZZe2E1E/VsJn
+pdvwph1F5KcSvV7u2exgKaK+rITcZvXBjV1E5KkSNYEnV9zrJqL+rETkFKfO
+Sd1F5KsSl91NP0h7iahPK2FcMbLr4D4i8laJe7+c1q7qJ6J+rUTFoCsnbw8Q
+kb/889w4dThpoIj6thKnDl6baWQjIo/5+Vln+YihIurfSogG3Dq9FSLyWYnN
+N1ZrXw0XUR9X4mfE337lI0TkNb9+4k8TOzmIqJ8rMVvTYsz80SLym3/e+7tb
+Xx8ror6uRNTRmXGp40XkuQohHs3dmkwQkecqVNzuFjfFWUSeqzD34e/W5yeL
+yHMVjhz9Oy5xiog85z/3vjXNfJqIPFfhctpE+2kzROS5Crm2u02vzhKR5yo0
+3HDz0485IvJchVmr2kxsP19EnvPXP7YuaOkCEXmuQoez0sbPF4nIcxWeP5s8
+rnqJiDxXIW7114XDlovIcxWOhafMP7RSRJ6rsKCN3i5utYg8V+F07yuylutE
+5LkK/az6vl6yXkSeq+Bx23rEm40i8lyFgKMtfbnNIvJchdjRro0nbhWR5yrU
+uzt72s3tIvJche2R9/ZW7RSR5yqYzrh/znaPiDxX4fP4pBNn9onIcxWeGnmv
+KzggIs9VwHKvoYMOi8hzFebc6KE+flREnquwb2z4mTxPEXmuQtbmypaDT4rI
+cxU2X2t05vRpEXmuwvjTPqqSsyLyXIXV15ww4oKIPFfBYqXr5uuXROS5Csom
+42/or4jIcxUSLR6+dLkuIs/5+1tX9OrlTRF5roLN7INeJl4i8lyFnV7cntV3
+ReS5CruXJjlF3xeR5yqctN1r1PORiDzn77/jPr9TT0TkuQrXdrhOV3uLyHMV
+asx3lkx9ISLP+e/v5rHC/5WIPOfvb3ZglsVbEXmuwqSAVIdD70TkOf/9H+1v
+V/qKyHMVFjvsr5oaICLPVZhwy7zPp48i8lyFqL07l3UNEpHnKnwwHnbhfLCI
+PFdhVEzyey5URJ6rkO0bzW9BEXmugn2P+zkZ4SLyXIUt1TnF46JE5Dl/PQdJ
+sX+MiDxX4fiHi1lW8SLyXIWzC1rE3kgQkef8+3hi7tcwWUSe87/vbnLjQKqI
+PFfB5e+x7T/TReS5CgkCs6lrf4jIcxVSLnbrVpQtIs/VqLGb/WtOnog8V+OY
+qmd4coGIPFdjz59u552LReS5Gi6d02ZHlorIczVKrwR3GF0hIs/VWF26rjSk
+SkSeqzGw0ZrndioRea7GvZ32G4I0IvJcDaV+16DhOhF5roaZ/6O/QTUi8lyN
+k4ucwkb8EpHnakzgfp4K/SMiz9VY9Xfg7LGcmDxXQz7oklWMUEye89eruvvX
+RSImz9UwDy9PSpeJyXM1/qT+frWgnpg8VyPn/OJz5fXF5LkaH9PfbvNoICbP
+1bBTbF3GmYnJczX27bSfc7yxmDxXI+DivRnNm4rJczXEr7vNfdhcTJ6rYeS9
+dKV1KzF5rkZoWMXesDZi8lyNto/H35nWTkyeq/FybpPo0g5i8lyNWdOyhTst
+xeQ5f/2lg+1Nu4rJczV6hL4/88BKTJ6rcb1+VfnQnmLynH9em3Uuib3F5Lka
+215+/7aqn5g8V2NmryeOUmsxea7G1QzP7NuDxOQ5//s2xvuGDhGT52o06ful
+f9owMXmuhko+umbTcDF5rsbexd2jzUeKyXM13jsZvfVxEJPnahy03P7MdYyY
+PFdj/ptG/jXjxOS5GoHmq9OvOYnJczXORlk0GO4sJs/VCHvzZXrhZDF5rsZz
+UfV7z6li8lyNnc7jevSbLibP+c+PzvXLmCkmz9XY+jNy9sE5YvJcjd72PZr1
+ni8mz/nfX9q6ImOBmDxX44X/wLQji8XkuRrWFU1zrJeJyXM18oQzBUUrxOS5
+GqNmXx12cbWYPFdjuLfHhdHrxOS5GiN/HzGsXS8mz9V4/MT96jMPMXmuRu3y
+6DELtojJc/7+htuYN9suJs/V+HnQlYvdKSbP1dAXBtU7vEdMnmtQO6vZgOH7
+xeS5Bv37/95de1BMnmuwrl79Cp8jYvJcg+HhxVvXe4rJcw0sH/fq1vukmDzX
+ILjXgT9Vp8XkuQbKnoe0z8+JyXMNykOSG6y7KCbPNVjt2tS57xUxea7B50ul
+PtXXxOS5Bj/2Kuz8b4rJcw08XCO1u73E5LkG3E2L2FH3xOS5BtGWp+JNHorJ
+cw3+ij7+TnksJs81OHPccdIdbzF5rsHsmbmxq1+IyXMNpGMtttq8FpPnGvze
++MRJ7iMmzzVYatN5Qsp7MXmuQfP+Ntsf+ovJcw022RxJ2vJRTJ5rMH3Buznj
+g8TkuQa/fi1vbBEiJs81iD0zplYTKibPNZhTrG8Q8U1MnmvQtKa1q1ekmDzX
+oLdufvTWGDF5rsGSsUs3ucSLyXMN4k6kTOqZKCbPNbhzdvr8eili8lyD6uln
+7hSniclzDfaadW0elikmzzWY0fbrl/vZYvJcg/umjR4cyhOT5xpMvvP247JC
+MXmuQYifS33HEjF5rsGu5ZfP9i4Xk+caxJR3m9SkSkyea7Dqzpsxf5Ri8lyD
+NuYZWws1YvJcg0nKsYUxOjF5rsEr0WNPv59i8lyDT8O9Vt//LSbPNXDzy/A8
+ayAhz/n9dFNQvEcoIc81sMaH3eskEvJcA0ORj6ubXEKea+DnfmGVi5GEPNeg
+URdZ8CgTCXmuwbyMN9OGmErIcw3iXR169mksIc81MNi2eFSXphLyXAPngYG3
+27aQkOcaLD77c1iL1hLyXIMDNz+3MW8rIc/587cjaKRpBwl5rsGOWbefmVhK
+yHMNDq03mmPcVUKea/BO5D3ZuLuEPOff3/Tup0x6SchzDW4EWjcy7SshzzXo
+dswju/EACXmuRceG57TNB0nIcy2uPxjs0naIhDzX4vKdRr87Q0KeazHDNVLR
+205CnmtxrYFRryH2EvJci+/mO/1HjZaQ51q4PYo86zJOQp5rkfz7tq+bk4Q8
+16L1sIfd3Z0l5LkWLw4eUex1kZDnWgTnVwnOu0rIcy02uxxY9HCGhDzXQhCo
+bvphtoQ81yJSn9/q+zwJea7FrUDBxtIFEvJciy/vq1sLl0jIcy06rFnestVy
+CXmuxSxn6eqBqyTkuRYFzz0aTVkrIc+1aO8/v8H69RLyXIs9e9a5nfGQkOda
+7Khwqvd6i4Q81yIk2Kte4nYJea7FwNuNF+p3SchzLWQ1Exq32ichz7V4bfqz
+zYiDEvJci2aygP3Lj0jIc/77goeOPOspIc+18Prdae6HkxLyXIv7Nm2Sis9I
+yHMtekdFPWp8QUKe8+sRnpo24rKEPOfXo2HpsvXXJOS5Fk8c7rnevSkhz7Xw
+iH55N8lLQp5r4Rjz1tnwvoQ818K/u+tcPJKQ5/zzHrWJ3vhUQp5rkTZcdtP7
+uYQ81yJzsVt84SsJea6FaUjl0rY+EvJcC4sU5wWzfSXkuRaShJ6frwRIyHMt
+Gl+2OpgaKCHPtSj3KXveLFhCnmuxalkD25mhEvJci7cXhlrf+CYhz7VoHtX4
+Qm6khDzXotVwm9mdYyXkuRZLIiYcX/NdQp5r8blQ0+l9koQ816Lhs4iugjQJ
+ea7FuLQNlx0zJeS5Fps+nVp/JVtCnmtxd0Kgb3GehDzXosz41sqBRRLyXIsF
+LeI9j5RKyHMtunbSNM+okJDn/Hlzv9ukl1JCnvPv6/vufQc0EvJcizWPOs3N
+0EnIcy0u5vZ50q9WQp5X4712+NITfyTkeTVMcqsulHBS8rwaSqsUawexlDyv
+xves8+PuyqTkeTWmHgyOFxpJyfNqTLaqjVpoIiXPq1E+M2lomKmUPK/G1RaV
+7bqZS8nzaowqT9txqpmUPK/G9LB+E3QtpeR5NZJbnr0410JKnldja5yn67f2
+UvK8GnFD3p/sZyklz6sxw/KJ7e2uUvK8Gs++/lxu0kNKnlfjxhcbk129peR5
+NRb2EPRQ9JOS59UI3Z4T5jZQSp5XY8KZlZlJNlLyvBpbfPqvGQ8peV6N4nPR
+O4LtpOR5NW7afJUPcZCS59UY3uy1mc8YKXnOX6+29bXejlLyvBqrjK7eeTZR
+Sp5X42H8267dXaTkeTW+dP/d29tVSp5Xw3PKH98eM6XkeTXapdgHv5wjJc/5
+578012mAm5Q8r0azyKSZAYuk5Hk1vH/2Lx+xTEqeV2NwrcQgaqWUPK+GhTr+
+outaKXlejaUu7d7krZeS59Wwztg+Zd0mKXleDfvTy7YbbJOS5/z3f17d5fRO
+KXlejSiR6ez2e6XkeTUM+6Y0eXdASp5Xo+UK+xnjj0jJ82oMrZ/ZIc9TSp5X
+Y4Vf283bTknJ82pwk8+7ND4nJc+r4aJ97/fiopQ8r8bsX0ZPHK9KyfNqzPzT
+oFP5DSl5Xo2DESOsPL2k5Hk1Qla2/9j9vpQ8r8b8dt0zYh9JyfNqRLtlHtzo
+LSXPq7Es9fnHFi+l5Hk17Ba12R/8RkqeV0PV5H7yyvdS8py//34ffJsESMnz
+aqR0z+waEiglz6ux4/6Obu7BUvKc35+rGwe0DZOS5/z+2Nc8Mz5cSp5X4099
+wckD0VLyvBrD3GzjB8VLyfNq6H6PflCVKCXP+fd/6ITxg1Qpea7DlOi9snmZ
+UvJch+ZhF843z5GS5zoEHh/sk5QvJc91aLogc/m5Yil5rsO4pxWvJ5dLyXMd
+BKqU040UUvJch3NZ9cTJail5roOtnar+VZ2UPNdhqUz3dF6tlDzXId52f67l
+Xyl5roOumfC5QiAjz3UYn5Nu6i+Rkec63BB4GB8ylJHnOiyRDvRyMZaR5zoM
+vHAour2pjDzXoaX7t7OaxjLyXId6W+erQpvJyHMdZjx8VXqllYw812GYaZsd
+a9vKyHMdRhVJH4/qKCPPdShdG7XOoouMPNfBzDQm4aeVjDzXwcdhxfekXjLy
+nH/eO39XveknI891ECcW3z07UEae8+txa+/mDUNk5LkOvjmWJVNtZeS5Dtme
+fXSDR8rIcx12PK31shgtI891MHZLL5eOl5HnOlwt6JyomCAjz3U4eGDwrPTJ
+MvJchzn3F+0Nc5WR5zq8/vxn1NuZMvJch5/Lp3vfnSsjz3VYYf/11fkFMvJc
+B1X969MOL5GR5/z+uND55vYVMvJchz8hfgfd18jIcx2mX/QyWb5eRp7rsK5N
+j8ELNsnIcx0sDzyWzNkmI891kEsWbpyxS0ae8/ervXdw2j4Zec7vpwC/wdMO
+ychzHT6klp2efkxGnutQk7vHc9ZJGXmug8u+kK7zz8rIcx2ub/+5cslFGXnO
+r++DZZPXXJWR5/z7U039sfmmjDzX4e9CifH+OzLyXIcBLf1zTz2Qkec6PHZ8
+N+vmExl5zq+fw5Dtz5/LyHMdjFYdHR70Wkae8/tnWM7ThHcy8lyHa5N3fSzx
+l5HnOkTM9PIw+CQjz3UoaXsosWmIjDzn9//RZel9vsrIcx2sz+8/7BQpI8/1
+aDXLNHNFrIw812Ni4/GpRxNk5LkehabLdzxJkZHnengG3/kWlSEjz/Vo+Lrn
+R2W2jDzXQ3V0xMwmBTLyXI9S00a3h5XIyHM9DvVOPLmkQkae6/Gl3NfyjFJG
+nuvxeLlm6UetjDzXo1j5dnJ5jYw812NPaY/iFn9k5LkeHj9OdHIUyMlzPdZs
+FZnslsjJcz1Wn/hw+42hnDznv9+46EepsZw81+O8mXdoOzM5ea5HTfrg6bOa
+yMlzPWZE+l242EJOnuuxbO3UXQlt5OS5Hg+2DTAz6yAnz/XoGb530uTOcvJc
+j6Pz3Yaet5KT53psXFf7PaWXnDzX47PLevPW/eXkuR6WZypFiwbJyXM9WmSe
+uuk9VE6e6/HWfEehbricPNfjmFNi6ggHOXmux8Vgvy2nx8rJcz2aFziGZjvJ
+yXN+/SY/C+w9WU6e67Ez5+ei/a5y8lyPU+ecfVNmyslzPebfj/HtMU9Onuux
+68DpJQcXyslzPeYkvfqctVROnusxaYNTxOBVcvJcjyPuO/dcXCcnz/WQtJpV
+oN0oJ8/18Kr5Wz1lq5w818Po2x6fdzvl5Lke4Yf07Vvsk5PneoxYsxW7D8nJ
+c/79VbeUFx2Tk+d67E7Q7J5wSk6e6/HsT+MHvufk5LkeB56e3dbxspw812OC
+6+4/Z67LyXM9NvtX9BR4yclz/v5Sy03W35eT53q80x2/UfBYTp7r8fN2dvr0
+53LyXI+2T9VhMa/l5Lkey/skuo16LyfP9Xh55czTTwFy8px/3+cH3rMJkpPn
+eqxv8338+y9y8lwPnz2r7gwIl5Pn/HmZbPrIJ1pOnusxYHvE7IHf5eS5HiW9
+vYL8k+XkuR6df99IsM2Qk+c1+Pr+24WwbDl5XoNxZ7vIJhbIyfMa/DX50jmt
+RE6e18BS5qVfVCknz2vQ5OmXTWqVnDyvwdz9/e7v1cnJ8xqUuav2mf2Sk+c1
+6PZG0PC+gSF5XoOB2UscB4sNyfMa6MvaD4qVG5Ln/P10HZiwxNiQPK9BZ8d7
+rTkzQ/K8BlGLVzS91sSQPK9BTumRoIEtDcnzGtx6/rdZsoUheV6DP5XhbTd1
+NCTPaxA/qiSlaVdD8rwGvz66IqCHIXleg5OfTKfM72tIntegxsK8uWygIXnO
+30/r2SdeDDEkz2vwdl7uyxnDDcnzGsh/39wvcTAkz2tweMNJyZuxhuR5DXx8
+HlkvmGBIntdgVruiJo1cDMnzGrw5iAeh0wzJ8xqc6PC4YOtsQ/K8Buuet/re
+y82QPK/BN6dTa4oXG5LnNZDc1PndXmFIntcg9NXot7PWGpLnNdCabZ7TbKMh
+eV4DdcgWn+QthuR5DXyHD/9wcacheV6D2t1B7tP3GZLnNRitLU9qediQPK9B
+rxNvS3I8DW3/D8t6RRQ=
+ "]]}, {{}, {}}},
+ AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948],
+ Axes->{True, True},
+ AxesLabel->{None, None},
+ AxesOrigin->{0, 1.9267741928025102`},
+ DisplayFunction->Identity,
+ Frame->{{False, False}, {False, False}},
+ FrameLabel->{{None, None}, {None, None}},
+ FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}},
+ GridLines->{None, None},
+ GridLinesStyle->Directive[
+ GrayLevel[0.5, 0.4]],
+ Method->{
+ "OptimizePlotMarkers" -> True, "OptimizePlotMarkers" -> True,
+ "CoordinatesToolOptions" -> {"DisplayFunction" -> ({
+ Identity[
+ Part[#, 1]],
+ Identity[
+ Part[#, 2]]}& ), "CopiedValueFunction" -> ({
+ Identity[
+ Part[#, 1]],
+ Identity[
+ Part[#, 2]]}& )}},
+ PlotRange->{{0, 1.6}, {1.9267741928025102`, 3.31879026971162}},
+ PlotRangeClipping->True,
+ PlotRangePadding->{{
+ Scaled[0.02],
+ Scaled[0.02]}, {
+ Scaled[0.05],
+ Scaled[0.05]}},
+ Ticks->{Automatic, Automatic}]], "Input",
+ CellChangeTimes->{{3.915771872450286*^9,
+ 3.915771873801431*^9}},ExpressionUUID->"596a8ce7-fc36-4ac8-af24-\
+031757805468"],
+
+Cell[CellGroupData[{
+
+Cell[BoxData[
+ RowBox[{
+ RowBox[{"e13", "=",
+ RowBox[{
+ RowBox[{"(",
+ RowBox[{"inisol", "\[Function]",
+ RowBox[{"FoldWhileList", "[",
+ RowBox[{
+ RowBox[{"Function", "[",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"sol", ",", "\[Omega]22"}], "}"}], ",",
+ RowBox[{"Join", "[",
+ RowBox[{
+ RowBox[{"Append", "[",
+ RowBox[{
+ RowBox[{"Take", "[",
+ RowBox[{"sol", ",", "4"}], "]"}], ",",
+ RowBox[{"\[Omega]2", "->", "\[Omega]22"}]}], "]"}], ",",
+ RowBox[{"FindRoot", "[",
+ RowBox[{
+ RowBox[{"e11", "/.",
+ RowBox[{"Append", "[",
+ RowBox[{
+ RowBox[{"Take", "[",
+ RowBox[{"sol", ",", "4"}], "]"}], ",",
+ RowBox[{"\[Omega]2", "->", "\[Omega]22"}]}], "]"}]}], ",",
+ RowBox[{
+ RowBox[{"Drop", "[",
+ RowBox[{"sol", ",", "5"}], "]"}], "/.",
+ RowBox[{"Rule", "->", "List"}]}], ",",
+ RowBox[{"WorkingPrecision", "->", "20"}], ",",
+ RowBox[{"MaxIterations", "->", "500"}]}], "]"}]}], "]"}]}],
+ "]"}], ",",
+ RowBox[{"Join", "[",
+ RowBox[{
+ RowBox[{"inisol", "[",
+ RowBox[{"[",
+ RowBox[{"{",
+ RowBox[{"1", ",", "2", ",", "3", ",", "5", ",", "6", ",", "4"}],
+ "}"}], "]"}], "]"}], ",",
+ RowBox[{"inisol", "[",
+ RowBox[{"[",
+ RowBox[{"7", ";;"}], "]"}], "]"}]}], "]"}], ",",
+ RowBox[{"Range", "[",
+ RowBox[{
+ RowBox[{"Rationalize", "[",
+ RowBox[{
+ RowBox[{"\[Omega]2", "/.", "inisol"}], ",",
+ SuperscriptBox["10",
+ RowBox[{"-", "6"}]]}], "]"}], ",", "3", ",",
+ SuperscriptBox["10",
+ RowBox[{"-", "4"}]]}], "]"}], ",",
+ RowBox[{
+ RowBox[{
+ RowBox[{"\[Omega]2", "<", "\[Omega]1"}], "/.", "#"}], "&"}]}],
+ "]"}]}], ")"}], "/@",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"(",
+ RowBox[{"\[Epsilon]\[Epsilon]", "\[Function]",
+ RowBox[{"SelectFirst", "[",
+ RowBox[{"solzeros", ",",
+ RowBox[{
+ RowBox[{
+ RowBox[{"\[Epsilon]", "==", "\[Epsilon]\[Epsilon]"}], "/.", "#"}],
+ "&"}]}], "]"}]}], ")"}], "/@",
+ RowBox[{"Range", "[",
+ RowBox[{"0.2", ",", "1.6", ",", "0.2"}], "]"}]}], ")"}]}]}],
+ ";"}]], "Input",
+ CellChangeTimes->{{3.908965845707684*^9, 3.908965933284802*^9}, {
+ 3.908966061855267*^9, 3.90896634830872*^9}, {3.908966417734704*^9,
+ 3.908966417829668*^9}, {3.909041956908346*^9, 3.909041957027675*^9}, {
+ 3.90904201242258*^9, 3.909042012604719*^9}, {3.909042831164308*^9,
+ 3.909042875324937*^9}, {3.909042936502192*^9, 3.909042990614989*^9}, {
+ 3.909043033303988*^9, 3.9090430858649387`*^9}, {3.909043120074722*^9,
+ 3.9090431489458647`*^9}, {3.90904317971463*^9, 3.9090432258672523`*^9}, {
+ 3.909043264180773*^9, 3.909043270956205*^9}, {3.909044224006723*^9,
+ 3.909044276911423*^9}, {3.90904459896806*^9, 3.909044606013604*^9},
+ 3.9090448090817537`*^9, {3.909045133487328*^9, 3.909045149072093*^9}, {
+ 3.909045183744899*^9, 3.909045184480734*^9}, {3.909045272674652*^9,
+ 3.909045275818399*^9}, {3.909045363781097*^9, 3.909045364556114*^9},
+ 3.909045705179872*^9, {3.909046708942043*^9, 3.909046709005525*^9}},
+ CellLabel->"In[36]:=",ExpressionUUID->"22832d0e-448c-47f2-8f0e-e89d73befd40"],
+
+Cell[BoxData[
+ TemplateBox[{
+ "FindRoot", "lstol",
+ "\"The line search decreased the step size to within tolerance specified \
+by AccuracyGoal and PrecisionGoal but was unable to find a sufficient \
+decrease in the merit function. You may need more than \
+\\!\\(\\*RowBox[{\\\"20.`\\\"}]\\) digits of working precision to meet these \
+tolerances.\"", 2, 36, 6, 23800662333952606617, "Local"},
+ "MessageTemplate"]], "Message", "MSG",
+ CellChangeTimes->{3.9090452974512463`*^9, 3.909045386864654*^9,
+ 3.909045729966325*^9, 3.909046731316805*^9, 3.915533082647563*^9,
+ 3.915772719163579*^9},
+ CellLabel->
+ "During evaluation of \
+In[36]:=",ExpressionUUID->"0e26f2eb-9d86-492c-91a9-5ea47d8e976a"],
+
+Cell[BoxData[
+ TemplateBox[{
+ "FindRoot", "lstol",
+ "\"The line search decreased the step size to within tolerance specified \
+by AccuracyGoal and PrecisionGoal but was unable to find a sufficient \
+decrease in the merit function. You may need more than \
+\\!\\(\\*RowBox[{\\\"20.`\\\"}]\\) digits of working precision to meet these \
+tolerances.\"", 2, 36, 7, 23800662333952606617, "Local"},
+ "MessageTemplate"]], "Message", "MSG",
+ CellChangeTimes->{3.9090452974512463`*^9, 3.909045386864654*^9,
+ 3.909045729966325*^9, 3.909046731316805*^9, 3.915533082647563*^9,
+ 3.915772757794013*^9},
+ CellLabel->
+ "During evaluation of \
+In[36]:=",ExpressionUUID->"d7d2d2b6-5759-4cc8-9a15-621a513b57c6"]
+}, Open ]],
+
+Cell[CellGroupData[{
+
+Cell[BoxData[
+ RowBox[{"ListPlot", "[",
+ RowBox[{
+ RowBox[{"Evaluate", "[",
+ RowBox[{"Prepend", "[",
+ RowBox[{
+ RowBox[{
+ RowBox[{
+ RowBox[{"Join", "[",
+ RowBox[{
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"\[Omega]1", ",", "\[Omega]2"}], "}"}], "/.",
+ RowBox[{"Most", "[", "#", "]"}]}], ",",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"\[Omega]2", ",", "\[Omega]1"}], "}"}], "/.",
+ RowBox[{"Reverse", "[",
+ RowBox[{"Most", "[", "#", "]"}], "]"}]}]}], "]"}], "&"}], "/@",
+ "e13"}], ",",
+ RowBox[{"{",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"3", ",", "2"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "2"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"2", ",", "3"}], "}"}]}], "}"}]}], "]"}], "]"}], ",",
+ RowBox[{"PlotRange", "->",
+ RowBox[{"{",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"1.9", ",", "3"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"1.9", ",", "3"}], "}"}]}], "}"}]}], ",",
+ RowBox[{"AspectRatio", "->", "1"}], ",",
+ RowBox[{"Joined", "->", "True"}], ",",
+ RowBox[{"FrameLabel", "->",
+ RowBox[{"{",
+ RowBox[{
+ SubscriptBox["\[Omega]", "1"], ",",
+ SubscriptBox["\[Omega]", "2"]}], "}"}]}], ",",
+ RowBox[{"PlotLegends", "->",
+ RowBox[{"LineLegend", "[",
+ RowBox[{
+ RowBox[{"Range", "[",
+ RowBox[{"0", ",", "1.4", ",", "0.2"}], "]"}], ",",
+ RowBox[{"LegendLabel", "->", "\[Epsilon]"}]}], "]"}]}]}],
+ "]"}]], "Input",
+ CellChangeTimes->{{3.909042514190548*^9, 3.909042520941848*^9}, {
+ 3.909043279228549*^9, 3.909043290980391*^9}, {3.909044758712824*^9,
+ 3.909044817697377*^9}, {3.909045206161439*^9, 3.909045253529738*^9}, {
+ 3.909045341508081*^9, 3.909045343371456*^9}, {3.909045626801211*^9,
+ 3.909045676689952*^9}, {3.909046978946875*^9, 3.909047057939874*^9}, {
+ 3.909047460827964*^9, 3.909047525484823*^9}, {3.909047561565816*^9,
+ 3.909047563765341*^9}, {3.915533019222624*^9, 3.915533021933949*^9},
+ 3.915536859762843*^9},
+ CellLabel->"In[37]:=",ExpressionUUID->"e61533c0-9653-4007-9f77-db9184a97720"],
+
+Cell[BoxData[
+ TemplateBox[{
+ GraphicsBox[{{}, {{{}, {},
+ TagBox[{
+ Hue[0.67, 0.6, 0.6],
+ Directive[
+ PointSize[
+ NCache[
+ Rational[1, 360], 0.002777777777777778]],
+ RGBColor[0.368417, 0.506779, 0.709798],
+ AbsoluteThickness[2]],
+ LineBox[{{3., 2.}, {2., 2.}, {2., 3.}}]},
+ Annotation[#, "Charting`Private`Tag#1"]& ],
+ TagBox[{
+ Hue[0.9060679774997897, 0.6, 0.6],
+ Directive[
+ PointSize[
+ NCache[
+ Rational[1, 360], 0.002777777777777778]],
+ RGBColor[0.880722, 0.611041, 0.142051],
+ AbsoluteThickness[2]],
+ LineBox[CompressedData["
+1:eJxNmXlYj2nbx6/7t5TRQpJSKaUyholkK8pJiWKIQqSSakohVCJbC1pUIoyS
+zBSVvSwjU3gYS0qWSo1BDKORMkW0YTznHO/7fY/XP46Ppfrd93Wd53cxWRI6
+J0AmhLgtCfHv7//zqwft/8Fyo4+xIPVBhi6NX1TpQKTX4X95g1HTnzHPVenB
+d4O0dzMbtUiWKddVSdOsMbqM+dPWG+96HFElp+6Tf39i3n+nRbMtWZU23wtf
+ZDVQUGud1jLnVap0Ps+2PIBZ6Wkp9ZynSq0bxLhM5qgVzlUjx6vS1243Dt9h
+3jpO1nploCr5DknWlpsIGhM2PPKciiplfJkdM5Z5cMbmNLU3KlT1QLclhDl1
+l+HKq9Uq1PP4k0U/Mt8rnTP3t19UyCE2t7yGed7X45Om56jQeo+l474yFTT5
+dZCffpIKnbUcnmfHTL4ZEx1Wq9AbxQft1cwmMwPjry1UIfNHv8TkMW/PESey
+HFTIuyi65XfmxY31Q8uHqdDeeCevXoMEnf82NmF6PxW666Ve4cBc5GTpaixU
+SHVU1bi1zBGhR/UcXyuJeu7LO878TFseXVyjpLXPvPr+wRxW8t2w9ZeVVPTz
+oFgdM0F9Pq+oSDqqpMbkxhZnZvPA530a9ijJ1O+U1ybmlGlbLm+PUdJCm4iK
+08xnpnrtiVqupPRe423+Ym4+F+pTtEBJFS9FvoG5IK3UbS2WTkpSlN7o68rc
+oaFi9G6kkibsSo7dwjz60cVbXcZKigia01rMbHOotM5RQ0kn7PW83zCHDje3
+rupWUEPf+goTC0G/lCsqf3ylIKOmXJt5zMM0h2adqlXQ/CtL85OY17yUHfh8
+TUFpPwzXuczcVb3sfuIZBZUt/xDbxiwFZZJbjoIkx5LWwYP5PFW9bvfYqSAb
+/RjvRcxib5kyM1pBq1udbqcxH3VJiNNZqaCjN9RtrzMvWjxte7mPgl5kVeV3
+MZ97fn9C8SwFGYTt07H8WpCDZVTpk4kKcnf2jlvCfDVNaW07QkHJxmZv9zI3
+VSRV3h6ooOsfGr0rmG+vnn9xt5aCPlecuv2F2Uz/wdidMgWNyYmwHTVEUKB7
+6JorbXJasXZ8QRBzyOqon81eyil/ptTvAPNnycDml1o5PTW7GXefuVlu6RBT
+Jie9j8lvld8Icqq2GrDuFzm53p/jY8tcdn649k/H5ZSYr1e5gvnugLzwzmw5
+Xd1Yb5vLPHJF2O5NO+XU7XaooI75bPSVspFb5GT9TXA/9aGC3ua+De4bKacQ
+MWILMT8cnVhnGiynQ7Uf3oYzd9w0WuHlJafHx0t8jjC3lE/d+aurnHTiYiqf
+MP9Wui3P3VFO3y2YOr7PMEEWtTb9eo+T07bhGkecmA2tkqZ/GCqnS8rqfuuZ
+HwR6npUPlFPHo31bTjH3Pzz+im1fOQ0/7f3uBfNMM/eXGT3kFJRgtljvW0EG
+AxbuHfhZRj96v66cwTxaN3rGnbcyejiqcHwM86jcwNicBhlpqa05co55RIT2
+uaxHMnL5Y7zua2bz+od+pfdkFHte2mpkyX//0/ze0g0ZlaTcfDeH+a6Jn31w
+iYza/FIWxzMHvfoS1lEoo2G2bndKmMOi5tgU5MkooHf/Ca3MV+N2623IktGB
+hvojZsMFLZ/5VfbqXTKqLT2ku4D587Z387cnyEgzPXhrCvMBl6211zfJaOrS
+EW1XmHtufHrMJEJGmye2L25nHuL/OSQ7REbFOqV3vhnBHH/q+PglMmptipng
+w2x/N03Z5SGjIVenHk1nlr/61Kt2lox892nolTHvf6ISWOUko8wV1Vs/MT9q
+D81/YyejKseMthFWggpuZYcOHi0jNQMf3wDmv+L3+mweJiOHt2Z3M5gXxv2t
+92GQjDbcfD3hDvPDhlv2CQYyOnug8KhspCCv3LsR47Rl9CZsjd5Y5qAdpv5K
+NRmZu0zYFsI89/yCor9lMvIeKHt/kJmerFV53y3RD+03fWuYtQY3aui0SXT3
+dsrdHtaC4rtWhc1ukqhHrpudHXPdP1Z/FryQiNb1P7aKuWr+Pk2DxxKtm/VU
+L495crtXTn6NREXmh7f9zrzSeLPrzEqJXn8Mfq85iuelzugKzRsSmVaNWOIw
+6t/n03L91SWJPAva70Yyz/je9cOj8xKlbyq1O87camPa61WhRLfdY489Y+5l
+Mq9c/ahEiqHT+uuM5nk6/VO9c65EdpJmvDOz+SN7lYNZEkXUVb/fyFyzaVG3
+2l6JTp7IWHKa2WBU7pq0HRI1xPnca2BuMAkZOyxRIuOF5vYGY/j+p2t118dK
+NH9E07FZzM0a7zcUbJAoTaWo/xbmh9tCNieskajs8Zr4YuY7p25e2bRSIunM
+hA/NzCt9XZTbgyWyTZT5mYwVdMRokPoJf4lW+5Tdm8u8pig4409viY6NTrVP
+Yg5/ZrTKaoFEL9Tcj19iXj7ByCPdTSLD5/3125gXKs369pwpkXvx0/jB4wRZ
+WVwL2TNNopTUwx88mbucAi1GO0h03T/EL4058b2TeqOdRP/YWt2/xuz7ZGlD
+4TiJxmh12HcxGw/6cVOytUShf5Ue/9ZGkOI/mw+ut5Qo/2Ks/hJmVeHbd9MQ
+iZ6lT0vYy9yu7nkk3UwivWDN9nLmkSk0tNRYotlU4/eFOdY9K7BDX6LEfpn3
+rW0F7bY4OWxKP4muNvtMDGL+OSnQ+bCWRN1XzU9kMbsXBqXoakhkndGkf5+5
+zu9z2f4eEoWEFiUox/Pz0davtFJIdGhKZLsNc+YLj5CHXwQ9MbDzX8HsV9Ue
+seujIJ13sqoc5i+N9y4v6uA5VFY2sY7ZN8bXcFyboG3ZqSfUJgjS2H7Rx6xF
+0OVwdwNiTn6709ukieeki35iOLOdZPK35V88Z0yetRcwWzyd+OeMF3xvOg77
+P2EOUXfXXf9U0E+VIVVadoJM2129Lzzic5BrRU7MFjvPpan+xns7quNEFPNB
+KWlbQI0gF9eLBqeYm77z0qu+JyjOIi7xBfMBQwdj10pBJZ+mdeja833ZeD/8
+8S1B76s0A2YwZ5cYtUXe4L16pKYqmrm33eVw018FBWzOpHPMLwJ/rXl0mb/O
+3MUnG5ktdp/7O7dUUO1QC0OjiTyvlfuyoy7wPZE1J85h/tTy/D8+Pwua+ltR
+xzbmhOjYkW5nBEWfjAwoYY5+X3PPvVBQ8Ra76hbm2WcL1vmf4D2zUD7JjATV
+R9qqxR7lOWd166QHs8pqa/8T+YKWqO4wTGGeFZfv13CI39MT96QrzO5h2o3D
+cgRVn9Hv/MBcOMKzJvqgILWkZwHfTBLU1q9M+TxLkOPivGpv5rm2qt6umawz
+xyyblM5cWDz4UsUPvNfVR566ybygV4aq+x5Bb553GH5iDooYYti4iz/3hYtJ
+Iyb/Ox8U9Ulpgrx3xHX6M6ebFw63SRX0Q4Dz9xnMXfUa79u2894Y36umknnF
+7HmaJYmCevR5MEnmwHpXp/+S1Hieg68yT41hzqqzrV6+VdC6S4sHhDD7X2+b
+siBO0OndFtsPMje2Vma7xgh6HdzcWc28szj3qttmQYMmnf6+h6Ogzq+z9y7Z
+KMhTd23NBObMhdZi43q+F2/sJq9innrL7GXOOtYdv8oLDzPvyt04tCaSdXHm
+rQG/M9v33nmh9xo+lyt3bNecwvMwsDPCI5zvhdPcrsnMTZ47px5bLeikoUFg
+JLN53w06X63iPfHuWc0x5qxv+t9cFcr3/Fbe5GfMrXtUHV8uF+RxcFlhXyd+
+LytNw/2WCUqLGGnkzJydtWlic7CgW9M7t29kDhoblLp5Kes000tdRcyKJz7O
+A4IE2XbGBTYw/1qgu+D694JW33F+oD9V0PWm0LzIAEHHDvVymMVskhimP8pf
+0J9RDwrjmLUb3LK7l7CumL3fqJh5p4e/QYUvv/fBvsnNzFVdfdcfXsy69rNF
+98BpPP9Km/MSfQTdqG4OnMv8bXZsQqS3oH+OnH6QyOx0LeKrUC9BY6PXOlxi
+Lnb01165iHXqPPuid8zLXJ/tiPLkPTpMYTzYmc+Pt19Q6kLeE7LyZE9mj6f2
+244tYB3zcEf3DubM54lV9z343J+aG3SNeeLrnmMk5qStBrWdzDEfDTNs5rOO
+8PzD4VsXQXPOpL6Imifoo1V+kS9zSPW6T9fmCrLusdx4L/MuV61yXeZl9SNT
+yl3+PYd+VmHugg6d7ez+h/lCsnq/OjeeZ0mXgqyn8+fcWrfAgVnHd0ttIHPq
+jSmPz8/heTbWxTGLec2X7nWjmOM1ep++x3xaRUX9wmyeZy8eGCtn8LxTlwVO
+Ye68sD/Fhvm0j8bCh648z9J8Py5nXlmy70Q489LvBy/NYR7QYGiqy/zThDe1
+tczp2rUr/jNL0O99zjiqfcf3PqGUVjL3aVx7eiLzLSM1Wwvm6ZftB4YzLzYu
+evfHTJ5nexSpBcyeud1dOcylIeUfHzNfddvwMIj5/aS0pVr/73f8Of4d/h++
+Dr4uvg++L34O/Fz4OfFz43Pgc+Fz4nPjOeC54DnhueE54rniOeO54z3gveA9
+4b3hPeK94j3jveMc4FzgnODc4BzhXOGc4dzhHOJc4pzi3OIc41zjnOPc4x7g
+XuCe4N7gHuFe4Z7h3uEe4l7inuLe4h7jXuOe495jDmAuYE5gbmCOYK5gzmDu
+YA5hLmFOYW5hjmGuYc5h7mEOYi5iTmJuYo5irmLOYu5iDmMuY05jbmOOY65j
+zmPuYw9gL2BPYG9gj2CvYM9g72APYS9hT2FvYY9hr2HPYe9hD2IvYk9ib2KP
+Yq9iz2LvYg9jL2NPY29jj2OvY89j70MHQBdAJ0A3QEdAV0BnQHdAh0CXQKdA
+t0DHQNdA50D3QAdBF0EnQTdBR0FXQWdBd0GHQZdBp0G3QcdB10HnQfdBB0IX
+QidCN0JHQldCZ0J3QodCl0KnQrdCx0LXQudC90IHQxdDJ0M3Q0dDV0NnQ3dD
+h0OXQ6dDt0PHQ9dD50P3wwfAF8AnwDfAR8BXwGfAd8CHwJfAp8C3wMfA18Dn
+wPfAB8EXwSfBN8FHwVfBZ8F3wYfBl8GnwbfBx8HXwefB98EHwhfCJ8I3wkfC
+V8JnwnfCh8KXwqfCt8LHwtfC58L3wgfDF8MnwzfDR8NXw2fDd8OHw5fDp8O3
+w8fD18Pnw/cjB0AugJwAuQFyBOQKyBmQOyCHQC6BnAK5BXIM5BrIOZB7IAdB
+LoKcBLkJchTkKshZkLsgh0Eug5wGuQ1yHOQ6yHmQ+yAHQi6EnAi50f/lSP+b
+KyFnQu6EHAq5FHIq5FbIsZBrIedC7oUcDLkYcjLkZsjRkKshZ0PuhhwOuRxy
+OuR2yPGQ6yHnQ+6HHBC5IHJC5IbIEZErImdE7ogcErkkckrklsgxkWsi50Tu
+iRwUuShyUuSmyFGRqyJnRe6KHBa5LHJa5LbIcZHrIudF7oscGLkwcmLkxsiR
+kSsjZ0bujBwauTRyauTWyLGRayPnRu6NHBy5OHJy5ObI0ZGrI2dH7o4cHrk8
+cnrk9sjxkesj50fujx4AvQB6AvQG6BHQK6BnQO+AHgK9BHoK9BboMdBroOdA
+74EeBL0IehL0JuhR0KugZ0Hvgh4GvQx6GvQ26HHQ66DnQe+DHgi9EHoi9Ebo
+kdAroWdC74QeCr0Ueir0Vuix0Guh50LvhR4MvRh6MvRm6NHQq6FnQ++GHg69
+HHo69Hbo8dDroedD74ceEL0gekL0hugR0SuiZ0TviB4SvSR6SvSW/wUIbv0j
+
+ "]]}, Annotation[#, "Charting`Private`Tag#2"]& ],
+ TagBox[{
+ Hue[0.1421359549995791, 0.6, 0.6],
+ Directive[
+ PointSize[
+ NCache[
+ Rational[1, 360], 0.002777777777777778]],
+ RGBColor[0.560181, 0.691569, 0.194885],
+ AbsoluteThickness[2]],
+ LineBox[CompressedData["
+1:eJxNnHlYjm33tu/ruidzRKVUFJK5MhSFJanIFBERKVNI5owVIQ3KTIkoKjOZ
+qWhAIZIiU5IIRSKRim89d+/x2773H9v+eF6P6r7WdZ5rHWs3cPceP1uUSCRl
+conkv18b/teILKrrTgT4SshqfEW9GvPHwIv9/uPHj0oWf/mtJIPpa2KvMB8U
+MhrnVippSl9qVc6svTzrZvJnJe1sovDr4CchZ0MKPvdOSfeK7pc7MU+evMHt
+xCslSa/scAlijt9TNeBkvpIstzlnJjMPX6zW4sJDJS330Ov/nfmJz8S81LtK
+OjXgXayRv4QU2pM3PbulpPdqx1tNZZ6z4bJG1TUl6X1Y5BfObB+g5691QUmT
+kvp+SWfWWGN3Y+gpJYXt/OPym/lxr7qUpceUdHfercweGyT0IallwIlDSpIM
+2dJ/JnN3n7n/Pu5TkoXGqKN7mC2yK7r32qGkJWWt1O8xfzeJk6wJVtLx1Gd+
+f5kn1e1a8SBAScX7Dn4x2yihEOdHGzuvV5LOIo+pc5mN26/tsHmlkibYdM06
+wJx+745tmbeSQnQq+ucwX5rw9Yuzp5Iyvl08KguQkK7uwBb33ZVUd2eN+gBm
+nad/o22mKanfQfL3Yh6/4OCBjIlK8lqm+HqEObJkY83IsUqKG/Fg6lPmj47G
+ic/slVTYfmdWk00S8k1UT5lvrSStamfzIcy2r3M1ZFZKGvtA79gy5gWe8sTY
+fkraGvNOPYG5x77xISN6K+nWquP+r5gLLRZF/jRWUs0Y768tN0uoW5RWQbyh
+ksw695s2nHnjMu1BbrpKml/7J2s1852bI9L0NZUU+/iW+Rnm9teD3N6pKell
+/JZjxcytUm63PNNYSW18R7XW2iKh5D4/7/tKlTTKSX2DA/PkNTohE+sVtLlb
+wVc/5txcazuzXwpKlhyadpH5/MgtNW0qFVT91OPeR+Z28coD9Z8V1Ot0Vwu9
+QAlpjqvqVF6ioLkBFcccmb9YbtpeVKig6CmXWm9hzn9R8/RFgYIKeq/dcJ35
+nBhT+SJXQS0VQyu+Mjd9+eR50QMFjXilcO24lT+PWd+2lt9R0IbEB/ecmT9M
+m/W7/paCrm/daRHKrG911EDjhoK+T58cd4t5dUuTv6aXFNS9n36bn8zXl+0I
+dDqrII+mJRu6Bkmo6NXUK+uOKyjq7fEKV+Zp23oEnohVUP4Vb9edzN6+J769
+Pqig5mH97t9hPjdmyxfN/QqynVVrUcuc2nuNz8SdCvIdmBrXO5g/r3kjtkaE
+KuhKy8A2s5jdXdO0321RUMWHURv3M/8Ycb2z2QYFGSerf3vA/MqjVdyWtQpy
+21XgKoRIqMnZc7uLVigowvPQ/X7M9c7BZUMWK+jxkFkD5jPvi4k4enS+gppo
+dos/xNzsefG1FrMVZF1e0eYJs2C5rLPvDAWtTbu0URkqocxyt7ffpyjowv61
+3yyZ73y4V7rQSUHli4ZOX8z8r6TArHyMgjoNVz44ypw+6UbS4hEKcm2XPeA5
+s/+Yk35/hiloT+XO+ObbJHRryecVQYMV9PDuZA1r5kGf0iL0BihIeUg/YCVz
+R8fA95f7KGjI8pJvJ5iXHN85YWIvBa0aeWL6G+Z1tvaFv40VdK7D4getwyS0
+N7W1/5GOCvpU3W+gPfOzT/P6jNVXkEF2bfw6Ztml9O+CtoJcYlM1zjMfMEm4
+eq21gnauDgx4zywsi/Fb2UJB98eOrtQOl1BWqK21RWMFSY1azxjDbLTGpPav
+VEFWdQUPNjIvbSM7du+vnJbnHhp4hblI6jXwQI2cTifMSihjtj6vf3lxlZze
++3bT7LBdQj/N89QdKuSkP/FbgBPzR+dxDt0+y2lS98uVW5kz57q6tHgvp3Bh
+3YxkZrLLHvjrjZzuPhuaXcns6ri6tOSFnCRnlJZGO/h5G2s99Vm+nCw2ZSe4
+MD/wbLnjYY6clrjs0gxnttJ/EnDvvpxOmEzZlM6s33tDr/t35FSsaP/9F7P5
+/rahOalyave6ZEaPnfx53XBo34skOU24cCLbjTnOtP2oT1fkFBq02HIP8wXx
+zNG6RDllzOh/PItZ7jQ7qs0ZOdX3q9P8y7zVd04v0+Ny6tcsbZPZLgkZZD6f
+OP6onBYVB36fw+zu/LX5qmg5xV0d7XaAeXKXF44xkXJ6E9b64SNm79rnuo/3
+yElr9nNL2W4JLZ9gOl+2Q07jLKOPWzCfmNGtn1WonLa2mq3lxSz5qbF6VaCc
+Uku7bT7CPGWDg+m1jXKqSf72PZ+56p/xlL/r5WS2+7Jbkz0SKvmiXm63Wk7z
+5697OJg5fvDy93uWyymWrK2WMT8el0IfveX0SrPRiXjm3OJ5NYMXyKnNl2yt
+V8w5yu9NIufIaXT6rs0t9/L7Ubdwcc1MOW2OmPLDhjkp6YqRq6ucUrzbz1zN
+HHRFzfj2ZDlVD3//8DTzfPn6xaZOcuqte9KqmNkwOar2yFg5zf2++ITmPgmZ
+NVa/rekgp8OZ/ds6ME/S25IZbiungkN1m/2YNXokCM2t5dRqRdqPC8we03ou
+DBskpxEOW2d+/I9v5kjbDJDTRoMxj3T3S8jEdkLGwb5yuv6r9SBH5rtX1h7v
+biKnH9nPT2xmFuM1zyZ3l1P3o9FtrzPHzqvOmdBFTrPWzN7ylXlV4x9NvhrK
+KWpc9yrDCAntsfk8OVRfTvlGlTOdmQ+uvnm5l46cmtdffhTC3DF2aod8DTnZ
+Plk36BZzu9Gnd/i1kpPfceuTVczuIQmKXs3ldMWvkXbXSP76vtmuLWokp28T
+H25xZd4SEFi2VyYn4x67q3YwL7y6aIKjRE4zRRf3O8z2sxVn1epkFFHQPucP
+c+011z+Pf8ko98z7Qb0PSEhpHmS6/4eMmmw+edKDec/RmHHuFTIaNnWJ9n7m
+7Y2zJpiUyWitqXngA+anMR3MxVIZXVTWV0mi+Hl+kVv9rFhG5a/T3Psx/xjc
+Ivx8oYw6X9ya48mcvUZRF/ZCRq7BYwYfYs50qBqw+KmM9rq1OZXLvG2NxvCJ
+uTJ62P+FtvKghPrmntIe/FBGyuaHAy2Zv2mJF7vdk9GQd7N/ejOnie4t292R
+0apr3T2OMtv20e+uliajc+GVOQXMm7tvkyhTZPRp9pXBzQ9JqNi2yTbxuowM
+rdafGsqslvjzgXBZRi7qw3RWMut4XEySJcpo18dGW08w+7U6N7npGRndT3n4
+s5B5fC/ngxonZCTbs9ujdTS/z17pBnaMk5HVApfHdszlH1ep94uR0YqhHYas
+Y26dXmo58pCMTmt9OHWO2WDF53/ukTL68OWkznvmHVGKqX57ZaSfsWSr9mEJ
+HXa/MyJ6p4ycI82rRzN/WH41My1MRuGL6z02MlfUe+d9CpZRpm3648vMnw9u
+8mwTKCOJXtCQMuYFHjs3WQfIaMCPMafbH5FQz4wBhsv9ZLQkq007J+aKPe2H
+HF8roxPRL7ZuZXZVfnn21kdGxSsOVycx1+8f+0lvuYzajZozq5K5n2aNt+ti
+GTkZ9sjtHCMhl7DoeYcXyij0d+UQF+aHo+sffZgno9sPr5wOYzZ6lhNjMltG
+9UfXt0tn9nj16vX6mTLqv3ZY0C9mc4uP6x+6ymiRY+Nf3WP581ua7GfoIqP4
+Lo9muTE/EXoWrZ4kozf1u3N3MwdfbBSVN15GbfNcKIs5cqDxObOxMhp3osOZ
+euaSp3O0dzvIKMj/Qzuzo/z9y47N+20no9RJp4LmMNe4phW62cjoT4+lvyKZ
+z9443vcBychMajH7EXN+o+FPBg6S0YLn9bnSYxIKHRtw5dQAGcWeTScL5odr
+nQsN+svo1eagMwuZHSZetYk0k1GbaWN1jzCPXH24VKO3jEabaQTnM0c4tcjY
+3V1Gmxu9/NU4TkKBerJnmsYySik8PHswc1l2oF5UJxn9ujjnyVLmvnqxuzsZ
+yKh3SI+h8cxBazwGnNOT0byZ38+8ZP6ieNFoiI6MDptf1W0ZL6Fl4e0kjzVl
+9Ly5b7AN89pA0p3TWkatSob9XsVcK852+asmo5HXG885zZx7LuFKRDMZbdz+
+6Mlb5k75vUwtGsvoxpw9QzUTJJQxTD/juVxGP6ymnh3JfNTliJevKKMerQ30
+/Jgn1r3vZvRPSrM+fQi+wBwcrFeTUyulgzdP/S5lPlO0Lt/3t5Ty9yydo3uc
+n4cxVsm9f0qpxUKLvHHMB3buO/2uUkq21n+Hbmael58dG/lVSn5tM85eY94Z
+a3DQqUxKV74G6X1l/vSxYG+rj1L6ljE2xPAEn7fLrMIel0ip6wGNmknMz20i
+/Xe/ldLMJS/nhDCrF9ECl0IpRdodybvJvKEywKHjSynl6s21rmIe/eOafsUz
+KTWt6nHO+KSE2hy2Kk7Ok9Kwe9/1XJkrvszbFf5YSusOXw3ZwezfOLr3rIdS
+urjSt+Y2cyNH64uW96X0ZZTN3D/MQWOv6WtmSqlzxyb5vU7x3/eK18IfGVKa
+XvPI2oPZ2O1B5JNUKe19tOfcPub9VsPjL6dI6dGxqfoPmNtPdQiPuiEl5TqD
+UMlpvh8UOo3bfFVKNL60pi/ztZoXpYsvSWmV8em5nswOZVMmzEiU0vm/S/MP
+Ml/4PW77uLNS+pRnMSyXOcvTOsrmlJQMT/49pzgjIctNF5ZbHpeSy4YMfUvm
+RoE9tPrFSWmXc3CoN7MizmKDaayUHvQc9yeW2Us+55zJYSnJZJrzCv7jS8Nj
+zA5KadCLl/nNznK9Pr3AyTxSSivOHRk2lHlb1qKMwfukdGbL3PMrmHekfayw
+3y3lc3/P9ieYXXquzJu4Q0rt+/wILWS+ufyy9+wwKTk3vvZH/Rx/XvIdbvqE
+SGn7G995dsz1Li9vhW6VUuYlm6drmfs+b7b06GYpCaFNbM4xL/ocnJOyUUoD
+3HPOlzCbfxZfvPST0lKLve21z/PzUNkptHadlE60mLZtNLNjbmyJ3hopvSsx
+qN3AbNmm31trHym1u1E67zLz64rtfvOXS8lpx+mnn5kNHJYm714ipdC5y2za
+J/J58dLe/amLpHR70IDECcxP3FNaVC6QUn3rf+23Mn/uekqvo6eU+n/O2JbE
+bOrbOd15jpS8bwXXfmNu7fW9LsxDSvF7x3l2vsD/fsTrzEw3KRUt1Hw2hdls
+4MVO8ulSajvslU0Yc0Yr2xY2U6XkqB2TmMbc1nt2wObJUgqqmNvhF3Nol9IN
+WROllHa7Z1j3ixK6uCtG2XKClP4c+FE7g/lUyBL1KeOk1GfpNc/dzCs9TA4f
+HS2lBfZ+zzKZXUqTz3wfKaWj+sOH1zM7TK61HGYvpVdVTS6YXuLz3rwHw/cO
+l5LG/ZwOc5g7mWvdK7OW0ugje8MimcePybgzjKS0xWda3UPm1odSBhwaJKWU
+0YbzpZcldGz1jw61A6X0q+PHZ+bMb3eNX+NiIaXef04PX8h8rzZ7WFI/Kc3L
+WXbhMHM3bZe1HfpI6UjcAIN8ZuPjX/QDTaT0fN2/sMZX+P1+fUOPbz2lpD7h
+dt0g5mmnWsVM7S6lkV1D5i9lPmR0YH2WsZQC/o0riGP+o6OfPMBISjfyNW1f
+Mq+9GTX9VEcpVZ18dUHtKt+HQ9q5GRhIqcfGGAMb5vX9jtzcry+l2ZPnha9i
+zj3df626LtezXr3qTzEH65VuD9OW0lNZ1fy3zBbFN/820+J69vJagcY1CUlD
+ctK2tZGS3Xk/25HMgfndXrZU53oWOPyiL/PlE8XD96pJ6aprU8MLzGntWgj6
+zbme9XkcXsrccsbtJglNuJ412Vff7jp//dmGM/s24npWNG3BOObTr63FdDnX
+s8uGzzcxu3WyKZ8g5XoW+tH2GrPuGDu9UgnXM48zF78wv9Pz3rXur0g2A5Yb
+Gt7g84dn0ag2dSKtUxu4fRLz6bZpdmdqRLr0/l99MHON3qCNI3+J9OXG7QU3
+mduuWvfnY5VIRjtDnv9g/tjj9Jmg7yJNn+doZ5zE91Hbv1E9vom0b7DWpWnM
+z3IPpz/+ItKjNq8NdzDXv7zbYXWZSI3KYrbfZh4yPyHR8JNIlDrvbw1zqe9q
+n4cfRFq9r9fCXskSqm613GtdiUjnvaqeuzO7qz3Z2aNYpM/DrtvtY3Z1evK+
+8I1Ihjr+l+4zR526MGvXa5GmfhveUZLC96lHF5uPfCnSrjtNd/RlNpqu/UZ8
+LtKDqMd/5zEPftP5WfJTkWTL9i08yPwuuUPVmjyRBo1wffH4v9+3Hd93YK5I
+K9t3tFfc5Pt6rGxv7SORzvz8eGkgs/gyQOtmtkil98909GYe+lDvyqb7IrWP
+Wb4jlvl6H8Nlo7JEmrxq4L9nzCf3Fo/QvCvS9jESr2a3+OfrlDigOEOkrE53
+XhCz4f4PdC5NJKE2xH4F85OpT139b4k08LHj5ePMTu4vwsaniLQ0XqtTIfOB
+/qNzjZJEOrn+9Q71VH7/G4cY1V8T6d2E2H+2zEtHfQ/KvyKSbjdPr7Wp/9XX
+4j9nL4nkJOn98izzij7JPqEXRNr2tMq+hPlp/vu/88+LdPvU9ctt0yQ02z01
+zOGsSH83+ncazbx17+XOvU6L1H+K7c4NzL1KeqapnxTJu3czyWXmFd473GsS
+RIqX53p9ZnZpNlpeHCdS0ct9L/XTJeRp9TDhwVGRtBNdR0xg9u6xyeFajEiO
+WzteCWQ2S3xTFn9YpODpnzolMfcaOWHr/kMipfU9u/Mbs6PGhPYhUSLVNlkh
+6ZwhoeSnTmf9IkXq83bgoinM4ZWP+q/cL9LCK5JX25jj5gy6uGivSEe33RmR
+xrw0V8vIc7dIrz1Cr1QzJ81/GTx7p0gaA8d37n5bQgF18rce20Ua07LtrhnM
+9z5pdpkVJtKWD68lu5lXdgmfOidUpJtJsYsymTtbVq6bHyzSr52er+qYtQak
+Bi3eKpKJZ++Rpnf4vp62yX/VFpHmDfl5ZTZzKyF9xsZNIh3RuNE5kvnUcZlR
+2EaRnpf573rI7PfzyeMD/iKpp9kK0rsSmhGTNPOkr0gO+5t5mzMP+uaQl7RO
+pIBFua8WMOtFtzTOWSNSks3+kYeZm36JnPp+lUhVOtOv5v33+7vXedWtFKln
+ZUejxpl8H860n6axQqTZdz/tGsSs1n+3kckykQ4dPCssZe7/r+reqCUiPV22
+wjuOWeu6aL/AWyS1kZavXzArvCdFhXiJZNdBcFDL4vPT3uA7pxeI5F995+ow
+Zisty9uPPUW6+iDUaBVzXxv5vl9zRaqMGb/7FHPWi8CB7eeI1HV1W/Et8yOJ
+xxn7WSK5jy301rjH9cfaonKZu0iRnY++HsG8bscJ4YibSE9qPR18mTsMnV74
+aLpITXN7X0tkXqao2Sxx5XqW8NOolHnOT4NfZlO5nvne2N3uvoS6+G0wmTuF
+65nTBnEcs+PiVJODziJ97Wa3eBOzZkVodd5ErmdC88KrzAtXb/dv4STSjGe5
+Dl+Ybd+tzh4xnuvZ6f3XDB5IKNXp98st40TKCZjeZRKzm33SidtjuJ65dNoT
+zGwX5GOhGC3SUJPP4k1mb9PXAfYOXM8U5xb/YP4afyQkdIRIia9WFHbJ5s97
+9JoxuXZczxItR01jtm3d/r62rUgdg4Tr25m17O0kHjZcz2bc7XKb+cbdU+Wn
+rUXa3W/bnhrmFLcm4X+I61nTCdJeD/k+10n3g/0QkeTFbZe4M+vOjv62fxDX
+s6uFhXuZwy6OP/3ZkutZ2NFR95l7Fv/UGTyQ69ms+df/MS+uGWGxy4Lr2UAT
+476P+Peplexzf65nrar3zGOu6qu23rof17PSG9KDzAu2NYqJ6iPSjuQNSx4z
+n+ybvuS3KdezXXZv5Dn8/h2hKJtoIpI4v/nogcxz9CKbXerF9YyeXF/EnGRq
+n6/RU6RlmhHGsczTzF8OW9Wd61n59L3P/vv3m7V3ftVVpJK0TrJmjyX04HpR
+c2tjrmcRn5cQ882VX+ccNxJpove5N8uZ9Q5qzVTvzPVs+MrRx5lfne9Ru66j
+SHfaWd14zRww/V+fTwZczyqFruq5fN5e7N7EuYNI5pl399oyaxd0XX9Hn+vZ
+oW2ytczfj3ULMdcTKWH5hKVnmVc1sexzoh3Xs5HaRe+YiyaYLdfX4Xpm8GZ0
+2yf8+Sj/OGp3W65nv47eGMW83cUiqakW17Ps+V03PPmvv117a5OGSOmxJvsu
+MRvYN3f515rr2epq2Wfmsw4OW9aqi9R3XNJS/Tz+eo132dS05HpmtLFoPPOn
+vPRdq9REOlZnNyaQeaVz8tKa5lzPcpsn3WB2z3QrWttMJM3jT7p+y/uv3739
+5b8mXM/8IvZ1ypeQpH1vj82NRQqcOEM+hVl/jcHKZo24nnXvvGwb856To1rv
+UYj0WygrSmWmRvsGtJdzPSs4N6aa+VV5aekJqUieZ1YmdXsqoZikLnoWItez
+TVbdZjAXvBlScEci0gsXcf8u5oVpOm2d/wmkbpopz2QOy419+bFeIAdl2LI6
+5pF+dw3W1QkU8HrCW5NnEupovuxTy1qBki5oj53NfHHOHtP4GoGqgt4kRTA7
++OjVDP4tUE+3Y90eModk1w4uqBZoTv8F+8UCrq+ZBuKynwIdamaqMGdumbJh
+qFqVQM+Kq5ctYK6pb1F36rtAateS3kYzd3yQbDKqUiD78I1j85jnzwwoLK8Q
+yH+2fXKj5/zz/TRRFv5VoGuWLboPYl4Y0OOI2ReBKlvl7V/C7Gv178KzMoG6
+fYxQxDGfV79r6ftZIPeUGctfMK+vXG9u9EmgA7s7F7d4IaGSc/pxj0oFejK/
+bOwwZt02x7as+SBQs6Hnk32YbTKbFxi9F8hGy6f7KWY1j0kRee8EWv/FKqKI
+ee3M9VkBxQJdSheVGi/5v2+0cW7ftwJ9jchcPoI5qWbW0g9vBDJaHFa8ntlK
+0eVTRKFAM2ydxiUy60y5d2/Ma4H26+qkfGAeXOSoKX8lUM73N93bveJ645l6
+L+mFQI2zjkWMZXaI1itd8VygodELlJuYVzRdON+kQKA1K0xXXGV+2erChPKn
+AiU6/CouZ+5ZWXPkeL5AZQbJ4wxe8/0r1d5pXp5AHX9vTJnIfHRJgqfxE4Gm
+PbTvEcx8OdPw7afHAu0+2iIyhVnqnnbtVI5A2WvylD+Y+53e+X3xI4HkjpEr
+uhRKKL08Orj/Q4EGd3F7N5X5Qt9f/vUPBFpZ39lxO/Nkz7i82/cFOvukLCWD
+udXgpE3h9wQqPX6+Rw1zo772212yBOrg7xPZ8w3Xs/0u1UaZAk2eNKiRO/Pz
+zbLLVXcE2tFDunIvc9Zr54fptwXKErPe3WOOGzV38O4MgcTnYY7/mEuG28rn
+pAtkedbpZp8iCY2QNjYckCbQss06Pecxnw/I2NU8VaBTU4sio5hzg8KmvLsp
+UIlpXKPHzH8j1y+9niKQXqOFK+Vv+c+rT3i9M1mgiYWmJQOYna4ZRy5MErhu
+/3JcxKzcpRFvd0OgO8HJN2OYXVoESTtdF+ifW0DPZ8w6Cw6eEa4JZG4+4kDT
+Yj6PHvWKL7oi0OLmao2JOWmRxpdblwVKeJe3cjmzqcV535hLAr29FlmSwJzS
+efrUzRcF0t7uNv71f6w+cKPnBYHGzzG61eodP7/hHt/HJAoUbFXe05bZoajm
+RL/zAqWrJx5YwxxVq3tS75xAtR99Gp9l9gr6Uqk4K1Dfm4N83jFffhvqW3la
+IK890vdaJfz5bKo37vUpgY4tyBo/innc9Vuz750UqHBo+C1/5l1jD6RcPSGQ
+ZtuJvS4xX3yaMyXhuEBjv+pEfWLuI9/SPyJBoMCMosb67yXUfkDRhJB4gW5F
+xvmMZ871kZ/3jRPo9+KF77cwX1qoO3rZMYFM7cwm3GCumTuqi+dRgTz1ft+q
+YJ7smjzYLVagmB/JvTp9kFB28b6dk2MEepEVEDWZ2bG33HD8EYFaHx7RZBvz
+Pu3e5aMOcz1bqbYqlTlDk77ZRwu0aVT++5/MXQZ49LQ9xPXM8MCEbqUS+tEr
+I8bmoEA/f7ulTmeuovCxNlFczx4Z9d7FPNyx0mz4Aa5nx8qj7jLLXmiNsovk
+erY2sUkds7zcJHJkBNczx1WrTD7yfbLnAt2x+wVqaTz4wyzm1wU/Hzvt43r2
+V+oUwdzlhuT61L0CbcjLSs1mrjFLeuKxh+vZifDe4id+HnpP0ffaLdB3/4kH
++zM/79E4wmcX1zPndk0XMM8x/2sdsFMgj55vV0Uz33k/v932HVzPpPEfnjDn
+T9locGi7QHnPFzo1+sw8eJXT6XCuZ+fM0qyY22T6X0gOE2j4lt+9lzAHnc0Z
+9Ggb17NpKQePMS/te/D721CBLpttavqC+ae27uOfIVzPGo1c3aJMQonHAgqa
+MHd5o1ZqzexxqEkjg2CuZ5fynXyYvUZ+nG4RxPUs5EDaSeZli5xejdvK9Wzm
+TJMi5jKHQL/5gVzPLLocalMuoYToa3abt3A9a/Gl6QjmuYc79T2ymetZSeLq
+9cyT6wWblE0CXbi+qvQ8c/yrkJWvAriebR888QNz3fO6e7UbBeo0V5au84Wf
+X9l20mWeNuieyVjmR2/8nw7aINCe1tsPBTAHuTYNdfPnevZpYrOrzBeKFrht
+8hNIcavdmnLmywPejD/uy/Vs79vSDl8lNPZYjPuj9QL5LIyfOJG5/t6PsOp1
+XM+svdKDmOfdaPlMn/lj2z6mKcyZX80H2q/lelbx+9B35lHDEq4sXSPQlNsp
+zbpU8Pej9vCYQ6u5nh3YtGYqs2fSzL/3Vgl0b8nIj+HMM0K73fntw/XMvuWk
+DOZXOZbHujBb6j9N/83cfPTTSOeVXM+qDpj2/MbcwTJu6wquZ/dmRs9k7pl+
+8s715QK9P9yl+V5m00bza78s43rm82XNPeZdWleHGTJPGn3h41/mxEUFh5yX
+cj3ruHpSn0r+8wqbNwtbItDdmsEZc5k9Aw8E317M9eyRzCyK+e/LDO2/3gJZ
+xN2LzmGOiMy+as68eN325vLvErqaXTNn6SKBjo+ftHYAc2zWto5nvLieGet+
+8mL26/bwy+eFAun8ezsphtk591+GMfP4/PiMp8xGpXMT5i4QKOSkl1nTH3x+
+yXHYFz+f69mGPoeHMA8yr9z+0VOgOuea5suZFZJDu7sx9+11c20C8/FR+494
+zeN6Jtv86RXz2FVGV87P5Xr2YqRzqyoJndEIz6uew/XsXMvbw5mLy9vWWDFr
+Bj41W8NMNU06bZrN9cw16vAZZoO5p5wezBJoax/3Fu+YD++wCdZgvtXYeJ3W
+TwlNkrTLmOEhUM2bL58cmFvN9hFOunM9u3zB2Z95dcSRob9mCjQ/dPXti8yX
+o94G2DDHuA/p84m56Q6/uzvdBHppIT+iV83P07X0psUzuJ6p3W8xnrl4ZfVY
+M+ZR77ev28Lsauu2K2A617Mbkz5fZ36ePCI/31Wg5B26kyuYvwfVtunK/HNu
+8e2Ov/j8siDFcf00gXoNTugzmflun5fBuVO5nrVZdCSUWTcj8qYxc/TnPmqp
+zAWNbCv8XLie3apZ95M59Vdn7YIpXM/23fzc9beE/oUGWJky23ttnjyd2S4z
+fnLIZK5nwxzu7GT+dfzlwg/OAl3XbtX3LnNXk3mrrJm/Vzw9UsucPGHvmuhJ
+AnW/E6VmUiOhCfKzS+sncj2Lcl8/i3lwt9oZ05ijlhqX7Wf2jEgfmuTE9cz+
+6+RsZtO2jlp6zM3bX7wj/OHziHP5G98JXM9+ru7bn1m94nXk2/EC+d4fEjOf
+Wd91kd1w5stH5C2jmdUkH0qOOwpU4XN//RPm/W22LVVj7jJmR5myVkLV509W
+rBgnkFsn5ylWzCvuBE19PZbr2R/du4uZS1p7XxrO/DinuO8x5rrusXVnxnA9
+i0+Iec6cstDLRJvZev2ili3qJHStrs24TaO5nk3o62vNPO5ukcu3UVzPuv4p
+W8n8aZXWOFfmsn83p5xkbrb2X6/7DlzPnm6++4bZ91th9QBm11MO/drU/5en
+qI07PpLr2cZWsfbM+2wPDNZhfjj5Wcv1zK8/iMkhI7ie9T7oe5552RIfg7/2
+Ag2Re5S/Zw6YP2jBEmafl8YuOn/5vla9P+K9nUDnzn+9O4ZZ81n2SRdmVR6O
+edSs9kdybIWGPBzz7uCcVXbMqjwcc6vbHc1uDhca8nD/+P6gPfWBObMqD8e8
+U/2q7XkboSEPxzw9ee3h7syqPNx/vx/zoSBumNCQh2O+nmZRYcisysNJuM7s
+OF8cbS005OGYZ1WEJ+oxq/JwzFFd1KdHDRUa8nDMoz+uKGnHrMrDMZcM/m0T
+RUJDHk7g52Rnvq8esyoPx/wvesSO6CFCQx6OecnS8LWGzKo8HPNAt7dWcYOF
+hjwc8xHZ6rxuzKo8nMjniIHhQ88NEhrycMxabacF9GdW5eGYHUo1I5KthIY8
+HHOUYfWG4cyqPJxUoNWLeg96aCk05OGYG+/+leXMrMrDMceu3dileKDQkIdj
+tu8inejFrMrDMWuePulYM0BoyMPJ+B5ielp3C7MqD8d8t9j8UmtmVR6O2bFy
+jU6MhdCQh2M2DD3qYMqsysMx2714a5dqLjTk4eQCLfo5vcV4ZlUejnlmie2h
+d/2Fhjwc84o96dUrmFV5OOYWz+s1GzOr8nDMetP0/kb1ExrycAo+58TYnzRl
+VuXhmBPFY3p3+woNeTjmYYcmObkyq/JwzBnT/cdU9REa8nDMfhXDmoYyq/Jw
+SoG2XE0N6sSsysMxX3zeNivZTGjIwzFf6Dw305lZlYdj7q2XteW7qdCQh2PW
++TxFGsasysM1Ekhjap9B3ZhVeTjmf4Vefe6aCA15OOZ4/w7vZzGr8nDMx4rd
+HKXMqjwc80zLYT4xvYWGPFxj/jodX0y0Zlbl4ZhtfczLi3sJDXk4ZvOg+QM2
+MavycMxlHzdYGTGr8nDMumuDqzJ7Cg15uCb88zwa7raQWZWHY75mf8CvJbMq
+D8c87/alcZd6CA15OGbNH+9zXZhVebimAlkZmsoFZlUejtlW58CH+O5CQx6O
+OaGt0cqxzKo8HPPQnNzEX92Ehjwcs4Hn4QOHmVV5uGYCnfAP7T2SWZWHY27e
+bZdXVVehIQ/H3L/ijFM0syoPx6yRW/BuJLMqD8fsOqaRzi9joSEP15y/v1P7
+VMcyq/JwzM0Wj/FxZFbl4ZjNAkZF/esiNOThmB+1aj/rDLMqD8ccZ3A525VZ
+lYdrIVD9cElBc2ZVHo55z9HPG1KMhIY8HHOHWrd73syqPBxzn2Ojzxkwq/Jw
+zHdjIszyOgsNeTg1fq9H9xgXyKzKwzEn/C5XWjKr8nDMozNvTq7oJDTk4ZiT
+P28depRZlYdjNmzcPXUKsyoP11KgJzGBT9WYVXk4Zh8tP/87HYWGPBxz/Plv
+yeuZVXk4Zp3E69v6MavycMxOU69//WIoNOThWvH3rf7+mzhmVR6OOUZ2f4Yb
+syoPx3xe3Omlw6zKwzEPufVHmW8gNOThmOUjCntuZ1bl4dT5efrTptCBWZWH
+Yy7ZtVKrEbMqD8fsPexFQUYHoSEPx9z1qqbBRmZVHo65zkSsGMKsysO1Fmjq
+tqVD/7YXGvJwzI2nD9JKZlbl4Zh7VJt7r2NW5eGYE9aZ21sxq/JwbQS6Ud/y
+SJ2+0JCHY85dF7EqmVmVh2PepojL9mVW5eGYa9KaRhOzKg/HXKQ8XCYyq/Jw
+GgKfjywSb+sJDXk45nf5Jyq3MqvycMy5e7ITRjGr8nDM2kt8nrZkVuXhmEdf
+9Vudrys05OE0+XM+JWV7JLMqD8f8+1vTdm7Mqjwcc/c3Q7WMmFV5OOalzgM3
+lbcTGvJwzNXLctwuMKvycFoCjbQrOrmGWZWHY+7w1XaWNbMqD8f8+HDx1ibM
+qjwc876MnW2f6AgNeThm3zpz9ShmVR6uLdfngReXz2ZW5eGYd2d/HtybWZWH
+Y9Zaecu7RltoyMMxf17cTpHBrMrDMb/a+k4SzqzKw/GvPzuJM1z4V1Ue7v/7
+Ff8c/x7+f/hz8Ofiv4P/Lv4e+Hvh74m/N74OfF34OvF14/uA7wu+T/i+4fuI
+7yu+z/i+4+eAnwt+Tvi54eeInyt+zvi543OAzwU+J/jc4HOEzxU+Z/jc4XOI
+zyU+p/jc4nOMzzU+5/jc4znAc4HnBM8NniM8V3jO8NzhOcRziecUzy2eYzzX
+eM7x3KMOoC6gTqBuoI6grqDOoO6gDqEuoU6hbqGOoa6hzqHuoQ6iLqJOom6i
+jqKuos6i7qIOoy6jTqNuo46jrqPOo+7jPYD3At4TeG/gPYL3Ct4zeO/gPYT3
+Et5TeG/hPYb3Gt5zeO/hPYj3It6TeG/iPYr3Kt6zeO/iPYz3Mt7TeG/jPY73
+Ot7zeO/jHIBzAc4JODfgHIFzBc4ZOHfgHIJzCc4pOLfgHINzDc45OPfgHIRz
+Ec5JODfhHIVzFc5ZOHfhHIZzGc5pOLfhHIdzHc55OPfhHIhzIc6JODfiHIlz
+Jc6ZOHfiHIpzKc6pOLfiHItzLc65OPfiHIxzMc7JODfjHI1zNc7ZOHfjHI5z
+Oc7pOLfjHI9zPc75OPfjHoB7Ae4JuDfgHoF7Be4ZuHfgHoJ7Ce4puLfgHoN7
+De45uPfgHoR7Ee5JuDfhHoV7Fe5ZuHfhHoZ7Ge5puLfhHod7He55uPfhHoh7
+Ie6JuDfiHol7Je6ZuHfiHop7Ke6puLfiHot7Le65uPfiHox7Me7JuDfjHo17
+Ne7ZuHfjHo57Oe7puLfjHo97Pe75uPejD4C+APoE6Bugj4C+AvoM6DugD4G+
+BPoU6Fugj4G+Bvoc6HugD4K+CPok6Jugj4K+Cvos6LugD4O+DPo06Nugj4O+
+Dvo86PugD4S+EPpE6Buhj4S+EvpM6DuhD4W+FPpU6Fuhj4W+Fvpc6HuhD4a+
+GPpk6Juhj4a+Gvps6LuhD4e+HPp06Nuhj4e+Hvp86PuhD4i+IPqE6Buij4i+
+IvqM6DuiD4m+JPqU6Fuij4m+Jvqc6HuiD4q+KPqk6Juij4q+Kvqs6LuiD4u+
+LPq06Nuij4u+Lvq86PuiD4y+MPrE6Bujj4y+MvrM6DujD42+NPrU6Fujj42+
+Nvrc6HujD46+OPrk6Jujj46+Ovrs6LujD4++PPr06Nujj4++Pvr86PtjDoC5
+AOYEmBtgjoC5AuYMmDtgDoG5BOYUmFtgjoG5BuYcmHtgDoK5yP/NSf43N8Ec
+BXMVzFkwd8EcBnMZzGkwt8EcB3MdzHkw98EcCHMhzIkwN8IcCXMlzJkwd8Ic
+CnMpzKkwt8IcC3MtzLkw98IcDHMxzMkwN8McDXM1zNkwd8McDnM5zOkwt8Mc
+D3M9zPkw98McEHNBzAkxN8QcEXNFzBkxd8QcEnNJzCkxt8QcE3PN/5tz/m/u
+iTko5qKYk2Juijkq5qqYs2Luijks5rKY02Juizku5rqY82Luizkw5sKYE2Nu
+jDky5sqYM2PujDk05tKYU2NujTk25tqYc2PujTk45uKYk2Nujjk65uqYs2Pu
+jjk85vKY02Nujzk+5vqY82PujxwAcgHICSA3gBwBcgXIGSB3gBwCcgnIKSC3
+gBwDcg3IOSD3gBwEchHISSA38X85iv/lKpCzQO4COQzkMpDTQG4DOQ7kOpDz
+QO4DORDkQpATQW4EORLkSpAzQe4EORTkUpBTQW4FORbkWpBzQe4FORjkYpCT
+QW4GORrkapCzQe4GORzkcpDTQW4HOR7kepDzQe4HOSDkgpATQm4IOSLkipAz
+Qu4IOSTkkpBTQm4JOSbkmpBzQu4JOSjkopCTQm4KOSrkqpCzQu4KOSzkspDT
+Qm4LOS7kupDzQu4LOTDkwpATQ24MOTLkypAzQ+4MOTTk0pBTQ24NOTbk2pBz
+Q+4NOTjk4pCTQ24OOTrk6pCzQ+4OOTzk8pDTQ24POT7k+pDzQ+4POUDkApET
+RG4QOULkCpEzRO4QOUTkEpFTRG4ROUbkGpFzRO4ROUjkIpGTRG4SOUrkKpGz
+RO4SOUzkMpHTRG4TOU7kOpHzRO4TOVDkQpETRW4UOVLkSpEzRe4UOVTkUpFT
+RW4VOVbkWpFzRe4VOVjkYpGTRW4WOVrkapGzRe4WOVzkcpHTRW4XOV7kepHz
+Re4XOWDkgpETRm4YOWLkipEzRu4YOWTkkpFTRm4ZOWbkmpFzRu4ZOWjkopGT
+Rm4aOWrkqpGzRu4aOWzkspHTRm4bOW7kupHzRu4bOXDkwpETR24cOXLkypEz
+R+4cOXTk0pFTR24dOXbk2pFzR+4dOXjk4pGTR24eOXrk6pGzR+4eOXzk8pHT
+R24fOX7k+pHzR+4fewDYC8CeAPYGsEeAvQLsGWDvAHsI2EvAngL2FrDHgL0G
+7Dlg7wF7ENiLwJ4E9iawR4G9CuxZYO8CexjYy8CeBvY2sMeBvQ7seWDvA3sg
+2AvBngj2RrBHgr0S7Jlg7wR7KNhLwZ4K9lawx4K9Fuy5YO8FezDYi8GeDPZm
+sEeDvRrs2WDvBns42MvBng72drDHg70e7Plg7wd7QNgLwp4Q9oawR4S9IuwZ
+Ye8Ie0jYS8KeEvaWsMeEvSbsOWHvCXtQ2IvCnhT2prBHhb0q7Flh7wp7WNjL
+wp4W9rawx4W9Lux5Ye8Le2DYC8OeGPbGsEeGvTLsmWHvDHto2EvDnhr21rDH
+hr027Llh7w17cNiLw54c9uawR4e9OuzZYe8Oe3jYy8OeHvb2sMeHvT7s+WHv
+D3uA2AvEniD2BrFHiL1C7Bli7xB7iNhLxJ4i9haxx4i9Ruw5Yu8Re5DYi8Se
+JPYmsUeJvUrsWWLvEnuY2MvEnib2NrHHib1O7Hli7xN7oNgLxZ4o9kaxR4q9
+UuyZYu8Ue6jYS8WeKvZWsceKvVbsuWLvFXuw2IvFniz2ZrFHi71a7Nli7xZ7
+uNjLxZ4u9naxx4u9Xuz5Yu8Xe8DYC8aeMPaGsUeMvWLsGWPvGHvI2EvGnjL2
+lrHHjL1m7Dlj7xl70NiLxp409qaxR429auxZY+8ae9jYy8aeNva2sceNvW7s
+eWPvG3vg2AvHnjj2xrFHjr1y7Jlj7xx76NhLx5469taxx469duy5Y+8de/DY
+i8eePPbmsUePvXrs2WPvHnv42MvHnj729rHHj71+7Plj7x8eAHgB4AmANwAe
+AXgF4BmAdwAeAngJ4CmAtwAeA3gN4DmA9+D/PAj/8yLAkwBvAjwK8CrAswDv
+AjwM8DLA0wBvAzwO8DrA8wDvAzwQ8ELAEwFvBDwS8ErAMwHvBDwU8FLAUwFv
+BTwW8FrAcwHvBTwY8GLAkwFvBjwa8GrAswHvBjwc8HLA0wFvBzwe8HrA8wHv
+Bzwg8ILAEwJvCDwi8IrAMwLvCDwk8JLAUwJvCTwm8JrAcwLvCTwo8KLAkwJv
+Cjwq8KrAswLvCjws8LLA0wJvCzwu8LrA8wLvCzww8MLAEwNvDDwy8MrAMwPv
+DDw08NLAUwNvDTw28NrAcwPvDTw48OLAkwNvDjw68OrAswPvDjw88PLA0wNv
+Dzw+8PrA8wPvDzxA8ALBEwRvEDxC8ArBMwTvEDxE8BLBUwRvETxG8BrBcwTv
+ETxI8CLBkwRvEjxK8CrBswTvEjxM8DLB0wRvEzxO8DrB8wTvEzxQ8ELBEwVv
+FDxS8ErBMwXvFDxU8FLBUwVvFTxW8FrBcwXvFTxY8GLBkwVvFjxa8GrBswXv
+Fjxc8HLB0wVvFzxe8HrB8wXvFzxg8ILBEwZvGDxi8IrBMwbvGDxk8JLBUwZv
+GTxm8JrBcwbvGTxo8KLBkwZvGjxq8KrBswbvGjxs8LLB0wZvGzxu8LrB8wbv
+Gzxw8MLBEwdvHDxy8MrBMwfvHDx08NLBUwdvHTx28NrBcwfv3f958P7nxYMn
+D948ePTg1YNnD949ePjg5YOnD94+ePzg9YPnD94/eADhBYQnEN5AeAThFYRn
+EN5BeAjhJYSnEN5CeAzhNYTnEN5DeBDhRYQnEd5EeBThVYRnEd5FeBjhZYSn
+Ed5GeBzhdYTnEd5HeCDhhYQnEt5IeCThlYRnEt5JeCjhpYSnEt5KeCzhtYTn
+Et5LeDDhxYQnE95MeDTh1YRnE95NeDjh5YSnE95OeDzh9YTnE95PeEDhBYUn
+FN5QeEThFYVnFN5ReEjhJYWnFN5SeEzhNYXnFN5TeFDhRYUnFd5UeFThVYVn
+Fd5VeFjhZYWnFd5WeFzhdYXnFd5XeGDhhYUnFt5YeGThlYVnFt5ZeGjhpYWn
+Ft5aeGzhtYXnFt5beHDhxYUnF95ceHTh1YVnF95deHjh5YWnF95eeHzh9YXn
+F95feIDhBYYnGN5geIThFYZnGN5heIjhJYanGN5ieIzhNYbnGN5jeJDhRYYn
+Gd5keJThVYZnGd5leJjhZYanGd5meJzhdYbnGd5neKDhhYYnGt5oeKThlYZn
+Gt5peKjhpYanGt5qeKzhtYbnGt5reLDhxYYnG95seLTh1YZnG95teLjh5Yan
+G95ueLzh9YbnG95veMDhBYcnHN5weMThFYdnHN5xeMjhJYenHN5yeMzhNYfn
+HN5zeNDhRYcnHd50eNThVYdnHd51eNjhZYenHd52eNzhdYfnHd53eODhhYcn
+Ht54eOThlYdnHt75Ye7mJ//z0MNT//8AilTczQ==
+ "]]}, Annotation[#, "Charting`Private`Tag#3"]& ],
+ TagBox[{
+ Hue[0.37820393249936934`, 0.6, 0.6],
+ Directive[
+ PointSize[
+ NCache[
+ Rational[1, 360], 0.002777777777777778]],
+ RGBColor[0.922526, 0.385626, 0.209179],
+ AbsoluteThickness[2]],
+ LineBox[CompressedData["
+1:eJxEnXdcj2/bx32v6zuQLUJGKTtlh9CJrAjJLltKISMrM3sUIoSE7L0lGUX2
+3oVEJFmVrcTz+V2nz/08/9yv9+1xl7q+x3WO9/E5rIcG9PBWChQo4F64QIH/
+/lP+X0Hhudrp5EUrndjTeIFBAQ8qszv8P84Y8SzHlG8SEe/HKLngx5PmtCye
+axJ3ExqNtbfWiYSuZzIsfphEoYjclKHgRoPuZVl/NYk2Y+I7rwUv32TqVTfH
+JIJcFsReBy8I3Vq2+SeTOFqhS40CVXVip93Hhh3fm8T77JKrG4FfGuz29Xlr
+EraXHysjwcVq7Jrpm24SXhs3jt0IDqq6Z09QmkmsnjDs+V2wb7FpDstSTeJm
+p1pdjDY6ET1veJGtz0zCaJUV2xz8e8shEZtsEq2+H6sRAH5h2HP9ziOTmHwj
+aPVW8JO7G/Zl3jeJg9FCTQJX3X03Tb1rEm+nGMcVsdWJGofWjq5yyySsut14
+LsCWIc27tLhuEv2qrewyETxnqGlm/ysmEZbX59Ru8KmkzkrQRZO4drdSzefg
+kNK9k9afNwll16vVparpRNyJwL+nz5mE08zdagfwstffJ704bRKBPQPGTQMP
+bWnXynDKJPbVbpx6EOyUOrxnnRiTSC+Q1+U1uKt3zskex0yi0uP4U+Wq68Ta
+jKr+0w6bRO/9C2q6gUfkuvptP2ASy+Z2WRMM/ro/7vidvSZxuV8p/QlwVujl
+Lvm7TOKvQ9K4d+DSWxLs6+wwiabGqNTKNXTihG9+//5bTWLss2FuHuBBL27d
+WbLZJHYfqRW3ENx/xpLlpzeaxMtFWTVPgzvZz1+Ttd4kKgw6viYbHNvfPN0m
+wiR6NJ6mr1YTnBYa1G+1SSw1az2+H3hM5Y69V6w0iQsvjS9CwTtT1k2+stwk
+fsfccDsPnuzzJEUXahKNlq2M+w6+PHXIohZLTGL08L616tTSieyOCydNWWgS
+O5pXXjsI7DFr287j80zieYnX+nDwpxalLL8Gm4RFxu7xV8A/y9a+03CWSXQ7
+E/DiNzjQov2lwOkmsWhV4671a+vE3dPxv09MNYn4kXlx3uDZv76Oz51kEr+c
+E2qtB4c2bFXTOdAk6pdduPYW2Mnlp+X8cSbh96GLQa2jE1smz3K7McYkos+X
+muAIFiH1TpuPMomnEUkv/MHRR3x9Bo40idIBUV03g7+HzO+6e4RJdGk3/PQD
+8AH79LHfhpnEPMvatQvZ6UTZim9uthliEmdysta2BP/qlDE8bKBJfLt83DAe
+3KxSx8YvPU3CPmrahB3gMX6+rRr0M4kRga1fPgEvmrhr1rzeJrHJ1dSteF2d
+8Mvx/fnYwyQeW9083Ra85G/hXXbuJlHix8raU8DhDtmhc7qaRKebfSP2gfWz
+gnYndzaJ4K2VjS/BN/oWya3fySROTX09oYy9TuSEF5y1tL1JfO6252UncP0p
+9xzftDWJOtXHdpsJjjp606ZNa5MY9rvxmSPg9sMHttnUyiQi7+XVzgDfK5W5
+Mt/JJB7sSoiwdNCJmkfvmQ9oZhJFZy00dgebb5t9+UwTk2jXyy1wHjjtQN89
+VRqZxMw6pdNOgs1MCafn1DeJE7rkbh/BDzpZ/XljbxJZj6POWNfD8z4jZXQX
+O5OocWB4nd7g5qUHmx2tZRKD59VetwTskFb8UYUaqGf9s43nwAl1et2ca4t6
+Vu9E4Bfw64iI7I/WqGem6Wk16uPvN2/r3K8K6llK6+5e4DMLz568WBH17Kjp
+7Arw0MGBXg0roJ4tvlnnIjih0O1a0RYm8WHQqnW/wPEOzaxKlUE9a9LPZN9A
+JxxfV3KeW8okBhSpMnEoeGPU2/nfiqOepb1OWwPe62T46lvUJG6d3NP9Orho
+fuqilMKoZ8vHnv0L1i9Ob+tR0CScvZvYNWqI5+XdHNtrBtQzp9/rfMHHllWr
+3UY1iUMlz5s2gjM6OvWMK4B6lrFw4l3wL7cG0Y3/GIX1WbdXhkY6fF9TSx/O
+M4p+4aXdm4Ob/Z65s+4vo1jpl3x2DLh7/pEBe78bxTWxyW4reNzPeY1rfzUK
+1cJ7/WOwSzFv+z05RuH0sXbBIo3xeY+/0KFOllEEXsieKMBnPpcM3v/BKPat
+O/EqEJyaEZ9c751RpAdMd98N1ru0cT+eYRSV27c5lwIubVYwo3m6UfSuWLBu
+qSY6sX3zvPUJaUax/PPN9e3Bhy/X9u/0wiguX1lVcBq4VfTovvdSjKLApn6T
+DoJLHY4f4vXUKJpOrPL6FXjI/bULMpKMYlzndPdyjjoxq73PpQmPjGK39d5z
+XcCh27da6R4YRdqPsXWDwQ6ZCeHL7xpFhVtNNhwHN/VxrFrltlF4bPtd8B14
+4L2pVw7eMIqlQecnVW6qEx+a/V3Q+ppRJHZf9LoHeEKhVgMeXDaK39W79lgI
+nlFwv6vvRaNonF86Pg7cuv+FrvnnjWL0/eS62eAeM376roo3ih27N22wbaYT
+vTonRtQ+axTPZ3kX6gc+8TMq5XycUVj0rjM5FNzfXOfoFWsU3exyXieAuy8c
+tu37CaNYpMT0+A5eFu5cbeUxo0hImh5fuzmer6RisfZHjOLXgTb2g8A9OnUe
+dOOgUTSYXzByFXhe4wAL//1G4ed5q9AV8DmXby8K7zWKrfXDJ/8G50/qG7d3
+l1E8NfVPr+eEr29rvsNth1GYP6/i4Q2+9nvr5uytRtHlWHr8OvB907w94VuM
+Yv6Svfa3wK231bvQbJNRnBk8LlJpoRPPF1Z/lxppFN+bOBZ2BNc6l1Z54Xqj
+sC+aP9kfXGp/2mCHCKPweXU+fRN4b+FtB5NWG8Wm2EUeD8Bv32wrPHeVUSQt
+75pQsKVOuO8YNs4+zChKjDB3aAmOVwa9erLMKDq1eBI5DlzOrOzgRSFGEVxq
+c+Ed4AI2BTOaLDGKU2+9pzwBr1eOT36z0Ci+nK3zplgr1O8TkSXXzjeKOqtz
+PNqCW0Y5H+s41yiG+8ckTAYvHFN5UN5so4hsPcNhH3iG/amSB2caxUOLthtf
+gKOahl8fNt0oin4qaFbGGfWvuX1I+SCjaJ94a0onsH/Dwh53JhvFzPXhb2aA
++03aU2XRRKOIGdu/55H//nxnWI6YYBRZ7a3OvwFfP93mSu5Yo6hZ6Y2DpdAJ
+uz9i6/ExRjH4y96N3cBL9CXmjBtlFOuujjObB06PbTjc3s8o7m5ynHoSnN+3
+XqcPPkZReFL+mw/gMqOX1NvrbRRtulzoad1aJ/bdvVTef5hRTKu6+HwvcIsj
+fnq7IUZx9GfXekvAvxfnZX0caBQfbplHnQWvt/n79JCXUdhuf2L2BZwfkXc5
+sL9RDJi2eWqNNvg8e0w+2qyvUaxxH5HhCXYp9Gvj315GcauGXa8V4CsJpoWX
+PIzC9CfnfCL4wZ3aY5a5G4Xzg5h6v8CbkzJ79OlmFFP2zIiq21YnKl290cja
+zSgOzW5bZCj4aKpn6Q+uRpHZu1DQGrB+Z5VPMR1Rz+rezrgG3vt9c+K89kbR
+X13d6y84/7Pvmh4uqGfJ/S80dNGJO0V0w6zbGMX1g1b1fcGNdV9q5Tijni14
+ExUJFslX3iW0NIoWXvuK3AVfziyyfZUT6lmD8UGGdnhf3e/Ud0Qzo9hfsOnb
+ZmBTcGF9c0fUs+f5vcaALWo/2VmsMerZ8QsXosGPurm0fd0A9Wzp4vqPwX3P
+Pnh4qh7q2ZBum8za64QhxGLQSnujuOJYpqgADy6/7rmfHepZsadBgeBrJd54
+uNQ2imavN7/dBe4wYunZyjVRz06N6J0Cbt2nbOXcakaxZ4VdYskOqAd+5uMf
+2aCejfhcvz04b0zpU0etjcKy5clNQeDgGVu+hVVBPSs9s+hBcOT3LrbjKhlF
+SGbbaa/AHeZua+duiXp2rlCmRUc87+aO/RqUN4r81bd7dwHXebVqoLkF6tmo
+1YmzwREBrr1+mBvFmDaeDY6DlwW/a/G0FOpZOevNmeCPNfRl4ksYReqnN0Ur
+d9KJmSdrpGwvhnp2cd+0HuDY2+nhIUWMovuG8ZkLwCHdbzsFFkY9G9e0Txy4
+2vCJd70Kop51+JOYBT45dWSv9kbUs0qJDWxd8f22b3m5nh717OvizX3Bfolz
+qldUjML/WrdioeByjW6ML1gA9WxzmekJ4PEV9u39lm8QzyY9zfwGXtD6+J1X
+eQZh7ralT+3OeN5OBr2898sg3Gx8Lg4Ez727POX8D4OY/8uu4Sqwe7VFiUe/
+GcTZ2583XwY3Wv5j9fYvBvF9+8liv8Gx9uPdI3IMwmH6zOn1uuhEeZ+Q70uz
+DMKnh8u74eC/z5/Mm/3RIDbXLNx3Hbjn7M95E98bRNKf2xdvgotO8fUclWkQ
+JR+ubqi4YT3b+F70sAyD6LTXc0sT8KBRF+96phvEnGDr4v7geiWSMnq+MohT
+fTKmbwL79N38uutLg/hSd/+7++DCZ49d7pRqEHX0E/oW7IrfR97eFe1SDGL4
+k6aXWoBnFKvk3OapQUQe+tNwHDik4aZ7zskG8XBB4pbt4Crvrrq2emwQxQYs
+Kf4E3ORzo50tHxpE+4bdZxTrphObukzJaHnfIGYVKvu+DfhMczsz57sGEZP6
+tO9kcP9WmSVb3zaI7ONbLu0Fjy3fMa/tTYOoGeLT6AU47+bLSx2uG8SQoXWj
+zbvrROLGboFdrhrEuqZfincC2xWuo/a4bBD3isXOmAHWPSg6oe9FgyicPvP9
+YXD7vLALgy4YRNs4l35vwIZz7l99EgxiWljhyxXcsV/bmKEfd84gjvncadQN
+XKjHp69BZwziQ8s10XPB55MKJM6PM4hq5l4lToKD/E6NC4s1iAHvrGd+AE+Y
+eSJ/Y4xBrInPeG/VA+vXqyt89h43iFtr9vfrBfZ3Tj8Qe9QgTKMnXF4MDi3e
+/f6VwwYh2jZrfBb8bOfoB0kHDWJK+b/Rn8EWR58cztxvEIezEkvU8MDvt1wj
+/7y9BpF5cclMT/Dd/LIFiu0xiKqR3T8sByectxprvcsg+o8v2z8RXNmQdarx
+DoNY1fHZ5Z/gmVFVXrhuM4jrlaMb1+2pE1O2dU8dHG0Q+m8+W4eAg3ytTk7e
+bBAtrtctuQa8enJdv+VRBjFxy5eZ18C915f9tjPSIPZPjv3wB7ziQVDfhPUG
+8cZtVv+GvVAfvX+tehphEJVt213xAdteqr/z+xqD6JNbuEkkOG/vhbBSqw1i
++Z07W++A3xu6eTisMogrO9aUNPTWiaX5E953CTOIAjO8ZjXr/V99vtfPf7lB
+NPOo+nE02HZ5kagloQYxrtbb/tHgA1EJMXuWGsSev/uvPAIfabJqx/XFBvHq
+4YQmZn3wPEZX9fu40CAs9zXb5gx28i6plFhgED3n/C0ZCA5qqRvTcJ5BhPS9
+OGsX2M06fH+fOQZx0X7px2fg386j4qfPNoh8vbtnyb46MVFntyN6pkE0eVr2
+ajuwrXHSwKvTDWLM4WdNgsAXq398mx1kEDsXRm87AG4R2Khd+akGkTrAt9Qr
+8HDHrPFtJhtQZ+xnW/TDvz87ftyoiQbRvfDXj53B1v3cWq+dYBCLX8R6zgbf
+G9T05flxBpFwYtbVY2ALu+ruWQEGkRvSzjETXK9i3IqKYwyiwTCz7ZX64/dz
+ccMm11EG4d/sbqke4FVfRs2Y6mcQW4uvnb0AHLH7fq3dvqhn6V6fToHDrCZu
+Sx5hEGVOV/XKAv+9/P1DYW/Us5Vvr9p46sTidn+UlsMMYoHvAce+4CeB9d8E
+DEE9axW4PQQ81qfJmq2DDOKHefPSCeApw4+WShqAevb+7+xv4G1vu3oW9TII
+34SLn2p5YT2142BA2/6oZ2uXeg0E35g7vVtQX4NIHu1+bSW4R5RX7uHeqGcu
+Fk0vg8+2/xHwrqdBuFZI2Z4H/qZ8PWjjgXqWHV263gCdCAjNjR3gbhBxl3yD
+h4PNHh4JjeiGehZpnxUB/vA7sfYDN4Owm/DV6ybYzSt5RYkuqGedTl3TDdQJ
+r5kR59xcDWJjldlNm4BLVd17YmlH1LNv7Xb4gc2an5p4rT3q2Q0z803gQR/G
+/C7UDvUs+m7wffD0leNdXduink1Zm2UahPXDyTGDlrY2iJNdBwxoAZ5fpajT
+TWfUM1ub62PB607+eFa8lUHUynvbdDt48u4kF48WqGd3D+xIBmd36j9+bXOD
+WL8z0LzYYJ1oZ1vD+1lT1LMZzee0Af/+mlmxqqNBmPUskD0JfGaP2zrfxqhn
+tS8N2Au2H5GffLChQUwvEHI9FXxl6rbnP+qjnj1yb2Y+RCeOj/y0Q9QziI/7
+LHZ2BO95v6DBEnvUs7kp5jPACW/KBz+wM4iB/bbOOQzuOcFjZZU6qGcOI7PT
+wclPUr39axnEbYPDwApDdeLUWv+8mBqoZ8++Xu8Kbtxraw9DddSzI6eazQU3
+yGro72GLerZo9s4YsPX4ay7RVVHPBrYv8wH8uIJ5ao6VQbxrVGSu1TCdGNH7
+bLM2VVDPzO5l9wT/TpjUc1Ulg/B8uXbgYvCZ2u/t0y1Rz2IG3DgD3hx69Ypj
+BYO4EWrT/DO4k0W89dJyqGfDM3dWH64TmTYzmqWWNYiWzQ+W8QRbOB8s3qgM
+6lmJiXOXgw/ZGLYtLm0QB940z7kA3h9X93tqSdSz0wUG/QQXtEoyOJYwiCqr
+Lt2w89aJ8Iij95YVQz0bGdJ8CDh5Q4BXRhGDWOHcY9dq8PdbcdHCDPWsTLmy
+18CTDR23ry9kELoPKXP/gFu0Thz2zYR6dn5rToMROuF65EVKd6NBjI8YOcgH
+fOKEW+n9etSzMQ43N4CnPIlTC6uoZy7fmt8Buz1+esBHh3pmGbdL74P6HD7Q
+/NJfveiZM7tsM3DDGt8aVvujF6GX288bDR5+t3vR+b/14uLGIp+3gHcqNpvT
+c/Xiz4R7gx6Bw/pU+tD+l140cY24WdgXX39dTvauH3oRYDXQyRk865z7AbPv
+erHzu83uCWCzD1k2AV/14sWNzLK7wKUCZrrf/6wX5bYenPcMfDbxYJOmOXrh
+PnXi5xIj8X5b3eT+xiy9WNzNaXA7sMOJi9X1n/TifDXdralg3xol6vt/0Ivc
+vEtOB8DvylzNufdOLxreC9mdBm72ZKuvU6Ze+O/qYWHhh/fDT4/V2zL0YtvM
+cvM7g6OtQicXe6MXz3o+/zwLfLiuWnzqa70oU2fb4GPg5tX9PF+n6YWbzu/W
+W3C20ySv7i/1YsFjhxaV/HVi5fWnJc+k6sXZ/d92u4PvenWbVvu5XvyYG2ex
+AFwnen5ExDO9qNc/eP4p8J0pDUeanuqFb70OXz6Bg98W/TgpWS+2GIsOsRml
+E6NtrtlkPNaL5Gf3bvUBl1tQqWjfR3pR6mhEixBw47Vndl19oBeuiwfuiQcv
+Mw3+7nRfL+YOsi33Dfz88KlvB+7qRVzjd/NrjdaJmPVzd1S9oxdfzQ59GQAe
+mj224NpbemGXNnHISvCZws0si9zUC++TTrcvga39Vz4Pvq4XG5fpWuaB255u
+2OPnVb14NPzyHocx+H3duz8x4IpeFHMKLTccvH53rU4Zl/SiQ0mPBRHgTN8P
+1wdd1ItZGeW+3gB/HHg/P+mCXpw883yILgD7EXXN8x7n9SJ71bbbjcGzvr8f
+fTNeL2r5+bX0A7fVhe7teE4vhop6e6PA78zrr008oxfry34vdx9cuPOKeq1P
+68X9D3ELTGPxfKYPnXz2lF6YXQj+6gS+6TbEv0WsXris6zB0LLhoWZcicTF6
+MT2g6J1t4PgfF/o1P6EXx9vdb5kMbvlgncepY3rx0XLd3qLjdGLqsZm/mh/V
+i+qfB5ZvA359pU7n04f1YuAV24WTwB4j+3dsdUgv1ka9+7oHnGqemB1/QC9u
+Bx4amgq+Nq6qi8t+vSjYedKd0uN1YoibQ5sre/VCWLdo1RH8asO2d1326MXU
+H7p908EDprRoeW+XXhy+ebn8YXCE7eFmfXfqxbutoQvTwV8Knkl9vl0vqgZ5
+fCs/AZ/fYxUcRmzTC8/u5Yd1Bb95Oq/Gp2i9WFU99c4csIvniSuTtujFjd/b
+WsWALRr5lSqwWS8M9/32vQdXXuapXxKlFy1316tgFYj1aUy7KPONejFp1veF
+PcEDq75O3bRBLw70Ov1tEXjQyM9X6qzXi4w6c4adAWe52vU7GaEXVZSOd3PA
+4/a6rWi3Vi/6JhV1rj5RJ46Flxpzf7VerDhwf19/8MPGjp+HhOvF1XnrKiwH
+W72aXDFnpV7oPActugDOKxP2YXaYXjSvX+37D/CVUc5DS67Qi/Gm98PsJoH3
+OM+IXqYXe1MO3R0MNp7s2rJRqF68OjrJeTW48ZZa0ZeW6kXFJS32XwVHrg3d
+228J6tlgxfIP+Ge2Y7+Pi1DPmlxZ1GAy9rs13uwJXoh6VmTZ9xFg++Rem8su
+QD1L8xi+YfJ/v2+XZvvm6YVjbPl7t8HFU8ZObDMX9Wx5qrN+CtZLVhE9k4P1
+Ypf39v1NwVvipzwaOxv1zMnfcjR4aom7uQVn6UX5UvUXbwFPnD8oYcsM1LO3
+378/BKecTKvlNF0vlpw9PbzwVJ0Y6VO+0cMg1LPwOfdagWuNO58aMFUv8vw6
+iglg/+RIO7MpqGetix3YCd58yafCzkl6McrigeUzsMuctF1tJ6KefVy3uEQQ
+1o9Tbjx+MUEvUi4M+uECHtksfcfM8ahn66t5TwU3nPShTKVxetF17Pt7+8G3
+1Gjb0wGoZ+0PizTw2OSL9zzH6MW5ipMPlJ2G/UqJcla/R6GefW5RsTP4Snrf
+Ihv9Uc+uKktm/ccnOq5t5Yd6tunKj6Pg+vpd8S98Uc8mLvN+C5491nHRXB+9
+eNK55/2K07G/io/5WH0E6lnVCq3dwUuSM7OvDdeLzj9TD8wHH0tcFhYwDPXs
+1vaKp8CBe31umw/Vi9Pb/Jd8AtdKbrzn1GDUs6D6P6vO0ImDp05ZDxmkF3Xd
+f3j3Abd/HtO44EDUsxpn7i8FT//yKf2gl15E5c9pHQ8uc926QV9P1LP7HQ9+
+BWf1LlVB118viu8pVqnWTJ3I2T1n456+qGezHywZAH7/o9Hpnn30Ynbv9T/D
+wPNWv5/4txfqmd3gEZfA1j99r+3pqRc5SvUHueCbxwNie3ugniW/b+0wC38+
+/3wbtQfq2cHDB4eB67S0HXGoO+rZ/MmVIsBeD/vYDOyGeubZcukNsL+3VVCR
+rqhnDdRfBWbrRKtqrf3iuqCeFbw6ojE4edSML36d9WLG82UPRoJbHosoY+mK
+enasZ5sosOeq3neud9SLT0sqHLoH/pYQZDOjA+rZkBeVTMF4/1lcLebQXi8G
+Oe5Y6gR2WWpY+dIF9azoqF8B4EcNv+4Lb6sXd17V99kGDujQb1DHNqhnp348
+SAJvtvy167fQi9YrzrQpOgfry2oRiw87o56NmHuoNTjgZ24Bn1Z6caRFp8qT
+wF06vilWqSXqWaniIXvApTMqH73vpBc2mQ9+PQd/uDjy45LmqGfn1vuUnov9
+wdelZ9o004vw1YMfdgBvj3a1yXNEPfOv3nY6OLGif+VjTVDP2nw4dAjc/vaR
+A6Mbo56VO1I5HXzaJeN+jUaoZ58mh5Sfh/1V9VuhaQ304mBiy1w38P3mdZ9t
+rI96tl71nQMe4HvtbL96emE17urDE+DgI/6NyzqgnnVY3vY9uIzTY+f7dfUi
+rFKvw1Xm4/ttfT9lhR3q2ZcKVXqCE22rF+9WRy+Uay9CFoHtB625X7Q26tnm
+HbmnwdOWvKt9s6ZeTJg0yjcHvHVApnloDdSzLg0eVVugE4329wtzq64Xr6v+
+bNsf3NRf2VysGurZrzOHl4Gr7dwj7tjoRa/bc6tcACeElp+wsirq2fZOoT/A
+pUeWdexlrReXphXPq7MQ74fNviHlrFDP3B/6DgYfiXk8/lll1LOaGx6Fgxd0
+r/NucyXUsz+DXa6Cf9Ws89m7IurZg+pH8sHFK25aUscS9WzPhyoNFmH9Zd3t
+aE551LPgI6EjwOlu6qiT5fSiR58peevBle/NPTbLAvWsbquRt8GX8iJCOpTV
+iwuq/rG6GPW/kdnX4mVQz5KvujQFb1K3vksqrReNDi0/Mgp8unCtsdGlUM8W
+9LLaAv5WcMS8USX1YruX5bKHYIfkqjUcS6CeNXiZV2gJ1g/ja/ZViutF2UI7
+R7YCd89wtrhVFPUsddTj8eCkEQ2Gry+iFwuPN2i3Ezzd6WorHzPUs6U/jzwF
+z7x+c0ejwnrxc8hZqxJL8f1GFIpUCqGeNZ23zAV8WbSvfNekFyOLuf6eAg6c
+7lZ3sxH17HVxv/1gG6vMKwEG1LNTDx+/BM+yfJXtrEc9C9vQrmwI6v1Uw/YS
+KuqZz5CjrmDLwRXSX+r0Yl7LGtazwJtLfDh0tADqWemPy46CHTNcCi74q4pv
+mUd+Z4BNnlnv+v5RRd34KX4VQ3Wi5J/jfe3yVTFiTauk7mDrGcPcC/xWRdQo
+ffv54LhN5x88yFXF4zbXjsaCDR2j0nb/UkXx8iusP4GPjU8ImvVTFR2zei2v
+ugz7oSY/Inv9UMXsi5b5vcFTLhXuZPddFbEbXvotBVuOvjxT/aaKnHE7k86B
+y4f9bPn0iypqdxzd/is46cjIBUc/q2Jo5YbHai7/rx696ROSo4oNX39aDwDv
+ntD8iHe2Ku5fO7s8DHxtdf3VzlmqKLJlXv5F8Na4tQUqfFKFy2RX/1zwqIym
+X79+UMUMtxLJ9ivw9Ru/DLjzXhXHbR61Hwb2eOI1Yd87VXz6teHYWnC36lP+
+LMpURY07Q6reAN8O/ltixFtVDNpRY0WBMKwPA87taZuhiojpH/MbgcMXz7tu
+/UYVd3oc9R8J7rHAckKBdFUUqjU1eSN4REP3LamvVNH6b6sO98Dlp3zudS5N
+FUEP9ceNK1HPe95YsemlKo7svVbVCZyZttd99gtVvA9esSIAfKnnwIghqaqw
+6dv7z1Zw5LdDw9s+V4WXfcVRSeCJtcadqJaiinB9WnKRVfi8jh4VWvCZKm4+
+2dmhNTi919jM909UYTg8+vhEcFaY67XbyapotbChzR7w6YwrDseSVDFpwK8V
+z8FdmsSWX/dYFQcbnvtTKlwn/gRmLpz5SBUZheaP6gCed7RG0PCHqrB64fpk
+Gvhm+TbZrg9U0e9EiY6HwDkZxnf176siLOTR8dfgWpNcfMrfU8W1oZE25Vdj
+P9voqo/uriqUZkPD3MBxe4e9z7ytCqfiNf8Gg0dMS8u5d0sVE9I/jjoB3uRp
+Pu30TVXsizv65B3YvOKVBTtuqOJ12NSOVdboRM1tN8zDrquikq/zCQ9w8uds
+2+nXVNGrlcF2Efh4ZX2Mz1VVLDO/HnYafLnXw2seV1Rx6d2Kv9nguSkNB4vL
+qvgb33t0tbXYX5bKmlT3kioc11Z82g88deSjYpYXVTF2dFrHZWCL0bE1CiWq
+YlfbXSfOg/XxPgk/zqviZfkxtj/AVywPP32ToIry2Q1X1onQiU/dvSc9ildF
+j0u//g4Cf23fM+zSOVUsiTw3Ojziv/tpN7uYs6q4MH7+0yvgD/Ordth1RhW/
+O3bulA/+XTz65brTqmhUpWRM/XX4eimReUvjVDH62yPbEWDR/lX4zFOq2H49
+cuV68KS4dvvHxari+ZahBW6D354Pd/E+qYqyU2qOUdfjffxrc/9+Maro1vXT
+U0dwWEmnLLcTqlhoe6zTKLDVw4ZK2+OqiM+dGrMZHGTjtarpMVX8vONc7SHY
+/fO8aPujqqi/07Cq0AbsJ91mOVQ7ooqRM64XaAWO6l2xecXDqoj2CBszHry3
+Xd3zpQ+p4kmtPs92gFv5zr1sdlAVpQtUcn0KTrbO7qQ/oIrOj9JiikdiPfje
+pVP+PlXM27ermgs4p6fHxe97VXF6zphVU8BG5eOZ7D2oZ30b6faDG+x/1eD9
+btQzh9wxL8G1qxeyfbML9cwQ/6zMRrxfeziEvdypik1P57u6gmfXqRmUsgP1
+7HDnkzPB7c9ffJ68XRUlFpWsfhS8yOnJ2UfbUM8GPl6VAY6461jhwVZVBDfa
+qKsYhc/n/UPZd6NRzwoPC+gOVndatLmzRRWfX9RMmQf2T2xV7PZm1LOYT66x
+4KhTP3ve2qSKYaHHTn4Ef7crV/ZWFOrZsKDqVTfpRPT9APdbG1XxoJkI7w0O
+m3bPeDsS9ayEUVkK9jaWbnJngyravbkecA48zE+fenc96tnpsJQv4CFHpuoe
+rFPFiZV9OtfcrBOx+e02PopAPfOtFOsFbjK7xZHktahnzq+qh4ELzaknUtao
+0ocDHx30rf3L1ar04cB5iwdeSg9XpQ+3RSeezXc++26VKn048IQP/vbZK1Xp
+w4G/+cWU/R6mSh8OvP78t0m/V6jSh4vWiRVXcruqYM2HA3/wXh9VeLkqfThw
+xNpd3qWWqdKHA3cY82trhVBV+nDgocWG9LMJUaUPt1Un8g8enW+3VJU+HPh8
+1MWaTZao0ocDpzfzbyMWq9KHA5f9OuWe6yJV+nDgMR4XknotVKUPtw37+5zK
+vYYsUKUPB44NGtxh9HxV+nBg/4NeB6fOU6UPB9499G3Igrmq9OHA54KSUlfN
+UaUPtx3v1xzdri3BqvThwCl3m6UfnK1KHw4c1qLX2rOzVOnDgbsPq3X25kxV
++nDgKkuX9kuZoUofbgf2W2buIz9OV6UPBz7brdvH/Gmq9OHA9g8804uBNR8O
+fKdmF3erIFX6cOD0rG/1GkxVpQ+3E5+P5/bzXKao0ocDXzp1w7XPZFX6cOAW
+g7bP85ukSh8O7BWzrP7Miar04cANEga6rwxUpQ+3C/Up5P2rHRNU6cOBLVqa
+ZcaNV6UPB/5sCB98d5wqfThwAXsv14yxqvThwLuKNt+RH6BKH2431qvF9YHm
+YM2HA187sOJonTGq9OHAHkEnhrcdrUofDjyxZJeFnqNU6cOBg6vVtAz0V6UP
+twefl6nWVqF+qvThwGteFluzY6QqfThwaZfL0+N9VenDgdtHWD944qNKH24v
+nrc3Xzd8G6FKHw7cx7XcgxJgzYcDn/k4dLqdtyp9OPC1ovvCOw5XpQ8Hbvfz
+WkXvYar04fbpRLEia83nDFWlDwcuFZsxbdMQVfpw4Kazw3ucGaxKHw7c70tg
+xNNBqvThwHWPD3bLHahKH24/6v9Uh3HlwZoPB36hxqrNBqjShwOXqv1Q389L
+lT4cOPiuZ+BUT1X6cODAbNse6/ur0oc7gOc/tGBUXD9V+nDgqPjnfVL6qtKH
+Az8/NGvW3z6q9OHA4WsumFcFaz4c2P7UHIt2vVXpwx3E/idw9ULfXqr04cCF
+7B8MD+mpSh8OLAZbHDzkoUofDlwn3HHEwx6q9OHA+UOLLsl1V6UPdwjvs4nj
+KliBNR8OXHRBC4v23VXpw4FHeXWYPaqbKn048NO7fr1WdVWlDwf+cmvWmlNu
+qvThDmM922VQ27QuqvThwEXc0zwLgzUf7vB/662XqQ06q9KHAycNdrzt6apK
+Hw48+GpcrfmdVOnDHdGJjhM7Zh3oqEofDmw4daJKcgdV+nDgIb9TT6lgzYcD
+jz20Md6+vSp9OPD0flfr9W+nSh/uKP79i1uYLXBRpQ8HXvTqTrcjbVXpw4HP
+lx3853kbVfpw4O6vLpQtAtZ8uGNYv1o8imjWWpU+HPhM2Nh5PkKVPhx4YsvR
+yaudVenDgSuU3bE2sZUqfThwaLVvZ7+0VKUPdxz1YF6jbjZgzYcDn+zXqqNH
+C1X6cGDvpx92z3VSpQ8H3utWIfBYc1X6cOAu6pYd6c1U6cOdwPtkgGdrC7Dm
+w4F3XLdx6dRUlT4cOO76gwPTHFXpw4GvZHYMPtBElT4c2CK+f9zLxqr04WLA
+P157lQFrPhzYrd15706NVOnDgTsF3Hw4o6EqfTjw2g4v9x1poEofDnzkQNK7
+jPqq9OFO4n29ctnySmDNhwOvyE5Z71FPlT4cOPDuliJLHFTpw4Hd3I6/jrdX
+pQ8HHr/4S9WfdVXpw8XqxP2TjpcdwJoPB/5sOeCuj50qfTjwnQLOrTfXUaUP
+B355/mTZ5Nqq9OHAuuvb3UuBNR/uFOrb8pc5nWup0ocDz13V4cf8mqr04cCV
+fI8Oia+hSh8OXH5vgfp51VXpw4HnmMy8m4A1Hy4O693GB/LHVVOlDweumnsx
+d7+tKn048IYa9l7vbFTpw4E/RZ63rgHWfLjT+P7aD+o8vKoqfThwiOWLpC3W
+qvThwAVtrK+lWqnShwNHj/lTuTJY8+HADpV6Pvaqokof7gzeh/3/fN5QWZU+
+HNh/QPK4p5VU6cOBQ/0TPCzBmg8HHv1wZYRnRVX6cOB+P2uJSEtV+nBn8flv
+Ocw1pYIqfThw9YqWMZXBmg8HNi9jv2BweVX6cOCSMVNiosup0ocDh0Y+dk23
+UKUPdw71bFQNUROs+XDgIkkua/3LqtKHA5feVKT7wTKq9OHAc5d6+n0xV6UP
+B46cUOyNI1jz4eLx/TdTLkwvrUofDnzhWmnd+VKq9OHAVtZWm01gzYcD72mt
+3+xWUpU+HNiy5cYC4SVU6cMlYH/ncCXhSXFV+nDgrq2HvrIGaz4cWNne0Xtk
+MVX6cOCR6/p2OFxUlT7cf+wbsPhXEVX6cOexfvDxq9MGrPlw4OLfq9ddaqZK
+Hw68ffacZQ8Kq9KHA4fP6N+tMljz4cCrx4QE+BZSpQ93AfXzxbdPRwqq0ocD
+b/MLvJlvUqUPB/58ML1wJ7Dmw4FPDqixM9yoSh8OXNvOIvqFQZU+XCL2F89X
+5tmBNR8OvLr1lKNT9ar04cAT7bdfvaSq0ocDxyz80dIcrPlwF/H+a+5WYqii
+Sh8O3Mt5njikU6UPB76xNujWnwKq9OHA8d2LnXIDaz4c2Cq4krrxryJ9uEt4
+fl0X7P7wR5E+HLjq4+r7W4A1Hw4cMyClaGi+In048JxKi66n/FakDwduNNjw
+xh6s+XCXdWLa1IYDZucp0ocDf7mUXe9eriJ9OHDFQ5ZDbMGaDwfusGPlx0m/
+FOnDgZfbNnp09acifbgrOpF48HmFSmDNhwMPfTQ2buwPRfpw4OB6V2MSvyvS
+hwNfG3SpeHmw5sOBhxfvcGH0N0X6cFd14uOXWvfOf1WkDwf2vu7WohxY8+HA
+1QaE6cZ8UaQPB7479b514mdF+nBX//OfPkdWAGs+3DWdWJl4a/y4HEX6cOC0
+hHZbr2Qr0ocDB75tYm8F1nw4cEiT4NJTshTpw4GHH1U97nxSpA93HfUwYOOH
+mmDNhwMfm1P3RfBHRfpw4K/FV9V9+kGRPhx4WOv9DxqBNR8O3NzV8+Gy94r0
+4W7oRM8R0x0y3ynShwNbP8lKawvWfDhwxOfwrKhMRfpw4BqGzr1y3yrSh7uJ
+/URATuneYM2HA3tE+NQ5kqFIHw6852PIhmJgzYcDB75BqXqjSB8OvEs3bP6V
+dEX6cLfw+7t07081sObDge9fCLgz97UifTiwY1j53JevFOnDgRNuHpwmwJoP
+d+s/36ZUr01pivThbuPz2NRqwZ+XivThwJdvxBYbCNZ8OPCSDWc/nXmhSB8O
+bOdfrHplsObDgdcUWnxsZqoifbg7OtG2S7H1qc8V6cOBm5WY+UiANR8O/LPZ
+yZHRKYr04cCjj0d66MGaDwd+MdEsfMQzRfpwd3Xi3cTXta8+VaQPB/aJMZWz
+A2s+HHho216ey58o0ocDF629/+vnZEX6cOBDc7Je9QZrPtw9vN/8f9eMS1Kk
+DwcuW/jYhSpgzYcD91ny/ei8x4r04cCjqmz7lflIkT4c2FHdGN4NrPlw93Wi
+96SEeccfKtKHA1eIz7lqCdZ8OPAk+2LD5zxQpA8H/lzmR4/M+4r04cAb74as
+6Q7WfLgHWA+eP2h/8p4ifThwgR7C0gqs+XDgnA+VvRbdVaQPB/YuaJeTfUeR
+PhzYoUrHJ/3Amg/3UCd6HPGwuHBbkT7cw//6kRx22YE1Hw7camxcyJpbivTh
+wBPikhILgDUf7hHeLxd8uvvfVKQPB65ds5PDoxuK9OHAu0MHDGkN1nw48Puo
++W/2XVekDwf2LBJ9thxY8+Ee430bsipz3jVF+nDgC8nNfXKuKtKHAx89McVx
+IFjz4cBbM+v2v35FkT4cOLGV0+2mYM2HS9KJfQuD1+y4rEgfDtx6w8uD5mDN
+hwMf7NXCcu4lRfpw4D4R45NyLirShwMndPLOGAzWfLhknVja61uHO4mK9OHA
+g/apuc5gzYcDv2g7Lv/gBUX6cOANZav0sAJrPhw43+bTjxXnFenDPcF+e+y5
+Tzqw5sOBu+sDm0xIUKQPB3758cOt1/GK9OHATZzNTvYGaz4cuHbxQzlXzinS
+h3uK9//U09OcwJoPB06OLNn7wFlF+nDgyKgVs63Bmg8HztlRIS/8jCJ9OPD+
+tBUXC4I1H+6ZTqTMeZA6/bQifTjwidOXOuXEKdKHAy+92lEdAdZ8uP/+/I1T
+kaenFOnDgcN6BQ/vDtZ8uBR8Hj1zzS7FKtKHA7u1XqS0AGs+HLh9zyIdj5xU
+pA8HLpDu86wmWPPhnuPn0WH6uU0xivThwNkPaueUBWs+HPhyRs9xy04o0ocD
+z0996mwEaz4c+HTlLV4zjyvSh0tFvTBbcPn7MUX6cOAHxUbNDgBrPhw4cnWj
+hW+PKtKHAy8rnvB0CFjz4cBbsz7PeHpEkT7cC/w89+4d3Qus+XDgNWdu7Ll9
+WJE+HHjfZsfGrmDNh3vxnx9ys8jFQ4r04cD2T8bWF2DNh3uJ97+jsjXuoCJ9
+OHDi+GFDHMGaDwdWLSaNOnpAkT4c+MQhy0QHsObDgR1vN/bdt1+RPlwafv76
+HX1rgTUfDjz/tdvqHfsU6cOBexuLV7YFaz4cOFW5/nnLXkX6cOBxE4eVtgJr
+PtwrrK/yYmdF7VGkDwfOa3TIsRJY8+HAARdqOEXuVqQPB050VZZYgjUfDnx9
+rLXthl2K9OFeo96kjChkCdZ8OPDJZseabdipSB8OHFX//TFLsObDgcuO/xgU
+uUORPhz42+7IpZXAmg+XrhOHFz95E7VdkT4cuMeFRSFWYM2HAw8tvHh69DZF
++nDg1NJnTtiCNR8ObLfG6LRzqyJ9uDfY33TqUKg2WPPhwF7pg633RyvShwNP
+qtZ4bj2w5sOB9yVutz+2RZE+XAb2V7PCbZqCNR8OPKT0qyGnNyvShwO/bjUh
+U4A1Hw48NqH6qYubFOnDgd09U++7gjUf7i2ev5szm9yJUqQPB2795M3LXmDN
+hwOfavvr4dONivThwM4315YaCtZ8OPDq5tvWvo1UpA+Xif1M9wLeAWDNhwN7
+3QsN+r5BkT4cOHaBfdIMsObDgXc0SJxhAGs+HDhnQz3/0PWK9OHe4c8X9dpc
+Bqz5cGDdOfNKUesU6cOB+xu6v6wO1nw4cKWqmR8ORijShwPHPE1wbgbWfLj3
+OrH4Z1zy+bWK9OHAT1vFnuoC1nw48I3ADWmP1ijShwO7DHZxHwLWfDhwxqXV
+xg+rFenDfcDnZ8w4ZTJY8+HAiyvEuihgzYcDf1/R9WZouCJ9OHCX1aUjy4M1
+Hw6se595aPsqRfpwH/H+7nnUrAFY8+HAPVa77zu7UpE+HHjr6B0rO4M1Hw4c
+FbXqbFKYIn04cP23uQ4jwJoP9wn1qdDZN19WKNKHAw+OP5sWDNZ8OHDba89t
+SoA1Hw7s8Orv7qjlivThsvD8XlIn1gVrPhzYpu6NeaeXKdKHA1+/0zy5M1jz
+4cBRvvXHPw1VpA8HvrknrJs/WPPhsvH9dWk5Li9EkT4cuGWBso+XgjUfDvx1
+Sv7simDNhwM/HfFwzP6livThwO+nzNrcCqz5cDnYD3ullLmzRJE+HHjomTu3
+hoA1Hw68vJ3T9S+LFenDgftt/FN4AVjz4cDC/3doObDmw33G+8CjbM+9ixTp
+w4Hr5dYd0Aqs+XDg5D+2u+8uVKQPB75cIMXRG6z5cODbkY6Ffi1QpA/3BeuN
+0WUrhYI1Hw5ctojnBGuw5sOBRxfLMDsxX5E+HDi3YOQbV7Dmw4HjQj3VF/MU
+6cN9xe/PzjR0Iljz4cDO42crZmDNhwO7vdv1evNcRfpwYLNKQws6gjUfDjx3
+Rejom3MU6cN904mmV4qYDwdrPhy4cruEvNxgRfpw4JD5IbYrwZoPB3Y0dF9W
+C6z5cGCrlh+bJsxWpA/3He/rre1s+4E1Hw5cbF/z7jmzFOnDgbte3n96MVjz
+4cD2w2aPrArWfDjwnneresfNVKQP9wP7u4tX5/YEaz4c+Gw/NefjDEX6cOCQ
+glWjFoI1Hw7crb5pqTVY8+F+oh7VC4+Jm65IHw4cPWCPTW+w5sOBU4vXuZ09
+TZE+HLj/uh+xS8GaDwee3CnnVXWw5sP9ws9/1K8u54MU6cOBf7rmfB0A1nw4
+8KPap57+mqpIHw7comtj3Rqw5sOBi39t690ArPlwuXhe+lw23Z6iSB8OHH54
+81t/sObDgf82PmwqBNZ8OHCzsk+G75isSB8OnDnr99+2YM2Hy8PzuvFX0stJ
+ivThwJvCj2TNAms+HLjR4oIulcGaDwd2X//s4emJivThwCdfFd/uCdZ8uN86
+MWfG3MO5gYr04cBW08vlrQNrPhzYLftgcDOw5sOBi2XUbpc8QZE+HPjASL92
+U8GaD5evE8dndJtTHqz5cODXtnF5seMV6cOBmwxYdrg/WPPhwPes9mzNG6dI
+Hw5cakTW3Uiw5sP90YmJVZxbtAJrPhx4q1NQWupYRfpwYO/twYnBYM2H++/P
+2zZJswFrPhx4+K8pTpcCFOnD/cX6YnvtO75gzYcD59rYbTYDaz4cuFvngXsP
+jFGkDwe2ytqS4w7WfLgCinj6/PH4b6MV6cOB89Jf2K8Daz4cuNCNjdVagjUf
+DryxZ1bvl6MU6cOBezufOD8frPlwOkWkdbjvWxus+XDgH9VqdLrtr0gfDtw7
+dOWwQLDmw4Gv1P0eUx6s+XDgqkcbtD/np0gfTsE69mLNYt5gzYcDVyoYW9wM
+rPlw4C2Wia6HRyrShwM/3lD7XB+w5sOBH1rdHPXHV5E+nKqIC61CPLaDNR8O
+/GR+xwldwJoPB/afk3b9i48ifTjwi9PNB2wAaz4cOC62fo22YM2H0yti06+d
+td6PUKQPB3b/NWP4KrDmw4Hj6oc/dgJrPhw4y+L6nNfeivThwA6V1BGhYM2H
+M+DPD1QMbgLWfDhwUpOf91OHK9KHA9+tMGngYrDmw4GVM5OsGoI1Hw78bNqT
+8inDFOnDGVEnjgS7LgRrPhz4+okuR+qDNR8O3D/F0v3ZUEX6cOBVE29XXwjW
+fDjwjusdGjYAaz6cCXWrpveklCGK9OHAA+6YshcNUaQPBz5kKLG5EVjz4cDd
+jAMXvBisSB8OnFnkXnQIWPPhCiricvcu35qCNR8OfMewf0b6IEX6cOANXg+c
+VoI1Hw48bk60gzNY8+EK4b255UffDwMV6cOBG744GrMOrPlw4PVDYzp3AGs+
+HNiyU5r5twGK9OHANQ+bl94K1ny4woqofdy+vTtY8+HAy0aVOPDXS5E+HPj2
++3WuB8CaDwee47LXcgBY8+HAPvNtrYuANR/O7L9zzfT+cZ6K9OHASR9uXfED
+az4c2NYm3q8CWPPhwC2GrBPX+ivShwMH7mruGgTWfLgiqDM/5i6sDdZ8OLBF
+514/n/RTpA8HfhC5LHIpWPPhwFNeFw9sAdZ8OPBAi9iZH/sq0ocrivdwTb/T
+UWDNhwP7FVLrdgdrPhw4eNewOzqw5sOBX3z233G0jyJ9uP/+/H7eAW+w5sMV
+Q11t+CXTAqz5cOAmufX7XOutSB8OXK9oxPfpYM2HAw/ubrjiANZ8OLDNjn7X
+03op0ocrjs9TVmCBNWDNhwP3NXP06QTWfDhw16RZf3/3VKQPB1YaOlw9BNZ8
+OLD5D9vE4WDNhyuhiMJ/RXY5sObDgYfZDnO76aFIHw58yNn/aTBY8+HA22o2
+W98ErPlwJRXR4MS+xe97KNKHA0ee3b57M1jz4cBhFvrcXmDNhwO3WLMzyAys
++XDgIcXH1klwV6QPVwr7vD4ti0wGaz4c+HCbrIp1wZoPB7bf7j3gVXdF+nDg
+/B6zb64Daz4cWFhVGd0drPlwpcEvrVuYwJoPB17q59v8bDdF+nDgwmH3fCaC
+NR8ObFlbJNqBNR8OfMAsrNvrror04czxdYpsLxQJ1nw48DzV67MHWPPhwMOu
+ri5UBKz5cOAGjg26Jbop0ocDt65R8sJ0sObDlcFzPLGUd2Ow5sOBJ+SXafyp
+iyJ9OPCmqLwGO8GaDwf2aLp14GCw5sOBv+79EFMerPlwZRUR/Sym1f3OivTh
+wF4HX38OAWs+HLiimceD9mDNhwN/TkpLKwDWfDiwjT6wcpyrIn04CzzHQW8W
+TARrPhx4VJ0KFeuBNR8OXLNwVsq7Tor04cAXzNrd2A7WfDhwz5q/3wwGaz5c
+Obxf+3+tWxGs+XDg4VuKbnncUZE+HLh6fg2xCqz5cODN423MuoE1Hw58ptAL
+nRlY8+HKY19zs6Xt5Q6K9OHAvW5VHD8XrPlw4AeVBrx3Bms+HLjl/efLf7dX
+pA9XAe+3QnMGxYI1Hw48LLV6/0lgzYcDB03ZP6shWPPhwGN+f7ud3U6RPhw4
+ZO0L1wNgzYezVMS9ILdsf7Dmw4GLPKsYXwus+XDg3G/2pzJcFOnDgccVHP58
+O1jz4cBT+kbaDQdrPlxFvDfqndxWFaz5cOB6L9a2f9lWkT7cf3zGstRmsObD
+gTdVtTUNAms+HDhsXFi1ymDNh6uEf3dJl9EpbRTpw4F9x1R8HgnWfDiwPj93
+shdY8+HAd5rEN68I1nw4sIjsUv1Za0X6cJXxeT02u3kkWPPhwIOLtpzsBdZ8
+OPBbp6HPKoI1H67yf+dOd0amCEX6cOBvK0ZWiQJrPlwVfD4MRfMHgjUfDvz7
+3QbFCqz5cODkvO8OL50V6cOBu/76My8arPlw4Nh94brhYM2Hs8L7KCNiezWw
+5sOBW8/9MDajlSJ9OPCTIWOH7QbLfDg8x6MNM/zBMh9OEevWhZypC5b5cHi+
+Xr6xzW6p/MuHw7+307cjR8AyHw71LTXCZyJY5sOh3sQeadMULPPhFNH4p41L
+XgvlXz6cIuYn3vQ/C5b5cPhcuIfFBoNlPhw+x0+71W0Hlvlw+Pu73l0qCJb5
+cPh5FGy74IaT8i8fDuu6Ps39V4BlPhy+r5+HJ/YEy3w4fH77L91eDizz4fCc
+/NiZ+6y58i8fDs9fj8zALWCZD4fnNbee+QiwzIfD73/J4KTaYJkPh9/Ttn4J
+Wc2Uf/lweM5y828dA8t8ONSldg66ILDMh8P7w+12H2ewzIdTxKxX5+7pwTIf
+DvXsddq4a02Vf/lwinB1qtB4BVjmw+H7ftqhYm+wzIfD93XZrUZFsMyHw/rM
+rFjvNEflXz4cvt/zfrt2gWU+HOpGyfaVA8AyHw71sM6cmMZgmQ+niGbddIG/
+myj/8uGw/ru63eMCWObDKaLCF/feS8AyH04RifXfTnMHy3w4/Dt+uiaWA8t8
+OHw+r3g5vGis/MuHw+fcvsCZnWCZD6eINRctRgeAZT4cPgeOC5wdwTIfThFn
+m9s3+ttI+ZcPh3X/qs+ul8EyHw7Pm/mJucvBMh8OX3ej5/M+YJkPp4gqlS/1
+twLLfDj8HFYm/XzbUPmXD4evZ5p08jBY5sOhnq4OXhcElvlweP5HPN/QFizz
+4RTx/VDAuSJgmQ+Hn29cOf2jBsq/fDjU3SenR24Cy3w4rP8mOGf7gmU+HH6/
+P+eubQCW+XCKKPBp9KDf9ZV/+XCK2Pr6RYdLYJkPh+d1Znz3FWCZD4e/Nyp7
+an+wzIfD3wvoecEWLPPh8Lnve8cuq57yLx8O+yBTxxOxYJkPh8/x6E2D5oFl
+PhzWXUtO1ewGlvlwWE8EzChZASzz4fCeb3mjfLqD8i8fDp+HaktbHwLLfDj8
+/ZFRi6aBZT4cvo7Xu0/twTIf7v//k/89///49/i/w/9dfh1+XX4f/L74ffL7
+5r+D/y7+O/nv5s+BPxf+nPhz48+RP1f+nPlz5++Bvxf+nvh74++Rv1f+nvl7
+53PA54LPCZ8bPkd8rvic8bnjc8jnks8pn1s+x3yu+ZzzuefngJ8Lfk74ueHn
+iJ8rfs74uePnkJ9Lfk75ueXnmJ9rfs75uWcdYF1gnWDdYB1hXWGdYd1hHWJd
+Yp1i3WIdY11jnWPdYx1kXWSdZN1kHWVdZZ1l3WUdZl1mnWbdZh1nXWedZ93n
+e4DvBb4n+N7ge4TvFb5n+N7he4jvJb6n+N7ie4zvNb7n+N7je5DvRb4n+d7k
+e5TvVb5n+d7le5jvZb6n+d7me5zvdb7n+d7nOoDrAq4TuG7gOoLrCq4zuO7g
+OoTrEq5TuG7hOobrGq5zuO7hOojrIq6TuG7iOorrKq6zuO7iOozrMq7TuG7j
+Oo7rOq7zuO7jOpDrQq4TuW7kOpLrSq4zue7kOpTrUq5TuW7lOpbrWq5zue7l
+OpjrYq6TuW7+3zr637qa62yuu7kO57qc63Su27mO57qe63yu+7kP4L6A+wTu
+G7iP4L6C+wzuO7gP4b6E+xTuW7iP4b6G+xzue7gP4r6I+yTum7iP4r6K+yzu
+u7gP476M+zTu27iP476O+zzu+7gP5L6Q+0TuG7mP5L6S+0zuO7kP5b6U+1Tu
+W7mP5b6W+1zue7kP5r6Y+2Tum7mP5r6a+2zuu7kP576c+3Tu27mP576e+3zu
++3kOwHMBnhPw3IDnCDxX4DkDzx14DsFzCZ5T8NyC5xg81+A5B889/ncO8u9c
+hOckPDfhOQrPVXjOwnMXnsPwXIbnNDy34TkOz3V4zsNzH54D8VyI50Q8N+I5
+Es+VeM7EcyeeQ/FciudUPLfiORbPtXjOxXMvnoPxXIznZDw34zkaz9V4zsZz
+N57D8VyO53Q8t+M5Hs/1eM7Hcz+eA/JckOeEPDfkOSLPFXnOyHNHnkPyXJLn
+lDy35DkmzzV5zslzT56D8lyU56Q8N+U5Ks9Vec7Kc1eew/Jclue0PLflOS7P
+dXnOy3NfngPzXJjnxDw35jkyz5V5zsxzZ55D81ya59Q8t+Y5Ns+1ec7Nc2+e
+g/NcnOfkPDfnOTrP1XnOznN3nsPzXJ7n9Dy35zk+z/V5zs9zf94D8F6A9wS8
+N+A9Au8VeM/AewfeQ/BegvcUvLfgPQbvNXjPwXsP3oPwXoT3JLw34T0K71V4
+z8J7F97D8F6G9zS8t+E9Du91eM/Dex/eA/FeiPdEvDfiPRLvlXjPxHsn3kPx
+Xor3VLy34j0W77V4z8V7L96D8V6M92S8N+M9Gu/VeM/Gezfew/Fejvd0vLfj
+PR7v9XjPx3s/3gPyXpD3hLw35D0i7xV5z8h7R95D8l6S95S8t+Q9Ju81ec/J
+e0/eg/JelPekvDflPSrvVXnPyntX3sPyXpb3tLy35T0u73V5z8t7X94D816Y
+98S8N+Y9Mu+Vec/Me2feQ/NemvfUvLfmPTbvtXnPzXtv3oPzXpz35Lw35z06
+79V5z857d97D816e9/S8t+c9Pu/1ec/Pe396APQC6AnQG6BHQK+AngG9A3oI
+9BLoKdBboMdAr4GeA70HehD0IuhJ0JugR0Gvgp4FvQt6GPQy6GnQ26DHQa+D
+nge9D3og9ELoidAboUdCr4SeCb0Teij0Uuip0Fuhx0KvhZ4LvRd6MPRi6MnQ
+m6FHQ6+Gng29G3o49HLo6dDbocdDr4eeD70fekD0gugJ0RuiR0SviJ4RvSN6
+SPSS6CnRW6LHRK+JnhO9J3pQ9KLoSdGbokdFr4qeFb0relj0suhp0duix0Wv
+i54XvS96YPTC6InRG6NHRq+Mnhm9M3po9NLoqdFbo8dGr42eG703enD04ujJ
+0ZujR0evjp4dvTt6ePTy6OnR26PHR6+Pnh+9P3qA9ALpCdIbpEdIr5CeIb1D
+eoj0Eukp0lukx0ivkZ4jvUd6kPQi6UnSm6RHSa+SniW9S3qY9DLpadLbpMdJ
+r5OeJ71PeqD0QumJ0hulR0qvlJ4pvVN6qPRS6anSW6XHSq+Vniu9V3qw9GLp
+ydKbpUdLr5aeLb1berj0cunp0tulx0uvl54vvV96wPSC6QnTG6ZHTK+YnjG9
+Y3rI9JLpKdNbpsdMr5meM71netD0oulJ05umR02vmp41vWt62PSy6WnT26bH
+Ta+bnje9b3rg9MLpidMbp0dOr5yeOb1zeuj00ump01unx06vnZ47vXd68PTi
+6cnTm6dHT6+enj29e3r49PLp6dPbp8dPr5+eP71/9gGwL4B9AuwbYB8B+wrY
+Z8C+A/YhsC+BfQrsW2AfA/sa2OfAvgf2QbAvgn0S7JtgHwX7Kthnwb4L9mGw
+L4N9GuzbYB8H+zrY58G+D/aBsC+EfSLsG2EfCftK2GfCvhP2obAvhX0q7Fth
+Hwv7Wtjnwr4X9sGwL4Z9MuybYR8N+2rYZ8O+G/bhsC+HfTrs22EfD/t62OfD
+vh/2AbEviH1C7BtiHxH7ithnxL4j9iGxL4l9SuxbYh8T+5rY58S+J/ZBsS+K
+fVLsm2IfFfuq2GfFviv2YbEvi31a7NtiHxf7utjnxb4v9oGxL4x9YuwbYx8Z
++8rYZ8a+M/ahsS+NfWrsW2MfG/va2OfGvjf2wbEvjn1y7JtjHx376thnx747
+9uGxL499euzbYx8f+/rY58e+P/YBsi+QfYLsG2QfIfsK2WfIvkP2IbIvkX2K
+7FtkHyP7GtnnyL5H9kGyL5J9kuybZB8l+yrZZ8m+S/Zhsi+TfZrs22QfJ/s6
+2efJvk/2gbIvlH2i7BtlHyn7Stlnyr5T9qGyL5V9quxbZR8r+1rZ58q+V/bB
+si+WfbLsm2UfLftq2WfLvlv24bIvl3267NtlHy/7etnny75f9gGzL5h9wuwb
+Zh8x+4rZZ8y+Y/Yhsy+ZfcrsW2YfM/ua2efMvmf2QbMvmn3S7JtmHzX7qtln
+zb5r9mGzL5t92uzbZh83+7rZ582+b/aBsy+cfeLsG2cfOfvK2WfOvnP2obMv
+nX3q7FtnHzv72tnnzr539sGzL5598uybZx89++rZZ8++e/bhsy+fffrs22cf
+P/v62efPvn/mADAXgDkBzA1gjgBzBZgzwNwB5hAwl4A5BcwtYI4Bcw2Yc8Dc
+A+YgMBeBOQnMTWCOAnMVmLPA3AXmMDCXgTkNzG1gjgNzHZjzwNwH5kAwF4I5
+EcyNYI4EcyWYM8Hcif/lUPzLpWBOBXMrmGPBXAvmXDD3gjkYzMVgTgZzM5ij
+wVwN5mwwd4M5HMzlYE4HczuY48FcD+Z8MPeDOSDMBWFOCHNDmCPCXBHmjDB3
+hDkkzCVhTglzS5hjwlwT5pww94Q5KMxFYU4Kc1OYo8JcFeasMHeFOSzMZWFO
+C3NbmOPCXBfmvDD3hTkwzIVhTgxzY5gjw1wZ5swwd4Y5NMylYU4Nc2uYY8Nc
+G+bcMPeGOTjMxWFODnNzmKPDXB3m7DB3hzk8zOVhTg9ze5jjw1wf5vww94c5
+QMwFYk4Qc4OYI8RcIeYMMXeIOUTMJWJOEXOLmGPEXCPmHDH3iDlIzEX6X07S
+v9wk5igxV4k5S8xdYg4Tc5mY08TcJuY4MdeJOU/MfWIOFHOhmBPF3CjmSDFX
+ijlTzJ1iDhVzqZhTxdwq5lgx14o5V8y9Yg4Wc7GYk8XcLOZoMVeLOVvM3WIO
+F3O5mNPF3C7meDHXizlfzP1iDhhzwZgTxtww5ogxV4w5Y8wdYw4Zc8mYU8bc
+MuaYMdeMOWfMPWMOGnPRmJPG3DTmqDFXjTlrzF1jDhtz2ZjTxtw25rgx1405
+b8x9Yw4cc+GYE8fcOObIMVeOOXPMnWMOHXPpmFPH3Drm2DHXjjl3zL1jDh5z
+8ZiTx9w85ugxV485e8zdYw4fc/mY08fcPub4MdePOX/M/WMOIHMBmRPI3EDm
+CDJXkDmDzB1kDiFzCZlTyNxC5hgy15A5h8w9ZA4icxGZk8jcROYoMleROYvM
+XWQOI3MZmdPI3EbmODLXkTmPzH1kDiRzIZkTydxI5kgyV5I5k8ydZA4lcymZ
+U8ncSuZYMteSOZfMvWQOJnMxmZPJ3EzmaDJXkzmbzN1kDidzOZnTydxO5ngy
+15M5n8z9ZA4oc0GZE8rcUOaIMleUOaPMHWUOKXNJmVPK3FLmmDLXlDmnzD1l
+DipzUZmTytxU5qgyV5U5q8xdZQ4rc1mZ08rcVua4MteVOa/MfWUOLHNhmRPL
+3FjmyDJXljmzzJ1lDi1zaZlTy9xa5tgy15Y5t8y9ZQ4uc3GZk8vcXOboMleX
+ObvM3WUOL3N5mdPL3F7m+DLXlzm/zP1lDjBzgZkTzNxg5ggzV5g5w8wdZg4x
+c4mZU8zcYuYYM9eYOcfMPWYOMnORmZPM3GTmKDNXmTnLzF1mDjNzmZnTzNxm
+5jgz15k5z8x9Zg40c6GZE83caOZIM1eaOdPMnWYONXOpmVPN3GrmWDPXmjnX
+zL1mDjZzsZmTzdxs5mgzV5s528zdZg43c7mZ083cbuZ4M9ebOd/M/WYOOHPB
+mRPO3HDmiDNXnDnjzB1nDjlzyZlTztxy5pgz15w558w9Zw46c9GZk87cdOao
+M1edOevMXWcOO3PZmdPO3HbmuDPXnTnvzH1nDjxz4ZkTz9x45sgzV54588yd
+Zw49c+mZU8/ceubYM9eeOffMvWcOPnPxmZPP3Hzm6DNXnzn7zN1nDj9z+ZnT
+z9x+5vgz1585/8z95xwAzgXgnADODeAcAc4V4JwBzh3gHALOJeCcAs4t4BwD
+zjXgnAPOPeAcBM5F4JwEzk3gHAXOVeCcBc5d4BwGzmXgnAbObeAcB8514JwH
+zn3gHAjOheCcCM6N4BwJzpXgnAnOneAcCs6l4JwKzq3gHAvOteCcC8694BwM
+zsXgnAzOzeAcDc7V4JwNzt3gHA7O5eCcDs7t4BwPzvXgnA/O/eAcEM4F4ZwQ
+zg3hHBHOFeGcEc4d4RwSziXhnBLOLeEcE8414ZwTzj3hHBTOReGcFM5N4RwV
+zlXhnBXOXeEcFs5l4ZwWzm3hHBfOdeGcF8594RwYzoXhnBjOjeEcGc6V4ZwZ
+zp3hHBrOpeGcGs6t4RwbzrXhnBvOveEcHM7F4Zwczs3hHB3O1eGcHc7d4Rwe
+zuXhnB7O7eEcH8714Zwfzv3hHCDOBeKcIM4N4hwhzhXinCHOHeIcIs4l4pwi
+zi3iHCPONeKcI8494hwkzkXinCTOTeIcJc5V4pwlzl3iHCbOZeKcJs5t4hwn
+znXinCfOfeIcKM6F4pwozo3iHCnOleKcKc6d4hwqzqXinCrOreIcK8614pwr
+zr3iHCzOxeKcLM7N4hwtztXinC3O3eIcLs7l4pwuzu3iHC/O9eKcL8794hww
+zgXjnDDODeMcMc4V45wxzh3jHDLOJeOcMs4t4xwzzjXjnDPOPeMcNM5F45w0
+zk3jHDXOVeOcNc5d+98ctn9z2TinjXPbOMeNc904541z3zgHjnPhOCeOc+M4
+R45z5ThnjnPnOIeOc+k4p45z6zjHjnPtOOeOc+84B49z8Tgnj3PzOEePc/U4
+Z49z9ziHj3P5OKePc/s4x49z/Tjnj3P/OAeQcwE5J5BzAzlHkHMFOWeQcwc5
+h5BzCTmnkHML/zfH8N9cQ8455NxDzkHkXETOSeTcRM5R5FxFzlnk3EXOYeRc
+Rs5p5NxGznHkXEfOeeTcR86B5FxIzonk3EjOkeRcSc6Z5NxJzqHkXErOqeTc
+Ss6x5FxLzrnk3EvOweRcTM7J5NxMztHkXE3O2eTcTc7h5FxOzunk3E7O8eRc
+z/+r6cyjekr/OO6anudJCGk0xpLIlqaiElHdFqkUKkuSYoqaJKJEP0IiS0kK
+jRlZSlGWIVvWQrKOSmPCNIgkWzLJksbvYz7Px3+v45zO4Xvv8733eHm/qPNJ
+3U/qgFIXlDqh1A2ljih1RakzSt1R6pBSl5Q6pdQtpY4pdU2pc0rdU+qgUheV
+OqnUTaWOKnVVqbNK3VXqsFKXlTqt1G2ljit1XanzSt1X6sBSF5Y6sdSNpY4s
+dWWpM0vdWerQUpeWOrXUraWOLXVtqXNL3Vvq4FIXlzq51M2lji51damzS91d
+6vBSl5c6vdTtpY4vdX2p80vdX+oAUxeYOsHUDaaOMHWFqTNM3WHqEFOXmDrF
+1C2mjjF1jalzTN1j6iBTF5k6ydRNpo4ydZWps0zdZeowU5eZOs3UbaaOM3Wd
+qfNM3WfqQFMXmjrR1I2mjjR1pakzTd1p6lBTl5o61dStpo41da2pc03da+pg
+UxebOtnUzaaONnW1qbNN3W3qcFOXmzrd1O2mjjd1vanzTd1v6oBTF5w64dQN
+p444dcWpM07dceqQU5ecOuXULaeOOXXNqXNO3XPqoFMXnTrp1E2njjp11amz
+Tt116rBTl5067dRtp447dd2p807dd+rAUxeeOvHUjaeOPHXlqTNP3Xnq0FOX
+njr11K2njj117alzT937/3w4f/i+ehn+uc0ohj4ccFvrU1HXnBn6cMA6vfOO
+r3dh6MMB+8Wmn/dwY+jDAXv43d3Y0Z2hDzcNnq8/XzKq8GDowwG3/eNIUvo4
+hj4c8NykTwXTPBn6cMDvWjce6uPN0Ifzg/vV+f3c5xMY+nDAXhl+nw5PYujD
+Ad9YuWRcjA9DHw64VfahuY6+DH044KxnY6e292Pow02F+ykoX6dyGkMfDnhe
+8NAtmQEMfTjge5GDn86dwdCHA1476t/WNoEMfTjgLyVNL7VmMvThfL/6NlFZ
+d2cx9OGA0/fdHrgvhKEPB5z6T9jSxaEMfTjgScW/7HALY+jDAZt1P72xezhD
+H24K3D/G/Tzr5zL04YDLA4Y9uhDB0IcDNpjiYb91AUMfDvjFm8KIsCiGPhxw
+kFX9fIdohj6cD5wHkRajui5m6MMBF/d79exNDEMfDtiQL/S/uoShDwccpRhn
+745l6MMBf7YLK1yynKEPNxk+X4O0A5PjGPpwwDE2Srh5PEMfDnjEzE6tO65m
+6MMB6+/uHfoqgaEPB3xkaGr29bUMfbhJinowo+hE7nqGPhywYXK7jHVJDH04
+4Lym8imzkxn6cMDrWxa8cE9h6MMBv2DjvE1TGfpwE+F5Lu9iis5mhj4csOHl
+wTlNWxj6cMCWMz+m3k9n6MMBb6yI8SnaxtCHmwCfz7Yu73J+ZejDAW+O/iE0
+OYOhDwccE9LrZPROhj4c8KKs8Q+m72bowwHHZug/dMti6MN5w/Mcqz9lmc3Q
+hwMuutBrnsFehj4ccFlLl1bauQx9OODX31nMbs5j6MMB6+XfO1x3gKEP56Wo
+f+XMqag8xNCHA07qMP72lcMMfTjg2XY1BwvyGfpwwOVXNwbnHWPowwEviD3e
+sv0EQx/OE/48oaciUgoY+nDAFypbXVp1mqEPB9zG63VjzFmGPhxwt+21GhHn
+GfpwwOy8Z2NwEUMfbvxX/ynlYsBFhj4csFLRfoFPMUMfDthYa9A3XiUMfTjg
+S9vHRbpfZejDATfffHR59HWGPtw4uD+7ujQ73mTowwH72tZ1sr/F0IcDPmtt
+3NaujKEPB7zDfVGtzW2GPhzw0LcWOTZ/MPThxsL1+Pyqm+2fDH044ETzHeV2
+dxn6cMBLtXvYOdxn6MMBv2rO2ziqiqEPB6x17miJ6wOGPpyHogb77Hwy9hFD
+Hw7YrGNl7YTHDH044ICw4rKpNQx9OODXluW7A2sZ+nDA7ReFTA2rY+jDucP3
+zfK3zVEvGPpwwF/+vhe//BVDHw64a3Bi0/p6hj4ccIHJfM/0BoY+3BhFtUh+
+v3nPPwx9OGDPvmsu5b9j6MMBryxLrrrwnqEPB9zjZMyj8o8MfTjg1fbHSh83
+M/Th3BR1/vf78961MPThgL+zuDFfsxVHHw449FJcv+6tOfpwwKOdbUrMNDj6
+cMAnF/800Zlz9OFcFbVvUFSZnyZHHw44cfytEZFaHH044IJbNWmJ7Tj6cMCx
+J/tX7dHm6MMBv+qv8W1hR44+nAs8/654PvK+DkcfDjh9rtvE97ocfTjgQY9T
+/XX1OPpwwAm6VlOGdOXowwGPXpk1yrMbRx9uNLxfNrkbRvTg6MMBr1i6612K
+PkcfDrg5vPOpfAOOPhzw+FDd+Xf6cPThgO0nd+n5qS9HH84Zfv6s9ed6DuDo
+wwFf6/jU28mIow8HPL3rz3+HGnP04YBZol7AJhOOPhywz7mKP06ZcfThRinq
+nXFOjk+GcPThgPWM7uVoW3L04YDFCi0NayuOPhzwgNuuPrOGc/ThgEvq2u1J
+HcHRh3NSVPXuledFNhx9OGBL5Z+BDXYcfTjg0nZKoIEDRx8OuOVtyBYvJ44+
+nOPX83nnpXhnjj4csEaO/usTLhx9OOD8B1M7v3Tj6MMB97h6w8LAg6MPB7yz
+ss5r8jiOPpyDolaUGoVv8OTowwFfKRIJl705+nDATm0+bv8ykaMPB6zhHZ0/
+3IejDwfckt5cEunL0Yezh/ezPl/u/+bH0YcD/ry2uf6VP0cfDnjkkVAN4xkc
+fTjg/WWXu84O5OjDAX87Z51Z3kyOPpwKP9/HzPVlMEcfDrimwDzIJJSjDwe8
+TqNjXEQYRx8O2PhfNfNYOEcfDvj6GYcrn+Zx9OHs4LzOSWlQF3D04YCnLMzV
+XxPF0Yf7+vvmWt6l0Rx9OGBna5PErjEcfTjgjGFp1wOXcPThbOH8MjnV6VAs
+Rx8OOCG8Z0Dzco4+HLBNht1Rl5UcfThg9fivnbau4ujDAW9rfSz6aQJHH84G
+nqf6aNYOXcfRhwP+rm2X6WsSOfpwwIWtAx7f28DRhwP2zA6MMEnh6MMBP3ua
+pbUylaMPNxKuF62sQ5WbOfpwwDoHqqebpnP04YAHnq/umbCNow8H/HdCv+cP
+fuXowwHbZ5ldHL6Dow83QlFvi/jctF0cfTjga58zd77J5OjDAfsa6mZ7ZHP0
+4YBbFvqcztvL0YezVtTzTu8eauVx9OGA4y3n6s0+wNGHA/ZyHRNw4xBHHw54
+e6V2gckRjj4c8IY0u76bjnL04YbDeZAQmNV0nKMPB+yrq1j5FXD04YCPf8io
+unCaow8HPHHMpXSjcxx9OGCvpR9CUgs5+nDD4M/re3FsywWOPhzwUs0DbiHF
+HH044AVtbKdVlHD04YBfDv+y2v4aRx8O2L988ZVDNzj6cFaKOizYqrf+LY4+
+HLBpXVFachlHHw44aU9mL6WCow8HvMw5+PKCOxx9OOAZt7eurq3k6MMNhc/v
+cOEMv/scfThg291zfMqrOPpwwIdLjGa7PuTowwHv2Rm/raiaow8H3LmtZq11
+DUcfzhLuZycHz2O1HH044Ae1hXfNnnP04YDPvu204sBLjj4ccEHhxdGD6jn6
+cMBO2jNNchs4+nAWihrxId7SqJGjDwc8vuXItLwmjj6cxdd/n47N+eEjRx8O
+2HDo4s6Hmzn6cMAfPYbstvyXow9nrqi1LiMmnG4l0IcDPrqhr5HDNwJ9OOAu
+z+MMrzGBPhywxtoaR29NgT7cEPi+b3mwpkpLoA8HnDeCNYa0F+jDAW/PeLbq
+XQeBPhyw1ZMedit1BPpwwIWmw3vpfCvQhxsMz5Ntbg3crSfQhwP+cXqkn/n3
+An044LMJ504WdxfowwFbWzvaTdEX6MMBP0lPf/PKQKAPZwY/b9DEmysNBfpw
+wKbVHe5831+gDwds3Xl62/yBAn044MalVXPcjQX6cMAVrr3+fWoi0Iczhfc9
+UXQmbrBAHw64+qBPrr6FQB8OWDdrecnZoQJ9OOAB+eW604YL9OGAy3XqNrWM
+EHIfDs6/IH+HHbZC7sPB+Zd/s4+DvZD7cIo6eFG51VNHIffhFLUhTXPZemch
+9+HgfdGn3afBrkLuw8Hnsyxm390xQu7DKWqa6ZukuLFC7sPBef5Fa6+xp5D7
+cPC80xDy4U9vIffhFHVN1N5l8ZOE3IdT1PDQENshU4Tch4Prq4eL5aOpQu7D
+wfXkWhuU4i/kPhxcL92f3nSYIeQ+HLwPmdTMexco5D6cojYlrhq7b5aQ+3CK
+uvtISLD/T0Luw8H5nWh2RjdMyH04Rd0VvczjRriQ+3DwPub0oduqCCH34eD+
+NrcdYBcp5D6coi7/2Dj/00Ih9+HgfeRM4efji4Xch1PUSD3ny5FLhNyHU9QP
+XYxKzZcJuQ8Hz7Mjdbo1rhByH05RvZdl5RyLF3If7uv/R0pYuChByH04eP5Y
+PGPNyHVC7sMpanTwvSolSch9OEXNqfo5+kqykPtw8PfZ02XSxk1C7sPB/V6d
+FDNls5D7cMC+ujV90oXch1NUV5NVW+q3CbkPB+fv0nXJZ7YLuQ8Hz+MPfy9d
+t1PIfTg4j0NafH0zhdyHg/NoV5HJoGwh9+EUtT6pxL1lr5D7cHC9Hzh9rDRP
+yH04RZ31yS10z0Eh9+EUdWtt79n/OyzkPpyijp3ZcNLrqJD7cPB5PAiaMOiE
+kPtwcL/aGNuyU0Luw8H3yZOmhQ/PCLkPp6inj0d+OXNeyH04eF7uPKly2wUh
+9+EU9VTlmNYxxULuwylq3I8i1veKkPtw8L6WaO0+8rqQ+3CK2v+3rXP0fxdy
+H05Re+8rq/6mTMh9OEW9V/bL/rrbQu7DKepDlnu99I6Q+3Dw/LTrN7XgrpD7
+cHA9xge1y/xLyH04RQ3R/p/phgdC7sPB+2Xv3NyYaiH34RRVu//e2JAaIffh
+FPURM94/+ZmQ+3Dw+Ru/Mnd5IeQ+HLyPJGV2sX4t5D6coibvEBN/aBByHw7e
+dwLK6w0ahdyHg/Nr7NlavfdC7sMp6p8L42w6fBJyHw7O71l/NYgWOJ+KHU8W
+A7f675em+n+3WI43
+ "]]}, Annotation[#, "Charting`Private`Tag#4"]& ],
+ TagBox[{
+ Hue[0.6142719099991583, 0.6, 0.6],
+ Directive[
+ PointSize[
+ NCache[
+ Rational[1, 360], 0.002777777777777778]],
+ RGBColor[0.528488, 0.470624, 0.701351],
+ AbsoluteThickness[2]],
+ LineBox[CompressedData["
+1:eJws3Hc81Xscx3HObxxNySiVJC2zgVDKVwOpFEpoSRIqLaWIFhUtUSEiWmjS
+UIooyizRkpE2UklWQvd9f99z/7mP5+Pea5zz/X3O73fv637UXNbbrhJJSUnt
+7yMl9f+f6R8yxOCuU/nb3iJi6X98lwj+FHRlz/+eUNLfZGe3mKgs2dzYt4+I
+DJRfs6KzU0wWTjBeNh0eGRnQuP2vmByR+VfoA0dk6Na1/RGTx9U5xpfhrO9L
+Zm9tF5N/N0Mu1sBtsfVKLa1iYnhwvqJiXxGJtrs727tFTDasUNo7CxafSq77
+/VtMEg0rG/3hQ73PNG5uEpP3fRKWpcJeNn7OzY1iovxpddEXuGrQUOMtP8XE
+Nl1n0mBZEfkxytO39buYhIT+vjgPPm5qNmJbg5g8crurGAifnhQ0saNeTP6a
+7Nx7B07+MyBlR52Y6MvP/NUAa3hWhP/7Kibr6nouV+snIvODUqr3fBGT8w9K
+ihbCA+fvOMZ/FpPqEycnhcATKlQuh3wUE6W1SxIzYZnp23RlP4jJvGnDlX7D
+N66tG3i8Rkz2D6zdO1pORFoW1HgovxOTrB9Xfi2G9TelDo+rEpP2nM3LQ2Ef
+28fTRlaKyfho4+IcePGc7vxLb8XEY+O/SX/gvg9N7kwoF5MEi9xEnf4iMk/N
+tU/6azF5q3JQyQV2/mifb/ZKTOSb5weehPnDbd/yX4jJ7AKlpgJ499UxW2zL
+xCTwTOXyf/C+j0WuFc/F5P7WhGI9eRGZXPY43bVETFrmuE92h8eN+7P1x1Mx
+0VHXTYqBHe6YR20rFhO3P7+VnsOcQZgaUyQmcc/uBnIKIvLRN1P2SIGYvD6/
+s8kY/uVxdaVyvpj02zHT2Qv2/T5D5fwTMbG07fU0AZbvdDUZ/1hMdo95Pvk1
+HBbxKysjR0zudp9M6qUoIj2Li5OtHolJ04slAwice7Pyz+tsMdG8NDzIG566
+SfrqqiwxWbm7tikRHqKv+uR3pphEL7rqXAXr6CvP3JMhJi90vJ/KKYnIsrTS
+0XL3xaQ3O8nEHL7TZ+z6M+liMvPtvyRf2ClMbvC4u2Lifz13wDV406WlWllp
+YnJ738Ggj7BRQWvc/Nti8mOJze8BA0SkwTNr2/ubYjJab8CKOXC+QuytTTfE
+ZHmPqqe7YLHTZns2VUwi3yWY3IKfv1ZffPK6mJTcck+ug6dNDH805pqY9Dik
+O3DoQPx8Y84fvXdFTKa5NAfZwn3XTnlgfVlMfI3Sf++DBxaY2n5IFpMbfXet
+uAerKIVabk0Sk2+fZj77CYfq9k/omSgmI+71mjJCWURudiYti7sgJkuOPU92
+gI97Tw7QPy8mJ1ZHDDwMS59Ilio4KybFU5buy4b3r674vDxBTHgF9eYW2Esq
+Vaf1jJhMra9doTlIRK4H9H9zKE5MfLKuPlsGt/Z6/0k9VkyunfSeEg6HVUov
+uBcjJrVrJ116Am8f6zjSLlpMhk2XUu6EiXWhw7coMXFUfrxv3GARUTxs8mNv
+pJgc+3mw2RW+Y3Xs85AIMSnItXGJgn0br0y9fUJMRDEDSoph/aatf+YdF5PJ
+m6qmiIaIyMynJYr1YWLibXn20kQ4pM+Z8MBjYnJ5qIfyGthhev4m1VAx+dys
+uz8O9u8z/kb6EcyzwubmMniCwv0F9ofFxD4+3UVGBa9nz3mLmg5invnsKjGB
+LS8/TT8SIiZP5ppP3QgPfai6UysY80y99+XzsKvK6HN5+8XEqOO58lvY4FS+
+hts+zLOSiP19h4pI99AGWTZITJIuLG2ZBnvHbLZP2It5tkN9pQ98ss/MLrJH
+TAbZ1ZVcgs/5zGRrdmGeaVybWgMPqHdcs3OnmBz8531ZQRV/PWD1BNUAzLOX
+kwbNgsc62jk+2CEmnZekDvjDBRdFNcv9MM/2PG5Jga8lOD2W8sU8czi08gts
+coj0TtiGeaZr+3zQMBH5fj0qZboP5hk70HQebL969u3PW8RkQEXV5b3wsH6T
+Bx3wxjxLOTvoDswqWVdpbhaTA/s9DjTAj757/CveiHm2dGzrMDURGaXkvWvj
+BjH5o9eyciHcMsDWWXE95lnPe8+D4eaguti768TEs2aXaSZc2alqsmwt5tlt
+8ytNsJN6hSGzRkwqDvUePHo45leyVFiiB+bZytIDi+EVs7daWbuLyRzjyNaj
+8NNCtRXNbphnsstcc+DQP7UvT60Sk4zP6qXtcPbllEQzV8yze3WmOuqY509W
+lNe6iIlu2LUrK+Au/XerQ1dgnrlvGXwStv0mu8DIGfNs6uTgAvhMXfnpmmWY
+ZwrSbd1wq5H6zOClmGffHrvqjRAR9YbnsyYsEZNZ2YdKV8OXVYsuVThhnkXY
+khi44E+bZ5CjmKSvG3i1BF6ZPHn/WAfMs+nVg7mRmA9r/KXe2ouJ1qBzwcZw
+fcDZV4ELMc8aPdrWwR8mHO8xboGYxDweuyoBXlJlEFVhi3kW01L6Cl5R7RW0
+30ZM+my+R3qNwvUbN/Kp3nzMs1m7r5rCLeFkc421mASoWgzxhhcZXfA+PBfz
+rKV3SCJc039K6aQ5YvKzsLStEja78e1grRXmWULkKrnROG+pkfEnZ4mJ87Zl
+ZTPhSzc05WdaYp5ZjzDzhd1dDtT8NheT5yPqr16FF3tH9jg7E/Ps77UhH2HP
+RLMjtjMwz55vCRkwBt/vsaeXaDrm2cXJ7bNh9/iOpFQzzDN/abddMCv/hqwk
+YtJg96TsJiwrVT9BwRTzTPOwWR2sZz9gV+4UMVkqZXdNRUNEVve2GONjgnn2
+aqCKLdww3FlLY7KYPL1cHbIPnnl2VnCFMebZ3nPt6bD+mXqzI0ZiYuro6fYT
+vm2gudDMEPNs7LgX6po4Dwd+Pmw2EJPrXKuZA7w+T+1goj7mWcW9a4fg01qJ
+V5boiYla6m6VbHjabw9NuQmYZwcsDrbAkz2spR+PE5OwZX3+aGiJyIEakwl+
+YzHP9MvclsHTbg3JGKcrJkyvqBdh8Kk5L+O/aGOevV827QlcpmBdE6OFeZY2
+4vpfeEqQ1zY7Tcyzw/Uq47Tx8w8d6tlTA/Ns5fWDrvAAjxm3skdjnk3a+icS
+tmzPc9w+CvOsn8nqYlh9dfii8SPF5OgX6ZfSOiLyz/Hg1Tp1zLP7T6ZNhEcG
+RC5LGC4mUuGHr3vCxcEJqxerYZ552A2Ng4eYHMtXGCYmG02VD5X976VzAp8O
+xTxTfPdHrCsi9zLuRRxQEZMP386tNoFzDZ8w04dgnj30fLkBrrpin9c1SEzs
+IsdNPw/v6mX7+Y4y5plX6/Vy+M+MeCfvgWKSM+P+0L5jcZ4XaY8ZNwDzbNCe
+Q9PgGMuKuQ2KYmLwy6JjK2w9+mRhogLm2ZM+7pfgmp4z41fJi8mF02Uv38Gb
+5UueDu+PebY5arrCOFw/HqoLavphnlktT7GEM0wHj4+VxTwbNlLVHzZ9dmnV
+kr6YZ631h1Jgu8V3fw3qIybZRdc7PsP7x2q/LO+FeZaw1X3QeJzHMw2yUT3F
+ZMJ2k1fW8L0eH+MdemCezRPN2Au3P28LGSgjJmdH5qWkwXlu8oVveMyzv4dV
+G+DMqUNdojgxUSi1OzxsAj4f3kjNd2IxzxKV/y6AJ2ScPT6YEZOggHfuwfBh
+v59jq6Qxzxacf5UB51wuUouTEpNWzTUzmmC+Sd1zxT+e6EqPTx2lh6/XXCUz
+opsnq1+3qi6Gi1d/7PrSyZO4K/cPH4VZTmVW8l+evNm75+8jOP7o5vp1HTzp
+52Tp0Q73Lnv2fvwfnswa1/e1tr6I9D87aGxrG0928y9mrIDfV5iUprfyJL0y
+KvUEzLqoFu5s4UlT6vJhBfDy4ZeUZzbzRCt45JFuWLN/fkbP3zxxXf7t7wQD
+EWnUdUkr+cWTGIMUj9Xw/oDlfEQjT1728nkdDfeTTU5e+pMnfT6YzCyBf7Zq
+nhvxgyfmd0Q32IkiUrigsOlbA08CjuQNM4aD5nmfvPGNJ2muR46sgycryR71
+q+fJz0kLOuPhKTWBldPreDJGbpDnK7jP98yA3rU8cf767nVPQ8zTwAtbXn7h
+SVTG+ZmmsKh1RHbsZ548D19zYzPcFaW+wv0TT3p6jldLhL1KDi6c8JEn00jb
+kUr4mLRFbOd7nvgpZXT2M8L5Oj118pMantxo2OM5E16hskQ77B1PGh5avtkO
+/5EK3ri0micjovqaX4Xln1/tqVHFk6XrX9z4AJsPTWtrruDJyZmn1AYY4/57
+90Gj7Lc8eTrY+ehseP0pxeLD5TwRN43s2gkn9De95fSGJ6Z53zxvwq6nfjWO
+fs2TbbEpb2rhafVKu1pe8uS6t4+5yiQRefgw0uXRC57UWU25aQMvbHCOPFbG
+EzU1Zvg+2MnQUc25lCdObXlH02GlHWu6dJ/zJKz4SNcP+Oap3drdz3hSeHbB
+GvXJeH39gq4WP+UJ4zuofBEc1WfF3tPFPDGZX2N+CA6a1Z28rogn3qMu3MyC
+T+pajJxayJMrnWuGt8Djc0Y29S3gyefS8aEaJiISrBwoV5PHk6FJbV1L4aiZ
+c/amPOGJ/c6MNWHwiNXuFnsf8+Towr3lj+Gr5x4uXZjLkydasyz+wr7aMx+P
+zuGJlEj21tgpeL7Rf7ur4yFPjN+8GO76vzvWHC7O5snGq6dCI+EPjz59O5PF
+k+RA5+4iOLVKN8b7AU8+OI1aKz0V13eMfqxlJk8Gj28oN4A9ltb8GpLBEztx
+qoUnXLR3SMSvezw5VOVzKxaO8Cs7/DidJzk3pqiXwcp3fr6MvsuTrmDmmNgU
+r9fNxes33uGJgXN+92R4d5O0k0UaT7wmHl27AW7vLDqhcpsnF3ovfHsOnrHq
+4vDmmzx592GQZTl8NMdPqvAGTwbcrbnVh+B+557+2IRUnsw/ekF9GuzfdP/q
+9hSeHFi19thWuJ/yvwCb6zzJnjzhXzK888vnOI1rPPkj1772HeyrvEROdJUn
+E2oz3sqb4fNg25yyt5d54pm519ISHlAS//nGJZ6cPT7r9g7YodXc8nAyTyo9
+ZUek/O8no/66JfFEwezlsc9w4yjtbpLIk7kDov8pT8PzjNQ0m8EXeRL03Xmd
+NWxqbtfccp4nmY9GVeyBjzRZfS05x5PWqAbLNPgMr6B5+SxPxm5Ivf0NHnYw
+6v7+BMwz820jhk0XkR6hj2NXxvPkzJCpYQvgJO19JaZnMM+aGKlgOHLnI5sh
+cTyRy89flwHfuuox/M9pzLO4oxW/4JFfV057FcOTPVsWzho1A58nS0+n3IjG
+PJs9OM0JfjFHesOxUzz5rfZ+xFH4RLuv//oozLP2C2GP4AvJLeVzIzHPnq6V
+av//n7+5JEg7AvPs3AQv7Zm4n/OK3tnrJOaZb3uFM7zF8HRe/XGe9LXJnHUC
+Xu0z17kgHPNsdGBaPvw8OsI8OYwnO7tmjeyG85VX+4Ucwzwrkw2fYC4ie9dd
+7PYM5Ulj0kup1bDdoBkls49inu2K9oqGzySPadQ+wpMV9isqn8F118iyvocx
+z7RHW7EWmEcPfQY1HuRJqeh7mhGcvufuiNIQzLPy1JHr4OCTv3bcDObJ9Gvb
+wuPht5d6qUccwDwLmir9Cnb2+a3ku58nNxez63ta4ue9edxh6T7Ms/EFlVPh
+d6MqvpIgnoyUCbXaDBtGpOaMCMQ8q1545yLs94r/KbMX8+zm4FGV8LT7j9y+
+78Y8C3kf3m+WiCiMfqlVugvzbMVF6Zmwa+eoqWk7Mc8M163fDoeOOX86JgDz
+rI9e1RW4Mnay1R5/nqR8bLf6AHs5vpruvgPz7G7mHSUrvB+OK0Ks/XgyPDRw
+1Gx42YU8FQNfzDM3q+M74cXz2rsGb+dJuEk/0U34jUelJrMN86z/q/W1sHH/
+Fefqt/KErYuuGjIb52fNJs/SLZhnD1bMtoHnnOncke7Nky0nRt8NgvNqvlUk
+bMY8W/N9VDqc7qq9/+Amnnwxu3H8B7zFMznAeyPm2cDtIvU5ItLL0Pbh0g08
+WfRj6oZFsJVSP1uL9ZhnOWz1QTjdqURnvBdP8k4VzM6Co5buXDh4HebZxtC7
+zfDrgB753FrMMwv70Rpz8fqNXHyg0RPzTGXIiaVwdIZzeIUH5tnv96IweOV9
+vv6xO08+5l/c8BjmY4wPpa7GPDuzrroDflT1eXusG08WbNWbM9ZaRLb1aE8N
+WYV5NufP3ZVw3JUlhj6uPMkd/mB0JDxnuZTYdSXmWXvgiSJYI/2Zmo0LTyY+
+s2Kk5+H3dU7bP3UF5tn5fhsN4K6Os0bazjy56Peq2gMebLxHf9ByzDObmDmx
+8M2SqX4yy3gycIxLeimsF/C4d9sSzLPu0WPE83H/zPJ1nxfzJPjF9xOT4eE6
+9bIvnTDPkm8wG+AfT5bvznHkSceu7RvPwQsu2U256YB5tsj03Rt4ws3U6ecW
+8WSNDje3jw3uR3M9jh+3xzxjCtPNYOWCVWODFmKelYeO2QoPTAlX2LoA8+y6
+/clkePvGmumr7TDP9g1h38FmMsYZDrY82bfkw0Z5W5zHbSG7rGwwzyYkvrOA
+BxZnHzaZz5M2Ga+5O+BhikWfdOdhnr3Tu3cdDlh9MkjNmifut/6M+QzLve+z
+QWEu5tnBByeV7XC/dV71nHgOT8pXBLHWcO+qO2p/rTDPjGZv2gO/ufO49scs
+nlj1lau5Dcd6TfzzwRLz7NOrud/gZ5NabF9b8OReesw91QWYd86NLYXmmGeh
+LhoL4JjRih+yZvJEe/WYiAPwxpr5A27PwDyb8oPNgNVqQk9cms6T0/I3N/2C
+XfY8XBI/DfOsbnvNyIX4ehplayPMMM+yTK2d4CMm13MPE8yzk9z9I/BvTYvV
+gaaYZ2sLNR7BVe5BNn5TeXJn2rGINrhrg0PgpimYZwMXcdr2/3/+X/nnYcIT
+jZ9DNjvDfnWbHq2YjHmW+6HmOMx6nXjmOIknp6ITrfPh/p9FI2yNMc82et3v
+gnvXJmZZGfGkl6W+5oRFuP9X2nJ+uiHm2dCOCDe4RnFhqclEnuxofsBFw6Kw
+iRYTDTDPCoI2P4OjTMTsOH2efD8z+z3jgPNbfFNGUw/zzEdunhHsLdJZOGIC
+T5bNfX1/Lewft7Ru6HjMM/XTmvH/20s/V3kcT579cYl8CbuZxtUqjMU8KxnD
+93QUEa3ag3b9dHlCLvzYPBXOmFHL9dbBPNtx8/0muKdhwj+xNuaZre+8i3D7
+hYuE1cI8G0MyKuAVe77kSWlinv3jtPo5iYhixpzIrjE8WfyyMHIGXDo/72rH
+aMyzS8f47fCMKRa920fxpGj3Iu8rMHsg7XrLSMwzB5UP753+f7/EMb9H8GSK
+7sd5SovxvLh2xNNf6phnbFKGFbxNt8u8cThPrr710toJm53Zyf9Uwzy7rh91
+A078FNX7xzCeqO7v4GvhAyMmOX5XxTxbmuU9ZImIhB+xbmgYypNQvX0f5sO2
+i3JzG1Qwz3rMmR8Eq9w99LlhCE+ka+Qy7/7v5rDZ3wdjnt1+rfUDnmn9uO37
+IJ5sOnQ6avhSfN7JK9b/UMY8c1kpXgQXHF83vHEg5pmRxpaDcJNG5plfAzDP
+ZH9+eAC/GNvi+lsJ8+zzzfnNsGEP6fUtiphn93wzxyzD9TK0JLNNAfPsGNFe
+Cs+snr+gQ54n3av5U8fgofc3ju3qj3k2tUj8GC4erzZfCl6vELalA76UOfc2
+I4d5Vr/oo+5yzOuvn1eI+/GkJkvFZiV82fCNbS9ZzLOIj5kR8Jup8sGyfXli
+sy5JuwieEh7EKvTBPJu+/pSUM85PiUruwN48eahsIGMAV0YUFKj0wjz72bHF
+AzYO9VVU78kTvcdZH0/Dcm5Dzo/pgXkWs8+mFN5WGLtdV4Yn5zbNecCvwDzb
+1himL8Y8s+yvMxnW15D6NYnniaLqm1Pr4RPx98PNOMyzltMy5+DoJAU/Sxbz
+rHDl1jewrmzbhXkM5lm8xqfeLiKSdd52wCIR5pnPTxsz2MJcqWiZNE/GWd96
+sMXl/+fncbluUphnI/x0kuFzI46J1v/jSHwHia6GG8eOCvTp5kh5Cd9DfqWI
+DKqpnrWriyP9LxZttYBDNZLtgjs5YuUf9skPNuJ94sP+cmSvnYPtdXjtFn29
+mA6O3NMYmvUJbvN7LnPhD0ea/33UUXbF89OIKcOvt3NE+1VS9Fx4lb/bzvQ2
+jqy6vL7HHrgrxmRYbitHTu8x8LkN25y+ypa0cOSVw99P9fCU2EvaFc0c6Ts2
+21Z1lYh05gyP/PKbIxbc/iw7WNuEsWhq4sjOijm6B+AcPRPj7l8cuZPSP+Y+
+PPD9fa+ecOP+Nz1+wWUB3l+VGjmisSzWZ6Qb5uEc27PqPzmyQt/1syNcFDoz
+YdwPjpzqqWl3BJY6MeXTlO8cKav5mfUQ3pmk4TG7gSO90m7ptsF71f+Mc/zG
+kRmH/WK0VuP1Who9eXU9R3asNOvpDK9P+3dgSx1HbhmLtx2HdU4qKgfWcuS7
+bPHnPHiAa9G3sK8cGfUlzK4LvhMqL53whSPL7jtkj3fH/V7oW4eUzxyJCBs6
+1g32r+73O+sTR565f4o5BZe3n39W8pEjMqbJPZ/Bi12Df9R84AhR3LCN8RCR
++OTkeb/ec2T7N4MvhrCv058maTgl+6/dWvi9eNWb/jUcqY/Izj4Dd8yu+qf+
+jiPDvfaPfQnL59p4GFRzZPGMuad7eOLrKaUqWFRxJHyQfK+psFHdd2nHSo4U
+Nb7ZtgkOrW8et6aCI9yT2C8X4IDi2/H+bzky5bTrggr49yz1BaHlHNm6WfOh
+7Bo8bw/RtDz7hiNXZzWOnQGnyNzzv/2aI19Vb5/eBtu8yG3Of8UR1Va/Xldg
+tTmTrlS95IhDkdn297CPmczFXy84Epog/qq4VkTuhqh+4OD8bcULrOCFzIZl
+g8o4Ij0v/GEA/Ohg3eCxpRyZNNJx3A14d48dg2Y858imv0Njv8J9Vw9wcizh
+yKXnn3oNWSciP8MvvfV6xpGPF5O3z4fPBo6JCXzKkSEBG74GwhcnBMSeKubI
+ggUTF96FN8fEvL9exJHDmp0Pv8NbcjevelLIkVyph+OGe+Hz8fZvjeoCjnS/
+2h9rD5/x6z22JZ8jE6/M7X0QXjXmqndveP1eed8HcGRZXod6HkcSHcu//oYd
+ouZkT37CkZqxcQvHrMfrdUojz+4xR5T5VY+WwOFd82TX5nLEplJz/DG4rOHa
+ycAcjoSkNsbmwpqRxstOP+LIwwO3e3fA4/SrVt1+yJG/y3b46m4QEaeOkCvP
+sjmiZzCt1gVuH6NnUJfFkbW9ZOwjYH3mcacIPve++FEh3Pe5HqvygCNVaeHj
+pTbi/L1bO9swkyOKRxzj9OGsnStKbTI4Yu2q2scDvikjilp7nyP7Jn32PQ1v
+fzk1bv89jjzod6n2OTzEXOZzQjpH2r5ssOc3icjWB9aemXc5Mi5jYs4kePgl
+0di3dzjiHt45fj2820dBrzUN88zjYdxZOC3Ce2t/+K3pgT5v4HN75f/o3sY8
+U7L2671ZRGrT3qfPvsWR2Q3ydQSuvvXsnvtNzLOH5fZb4Ejm6d+gGxy5HxmX
+kwRXaRX7nk3FPPNaNaEa1snMMMpO4YjOTK0z/b3x+1iHGry7jnk2+FcfC9hm
+q8HGrmscif11288PPlp6+ttg+NWTHXXX4HNc+rlJVzkiGztt0Sd4/W3fGMcr
+mGfeMrkDt+C8hJaUbrvMkV1WTyfMhWumX7aIvIR5Nuz4md2wb1B3R1oyR361
+Ova9DV/te6fhdRLmWbHqjnp43+n8Ie2JHHE5+7lu6Fac12b1gwPhU9svLbKD
+p1ekGRpfxDybtzF3P2yssnW40wXMs1GGevfh7yHzZvudxzzr7DzTCC/6o58a
+c44j/qUP+470wf3ZtAGLMs9iniUe2OEIi6d/Na5J4MiPAOv6w//73QknETxq
+oYLDQ3hcl/zdEfEcWa71NrcVnhhsu9DiDOaZ9Bk9rW14vTZPG+sZx5GS16vi
+l8NTrr8wPxyLeXZVS/Y4PNG4I/r6aY6YBf7akQe39Tqn+yIG88wprb4TTtN8
+1N0WzZHUcf4O47eLyKgYy95D4Hp++uNVsNeakYvIKY6oV8non4K1Eq3euUZh
+nt14Gv8U3uiWdC44kiPHg4/LMr4ikp054eLVCMyz5U7+hnDfp6+/lJ3EPJs4
+7Nsa+M6t4JV/TmCe9f7icAbeH22sogpv/XDp8Qv4WtIb+ZnHMc/ubNTv4Yfn
+z74OFmvCMc+OGCZMgZ91JaYdC+PIsFVdspvgkVfvu945hnk2+ZH/BfjA4kDr
+d6EcOSYX/O0trGj+y5uH879aO8ruEBHz1ObXOkc5IspUeDId/lG702fhEcyz
+42/1t8EGhoF2/oc5stnzTMJlOOZH05rzhzDPiFu/93CLa0ZW8UGOfFLSDlD0
+x/N88wub1hDMs++/vs2CF//VVFWFFz5KcwyAoyqvj7EMxjyL8n+SCmv8W+S1
+8QBHHq+fbvAVXvpUrvHUfsyzmT3ODg7A73f32ZWcfRwxHPKs33x4scHeiz+C
+MM+ajgcEwsPvqlQNhBPznBruwIHZodbTAzHPYoc5fYeHPiv+u24v5tmWL0/U
+duJ+0u3xp8g9HLGdfdnAHj4tt7ZHzm7MM7VNZ0Pg90uue/zcxZFHbYZyD2Dl
+t4HcYPhvcVfAb/jP0IpK850c0T/3qGH0LhFxzz33c1MA5plvsNMSeMeasilx
+/hw5P39eXijsc8PhSeEOzLNRihNz4YLpow61+3FEqevt2T9wryc6h0bC1mVn
+5HR34/Pym/MTW1+O7E9y2+kC+61KmbJrO+bZTu3vJ+ET9f1+XtnGkfaFTU6F
+8KaJGysqfDDPtO/k/YMXyeSIesIeooCJ+ntEJFn9r6vRVsyzN9PPucN182RE
+q7dgnl3t0f80fNmhqvyEN+ZZ0LOdz+GzfdY25GzGPFt84ju3F5+/0y4YN2/C
+PBu/ePEkeNYz/2x1+L5YLd8Lvn300167jRxpqfoy8SxcuLJo194NmGc3L597
+DR8aO/rOjfUccQvZ1L93oIgwFV80Pnlhnjkb7SKwpW3XSwX49cTu797wlqAl
+92euwzzrk7M4CU52b63cupYjlh+D86vg3s33DRPXYJ7dnWfYP0hE7qsnFJV7
+cuTuUcXz5nBlW0R0L/jXqor+fvAh79BzUzw4omkSv+sa/Cne/+t6d8yz/qt/
+fIRbDtq4JqzmSHSt9pKB+3B9Tese9NIN8yyzKX8OvOjtll4ycO8Tdwx3w+Ge
+yQaTV2GerQk4fwteLHskyssV88xshnw97F/b3zBhJebZgJ67h+4XkVRlrb6v
+XDDPvj/7YQsnFOQN7QmPzjmxZD/8ZlS1+9QVmGenFhfcgwuWLm3Y5MyRyA1q
+Ro1wSYJR0sXlmGfmX8+POCAio3Vc4iqXcaSHyhV5R7jesOipHGz2e9Puw7Ci
+yMPQYilHfPONfmbDu55qlu9YgnkW172kFa7+yNxMXcyRb1tyCjSDReTeoS9P
+ap0wz+aEGC2Htw/IVVCFlwyffyEcnvfq2KmFjphn7YoKebCVqqnjIQeOFD+t
+2N0Jz5jzYP6jRZhn5+N/jgvB52E6u7vDniNT/VYvXQVfK5KuHw9vtdEpjIKr
+viQe9FjIkWujfxs9hf03NayKX4B51nXngugg5kdl5rZyO8yzFwEKhrDOif45
+crBD8ow9a2A9ubcWVraYZ7t6NsbBEXlidq8NRwrsS5a+gCcaHmm/Nx/zTOdk
+ocwhEblSuXxkyzyOTGaWGE+BF5isD9GFN5erXdwIT626OtrdmiOXr31VuADr
+W8l1xc/laA8H35EL7lk5h6M93GE8X+TKzFeChR4Oru/cUzx/Nkd7uMP/92L1
+ew5acbSHgwuXjN/weBZHezi47ZHVCWlY6OGO4H5XU6PJxJKjPRz80vDBvm0W
+HO3h4PTIf7Y3zTnaw8G+nZX2jTM52sMd+f/fJ1qFacNCD3cUzxenjTmPGRzt
+4WD52bHXzk/naA8Hn6z2PPZhGkd7ONhIOSxZFRZ6OHhaFv93iRlHe7hQzJuY
+e3tOEY72cHCi71mzN6Yc7eHgfZophkqw0MPBRTtfuy6YytEeDk6y6ZEfNoWj
+PdwxnHdfY9fnJhzt4eCz5U4T+8FCDwe/m+dsOm8yR3s4+OtDk51HJnG0h4MT
+Bn9sKTbmaA8Xhudhc/OzfWChh4Pt9Rz3zzXiaA8HX37ZN+GwIUd7ONh9hNPv
+4okc7eHgNmVdv76w0MOF4/e/6W88z4CjPRx8qXmybqg+R3s4uG/NYsfnehzt
+4eDMgJL0/rDQwx3H/WPlIdsFEzjaw8HhMoHDTo7naA8Hn1ZMGvFmHEd7ODhd
++eeyQbDQw8GbdWc9WzKWoz3cCcy3Dclb4nQ52sPBv6R42w86HO3h4Leiea4j
+YaGHgxNOb7vsrs3RHu7/v/53i+ZlLY72cCcxX2dPqv6pydEeDs7LuPNEDxZ6
+ODho/6cvPhoc7eHgzJrrk++P4WgPB1exco+lYKGHi8B8ntAeNHM0R3s42Oyy
+o1/IKI72cLBS2pgLz0ZytIeDm6IdeEVY6OHgnxcqo51GcLSHi8T7OTrR7Yw6
+R3s42GLDVbcvwznaw8GrXn+I1oaFHg5Wv23Eb1bjaA8Hq3qcPX93GEd7uCgR
+MZmv5CsFCz0cfOFp4F4LVY72cHCh1YfsI0M52sPBS3WHG7xS4WgPB1t/MaxS
+gYUe7pSIPP2glL5qCEd7OHhuRGrhlcEc7eFgb99uudZBHO3h4DH8j0NTYaGH
+g/emeZvsV+ZoDxeN66HvvmElAznaw8FXjyoaK8NCDwdnZintcxnA0R4ObtLy
+F19W4mgPFyMiK5eZZLQocrSHgx1rLS6awkIPB5svDc8NVuBoDwfn2fUf+EKe
+oz0cfHbVndihsNDDncbz7Njtjh79OdrDwca2lpY35Tjaw8FGG5TX/OvH0R4O
+VhpXk20FCz0cbDk5dM5JWY72cLEisnyqSq8PfTnaw8E963y7dGChh4MVfsSo
++/bhaA8HL2N8/B/35mgPB79/39lTHhZ6uDhcjzOHFy3vxdEeDq75/jbrck+O
+9nBwSsyguj89ONrDwasGvJxhAQs9HDx3VHfZcRmO9nBnRCT/ePDJD2KO9nDw
+9PFrDo2DhR4OHld88lYAz9EeDu45Rap/McfRHg5e4BAdPxgWerh4XO9/Frt6
+shzt4eB53QZOdxmO9nBwfwuVvTKw0MPBrmncu0UijvZwcKHBx3UXpTnawyXg
+57uUNLZNiqM9HFzBzR1hAQs9HLxZL3t2xD+W9nBw96iO81+7WdrDwZUvv00w
+goUe7qyIOBuFNB3oYmkPB5fMyv9U3snSHg5eIXO6hxYs9HCw0ZY/zjv+srSH
+g12Pl9YXd7C0hzuH92ftkIuqsNDDwcdlCk9s/MPSHg6e7V16+1E7S3s4OO3B
+qJ5KsNDDnReRDV33jrq3sbSHg39O22dxr5WlPRwcmrh9fF9Y6OHgw7NC5q5o
+YWkPB3dPvxx9s5mlPdwFEXl9p2ywDCz0cPCXwubixb9Z2sPBL84yqdeaWNrD
+wUM9m58wsNDDwcqz78k6/GJpD3dRRBq2zAm+3MjSHg4OHxKjLw0LPRz8anOs
+nP1PlvZw8PwbFsMu/WBpDwe7Kx5yloKFHi4Rz6evl5cu/M7SHg7mjdO2XGpg
+aQ8Hz/XfZyUNCz0cnFKXPX/RN5b2cHDg46UHrtSztIdLEpHyZda/GFjo4eD9
+UgcOOtWxtIeDR3R226fUsrSHg9nzF+1kYKGHgyfbbN29/CtLe7hkfN47Lq+5
+/YWlPRx8SnnRhr6w0MPBB37ajHf7zNIeDrY3maGe+YmlPRx8ZeVwcyVY6OEu
+4fm/sCbK6yNLezh4RPXmoU8+sLSHg+X5kjJVWOjh4NGpdXe3vWdpDwf72d0q
+eV7D0h7uMt7fpaMHasFCDwcnWeiHBr5jaQ8H9wgpMaquZmkPB6edaZQzgoUe
+7gruj3sGDw6rYmkPB2taHFnYUMnSHg6OrWh+YA4LPRx8d26KU3wFS3s42GXU
+nZGdb1naw10VkSG/uoYtgoUeDhab+MxJLWdpDwdXRAxM7AMLPRxcF/FKz+MN
+S3s4eGDp+Z85r1naw13D80m1b8UwWOjh4KWOVm07XrG0h4NHvJOZXv6SpT0c
+vKbfpUwDWOjh4KajIz3DXrC0h7uO88Wsm/mzjKU9HLxbbuv8ObDQw8E5qwwO
+JpWytIeD712Oa+FhoYeD35xIOur6nKU9XIqIyJVZOD4sYWkPB38cuN52GCz0
+cLDlUAW/gGcs7eHgBzFaZZVPWdrDwdPnJztNhoUeLhXXS1ug3KlilvZwcLnt
+9bb2Ipb2cLD1KLU+DrDQw8FRhkU2aYUs7eFg5XkXcpVgoYe7gc8zw3PuWwtY
+2sPBuzPTJ73KZ2kPB3vdqJ48ERZ6ODiyll17Mo+lPRx8asLwwtYnLO3hborI
+Tnctx0Ww0MPBGSsVle48ZmkPB0+UeimtDAs9HKw/ZPkQ31yW9nCwR2Tiqooc
+lvZwtzDfFl2oMoGFHg42I3MDYx+xtIeDiXGYoxQs9HCwro7nUpeHLO3hbuP+
+QKbgaE42S3s4ODP9QuMoWOjh4Pv6LTuDs1jaw8EunslTGh6wtIeDH9rc05gH
+Cz1cGu4PPg6ZkZrJ0h4u7f/n1ZxDirDQw8GDm84z2zNY2sPBP9akJVbeZ2kP
+B9ce+O5HYKGHuyMiA+ZO8T93j6U9HFyeGX1ZBhZ6uP/9pavHunSW9nCwbInD
+ied3WdrDwRn7460nwkIPdxfvl0qxQfQdlvZwcFtCiZUULPRw8Abt+MOr0lja
+w8GGJXrdBbdZ2sPd/f/+0j9mHCz0cOl4firc7H7yFkt7OLjTqZdL502W9nDw
+a2/jYBdY6OHgpEm/q/JusLSHg+eV6DiPhYUe7h7uhxdXy55MZWkPB8dzHQ2d
+KSzt4eBh7VvaVsJCDwcrOluMLbzO0h4OXr925fEJsNDD3cf1YP1g1KlrLO3h
+4F7G879Iw0IPBw936VXmcZWlPRxsKf2l4fkVlvZwsNP8l3qTYKGHy8D7f/Dp
+xYTLLO3h4GONjy17wUIPB8/MuqHkfYmlPRz8zyREriqZpT1cpoisvmRqbA4L
+PVzm//++Jv/wtSSW9nBwmO8QWWVY6OFgu/W6GXsSWdrDwen+zRENF1nawz3A
+/V7Lyjh7WOjh4IJRm8qyLrC0h4Od3RT0tWChh4O9e5DsE+dZ2sPBmavrfaVg
+oYfLwryvkFmx5hxLezjY6EHo5ldnWdrDwWabfFLNYKGHg3UWpKpcSWBpDwcr
+Ppl4ayAs9HDZIqI2tmNbYDxLezj4QNMv98YzLO3h4CPb5YOWwEIPB+/WXVCc
+F8fSHg6+459kZgALPdxDfJ6+lPkQH8vSHg7ecWH11b6w0MPBlS73LvidZmkP
+B6vv/FNQG8PSHg7O2ThgsD0s9HCPRETvRs+IR9Es7eHgDxl5U8fDQg8Hm/W1
+6B93iqU9HJw13E+uDyz0cHCun5OJXxRLe7gcEbkZ/TasLpKlPRxcy/9ScICF
+Hg6+MT384eMIlvZwsNPb29EGsNDDwYMX2pw5d5KlPVwufn7iUCIPCz1c7v//
+vTdba+8JlvZw8Kb43alNx1naw8G5xkddXWChh4O37HtnVhrO0h7usYgsUnG3
+mgYLPRyscXJoQGoYS3s4+ERIe+VwWOjhYK2T39zCj7G0h3uC82T/fTALCz0c
+fNjz91/vUJb2cHDj5t/8l6Ms7eHgi4ofTRbBQg8HpzSnnc47wtIeLk9EvqWt
+1pgECz0c3E+m9t2lwyzt4eA7R3WzVWChh4MX/B1XfPQQS3s4WPfPJ0YECz1c
+Pu4Pjckq74Ms7eHgznVGv76EsLSHy////496dNERFno42CTo1YGiYJb2cHDX
+i9XHTWGhhysQkam/1xakHmBpDwcrRFdojoKFHg52Dk66FbWfpT0c/HxHkWcf
+WOjh4BqDSVa797G0hyvEX99aa9cSxNIeDr7OFO/3gIUeDrZJqPpcFcjSHg6e
+M6ifly0s9HBwt77TsCd7WdrDFeH+NCOlczIs9HBwwa7eTMoelvZwsPtcZ71R
+sNDDwQ9/JxyO3s3SHg5unVkgJwcLPVwxft4BRQ/27WJpDwfLm8ZGdO5kaQ8H
+V4dNjNoECz0cPKshJKc2gKU9HCw76pjycljo4Z6KyPkhppEv/Vnaw8Fjr4aQ
+ObDQw8H70j36P9rB0h4Onqhe2mcSLPRwz0TEp/DuhBQ/lvZwsF6k0u4xsNDD
+wf/WV7fH+bK0h4OHTBafGgALPRy89eM+16PbWdrDlYhIwgI7BzEs9HBwpZ/L
+lp3bWNrDwT0sk++1+bC0hyv5/78XDdPaAAs9HNwZdu9R7VaW9nDPcX/QtiFo
+BSz0cLBz8cQNb7ewtIeDW3sygXaw0MPBWkmFWUXeLO3h4NkJ+0aZw0IPV4rz
+2KRx68FmlvZwsP/JS2uNYaGHg8cckZ57YxNLezj4Z7mavQ4s9HCw8g7RgYsb
+WdrDleH5ZlvUBzVY6OHguBeVq2I2sLSHg70iHsoNgIUeDg7KJ1+OrWdpDweL
+t8z92BsWergXIpJ4vlrmgBdLezj4gnu9PQMLPRz8tMitOGAdS3s4eMuHWWs7
+1rK0h4N97wXrbYWFHu4lPi/XDFFvWsPSHg7O4dsnecFCDwd7nuvvV+/J0h4O
+1l3i8tENFno4OMSiavNHD5b2cK/w9Xdv13aGhR4O3j5Kp0+VO0t7OHjPgh+K
+TrDQw8F9tG6Yv17N0h4O7lu4MW4BLPRwr0WkxX7YsFI3lvZwcHLTzbx5sNDD
+waGPRkYVr2JpDwcHNLofmw0LPdwb/D7x3in5rizt4eAR0qZ/LGChh4NfGme6
+P17J0h4O3rmt9t8MWOjhYJNvNzIfubC0hysXkePZSuenwUIPBwdoi29kr2Bp
+DwcvW+ZXS2Chh4OZgx4zs5xZ2sPBiV+f5JvCQg/3FvM6+dCWB8tZ2sPBn3tf
+tTSFhR4O7jAfPv3BMpb2cDB//J2rKSz0cPCMcZVXHixlaQ9XgfsVx75DCSz0
+cPB467W3spawtIeDybyGzWaw0MPBprGBjg8Xs7SHg2cHaLlNh4UerhLzRu91
+VI4TS3s4uJgNaJ4JCz0cPMtIaesTR5b2cHC50smhs2Chh4OX1//+XuDA0h6u
+Cs9b3SM/zYGFHg72ix0u/WwRS3s42F+5ZoYNLPRwsFXmgmtl9izt4eDVVVuJ
+PSz0cNW4n80zaX+zkKU9HKxfFvNqMSz0cLCvzeGK6gUs7eHgSVGs2AUWejg4
+QPqPw2c7lvZw7/C89MH5uTss9HDv/u+RJmxosGVpDwer+LgabICFHg4+8b5h
+WLMNS3u4Glyveg8nbIOFHg7WKnjr2TmfpT0c3M7r5O+ChR4OTra6NpeDhR4O
+zmhb1B48j6U93HsR+b5RJb8vLPRw7////+daH4Rbs7SHg5+4vKkcCAs9HDzk
+Yrpq7FyW9nBwtV34AXVY6OE+YB6WOgxImsPSHg7ee1S6SBcWeji4umXvhZuz
+WdrDwWGbX12YBAs9HOzi87Moy4qlPdxHnL+NuQMtYKGHg1eUWocUz2JpDwfL
+99mjtgAWejj48/GF1W8tWdrDwUerH2StgIUe7hPO+/K0vFoLlvZwn/7vBye0
+roeFHg4+8nX0rDZzlvZwsMu7w9kBsNDDwbOanJbzsNDDfRYR6Zig4UdmsrSH
+g9c6sr2UYKGHg8MTiwfGzmBpDwdflHkzexQs9HBw2x/lc1ens7SH+4KfrytY
+zRAWejh4RsTQnAfTWNrDwUdmPT1oCQs9HHw56ui252Ys7eHg8D6OIU6w0MN9
+xf2Utlr2R8LSHg4eHFA9ZB0s9HDwuEP7T7easrSHg5tr+k/fBQs9HPxB7NOn
+Jyz0cLUicvBwcmf4VJb2cHDEv7P9hsJCDwc/anCclTiFpT0cXPPp4YUJsNDD
+1YlI2baXYzJMWNrDweGTDjyzgIUeDh6d8fxU6WSW9nDwheOJIUthoYeDDe2Z
+uNpJLO3h6jHfI9+83gwLPRzs+WuowT9jlvZwcFRH0e0QWOjh4F9zypcowUIP
+B5fumTQ6wYilPdw3fD/Dr4q6sNDDwW/Fr8akG7K0h4O/hnYtN4eFHg622Ljg
+XulElvZwsJ/l80nLYaGHaxARNs2z+psBS3s42H3ZgAvbYKGHg3XeFx/jYKGH
+g998CIwP02dpDwc3ivVeqsJCD/cd56XlqfYVPZb2cPBau3mJk2Chh4OLnyRb
+5E1gaQ8HH/37uqc9LPRwsHpk8a+P41naw/3A+22xp3MjLPRw8MrbDZpSsNDD
+wXlHGf8j41jaw8Ebd2c0DYGFHg6ON5Y7dGksS3u4n/i8XN1iOQkWejjY/Z6z
+Rr4uS3s4eMaXWToOsNDDweNPXVzwVYelPRysFbIhbiss9HCNIqLqGd2Hh4Ue
+Dv7yY2jcCW2W9nCw+dNfdiNhoYeDmzJ7at/SYmkP90tEgrc5j54JCz0cHHqj
+buZLTZb2cLCfxun9q2Chh4Pjj29saNFgaQ8Hz7i+1HsfLPRwTfh6Rg6qA2Ch
+h4MD6hd9vziGpT0c3D/QrtoIFno4eFCOWVP+aJb2cPBsT2WNxbDQw/3G56Ph
+8z0No1jaw8FeDcv/+cNCDwePn3M/VhYWejj4gXKVc/xIlvZwsK7y3Zl6sNDD
+NYvIBlmLubkjWNrDwQse+vssgoUeDt7bbpdTp87SHg7esz1Lbwcs9HDwtT7p
+uX1hoYdrwc8XYOgbP5ylPRxsdmKsjT4s9HBwpEqU1RM1lvZwsNRHTzcnWOjh
+YJnU6HPfh7G0h2vFvHYYzu2GhR4Odjzbsl8BFno4+INLb51EVZb2cHCI29Lm
+ybDQw8FdAe+qng1laQ/XJiK3/IPrVsJCD9f2/74C2wHtKizt4eAfPuNWH4KF
+Hg72GjS4fBgs9HDwuF8y624NYWkP147nteeNw61goYeDjcPyO6oHs7SHg6t7
+hDRvhoUeDvbtp9GvByz0cHBqwOm5sYNY2sP9wXnUqb6sBws9HLyu/b1OvjJL
+ezh4yN24kmWw0MPBGbP7nmgeyNIergPz6dAIvxBY6OHgBMfyPcNgoYeDJ4aq
+X749gKU9HLxItqN1Diz0cHD4bbuVH5VY2sP9xd/vNvrXdljo4eA5/9ac6QcL
+PRx8ZuXAjRcVWdrDwRlb1FdOhYUeDq4fGLj1pQJLe7hOEdEYP/7SWljo4eDJ
+Z9WkWVjo4eBTC+Zsi5ZnaQ8H+2sl9tODhR4OLu2rXVDQn6U9XJeITPvy9JwL
+LPRwsPap/Wc65Fjaw8GX5OdmhMFCDwcfNFH6qwkLPRy84F+546N+LO3hunE/
+anG0fDEs9HDwFCkd32ZZlvZwcJNS8uTDsNDDwTe2damMgoUeDj4sP1TtQV+W
+9nD/cB5eiWY6wEIPB4++nhD8qw9LezjY+1jzjxBY6OHgn54/vUfAQg8HK+qG
+DM7szdIeToohCsX3PiyChR4Ozp3kV/CrF0t7OPi654PSg7DQw8G9bXb+HQkL
+PRx890PKjKyeLO3hpBkyQ9H6qhMs9HDw52oro5YeLO3h4ICJcR+OwkIPB8fI
+T7uiCQs9HLzZSzMyV4alPZyIIe9N5511hoUeDl67++LTv2KW9nCwmY7moAhY
+6OFg/alPgybAQg/HMOTBtRC5pzxLezhYFGCf4QELPRz88PyYYA4WejjYfUS7
+dzzH0h4Olm6/t2sKLPRwLEOmqq65XM6ytIeDN0d1tm2BhR4OPum2emV/WOjh
+/v/79yf8uMqwtIeDz3eei5oNCz0cx5Bzeatca0Us7eHgW98rrINgoYeDf3t1
+OwyHhR4OVpyfs+eBNEt7OHjziRFFS2Chh+MZws5QMuiQYmkPBy9eEZoRAQs9
+HJz0O3iVASz0cHC6dId22T+G9nBwR9hr+Y2w0MOJGbLumvIgWVjo4eDby9NM
+r3QztIeDZa9cDJwNCz0cPC/+fW1dF0N7OPiL+ZK1B2Chh5NhyLvEvrKjYaGH
+g6tKf5bkdjK0h4MHP29NcYWFHg72uj4olYGFHg6eFmD7POEvQ3u4Hgw5ZXlC
+dhos9HCw3NC3a993MLSHg9/0GVi3CxZ6ODhttHngMFjo4eBeOxZPzfrD0B6u
+J0PyBs8b4AwLPRy8ZeBAWSlY6OHgcYFXRp5pZ2gPBydt5BcTWOjheuF1aVa+
+VtPG0B4O3qv6Tm03LPRwsKbM3BtqsNDDwYMeOa182MrQHg6uXfVv/EpY6OF6
+4/XmJ6iysNDDwVPu12meb2FoDwc/Pq2y0BwWejhY81HO6a/NjGQ/HENeznjF
+BsN0PxxDHk2eFaIJ0/1wDNmdraBb9JuR7IdjiE7j2MZ1MN0Ph+/z4ViJLEz3
+wzEk7Mb4ZylNjGQ/HL7OTr7BDqb74Rii7CIe3fqLkeyHY3DfqbUrEqb74fD+
+13i0TYLpfjiGuNy5e6iqkZHsh2NIvUp/sgum++EwH8Z5yqnDdD8cfr9+d6Ue
+/2Qk++EY8qqypY8HTPfD4bymDTDuDdP9cAyxylbcc+0HI9kPxxD7IV9rbWG6
+H44h/Lc961q/M5L9cAxZNr9G9hRM98PhnK1vfTYFpvvhcD7W3b/yvoGR7Idj
+SJyXRlIQTPfDMSQ+Qv+hBkz3wzEktO/L9uJvjGQ/HM7fH+m5m2C6H44hDTtT
+M5Vguh8O5zSvau69ekayH44hsX99O5bDdD8cQ/aY7c5hYbofjiHmj75eSqpj
+JPvhGLIj+fx1a5juh8M5Vkst/V3LSPbD4XWyZftHwXQ/HH4+93CvqTDdD8eQ
+vqH2tR+/MpL9cAxpbZ6xMxim++FwXnMW6o2F6X44hpRr7mJffmEk++Hwvi66
+1+QL0/1wDLH26e4aBtP9cLie0smoJ58ZyX44hgyYv33NOpjuh8Pv4x5XLA/T
+/XAMOaOXPCf9EyPZD8eQuR9Da51huh8O8znJKl4M0/1weB9uP9169SMj2Q+H
+c2Kq4LEQpvvh8P769N/W+YGR7IdjSHdo1tmzMN0Ph6+TrdhgBdP9cAwZNaWH
+TdN7RrIfjiFqk8JKo2C6H44hpj8ubjCD6X44zOdQM626GkayH44hOfb2omMw
+3Q/HkLbtVS1GMN0Ph8/H8U+59+8YyX44XAdpqhOCYbofjiEHp+f7jofpfjiG
+ePZ7+K68mpHsh8N5dpBesQem++EYQuwDujVhuh+OIRdmjrtTVsVI9sPhfLn0
+PbIDpvvh8L7Xye4aCdP9cDiPA7SPPK1kJPvh8D5pOd3xgel+OIZErTjWPQym
+++Hw+nfkORdUMJL9cAy5p9devRmm++EYcsVaabsKTPfD4Xo8OGjsk7eMZD8c
+Q8I1O6U2wnQ/HM6PV+qPQTDdD8eQPxH67TnljGQ/HENq6rerrIfpfjiG9Eze
+vkwZpvvh8DmirHXv0RtGsh8Oc2dHkJ4XTPfD4Rwp73oyEKb74fD9Dfr7PHrN
+SPbDMURDSW+aF0z3wzFkgujtGGWY7ofDeSfdmjmvGMl+OIZUKEdYrofpfjjM
+iZfRuwfBdD8cQzLvM69yXzKS/XC4DgY+nrkRpvvhGDJG/23JEJjuh8P5dTD0
+yXvBSPbDMeRw6Qsjb5juh8P72ZCkOAym++FwDn5f6VNUxkj2w+Hc6b8Ztg2m
+++FwrjtV542A6X44zOuoHZElpYxkPxzmu9Pnzh0w3Q+H9++IzQ4NmO6Hw+sU
+dEfp1XNGsh+OIcmhckV7YLofDtf5P7uYsTDdD4fzPsJnf2UJI9kPh+vPZtPh
+YJjuh8P19Nbk6kSY7odjyNl+T+s+PmMk++EYsn6WCjkG0/1wuB8oV0uZCtP9
+cJj3CmUmDU8ZyX443K/ZjvkYBdP9cAwxqB14zgKm++HweakTs7OlmJHsh8PX
+25605SxM98MxRGaE0T4bmO6Hw/u7zzTlXxEj2Q/HEObv7dYrMN0Px5CItyfs
+l8B0PxxDLHaVlfSE6X44hqywWL3qbiEj2Q+H73vQUsEdpvvhGGKc7FWlBNP9
+cP+/fiVZuQWMZD8cvk69W6Y3TPfD4b4kb/QrdZjuh8Ncau8pU5bPSPbD4XV5
+K16wB6b74XB+SxTTx8N0PxzePyPtSe/zGMl+OMwvn2kvQmG6Hw7XU8O8AwSm
+++EYotc1277xCSPZD4efr5fu1DMw3Q+H77vju+l8mO6Hw7m/tXuxFEz3w2Hu
+DvoQev0xI9kPh7khz9c4w3Q/HEN+cZ8t5WC6H44h+5y2FmbnMpL9cLiP256y
+ehNM98Ph+xccVlGH6X443NfcEX0vy2Ek++HwPlwRvwqE6X44hlQqHH9jANP9
+cPi8cIxr/vKIkeyHw7n4OkwzEqb74XD/qd1v+yyY7ofD+T3p+r7jISPZD4fn
+oXDFlZdhuh8O5yF8UPdSmO6HY8gCdk2qLEz3w+F9c+jemZ3NSPbD4TqUKnLb
+DNP9cHjeWFfoNhKm++Hw+SrfvPN1FiPZD4fz6TYlNRim++Fw3b6J7ZoM0/1w
+uD7eybr8eMBI9sPhc/DX/ndnYLofjiHb93ZvsYPpfjhc133WjORhuh+OIZfE
+ud/vZDKS/XAMya5jnq2B6X44nGcd1fyhMN0Px5Dpc/pWPs9gJPvh8L5n54mD
+YLofDr+njPkcI5juh2OI32n/pG/3Gcl+ONyfd7mpxsF0Pxyu9wt/rtjCdD8c
+Q7QH6CzkYbofDvcjT9sV0u8xkv1wOC9zFnxfB9P9cHid5Q2r1WC6H44hQ89G
+fn2Zzkj2w+HzY+eGHiEw3Q/HkE2at6dPhel+OIaYaKw42XSXkeyHw+ss5SF9
+Eab74fB8aZAbuBim++Hwz1mvG9YPpvvh8Pq8cHiRc4eR7IfD15+788x2mO6H
+wxya/iZQF6b74XB9mS7e/TGNkeyHw7wt/nciEqb74fD3+WQ8nAvT/XAMsSk4
+KGZguh8O98O2Lq53bjOS/XAMmRRnVL4Opvvh8Pk7lXdTh+l+OJz/zIc9y28x
+kv1wuB9IXfXkCEz3wzFkV9KX6Bkw3Q+Hcz1xyoGOm4xkPxw+7787H7oO0/1w
+eJ+dZyW6wXQ/HEPujPxRMQSm++FwX1JqPrrsBiPZD4frtMsqJBim++H+v39q
+YglM98MxpL+WfkRrKiPZD4fnVWcZsysw3Q+H62Crm8gVpvvh8DrImFfgCVCy
+H44hpamxhc9TGMl+OMzT/u5lB2C6Hw5zNyeqyRSm++Fw3+GupdF2nZHsh8Nz
+bYyCz1WY7ofDnGPmVq6C6X44zC+TIgcVmO6Hg78FN7y4xkj2wzFkzQ3/iEMw
+3Q+HOWoU5zgDpvvhcJ8+7MuEzquMZD8czmE/K/WbMN0Ph/vwlIeaa2G6Hw7z
+Lcli1giY7odjSPDZkoDKK4xkPxzeJ8uFhcdhuh+OIatmFOvOhel+OJyLaeOS
+OJjuh8PP27hlUuZlRrIfDs/nnSc+bIXpfjh8XiociB8L0/1wuM+um+5Te4mR
+7IfDvNDOXhkP0/1weB+Otrk5wXQ/HM7V4+pd8jDdD4dzs9crpSiZkeyHY8jA
+gNj2IJjuh8P16+lmbwrT/XC4DqQzC9qTGMl+OMyxjpiFqTDdD4f3W/Zv6xqY
+7ofDz9Xx7OpImO6HwznfKu//LpGR7IfDdUgyVkTBdD8c7osUc5fYwXQ/HEO8
+bg336gPT/XB4/d8Vn3hykZHsh8O5s8ss2w3T/XC4Ll98G20C0/1wDPk+0jqs
+9QIj2Q+H96tnVf8UmO6Hw32vZWjSGpjuh8Pz7vnl9qNguh8O57BumvL784xk
+Pxx+j6rxTdEw3Q/HkJRZI97bw3Q/HM5jh9wXOZjuh2PIxPQmqeJzjGQ/HJ6n
+FmWOPwDT/XB4HePWbpsO0/1wOIcuLS+6zzKS/XAMmbFhvkU6TPfD4f7y1JZn
+W2C6Hw7n5NaSdeNhuh+OIVvDu4Z9T2Ak++Ewn3rOr0+E6X44hjQ2zs53hel+
+OMzhoXUZw2C6Hw7zc41qXmU8I9kPh8+P1C9fI2G6Hw7n/ulElYUw3Q+H6z1a
+7C4H0/1w+Pxvm59XfIaR7IfD98vqOTUEpvvhcI7faOebw3Q/HM6V6jUPBqb7
+4fD56hOsmhXHSPbDMeR07o36HTDdD4fr5vvIQmOY7ofD+/vqdVZrLCPZD4f7
+XPfswhsw3Q+HORXy9tsGmO6Hw/3H6MFqujDdD4fvq+W35ttpRrIfDl9nT1NB
+Ikz3w+HzYdB2UzeY7ofD6/OBz1eH6X443H8Whq9+H8NI9sPh+zweMDgOpvvh
+8OfHIR+XwHQ/HM5/9qesQTDdD4fX+ZLKjTfRjGQ/HObdDp30kzDdD4fPD63e
+rxbAdD8cXvebKbw8TPfD4dzIKc15foqR7IfD/ebU8ReOwnQ/HM6J0V8Fa5ju
+h2NImdTayN4w3Q+HeXvSb1xhFCPZD8cQl79qVcEw3Q+H86y3KNYSpvvhME/M
+5L3FMN0Ph99H13rZ40hGsh+OIXnd/5YEwXQ/HO7P7g/bMAOm++Fw/7EpMYKB
+6X44hozTOlr2MIKR7IfD8/zvIvU9MN0Ph3NT4XjADKb74RjytVFHWhqm++Fw
+n2NudiTrJCPZD4ev+/3g2F0w3Q+HufeX+2wK0/1wmBtBF6/+O8FI9sPh+kxw
+P/QApvvhME89zQJ2wnQ/HK6ndo1AU5juh8P99epBsf+OM5L9cP+fk55FD2C6
+Hw7nYMnvPrtguh8On6NqRSsJTPfDMURp+uFiKZjuh8Pz3Gfd2dnhjGQ/HD4H
+tJMqd8N0PxxDHKY0754G0/1w+LmJzGQGpvvhcF6WVYlzwhjJfjg8l2atqf2v
+qLOO16ro2jDsh5lNd0hLSUg3UhsQDtIcOgWlu7s5gKR0d7eASAkI0o2ENNIC
+It0S3+LMut7v/cff/SqH5+xn9syamXtdd4Rox4eT9X/yqstlRTs+nOxb7JRb
+VrTjw8l8W+7zKAcnhJQPJ/vViLK5Rop2fDipN5++61xBtOPDid5b4mAs0Y4P
+FwqO5grlPTY+pHy4T/NS6Z/GiXZ8uFBQYu3zktVEOz6cfC/5Et5KINrx4WS8
+FZo06/SPIeXDyXv7omOLKaIdH07q0DXzv64j2vHhpN6cn7pgctGODyfPJ+5f
+X10aF1I+nKyXxa6EzxHt+HCynnaIP+Bb0Y4PFwo6Pei0PZ1ox4eT+efDyzi3
+xoaUDyef9+HMLktFOz6cPCe/1v1Woh0fTtaL6am7fyna8eHkzz96kPDhmJDy
+4WR/2/DXPetEOz6czFP5Bo/oKtrx4eR721+wcUHRjg8n9Ub7M2FvRoeUDyff
+R//wr7eLdnw4+Xurr6gxULTjw0n9Khu50qIdHy4U/LTm95VGtOPDSX3xpPvT
+g6NCyoeTerP9zUpjRDs+nNRPQ0Lbqop2fDjZ1085XiSRaMeHkzo4RvGjf44M
+KR9Onme5sM4zRTs+nNSbP9/O0li048OFgsXb4z9LJ9rx4ULBiKO7Ttz+IaR8
+OFknqz/cuUK048NJ/bB1wq72oh0fTsZBz0Vn8oh2fDj5fO9T/vdiREj5cDJu
+dz3Lt02048PJ5y6YYeAA0Y4PJ+vz+YWXS4t2fDh5vz9vW8kX7fhwMn+M7Hb8
+yPCQ8uGkPp+w+bvxoh0fTtatzdlj1BLt+HDyeQcc3Z1ctOPDiW7545irw0LK
+h5O68lX71otEOz6c1I+bmtRtJdrx4WS9zt6kXg7Rjg8n7//NZu2eRoSUDyfr
+ZcuWEzaLdnw4mV/KNTnYT7Tjw0k9Fr98gtKiHR9Ovte6ydr5oh0fTt73dfvP
+Hx0aUj6cjMc1VepMFO34cDJ+7y77u45ox4eT+fXN4ZGpRTs+nKxnfdcVvzkk
+pHy4UPAwVvXQCtGODyf//pslFzuIdnw4+RxnluzJL9rx4eS/q1Zx59vBIeXD
+yd/fZNzhXaIdH07+ubrl3eGiHR9OvsdLJ5JVFu34cDJ/T/utbiLRjg8n7/G4
+XKsuDAopH07Wk/afxZsv2vHh5N/f7BLRQrTjw8n6tahQrByiHR8uFJxr+u2i
+ZwNDyoeTcXv6RqVtoh0fTuqBddv8waIdH07m8Q1/nQ4T7fhw8vwnV1gfV7Tj
+w4WCQkmezzs7IKR8uFBw8dmZebNFOz6cfD9Pbq/7XrTjw8k6fjrt6WyiHR9O
+PlfDvvZp/5Dy4eR9qv2kwlbRjg8n+/uRfeYPEu34cLJu7Y7nlxft+HAyDxxd
+MSCeaMeHk3Wrdyn/XL+Q8uFkHZ1xYv5c0Y4PJ+tVlMoVW/QLKR9O6saIDTan
+aMeHCwXh716fetE3pHw4ef6lkq/bIdrx4WS9yB177jDRjg8nz2Xp4dmVRTs+
+nNRLQyqvTiLa8eFkfVg29uiVPiHlw8l89Hro+yWiHR9Ovof6WUt2EO34cPI8
+N/eYUFC048PJ+HnV7PmH3iHlw8k4sv+2PCDa8eFkX3fGf/CjaMeHCwU9q64d
+VFe048OFgk1tLmRKJ9rx4UJB2RRDLt3rFVI+nMzDNRcs2CDa8eFk/k6Qu1df
+0Y4PJ+91pczffi3a8eFCQSlvUO04oh0fTuaj3Pka/9kzpHw4eV7ni/SYJ9rx
+4WScvh8zt5Vox4eT72VxpnN5RDs+nMzvZ96l/a9HSPlwMk9Mi9V7r2jHh5N5
+51WFG2NFOz6cPC9vY4M6oh0fTuqcQyVvfy7a8eFCQb2Gfw+43z2kfDj5OScX
+Zdko2vHhZD/zVYcb/UU7PpzMdxtLrg4T7fhw8h7VSTA8gWjHh5P6MLjc8VK3
+kPLhZP0dO6P1EtGODyfva5PSXTuKdnw4WZ8unRhTRLTjw8n7k7HoppBox4eT
++a9p/0fHuoaUDxcKpuz4sfB00Y4PJ+/F920nfCfa8eHk+Q6O8Ta7aMeHk/Eb
+9n2XV11CyoeT/dffnd/uFu34cPJcpuacOEa048OFgoWjJhap0yWkfDgZB++m
+Pk4n2vHh5L3LXGDzg84h5cPJePqmxdjNoh0fTtbr+Rm6DhHt+HAynjq0aFVZ
+tOPDyfh8nbn9Z6IdH07q7CFNB9/sFFI+nKyXdWIvWSva8eFk3P+W7nxv0Y4P
+J/OpPytFWdGODyffx6DO7eKLdnw4eT97zz12qWNI+XDy+culLLFMtOPDyXtR
+/PqOLqIdH+7//8n/z3/Hn+Pn8HP5e/h7+Rx8Lj4nn5vfg9+L35Pfm+fAc+E5
+8dx4jjxXnjPPne+B74Xvie+N75Hvle+Z751xwLhgnDBuGEeMK8YZ445xyLhk
+nDJuGceMa8Y54573gPeC94T3hveI94r3jPeO95D3kveU95b3mPea95z3nnmA
+eYF5gnmDeYR5hXmGeYd5iHmJeYp5i3mMeY15jnmPeZB5kXmSeZN5lHmVeZZ5
+l3mYeZl5mnmbeZx5nXmeeZ91gHWBdYJ1g3WEdYV1hnWHdYh1iXWKdYt1jHWN
+dY51j3WQdZF1knWTdZR1lXWWdZd1mHWZdZp1m3WcdZ11nnWfOoC6gDqBuoE6
+grqCOoO6gzqEuoQ6hbqFOoa6hjqHuoc6iLqIOom6iTqKuoo6i7qLOoy6jDqN
+uo06jrqOOo+6jzqQupA6kbqROpK6kjqTupM6lLqUOpW6lTqWupY6l7qXOpi6
+mDqZupk6mrqaOpu6mzqcupw6nbqdOp66njqfup99APsC9gnsG9hHsK9gn8G+
+g30I+xL2Kexb2Mewr2Gfw77nf/sg3RexT2LfxD6KfRX7LPZd7MPYl7FPY9/G
+Po59Hfs89n3sA9kXsk9k38g+kn0l+0z2nexD2ZeyT2Xfyj6WfS37XPa97IPZ
+F7NPZt/MPpp9Nfts9t3sw9mXs09n384+nn09+3z2/ZwDcC7AOQHnBpwjcK7A
+OQPnDpxDcC7BOQXnFpxjcK7BOQfnHpyDcC7COQnnJpyjcK7COQvnLpzDcC7D
+OQ3nNpzjcK7DOQ/nPpwDcS7EORHnRpwjca7EORPnTpxDcS7FORXnVpxjca71
+v3MuPffiHIxzMc7JODfjHI1zNc7ZOHfjHI5zOc7pOLfjHI9zPc75OPfjHJBz
+Qc4JOTfkHJFzRc4ZOXfkHJJzSc4pObfkHJNzTc45OffkHJRzUc5JOTflHJVz
+Vc5ZOXflHJZzWc5pObflHJdzXc55OfflHJhzYc6JOTfmHJlzZc6ZOXfmHJpz
+ac6pObfmHJtzbc65OffmHJxzcc7JOTfnHJ1zdc7ZOXfnHJ5zec7pObfnHJ9z
+fc75OffnHoB7Ae4JuDfgHoF7Be4ZuHfgHoJ7Ce4puLfgHoN7De45uPfgHoR7
+Ee5JuDfhHoV7Fe5ZuHfhHoZ7Ge5puLfhHod7He55uPfhHoh7Ie6JuDfiHol7
+Je6ZuHfiHop7Ke6puLfiHot7Le65uPfiHox7Me7JuDfjHo17Ne7ZuHfjHo57
+Oe7puLfjHo97Pe75uPfjHpB7Qe4JuTfkHpF7Re4ZuXfkHpJ7Se4pubfkHpN7
+Te45uffkHpR7Ue5JuTflHpV7Ve5ZuXflHpZ7We5pubflHpd7Xe55ufflHph7
+Ye6JuTfmHpl7Ze6ZuXfmHpp7ae6pubfmHpt7be65uffmHpx7ce7JuTfnHp17
+de7ZuXfnHp57ee7pubfnHp97fe75uffHB4AvAJ8AvgF8BPgK8BngO8CHgC8B
+nwK+BXwM+BrwOeB7wAeBLwKfBL4JfBT4KvBZ4Lv4nw9DfRn4NPBt4OPA14HP
+A98HPhB8IfhE8I3gI8FXgs8E3wk+FHwp+FTwreBjwdeCzwXfCz4YfDH4ZPDN
+4KPBV4PPBt8NPhx8Ofh08O3g48HXg88H3w8+IHxB+ITwDeEjwleEzwjfET4k
+fEn4lPAt4WPC14TPCd8TPih8Ufik8E3ho8JXhc8K3xU+LHxZ+LTwbeHjwteF
+zwvfFz4wfGH4xPCN4SPDV4bPDN8ZPjR8afjU8K3hY8PXhs8N3xs+OHxx+OTw
+zeGjw1eHzw7fHT48fHn49PDt4ePD14fPD98fPkB8gfgE8Q3iI8RXiM8Q3yE+
+RHyJ+BTxLeJjxNeIzxHfIz5IfJH4JPFN4qPEV4nPEt8lPkx8mfg08W3i48TX
+ic8T3yc+UHyh+ETxjeIjxVeKzxTfKT5UfKn4VPGt4mPF14rPFd8rPlh8sfhk
+8c3io8VXi88W3y0+XHy5+HTx7eLjxdeLzxffLz5gfMH4hPEN4yPGV4zPGN8x
+PmR8yfiU8S3jY8bXjM8Z3zM+aHzR+KTxTeOjxleNzxrfNT5sfNn4tPFt4+PG
+143PG983PnB84fjE8Y3jI8dXjs8c3zk+dHzp+NTxreNjx9eOzx3fOz54fPH4
+5PHN46PHV4/PHt89Pnx8+fj08e3j48fXj88f3z99APQF0CdA3wB9BPQV0GdA
+3wF9CPQl0KdA3wJ9DPQ10OdA3wN9EPRF0CdB3wR9FPRV0GdB3wV9GPRl0KdB
+3wZ9HPR10OdB3wd9IPSF0CdC3wh9JPSV0GdC3wl9KPSl0KdC3wp9LPS10OdC
+3wt9MPTF0CdD3wx9NPTV0GdD3w19OPTl0KdD3w59PPT10OdD3w99QPQF0SdE
+3xB9RPQV0WdE3xF9SPQl0adE3xJ9TPQ10edE3xN9UPRF0SdF3xR9VPRV0WdF
+3xV9WPRl0adF3xZ9XPR10edF3xd9YPSF0SdG3xh9ZPSV0WdG3xl9aPSl0adG
+3xp9bPS10edG3xt9cPTF0SdH3xx9dPTV0WdH3x19ePTl0adH3x59fPT10edH
+3x99gPQF0idI3yB9hPQV0mdI3yF9iPQl0qdI3yJ9jPQ10udI3yN9kPRF0idJ
+3yR9lPRV0mdJ3yV9mPRl0qdJ3yZ9nPR10udJ3yd9oPSF0idK3yh9pPSV0mdK
+3yl9qPSl0qdK3yp9rPS10udK3yt9sPTF0idL3yx9tPTV0mdL3y19uPTl0qdL
+3y59vPT10udL3y99wPQF0ydM3zB9xPQV02dM3zF9yPQl06dM3zJ9zPQ10+dM
+3zN90PRF0ydN3zR91PRV02dN3zV92PRl06dN3zZ93PR10+dN3zd94PSF0ydO
+3zh95PSV02dO3zl96PSl06dO3zp97PS10+dO3zt98PTF0ydP3zx99PTV02dP
+3z19+PTl06dP3z59/PT10+dP3z8cALgAcALgBsARgCsAZwDuABwCuARwCuAW
+wDGAawDnAO4BHAS4CHAS4CbAUYCrAGcB7gIcBrgMcBrgNsBxgOsA5wHuAxwI
+uBBwIuBGwJGAKwFnAu4EHAq4FHAq4FbAsYBrAecC7gUcDLgYcDLgZsDRgKsB
+ZwPuBhwOuBxwOuB2wPGA6wHnA+4HHBC4IHBC4IbAEYErAmcE7ggcErgkcErg
+lsAxgWsC5wTuCRwUuChwUuCmwFGBqwJnBe4KHBa4LHBa4LbAcYHrAucF7gsc
+GLgwcGLgxsCRgSsDZwbuDBwauDRwauDWwLGBawPnBu4NHBy4OHBy4ObA0YGr
+A2cH7g4cHrg8cHrg9sDxgesD5wfuDxwguEBwguAGwRGCKwRnCO4QHCK4RHCK
+4BbBMYJrBOcI7hEcJLhIcJLgJsFRgqsEZwnuEhwmuExwmuA2wXGC6wTnCe4T
+HCi4UHCi4EbBkYIrBWcK7hQcKrhUcKrgVsGxgmsF5wruFRwsuFhwsuBmwdGC
+qwVnC+4WHC64XHC64HbB8YLrBecL7hccMLhgcMLghsERgysGZwzuGBwyuGRw
+yuCWwTGDawbnDO4ZHDS4aHDS4KbBUYOrBmcN7hocNrhscNrgtsFxg+sG5w3u
+Gxw4uHBw4uDGwZGDKwdnDu4cHDq4dHDq4NbBsYNrB+cO7h0cPLh4cPLg5sHR
+g6sHZw/uHhw+uHxw+uD2wfGD6wfnD+4fHEC4gHAC4QbCEYQrCGcQ7iAcQriE
+cArhFsIxhGsI5xDuIRxEuIhwEuEmwlGEqwhnEe4iHEa4jHAa4TbCcYTrCOcR
+7iMcSLiQcCLhRsKRhCsJZxLuJBxKuJRwKuFWwrGEawnnEu4lHEy4mHAy4WbC
+0YSrCWcT7iYcTriccDrhdsLxhOsJ5xPuJxxQuKBwQuGGwhGFKwpnFO4oHFK4
+pHBK4ZbCMYVrCucU7ikcVLiocFLhpsJRhasKZxXuKhxWuKxwWuG2wnGF6wrn
+Fe4rHFi4sHBi4cbCkYUrC2cW7iwcWri0cGrh1sKxhWsL5xbuLRxcuLhwcuHm
+wtGFqwtnF+4uHF64vHB64fbC8YXrC+cX7i8cYLjAcILhBsMRhisMZxjuMBxi
+uMRwiuEWwzGGawznGO4xHGS4yHCS4SbDUYarDGcZ7jIcZrjMcJrhNsNxhusM
+5xnuMxxouNBwouFGw5GGKw1nGu40HGq41HCq4VbDsYZrDeca7jUcbLjYcLLh
+ZsPRhqsNZxvuNhxuuNxwuuF2w/GG6w3nG+43HHC44HDC4YbDEYcrDmcc7jgc
+crjkcMrhlsMxh2sO5xzuORx0uOhw0uGmw1GHqw5nHe46HHa47HDa4bbDcYfr
+Ducd7jsceLjwcOLhxsORhysPZx7uPBx6uPRw6uHWw7GHaw/nHu49HHy4+HDy
+4ebD0YerD2cf7j4cfrj8cPrh9sPxh+sP5x/uPzkA5AKQE0BuADkC5AqQM0Du
+ADkE5BKQU0BuATkG5BqQc0DuATkI5CKQk0BuAjkK5CqQs0DuAjkM5DKQ00Bu
+AzkO5DqQ80DuAzkQ5EKQE0FuBDkS5EqQM0HuBDkU5FKQU0FuBTkW5FqQc0Hu
+BTkY5GKQk0FuBjka5GqQs0HuBjkc5HKQ00FuBzke5HqQ80HuBzkg5IKQE0Ju
+CDki5IqQM0LuCDkk5JKQU0JuCTkm5JqQc0LuCTko5KKQk0JuCjkq5KqQs0Lu
+Cjks5LKQ00JuCzku5LqQ80LuCzkw5MKQE0NuDDky5MqQM0PuDDk05NKQU0Nu
+DTk25NqQc0PuDTk45OKQk0NuDjk65OqQs0PuDjk85PKQ00NuDzk+5PqQ80Pu
+DzlA5AKRE0RuEDlC5AqRM0TuEDlE5BKRU0RuETlG5BqRc0TuETlI5CKRk0Ru
+EjlK5CqRs0TuEjlM5DKR00RuEzlO5DqR80TuEzlQ5EKRE0VuFDlS5EqRM0Xu
+FDlU5FKRU0VuFTlW5FqRc0XuFTlY5GKRk0VuFjla5GqRs0XuFjlc5HKR00Vu
+Fzle5HqR80XuFzlg5IKRE0ZuGDli5IqRM0buGDlk5JKRU0ZuGTlm5JqRc0bu
+GTlo5KKRk0ZuGjlq5KqRs0buGjls5LKR00ZuGzlu5LqR80buGzlw5MKRE0du
+HDly5MqRM0fuHDl05NKRU0duHTl25NqRc0fuHTl45OKRk0duHjl65OqRs0fu
+3v9y+DSXj5w+cvvI8SPXj5w/cv/IASQXkJxAcgPJESRXkJxBcgfJISSXkJxC
+cgvJMSTXkJxDcg/JQSQXkZxEchPJUSRXkZxFchfJYSSXkZxGchvJcSTXkZxH
+ch/JgSQXkpxIciPJkSRXkpxJcifJoSSXkpxKcivJsSTXkpxLci/JwSQXk5xM
+cjPJ0SRXk5xNcjfJ4SSXk5xOcjvJ8STXk5xPcj/JASUXlJxQckPJESVXlJxR
+ckfJISWXlJxSckvJMSXXlJxTck/JQSUXlZxUclPJUSVXlZxVclfJYSWXlZxW
+clvJcSXXlZxXcl/JgSUXlpxYcmPJkSVXlpxZcmfJoSWXlpxacmvJsSXXlpxb
+cm/JwSUXl5xccnPJ0SVXl5xdcnfJ4SWXl5xecnvJ8SXXl5xfcn/JASYXmJxg
+coPJESZXmJxhcofJISaXmJxicovJMSbXmJxjco/JQSYXmZxkcpPJUSZXmZxl
+cpfJYSaXmZxmcpvJcSbXmZxncp/JgSYXmpxocqPJkSZXmpxpcqfJoSaXmpxq
+cqvJsSbXmpxrcq/JwSYXm5xscrPJ0SZXm5xtcrfJ4SaXm5xucrvJ8SbXm5xv
+cr/JAScXnJxwcsPJESdXnJxxcsfJISeXnJxycsvJMSfXnJxzcs/JQScXnZx0
+ctPJUSdXnZx1ctfJYSeXnZx2ctvJcSfXnZx3ct/JgScXnpx4cuPJkSdXnpx5
+cufJoSeXnpx6cuvJsSfXnpx7cu8j/XCir19/FzNRbOP8cHO9oHGoZ//9oiP9
+cKITP5ydoU8c4/xwomPe6/M+R1zj/HCivy2ROtYN0ZF+ONHli46vNDWecX64
+OV6QNPe13RXiG+eHE124U/K2H0VH+uFEFwkvX35jAuP8cKL35Opdr3VC4/xw
+ohc13zI3TSLj/HCzveBgjYSfnREd6YcTXa7RpH0jExvnhxNd727YspJJjPPD
+if6+cbEdL0RH+uFEP/2yv786qXF+uFlSH+xKOvy7ZMb54USv/TFJkeSfGeeH
+E30+7vDPT4qO9MOJHrq5W7ERyY3zw830giz24ZgSKYzzw4nu1udDgpeiI/1w
+oitP23BkTUrj/HCij99Iuq15KuP8cKKr3Cl0JXVq4/xwM2Q9ypm+wJ+iI/1w
+oo9UuLF7XBrj/HCilx6PGBqW1jg/nOhi1ZL2ifK5cX440WlbL1qyVXSkH266
+7Gc2FbZd0xnnhxPd/NyNWdnTG+eHEx3WaW2LO6Ij/XCie2Ve3mJ+BuP8cNM/
+1ZeXZ9XPaJwfbpo8v1l1bZJMxvnhRCfdnGXpCdGRfjjRpVbX6zvqC+P8cKJX
+5n09rGxm4/xwoq9ES7A/Shbj/HBT5flfW1d0u+hIP5zoYSNu3emZ1Tg/nOiD
+O7YcyJfNOD+c6O4Vv7r6SHSkH070xf+6Z1v9pXF+uClesHBOr9WtshvnhxN9
+0avaLFMO4/xwop9EseE3REf64URv77Sy+7ycxvnhRHfN+c2JhrmM88NNlv1N
+8keNU+Q2zg8nek6SFRnPi470w4meFD3i86l5jPPDiR58eUx4zbzG+eFE7xxw
+clvCfMb54SZ5QdxrDer9ITrSDyd61fOiOcfnN84PJ7r0xv5FqhYwzg8n+lXy
+nH3jFjTODzdR1puM9Z8dEx3phxO9+mzchWMLGeeHE107X70RlQsb54cT3atc
+uUVxihjnhxO9MOXNF8dER/rhJnjB378XGzjuK+P8cKL/qtqkZNWixvnhRC+6
+UL9g/GLG+eFEn+9TpNkfoiP9cKJXVI9xaGJx4/xw473g6MBzzWqWMM4PJ3p4
+tvWFkpY0zg8nenmfRaXOi470w4meMvvXITMD4/xwokvvsv81LGWcH+5HmS+S
+T1yZtrRxfjjRU6+2mXBDdKQfTnSiinN/WlLGOD+c6ChzipjWXxvnhxNdIWmF
+idnLGueHGyf7p3eXaz8WHemHE71t+sfwjeWM88OJPlvot+G9wozzw4kunC3r
+02LljfPDiX61p8KUqN8Y54cbK+9nwzyd9ouO9MOJ/qza/SGjKxjnhxN9/92Q
+Y9UqGueHE/1+X/RqSSsZ54cTvSXByJiXRUf64cbI/qFCgvcLKhvnhxNd4sra
+zK2qGOeHE12zWMdROasa54cTvebyt5leiI70w4kuWGjc61+rGeeHG+0F0w76
+0YZWN84PJzpfgothFcKN88OJzjEl4d4ENYzzw4ludnlnrwuiI/1wovt3edB8
+QU3j/HCj5P29s3x061rG+eFE/3Q06v08tY3zw4m+uy3a4LeiI/1wor+u9Fu1
+PXWM88ONlO8jbcl6Y+oa54cTXfXPCTNr1TPODye6d7J9idPWN84PJ/rXMXcO
+3BUd6YcTffVmaOOGBsb54X7wgkHHs13o19A4P5zoJF7rQmGNjPPDib5f6Ojx
+BI2N88OJzpzju3mXRUf64USfXFh4xbJvjfPDjfCCw40aPejSxDg/nOjzX1xt
+VaKpcX440QsPH0wT8zvj/HAjPu1Xv4z7p+hIP5zo/ncTFlr4vXF+uOFe0CDe
+uBkdmhnnhxM9qc3KAkWbG+eHE13nYvdY0VsY54cTfbD0hxRnRUf64US/GF29
+2cKWxvnhhsn+ZEH/vzu2Ms4PJ3pMt/GLi7c2zg8n+vKrabNitTHODyd6e4aF
+Ry+IjvTDiY79fHuh5W2N88NFyPzc6uXlHu2M88OJ7j6s4fay7Y3zw0V8Oq95
+fzZxB+P8cKJDl+5kvSU60g8nekyuzFt+7micH26ovA/fHx00tJNxfjjRm368
+NbRGZ+P8cKK/OdF/d4YuxvnhRI8vvbTIc9GRfjjRi+K0e7C3q3F+uCEyv9W9
+cmFKN+P8cKLvVY3utexunB9O9MoM/zUr3MM4P5zoOtH3ejF7GueHG+wFXQp2
+vnRJdKQfTvSU+/EfrellnB9OdN/m64sP6m2cH07023+aHAjvY5wfTnSsAznG
+ZOprnB9ukIyPMl+MeS060g8nuufPdQ8c6WecH050v7ani8/rb5wfTnSrfYsf
+dRlgnB9O9Js0ly6XG2icH26g1PsXI0zKQcb54URfb7iu9SPRkX440XMStIux
+d7BxfjjRh1vsvzV9iHF+ONFpThz7r/1Q4/xwA2R/s3t8lTIRxvnhRKffmvrK
+Z8OM88OJblBg6LKHoiP9cKJPbD2xZu9w4/xwohsdT/B45gjj/HD9vSDrxzod
+Ov9gnB9O9IzL67KUH2mcH050g/+ypU07yjg/nOhmz89Ufyk60g8n+kWzHbuO
+jTbOD9fPC2Y/fNp2yRjj/HCiCxSKqNF/rHF+ONEP7w7sWWuccX440eU2PD+X
+40fj/HCik5R70s2ON84P11f2kw0iqvwlOtIPJzrT2u3Ntkwwzg8n+sT75Zsn
+TDTODyf6YNy6YW0nGeeH6/vpvuh8orKTjfPD9ZH946wiqdNOMc4PJ3rLLyO/
+fyM60g8nOu7xc3dOTzXODyd69868y9ZOM84PJ7pzixWLR043zg/X2wu+XF7h
+r2YzjPPDie7QNlOdYKZxfjjRX8wuHzvVLOP8cKI3Z9vz4ZXoSD9cL1lvYi3O
+eWa2cX440QWLvJ21bo5xfjjRxdedKTd2rnF+ONHVu5bO1WaecX64T//9yPBa
+YfON88P1lP3G+0RbMy4wzg8n2v9rSn1voXF+uE+6zN9FromO9MOJ9konq7Nz
+kXF+ONF13uTfMHuxcX64HrL/H1W1Yt8lxvnhRBdJ3SN9/aXG+eFEl7m0uVCR
+Zcb54UQvep5h9GfLjfPDiR4+51Cq16Ij/XDdpf6Ou+XBuRXG+eFE9xn24e3m
+lcb54URfK7M6bPoq4/xworuPP3mq12rj/HCiO27qM7veGuP8cN28YLHZtvir
+tcb54UT/eGrOPyl/Ms4PJ7p6jwKd34uO9MOJ3lhlfIG/1hnnhxOdY+eOwrvX
+G+eH6yrr35fH+izaYJwfTvT00PH/hv1snB9O9NVfTvzaaqNxfjjRdzdf31bx
+F+P8cKIXD030Jucm4/xwXeT7ntatR8LNxvnhRA/umTjfS9GRfjjR6Vd5uS5u
+Mc4PJ7rHb1Xa7NxqnB9OdKpy0W8v3GacH66zrJ9nS8wb8atxfjjRG6N7M9pt
+N84PJ3rXwKanqu8wzg8nusFf7SoW2mmcH0503D/yRUv9m3F+uE5Sj4T2v/N2
+GeeHE/06S74C90RH+uFE1387as2J3cb54UTnzn+l+abfjfPDdfSCbNOLNJ6z
+xzg/nOjTD36aGrHXOD+c6Envq8Zrt884P5zo9TOzHqyx3ygfzgvqzqi0u+gB
+o3w4ed6nD77NcNAoH072M1nWdot9yCgfzgvm942d64Vox4eT/fqmZ1mvHjbK
+h5Pxsq9r8wNHjPLhpN6fPfv6uqNG+XBesCzvgLkzjxnlw8l4jcgyO+K4UT6c
+7IcmrbrY4YRRPpw8r5bJ6tc7aZQPJ99fjH4pvv7DKB9O9rOj76XMdcooH84L
+aoU6NU5x2igfzgu2jkp7w5wxyoeT9aRU9GVPRDs+nBekq/TVmitnjfLhZLye
+2ff80J9G+XDyvKL/2n/TOaN8OFlfUmUrv+i8UT6cFzz7JkPN8ReM8uG8YMCx
+TQv6XzTKh5P19/7z3G0vGeXDSb1779+o9S4b5cN5wYKkGxKHXTHKh5N6e1/1
+1gWuGuXDyXpZ8crHDH8Z5cPJ+uU3P5/wmlE+nLy/9d88jXrdKB9Oft7KlVWf
+iHZ8OBl/zUY+vHbDKB/OCy68XnLi5E2jfDipp67Gf7brllE+nOznxl+su/62
+UT6czM/jE0VdeMcoH84LkjU7+s/Ev43y4T75kZIkj7hrlA8n88Pmjz90v2eU
+Dye/f6NZRVveN8qHk/19hje56/1jlA/nBQNXZG1d8YFRPpzsL6YUv1X8X6N8
+ONnvjC+7MPdDo3w4ed6VwhdleGSUDyfjfUC3v5M+NsqHk/3B9e0dYj4xyofz
+gr35ihX5INrx4bwge7FQ2NOnRvlwXvBub/rpd54Z5cPJfD93VfZLz43y4WQ8
+zFkb7eQLo3w42V/MLvb5vpdG+XDyfvRvMXDbK6N8OPn+MhZPv+61UT6crC99
+/4i+9I1RPpwXtOueP9/st0b5cDIebM8FE/8zyof7dN+7ssbId0b5cF6Q4trV
+bwa9N8qH84LHub6I6PnBKB9O5ruME7yOH43y4byg5Inc+1pEscqH84KwckmP
+No5qlQ8n89OS8GR1PKt8OC/IGe/V0qohq3w4L5i1InHf8tGs8uGknluwfVIp
+Y5UPJ/NV1ihPvrJW+XBSX/V6PDG/b5UPJ/vhI3N754xulQ/nBQlapFqSJYZV
+Ptwn/2CfJBliWuXDST097fDh1LGs8uFkPJ5Mve+z2Fb5cPJ9TBoWLXEcq3w4
+2S+USDQyXlyrfDipXwudD48VzyofTvabf99u6se3yoeT/f/OyptCCazy4bzg
+WJ501aIktMqHk/pue+dc70U7PpwXlL1arebbRFb5cF4wN83Jna8SW+XDeUGh
+GFE7vkhilQ/nBWdyvWj2LKlVPpwXPM26c/6TZFb5cFJPTm6f/vFnVvlwXlAj
+UZL7D5Nb5cPJ31dl/6t/U1jlw3lB6ucTK/6b0iofTvTWMbcfpLLKh/OC8Dr7
+9j1IbZUPJ/P7uCoPHqSxyoeTei3jV/X+TWuVD+cFy2/NiP3wc6t8OC8oNX+g
+fZTOKh9Ovq+c78s9Tm+VDyf7kXYZjz/JYJUP5wXjivmzn2W0yofzgmg/bF73
+IpNVPpzsP4uHxX79hVU+nBecqnZw7dvMVvlwUk/uqDT9fRarfDgvaDrkzsEo
+2azy4WS9W7osiPalVT6cF8QstPCjn90qH84Ldnx918TOYZUPJ/Xe3dE14ue0
+yofzghYl591NnMsqH07GT4f8+5LntsqHEz2v0b00eazy4bygm5ejVsa8Vvlw
+sl4d2xg9Wz6rfDipv4v50XLnt8qHk/psYsGwggWs8uGkPkpS61Sxglb5cLK+
+Je2+pEwhq3w42f/dXb6rQmGrfDhZH297GcOLWOXDyfPrMOVEva+s8uFkf3Sv
+y56mRa3y4bwgz941H1sXs8qHk/mmU92ILsWt8uGkPmo1rHrfElb5cDIfZgtr
+GVHSKh/u0/e1bt/YwCofTur1rKfbTStllQ/nBd8N+b3hgtJW+XCy/l0bP2VV
+Gat8OKmvr1VLtulrq3w42U9kTnJjV1mrfDj5eU0evzhSziofTur/r16Enwuz
+yoeT96VDwTc3ylvlw8n7umX/3YffWOXDyfO5siXdfxWs8uHk+SxJu9ivZJUP
+J/PF9TidEle2yoeT9bTl1GHpqljlw3nB50mO3spZ1SofTub7Y7vHFqtmlQ8n
+80mvUYMqVLfKh5PxHr3IjrrhVvlwUr91vlamZQ2rfDj58+snJe5R0yofTuaz
+w81zDatllQ8nz3tf68mTa1vlw3lB3o0byiyuY5UP5wU1V9UovrGuVT6c7K8O
+fDt4bz2rfDipL3Pcj3e2vlU+nLyf0ey92w2s8uG8IN+A/bFfNbTKh5N68mSJ
+vtEbW+XDeUHKIkPyp/jWKh9OxsPbRYWzN7HKh5Px22TziBJNrfLhZD+57US6
+6t9Z5cN5QaVvo/jNvrfKh/OCeWsaFurZzCofTt7/GK83jGpulQ8n9dSV273n
+trDKh/MCO7vImA0trfLhvOD77fb+/lZW+XCyXuxoMulSa6t8OC9InKnBD4/b
+WOXDecG5ATEOmXZW+XDyfjUaWCtle6t8OJmv65/MkaeDVT7cp/PE+OFhHa3y
+4bwgVqHw3xt1ssqHk9+3zcoB3Tpb5cPJn2+WfcToLlb5cLL/vPbPpYVdrfLh
+5Pef/67ftm5W+XBe8EvbLm1OdbfKh5P1KGHTxfd7WOXDyXhtfTlbqJdVPpzU
+T1Vfv0/Z2yofzgsaLz2YukAfq3w4L6hSr+moKn2t8uFk/1nvzzKt+lnlw8l4
+nFu0wpD+Vvlwsr5nWTJn9gCrfDjZz7/7osTmgVb5cPL8Mp/98tQgq3w4Lyi9
+fU+Lfwdb5cPJfPGnfRR9qFU+nKxH0zbszRhhlQ/nBX99cenvYJhVPpwX/LFx
+ct1Gw63y4bygSc9nSfuMsMqHk3pvVawM036wyofzgpFTn/TbONIqH06e75Ct
+GU+NssqHk/n4954pHo+2yofzgns/BY3jjrXKh5P9wcosj7OPs8qHk/Uuxdcn
+K/5olQ8n9V/7ZR/ajLfKh/OCQ8lb9h01wSofTj7vrGnlVk60yofzgpY9Kzc5
+PMkqH06+/0JzDt6fbJUPJ/vpDrMGxppqlQ8n38fGhsOyT7PKh/OCpStfXKg8
+3SofTuqZ1336d5xhlQ8n63elqJ0mzLTKh5M/32jO+p9nWeXDyXz39/el/5xt
+lQ8n42dt6/Rv5ljlw8l+aeCe6qnmWeXDecGK7MNPlpxvlQ/nBTHG75/7/QKr
+fDiZv0bP2D5ioVU+nDwvmzjb6kVW+XAyfz+t8PfJxVb5cFLPlavx/MUSq3w4
+GX9RSldPucwqH07qwS+yfwiWW+XDyX7uwBf/tVhhlQ8n+mW58mNXWuXDSf1+
+csHtn1dZ5cPJ79er0umLq63y4WQ/kbxhAm+tVT6c1Od3bs/L+pNVPpwXxE/+
+cUD1dVb5cLK+Pt2+tvd6q3w4Gd+/5s+1cINVPpwn73XfKEd+tsqHk3qh+bL0
+zzda5cPJ+v/u6JTUm6zy4WR/9zRq/bDNVvlwUv9tbNCx8xarfDiZn7c8Ojtr
+q1U+nBdM63t67P5tVvlwsl8Ymmrak1+t8uG8oHWja09S7bDKh/OCX2fnn1t+
+p1U+nBdsuJJzdrffrPLhvODGnlv/zN9llQ/nBcPfth17bLdVPpzo/BcHvf3d
+Kh9Onlf2svsz77XKh/OCtYt/b1Rrn1U+nBdkbNkqbOh+q3w4mf/KVhq6/oBV
+Ppy8b8kjElw7aJUP92n9z/Q07mGrfDgvmJozLFOJI1b5cF4w7JsPK9sftcqH
+k58Xp+nQOces8uHkefUdtvbYcat8OFlPZg7O/uGEVT6cFyTt1/Z9zj+s8uG8
+oH6heumanLLKh5P984Mm0yectsqH84Lff5/+3Z4zVvlwMh/dTzroxVmrfDiZ
+v2Y+eZz5nFU+nBcsTFjyl/rnrfLhZD84M8mxsRes8uG8IPfg0YV3X7TKh/OC
+cmk2v3p+ySofTvZPf6yNmfWKVT6c7LejjOzc6KpVPpzUj6kbZp/4l1U+nMxH
+c0oUPXDNKh/OCyZEDZv77rpVPpzMxydH18p70yofTtbPGRmatrpllQ8n9d3L
+jLvn3rbKh/OChhFLu5+9Y5UP5wVx/t05IPZdq3w4eb7XIi6XuWeVD+cFRZPG
++7Hvfat8OPl+qnab+vM/VvlwXnCk5pGn/zywyofzgkcvsy3O+NAqH07ep3gr
+VzZ6ZJUP5wUjBnxrpz22yoeT9zvnd5tPPrHKh/OCbAkP7Yj5zCofzgu+Tb8q
+ednnVvlwUl9+l/bIwBdW+XBecP1SsVPbXlrlw0m9tShFrpevrPLhpB47feJ6
+njdW+XBesODHrvfbv7XKh5OfZ1J/s/I/q3w42T+1vPn+zjurfDgv+PD8SvSM
+H6zy4aReeJqhTdOPVvlwsv9efTTdvCi+8uG8YGzfR7muRPWVDyf11I5Fk1OG
+fOXDyc87H6Va/Wi+8uG8YGeJNN/NML7y4WR9b5HoyHnrKx9O5o8/Xo36LLqv
+fDh5v2PcXFA3hq98OC+IN/9BvBkxfeXDyfPNlf3shVi+8uFkfWqw9UmKOL7y
+4T7tn1c1bxjXVz6cjK+SKfPMjecrH07mh9Zpa16L7ysfTur/RCePp0/oKx9O
+9gcxyy5onshXPpysJ5mnHlme2Fc+nNTT5S9VfpDEVz6cjOc62bPkTuYrH07G
++9cL6nf7zFc+nBcMihV+e0tyX/lwUo+uqX3wfQpf+XBesK/QgVCZVL7y4eT3
+3/HrtB9S+8qH84JUjSpFHE/jKx9OdLEJhxJ/7isfTr7PkQtbNkjnKx9O1oMB
+0xsvTO8rH84LPtYbvfZeBl/5cF6QoeWkOnky+cqHk/3i64P1en/hKx9O1pfW
+X/+yO7OvfLhP/XNp2sTM6isfTt6fYR161cjmKx/OC04nrnJt9pe+8uG8YGal
+swvuZPeVDyfzzS+pduTO6SsfTurna8Xy9s3lKx9O3r/WVaLuz+0rH07++2et
+syXI6ysfzgvmfLl8TcN8vvLhZD46mG708vy+8uFkPvjh0e/PC/jKh/OCTQWy
+1SpVyFc+nHz++fdLjSvsKx9O9uuLvhl5qYivfDgveJC+yZdZi/rKh5N6JXZY
+lp7FfOXDSX1fO9mgfcV95cPJeIxyP2/ikr7y4eT9SnQ++D7wlQ/nBa0WvF2x
+oZSvfDgZT/vbdPDK+MqH84I2y0uNC//aVz6c1KfdpsdYVNZXPpz8+e9+uPas
+nK98OC9Y9XO2RGXL+8qH84LFG6YvmPqNr3w42R/9/M/ouxV85cPJ35ew+Kmv
+KvnKh/OCOoWXdhtb2Vc+nBe8mBR0vVbFVz6cvE/zMh3PV81XPpyM56sdho2o
+7isfTubTKwVmXAr3lQ8n70/eyTFy1/SVD+cF9wcs+jOilq98OKnn2vaPcrG2
+r3w42W+sLDoiV11f+XBecPjNqzbD6vnKh/OC1WmPrrpU31c+nIzPB398k7eh
+r3w4L3hZOEPZkY185cNJvXXvwpxrjX3lw3lB+D/xahZu4isf7hOv4K+W45v6
+yofzgmoHml64+52vfDgv2L16/fJSzXzlw0m98+bu2ZnNfeXDecHxI+maPm/h
+Kx9OnkfFHhWqtPKVDyfz48ooE5e39pUPJ+tvhkuFQm195cPJfuFd2mKN2/nK
+h/OC58Puzd3a3lc+nDz/ZOFNknT0lQ/nBV8k7Taocydf+XCyf/u39cdjnX3l
+w8n4SlrlSrauvvLhpP6MXzTFD9185cN5Qe2WFTfd7u4rH84L/l03Y32Znr7y
+4byg2Jgg9sJevvLhvOCnhfX3R+njKx9Ovo9l3rVv+/rKh/OCXPVq1Putn698
+OBlvA1rmTTvAVz6czA/367UdONBXPpz8+55lo10b5CsfTuqdOGXfB0N85cN5
+QbfZXWsvHOorH07WhzQP4kUb5isfzgsKzDyUtcVwX/lwUo+kzrz44Ahf+XBe
+kOb3tAO/HOkrH07mq9XHt40b5SsfzgtSx6xa5+loX/lwsh4l3l6z9lhf+XBS
+38bJ8/O2cb7y4aSeLnOoS9rxvvLhvGBUnPmTIib4yoeT+eH4yST3J/rKh5P5
+42mPN1Un+8qHk3rx8ZoSm6b4yof71B814Xaqab7y4bwgydhiD4dO95UP5wVB
+lSN1/5nhKx/OC3rnqpepxixf+XBeMPFy1Jq/zvaVDyfjPdb1Wxnm+sqH84J1
+AxKeHzPPVz6c1ENRNuR4Od9XPpy8vy0v3f52oa98OC+IOmVllMOLfOXDecHk
+bkUH5F/iKx9O6sl3KxrPW+orH07Gf86EC2Mu95UPJ88z6fjyPVb4yofzgs8O
+lwy/sdJXPpwXxG1X/Lcqq33lw8l+JsuSH39d4ysfTubvgpP2ZPnJVz6c7AfP
+ZWgwdZ2vfDiZH+p3rR1tg698ONk/Jp77S5effeXDyXzcZlev6xt95cN5QeHD
+L+dV2+QrH84Luqxq9OWuzb7y4eT9m5ggZe6tvvLh5PuIk6vj/G2+8uHk820+
+lTnBdl/5cF6QI3/yskN2+MqHk/U0f9oDz3b6yofzghJdoq5tvstXPpyszxsv
+vzm321c+nBfEPHZsZYU9vvLh5Pub9mTXjr2+8uGk/n3XrFie/b7y4WS8/Pt1
+6iUHfOXDecGT1mu/T37IVz6cF9zsszPeuMO+8uG8wBSYmC501Fc+nIzXLeVm
+9DrmKx9O6u/cb3o8PO4rH07Wz9P7tzU76SsfTvY3N482u/SHr3w42Y+tzdI9
+/LSvfDiZv8a++ufQGV/5cF7Q5GbtQ6X+9JUP5wVV0zWLs+2cr3w4+b5/L7Yl
+7wVf+XCyXlX6cGjVRV/5cF7QM3x/6UyXfeXDyfvSZUP6eVd85cPJfFfzWuvk
+f/nKh/OCn39q/9nka77y4bwgepleOePd8JUPJ+/vpdSrR930lQ/3yS/Wb4K9
+7SsfTubzYeuvDrnjKx/OC7K2uTTp49++8uG8YOWbZOv73fOVDyf1w1fDCr69
+7ysfTt6HkqUy9nrgKx/OCx5+0abPy3995cNJfZYiTZHuj3zlw8n7Vr1vk+eP
+feXDecGY2PMfd33qKx9OxvPMlfeePfOVD+cFs2psrdjtha98OC94Nfd+0hcv
+feXDecGufxtW7PHaVz6c7H935Lz36o2vfDip36YPeNz7P1/5cPL7J2rb9N07
+X/lw8nxOJiw28IMfNB7U4sLF2F4QJfJ/0YP/A8vPGsA=
+ "]]}, Annotation[#, "Charting`Private`Tag#5"]& ],
+ TagBox[{
+ Hue[0.8503398874989481, 0.6, 0.6],
+ Directive[
+ PointSize[
+ NCache[
+ Rational[1, 360], 0.002777777777777778]],
+ RGBColor[0.772079, 0.431554, 0.102387],
+ AbsoluteThickness[2]],
+ LineBox[CompressedData["
+1:eJws3HdYj2//x3H6XIO0h6QdSkZRQlanjIqGQilKKtlkRVEZSUKpJBqUQlmh
+7ERTEtmkEpFZUcoI9X19r/O6/7mPx+GHfMb7Os/79zzeet6rnBdKdevWbYlc
+t27//zf9Tw+yeb/jfj9HCflyveBAd1im5aLJ/74eZn92aBdPJt/elJIIa2y6
+3eTWyZPglIm9KuEsj4Gzw//x5OJaPlAyQ0JONy5+d+EvT5pt770fBct+3ppU
+94cnBrpxs5bDnurLg2Tg+T/mFKbCTyx1t1p08CShQnvYU9i2f0K232+ePDj6
+LqWnk4SMib7D7v/Fkx6BJ3tNgG9PO7e94CdPJjr6B66BL+hPNvr6gydBA0Z+
+OA57vwv+oQlf+PNnVjVc4+nyZVo7T748LCiUd8bv9y7lA9t40i9z57DJ8NLC
+0uknvvNkXoj94Y3wGacZl5+28mT/LGWZM3Dv93OnMfC9QVWBb+A7LvWMWQtP
+2O5HPqjOlJDIzTXvF3zjyYTnvrOnwVeGT/q27ytPAs4MKgqBnZzl9W418yR7
++7dhOfDX6xaBX5t48sHt0uEP8G3767+0Yd1hm2U0Z+H1/LjniEMjT+ZwVkEz
+4O6rTqwI+cKTmBr+Yxj8tFjic/YzT+5cuDf7KlxcmRj66hNPpHbFFTXB3IaF
+RXLwmPluw/VnS8iy9HnGlh95stZc54gLPM8y8NaqDzw51atBZjf8cmRuYOp7
+nrx7czLoJhy0gXN/2MATrSv+H7////u/LV4gBc+OGuky0EVCVsY+iTZ7x5Mo
+379F8+BaR6sG37c8KR1TODwGTtc8teBAPU+6FCKOlMBWzTxb9oYnoz7Yy3bA
+9687Vf5+zRP/G8qbjF0lpDl4663BcGZc1UdvuNZ43wuPOp68WXLEJQFeWB6g
+tu8VT9TJwuK7cIO9cXBhLU+cew827TZHQqZfye7ZXsOTyMZvR0bAytJteYZw
+UeEl2SWww5S2A+7VPPlzcPOmFPjgiqyEvS95MmKV1aeHsGaEzM1bVTxZPqWH
+K+cmIQeSesu2veDJMY37xWNg+3O3thrCtS1xpqvg3g8kWnOf86R3mVtqOuzM
+Vb2KesYTx8M6ci/gr/Mtbhc+5cnOdQ2bZNzx83/RevbjCU9uTTv1icBXroT2
+Ggz/0l3tuh4OqHJdNP8xT4b/HFmS9f+vex35FPeIJ0vu/TV9Bev4OMaWPeTJ
+0fTCVKW5+L788Frw7wFPXgZGyFnDkWb3XExh5RkOmzfBm033rllUyZPpBiqf
+s+Flcom5yfd5Eva3yvUdfORto+ajezzJe3SkpM88vJ6VIad4uD1zoZk9HNdq
+4zW+gidDQwenbYW3LJ88du1dnvjNbpG7BEt7LR2XVc6Tw4Mvb/4Mq7Tk+NTd
+4cnz7sGftT3weZ3S97wqLP/Cas5M+Nq2A/3tynhic7ZH6U4465Fe/rbbPNkS
+dt8sD87zvBh8tZQnV933p32D5ztP8/lWwpPWYe7yAzwlZOvLqpWG8CBeN9gN
+jhvgkepZzBOf2obPe+FtPvd+xhfxJCnn1JxCOL+k3/p7hTx5smt16Q/YLNSt
+DwvLeI0aMXg+3s/iRW/GFfBkysh/afPh9nLrB+tuYZ7JFMnvh2PLW9+dvsmT
+S/URwWUw/3eBTkM+5tkVhy9/4dxDUaFasGG0ittwLwlZV7eadbmBebbwZelC
+OEWaPR+Vx5ODY1NHJMLd3Sduu30d80zR7+h9uFFWN7Ab3PPjYAXJAgnRW5wY
+b3EN8yy/JXgU/PpU1vM1VzHP9l/+sgyu07K2PH0F82xpsFsqbM8sr2i4jHlG
+Jt1+Aj88rhiqA/dX62ne01tCdjkMd3W7hHnWdP/oeLjH1OJZcRd5El+0X2EN
+7F5VtOFeLubZIfeQ4/C/2Ua3eJjz1218CX+Sbh5qlYN5NvW9m7yPhOyw6VWw
++QJPNmievj0JPucVFHj5POZZ62rzjfC14yNcW8/x5GPZqPTT8NJVZu5DYd0j
+/xTewG0K/tsWZ/PEbX1RiKqvhEjevq1MP4t5Nn1Xoy18fkKEVd0ZnpTrObqH
+wBEhLi/7wlK/VMouwDs7rRNcTvNk7P2X5h/gPpougbGnMM8yUtM1FkqI2sig
+LfdP8uR0kJ/iDLjy9JnT0vC7GUNCw+Dfbz79m5qFeWbY2ngFvjF64LrtmZhn
+/y67N8HnVL3lb53APHscXKbnJyGPX+2r/HucJ7ezJo10geP/nMm1gLtCe2ZE
+wg+eXMgPOMaT0S6Vijfhu08ONuVkYJ4NiQ/9Do9c5DaxJZ0nWVJzmwwXSYjJ
+76arxvCbF7pz58EWvx1dlx/lSd/s92X74CnPN6qfTMM823F6ZAl8mvHu9jGV
+J7vnrsn4DQ9tY2QM4KLho5WMF+P1VJ87zvcIT/7ynaHe8L4vHjFHD2OevSpq
+OgD/ruN6vUnhyYrcXXPvwtGrHLN04GORjne6YFWV4cs9k3nyykt11IglEnLZ
+5tjMlCTMs1HVGYthJvLY/JpEzDPZNKUU+Nvswfs04J1v/bY8hJ8MHtbgfgjz
+7OqQZnYp5sueM56JBzHPolvnjoGf/07+W5WAeeZ35c5K+ODPn/nq8NJxIaPS
+4TjpK8fcDmCeKU0+9hyWv/rs3KF4nlR/7KksswzP80j711X7Mc9uVm4hcHiP
+3iP6wnbx8c3r4O95Rqfd4zDPls2dlwUXmm2zSYrlyY2JeuW1sEZHn541MZhn
+ah9GKS2XkO2HPzRpwsbNp49NhevPffjhsQ/zrHiN8iY4sFCp/5FonhxJHL01
+G/680Hv96yjMM//O5rfwcJMHn/VgBevieX1WSMjJnNlhPnsxz7Qiy+1g6cjG
+icf28GTrd8fRW2HvaVH9PuzGPLujevwirBs1wsgIbj1SrfwZlvn2wnlZJOZZ
+QNpW7ZV4/2XWp57ZhXlmt+irM2yzRUrpWwRPkvWHeuyEP34OOmEKP/nVWn4d
+ntn43Gv9Tp7IVl4Z/Q2WM1CecCUc8+xYyPH+qyTkxxgDyz87eBKyabKKG2xZ
+Ke07Ab7kJL1tL7wu4trprWE8+Wr44GsBHCBrol6yHfOsM97jBxzMeWf1gL2e
+zL07yB+fFy17D7ttmGcn9Szmw7p/P43Yt5UnD7d8OB4HP3U0HfZkC+aZ6xmV
+MvhGiY5jH9hq6Nptf+GLMqdj5oVinkksvg1bjefjkwc/U0N4klPV6bEQbq7c
+ubUhGPMsu/juIXjnuXLjQXD/8EiL+3D9oLiulZsxz+bNOCG1RkI2tL38nrMJ
+88y0t+ooWK44qdfvIMyzHjXblsEFTpVTJ8BcXdq3I3CHy6pj2wN5YnlxkecT
+eHXUesM7GzHPdg+t6LFWQoxzqyvk4HMLvluMh8N3JMXP2oB5NurqidWwVsHZ
+rYkBPNGTC1U9DjcYyMe8Xo959m7y9pew5sZLRQZw7DXpFrl1mM8bDquvWId5
+tu+B5yR4xsdbsTlreSJZdKBiA2y9T82kYw3m2fh5Y07DaebJzQRep6yf+RpW
+S7V5uHM15tmnD6qq6yXk1MHez+/786Th5pnttv/7U1eXKqx1YG1LMHzGs3O6
+xyqeuCy3mH8BjinudT1jJeaZVVfFezj0k5594wrMsz4lYzQCJORD8hipEXBX
+c2SmI7wl2/HlpuWYZyUzeofB0767Py1axpPVSb3DrsC7xrp87wVnra5paYTL
+540dMWspT+qtj87X2yAhr4YwB5OXYJ5pL743G67ZdlK7YTFPZrYNHRsJ644a
+WDYU3l3+PTMftu23YX/AIp4Up17t/R0epx+z/aYf5llAaJjhRjwPFfzje8Dm
+9lNa58Le5bLlTgsxz/r18toHnzXx1Uvy5cnx3w/uFcPfdVYkvfPBPKs8MPY3
+7LtZf7QxrHZ8XtbQQAlZYxjyc4M35tlmfTVv+BETVFWwgCcRzh/DDsAbf8u/
+6gXfGni2tRxO+GLBunjx5HfnWq8uOKOwxSF1PubZU4v7ZkE47y0afv2zJ+bZ
+qa6xi+F9Ra225vDRrSVZyf+70ORPqAfmmetutYdw/oz6++XzeKJi7LSD3SQh
+JXOZElXYjlH7bgHveRRd6zWXJzte1nithC2OhfQ57Y55du7o/aPwoJLy9T/d
+ePIjfPG45/Cf/ivbrWBjD+OTvTZLSNgV74SoOTxZZNamRuCn647OfemKedbz
+2o518JgZhlYG8Iu60O+Z/9vqy7Q1Lphnl6YsqIVjJ31cnz+bJ7Z7elUqBuPX
+HfoUScNbvR+Omwr7eqw3dZ3Fk2ujE04GwRtX/C5Kn4l5JufRJxtW3Xx4wzdn
+ngxu0A9/C6tEeNqPh32uf/yuFoLzWYzZlEgnzLOYswvs4PRDavOfz8A8W7Su
+cgv8/SiT1B+WnTBm/EVY73zbr9WOPJmq0u3UJ1jpzpuNNx0wzz6X9NEOxfno
+W0lfWfjyrd3hznCVSdIrd3vMswNObeFwSNTc4kw7ngxcoeZ9Hd7eu3vFj+mY
+Z5NqK7/Cjx7taJ8MH1JPH99/C16/yrckbhrm2dfFp+bADeqqZ9/Y8kS61Fh9
+L7zulvL4YbBVclt4AVz3qKopxIYnm9Zca2uHee8Ft+5ZY57ZbPEetFVC/oZm
+5GrCjdpTH3jCnZYp5cumYp6195oQBwdfmiJ1fQpPPO4+PHUb7vM7Ya40HJ+W
+oP4XTtaOeuY2mSf3N3jsHLYNz2NL/bVZkzDPHPq1+8Kb1joM/22Fedb/k/ch
+2PWZjKItvKHj7IN7sOZ2V6VDEzHPHqybILUd97kDA80/EZ58Oj7m9EjYwTgo
+0ALWC+7WdxmcumRq3S5LnrjPLN15BM5YvNPv5QTMM6M97Y/hy3aj5AfDd7uc
+fHqE4fs4ekbVpvGYZ8/UHo6D3RwriivG8WTc6doJq+GNl4491ILXbUs/fQwu
+invWtXIsT87MWdL3JbxUzs3x1hjMM2OTCLkd+HUHw1uKsDbb3m4F24eMdfax
+wDyrvuazAT57O5q9OJon0ee3PDwF57hov+Tg2zunWr6GHee8qZwziifdPGXO
+qIRLyOGOR+9PjsQ8G/Gory38enmT9j9zzDPpgxHBcGDdoI2OcNZrjx/n4bbt
+O1rTRmCeXern+x7uvvfn3jYzzLO9nx723Yn5YbxpmjU80yfb0hHGAX9goilP
+9lisP7MdDpNPNWgajnkmP1bjCrw5z3wqgf81dNvVCO+qKQmPG4Z5llf6QzdC
+QoZkTfv43oTHPXqP72y4p0f+0jHw8cXOj3bB78005KKMeVI3oQ/Jh7OWzn30
+ZijmmeqrM62wm2XgZXN4xpd0DcNdeL9bVt7YNQTzrGDJrrnwmFsj39UO5klB
+gsnPaFi9uXywKfx7RbtvMTzuxoD94YN4Yjr5+qNfsM3qiVrVRphnfbeSoZH4
+vDr0uW0Cp3+benYBPC45IyZsIOZZqYzmAbhb6uvNVYaYZymPdpXD3kdLI4xh
+u7UHf3bChxpnXNxugHlm67nQbDfuV2WBUlUDeJKv0//xIrhh21h/Y/hH+yeS
+DLf47evc3p8nJhXZZx/ANwrXnKnqh3l2dL0mu0dCuIaazSZw6saxkRbwMa07
+y3foY545dP+1At59Y3hwtR5PFAfcXngULu6teHY4bPtnz+Nn8NrNC7p26vJk
+20Pnib32Yj5aaa1+pYN5dqJPtiU84eYEiTn8PfiV5jpY3ebWxd3amGezMiIz
+4S8jkiPqtXjiO2jprxrY4VXFJgs4udswP8UoCWlNsYvep8mTp8/aH0+BU+6r
+Fn3QwDw7c31iEDy0Ql/NEp66fWv2WTju+4rdB/pinrlZa72Fnx1t0WlWxzwz
+kd2tFi0hChaZT6bAX9nHv6bDq3vvyUrpg3lWc9BvS/T/70fC4XY1niy44Pkk
+F749pCTHHj4U0d/qE7x5sPynY7158sjzc7bWPvx7/66a0KmKeWZ+TssZ9uLq
+c1zgSb0CdofD+Wfn22arYJ69Gfv7Gpzq8baTh3Mvd1/0FS7dtOiJlzLm2d7b
+T/rF4P629v2dq0o8GeC712oOPPase50S7DFm5rk9sNehfJXlijw5oKCuXQCv
+TZNZWqKAefb+1e52eMcIyzptmL+R8dsoVkIuFcxYt1Ee8yxu6SJPeMTVsUaP
+5Hiyccmwp7HwmD0d/wbD5yx/WN2Glc7sbN0hi3mmmnfuD6wYXcu9lsE8a9yq
+PSxOQhKP/xgzBnYvtN7jC2stuRe1vxdP4g7KdhyEVe3nSX2Vxjxb+XjRPbhH
+eUq8LcxMOfS0+37cP+fsscnoiXmmMX/SSNh0jb5GVw+erG/pf34pfCbGXdYd
+PnP7s/YR+KSpic5FnifvU87teQy/fZg4QwHWXhfQwcfj729KSFvG8cR12rjF
+4+B+Ej2l2yzmma7UM3+4Im7YUX247MftScfgdp0CpxAG8+ze3vNV8Daje7ov
+JTyxSJ+pI3dAQhaYOcqPhFcHqu+1gsMKJmrFSvHkpGNdRwDcMOfItObumGcD
+ji0+Be8I9U6YBmv8XfqsDl6at0Nyohvm2aNhk1USMC8TJNESeE/mj/M2sFni
+MwuvLo4Uh+TpBMMTHH5LbnRy5N+sbXvPwy8m+DWpwyMH2/xpgLV/qf0I+MeR
+ld3llvQ9iNeL76n95C9HTjx//MwBHt1htnA4XHfm0OTtsKtX3N2oPxzpEzb/
+wmX4yh09p8YOjsxwH6DbCO+8XdVuC+8a9mWv7iF8v75cvHriN0cKuPN/ZsEG
+5eeSWbijJmDJLnjmj+LDPr84Ypoz7vkNOIttulnwkyPLdklNaYXdovp104XT
+55ddMEjE98/QZ37ID47UmEfpzoV3LDleW9POERWZWVHRsFfTh6CxsH29+t8i
+eIa9/qjENo7suFK35Be8tf8Mpd/fOZIfdez5kCTMX/nlMnPgH77LpiyAbU/6
+D7jcyhGTscNz4uGh++d49IYXK/7ULYc/LdPOXd/CkdQPeVGdcOLDPKOn3zhS
+dWPbX9NkCZnnZ5w/Albcb7N0ETypYsXq/V85Mm2p3IskeMHx9ZPamjmyjTyZ
+8gAuPEhGzIKv907MYVIkZKXNnUm5TRz53jhfzwJeOFd6jQo8pGhA9Ar46MbO
+/HWNHPE99OVvGqxhkzro6ReOpKw6v/QZfGPN51xz+OmUDS+kD0vIqqPPPQ58
+5oic5viplrDiNu8BPz9xZGqrVO5aOPDGjl5z4NCyMr1MeEP3cQpXP3Lk8uGo
+6Br40Z9Qs77wt3Wz/ikcwf1nrt36TR84MnB632VT4MjKpKc17zmyQO/1i0B4
+as8lsybAh34em3oW1rx2tuVIA0ce3VuWWw+n7V90pjvcK2O4vloq3i+7qJ0+
+7zgyKehn9HS4Ol5rS8lbjmyeceNfKBxuoJBgCOcabF+WC9/J9arYVc+Rpr82
+VR/h7r966ja+4ciAx3LWWmm4L2VysQ6wZ9aTXKe0/78/TvrnX3PkQGiifjhs
+O6rhgTJcOdtr3zW4LTIvJaCOI/wQg85m+MjIRxFVrzhCpBqX9TuKz/tP3dhx
+8MYX56tc4T67068eqeXI+bMbrPfAj87N6pKCP4WNv3gL9h5o4uNXwxH9uZJ+
+7XDChaENd6o54j78zj6jdAkZpjh9x1A4jo/u9IBruG2TYl5y5G7trOWx8GjX
+ezrtVRxhcvu+LIUflBr2dYPHRb62/gNra+wxvfGCI+u9jl80yZCQvX3bF+vB
+Z0cu7+cLr97jcWPHc468lzGNOZjx//PolsnnZxzRefuzswJO/KR2ywF2vXpj
+efdj+Hwvnr8y5ylH9kVvf2kOPwmNGdMHLltoa7MU3v43s3/wE450Hyd/6TCs
+dSp1SP1jjlgoPe33GF7lttbZGl7zMTGGPy4hw59pHDj9iCMn8726xsJcy/6f
+ivDb/QYr/OGgoKqADQ85orGs8WUGzEx+p1z7gCOzJl6wqfrfuufuW8F71DZe
+kj2B88CbUScyKzlS0jS+vxW8wSMgRQ7+VySJDYBHLfY7v+4+5lnina6TMP9C
+6u3Le5hn/tEr6uBH26eaToRPTJ1drZwpIcsmDTlyooIjrzU1bG3g3V/PGsnB
+fb6/vrQZfrTgzsN1dznidOd4//Nw2bqAhOpyzLMjy2Mb4CrJ+SAruHC9abe+
+Wfh8fFm7KesO5tn0Xysc4M09rh1SgM3086u3wT4WIU83lGGe/dpuexmW97hu
+XHebIxn3bS9/gf1mLj82Fa7JkB+gexLz+99ui7OlHFHd9DR2FtxvnOoXVdje
+KanbLvhOq9S14BKOhBsuWHkDTmBmHG8oxjz7Z1DTAr+f/TPbHv75uNHW4JSE
+fL37/dnFIsyzkxcuu8P37YiGNrx4y8YB0XDozeebwwsxz1wmxBXBb3pd/NNc
+gHk2hOn+C87t+zjBFVaUlK8cchp/39MhTrduYZ5VRdd4wTKGNwyN4O3Zs6fF
+w2s7QjRib2Ke7dC4cuf/Xx+3YsiffI60zX0zoBP+8WKbuy88xPREnOkZCTG5
+ee3YvRscWdhjRfdF8IFaeblRcMor01VJ8Lt+wXGpeRx5lvurphLO3fbPXBqW
+250/jTmL+9iX3e1rr3PEekHYldFw7Ix+j2qvYZ6NmmawAh5wLP+uNXxFVmF/
+Gjypdk79+auYZ2+fdn8Gv2hqVNWEja4lrZLOxvOnYr1f+BXMs30LaifAc/yb
+H3+7zJFEP8Ppa2HvB06ec+FH45qunIC1GxLZ0kuYZ8o5BjVwwYniO8PgSZ82
+7lc4JyEuSuUnky5int2cIDUFLtE5nsnBF+MZ/0C48u7MotW5mGfLymvPwLLK
+9ztqcjhiYLVvej38vVXe0Qb27ONytfd5Cbm7ROVWzgWOJDRrGE6Hrwc8s9eB
+K4vf7A+F89WdfkWe50iPpBNSuXDmzNCbP85hnq1e4f8R7mcwL90bDrQ2e6V5
+QUIuxNWn38/GPNP6Pd0JPntEtmAM/Pl7/tUd8FSHFx3Hz2KelYcZXoNDMsY7
+KcNzU6fFN8OmmaOLQ89gngUoSPrlSIiyV/HMxtMcqbB75u8KH3tc3TUHZvol
+v9oNW/UKKis5xZHxvxfY3YL7KiSeMYXXVxpea4ONG0dmHzmJeXasydAoF6/f
+yen3ZOD3m3LiPeCxLo/5oCzMM+dASSzs9rfM80MmR+YMtFxdCkudNHw0C97X
+ydR1wK4rPi8oPMGRO0/K7Uwu4n46W0ZuGNz91L5rPvDJ1RHPUo5zZMxWl4EH
+Yfax2/Ve8BpXzQMVcFnkprzAYxw5NbRe0v0S5uWpj1UfMjDPJJmrzWFL62Rl
+F1jz5Yq6JfDzNTFLitMxz86Z2R+G06yKqk3hveG/rz2C1SqGLE07ink27+ZA
+/jLOhwPuqCjAnaY7DoyF/yyMqw5JwzzrOZ3xh5ccC89vSuXIqjqFNRn//9//
+TbkxDz5x8VndC7gs7MmLu0cwz3Yn28tekZCoOQMUxsJ9vL2vT4RbY3f7nDyM
+eTZ6oFEAXOco9Vgd3iXXfOAkLHc6zHNXCubZuxymDpaUyHK/kzny51rgGuWr
+OC9cPXhnMWwWY/naGp55QjfrRRJHli9iHTbD57NTM2zgjPF3r5+D61qV864k
+cqRWOcaoAZ4Xu/7rQFj1s0uC+jU8n87dmnDoEEccbmmyDrCJ/7esnnD4gfo1
+2+D17V3Dgg5y5ObyzNeX4E++nx9/TsA8s1rp8AX++/Zk7Fx4mPqIPJ3rOC8f
+HLei4gDm2dffRrPg4ycTfcbDaSU3EyJg6Ym31p+NxzxL2sHegNPDMtN1YKU1
+09e2wOWHHZr27cc8s1F8MyAP79fVM85S8Hbt5w7usEK3gsdr4zDP2pLzouDS
+lO3+DbGYZ+Xeg4pgi5vfBrrCQ9MGHvwJZ8RI/pXFYJ5taGaH3JCQXpMuN46B
+D9vnrvWCzaT4X6f3YZ71C3qzHz7V2aStA8t3WDregQsXL1oQE4159oC98Q+O
+Wb3ypgTecvzuINN83LendY4OiMI82xxz0A/eaqh0/+NejrQ4u3JJ8LExx0Lm
+wkZGWusq///1Kxem3d/DEe+u+jeSmxLS9dTcdCKc+DTTcTRcXmZknrubI49P
+rbyxHJ55e9dMQ7jXthGD0+CyHk57EyM5MnlOx8GnsFZJUL0svNn4Fid9C893
+c6mZW3dhnjHh6ybAv2PqX7VFYJ69nF6/Bh7SWy18MWxwXnHGCTjhb6JNzU7M
+s53Pb1TDLVuWGMyAEzxSBisUSEhOXbBOcThHHpj5HJoMK7s8NhsN95A24gNh
+af2FPqd3cGTi6+Z1Z2CHbcZndeHAS7n1b+BZlwapxIdx5MKeoBm9C3H+75wV
+3xP+7E3yp8EjkjKHh2znSD8LbkgofP6+7qfWbZhn8hWHcmDz6ivXF8H7G2L4
+j/AXyfKsmq2YZ9dd12sWSUjeHvMLTjAbq/V2BuxwTeFZ6RbMs8VvZ+yAuz/6
+pTIODpiQlX8Vblf/tPJ8KOaZyqohzTBTVfPWAP7weUSifrGEFLlUrk0OwTwr
+6OBd4bDq69pK8JyEW+t3w87nUt7tDMY8WxH+9ibcru1f8m8z5tkkO6c2uHm1
+ccFaWKqv0s2BJTjPtz1+/mkT5tm350M84MjWuT294LWlKYkx8KMrBbOfBWGe
+Jfv0KIWv7u92ww5+t8YooAOe/0TZsigQ88z261vjUpyHS39UW8CzdS46+cAy
+1zPizm3EPGsPupkAf+2u7mcIl94lQytgu0aHmYc3YJ6lcUndbuN8e3fiXFV4
+1MaKHuawwvfG4D0BmGcOsQFLYMWL069L4Mz+c96lwDcWuilvWo951qHl/Ag+
+6aYY3rqOI+oP397kyvD8er9SeSnsdCJr6FjYaMGK62/WciQyeFXSKnitXo8Q
+N7hwpnnPDHh5yJi5D9dgnhn9CXgBj3zQ5WwLm3UreCdzB9+XVTMXFqzGPHsW
+7jwRnnRpWKwFfOy03a31sGNnbNV5f8yzbUrGJ+FrR9ePHQT3dnuR9Ao26np8
++egqzDOTwz2Vy3GfWJXloAHvZH03WMMDnVu64lZinlUbNWyCt0pO3JWBf53/
+6nwO9q8vOb9jBeZZxMVb7+A+DrYXOpdzZInnJmP1u3heHR9ybwOcNmJisj28
+f/oyqZZlHHkpzUtvg/sf6ea8FFZ6U7HhEvxe6uP1t0s5Mv1ybMNneE2VJvGA
+t++dM1OnAq9/eOKrZ0s4kuejXTATvrZ8XsIMuM3inXEErN7qsbR8MeaZwsnk
+PHjHpkTXyfDC96ukW2Bulez8/EWYZ3nmGwfcw+fT7MKW0fDz2D8NbvB9k7C8
+C36YZ0sKZkbB0RUhSkNhG8udBYWw65qUbScWYp6p2pv8hPdHVsvow1e/KKUM
+vi8hvqEjzif7Yp4VvJD2guOup69SgwcdPLxxP5xwsr9NrA/m2Urf92Vw/JUL
+Y2ThpMmDZv2DPZ1trSO8Mc/6fisYXon7ScPbFRJY6OHglrrgsyELONrDwVfO
+KfXs8OJoDwdPuZ0SvB4WergHmMdxfWVa5nO0h4PZnWG5y2Ghh4OjlZ4HfPTk
+aA8H786UnekLCz0cfO96P9vXHhzt4R5KyOObKm7zYKGHg0sG1mx7MY+jPRy8
+ftn60lmw0MPB8/5V93s4l6M9HJwyq1eSPSz0cI/wvP7YObjcnaM9HNzN5MKz
+qbDQw8HZabpJRW4c7eHgx1emBBJY6OHgp02aq2/M4WgP91hCbl9L2zYGFno4
+2DOx8sxlV472cPBv/mjrCFjo4eDkUBWnCy4c7eHglmD9Oyaw0MM9kRDrLbfd
+z8zmaA8H72e62MGw0MPBq3cVl2fO4mgPB2tFKWcZwEIPB2+K/ZCaMZOjPdxT
+CVFVG3dBHxZ6OFglRaY21ZmjPRw87fgsPR1Y6OFgo4vyoSlOHO3h4DI7ix8a
+sNDDPcN55VtFeOIMjvZwcMWA0mHqsNDDwXv9ddsSHDnaw8GFLs8f9IaFHg7O
+9nxfGu/A0R7uOe7v8rbPVGChh4Prv3Z0xtlztIeDn0b8JMqw0MPBL7zHJMfa
+cbSHe4HnF39TQQkWejh4Zreth2Omc7SHgze/2DRFERZ6OFhd4xQbM42jPRys
+OEu6TgEWergqPB/k4x/us+VoDwc/rZ5aqwALPRy8Z4qGVIwNR3s4eGO1LFGE
+hR4OThzSNyHGmqM93Eu8f2VjeSVY6OHgdMuV+2KncrSH+9/6Z0yVYaGHg2Ul
+bU1xUzjaw8E/10woVIGFHq4a7x8bkR0/maM9HJxjV3GxNyz0cPCtWu5pwiSO
+9nBwkZ2ZrDos9HDV//eG9p6JVhzt4Wowf9RnlGnAQg8Ht6SPmp4ykaM9HGzh
+2/VeGxZ6OHhk69GkVMLRHg5Weq+1RB8WerhazJ8XyxwzLDnaw8EqPhEOBrDQ
+w8H7dFb5ZU7gaA8HH8jUSBgECz0c7Hxo1+vT4znaw72SkJ17c61MYKGHg2P0
+Dt44P46jPRy8sNXEaQQs9HBwdMqGf5fGcrSHg80LlhZawEIPV4ef5y+TmjeG
+oz0cHNI08YAlLPRw8HxzrWOFFhzt4WCLdbEVU2Chh4MNpqfI3BnN0R7utYQ8
+mWux0A4Wejg4wsb7WeUojvZwsG6ustdMWOjh4F5WtlLPR3K0h3uD89aBzjx3
+WOjh4D2zTfa9MudoDwd/7f98kzcs9HCw5cmW0PcjONrDwc92ByUvhYUerh6f
+J/8VD5vNONrDwQO7lWqvhYUeDt5UHxr205SjPRxsfeuA1GZY6OHgMivuUDdY
+6OHe4vOhXG69YzhHezg4r7ZWThoWejh41/TxzVHDONrDwdd7vGtQhoUeDl5R
+cK/9oAlHe7h3mDf6P7S0YaGHg/e9mOOZbszRHg6WjW25NBAWejhY/991w7ND
+OdrDwTfLcs6ZwUIP1yAhfhlPnK4O4WgPBw8kfXtZwkIPB2fabakpHszRHg5W
+2yRVOg0Wejh4VHDy7QeDONrDvZcQd3baGxdY6OFgr1JOudaIoz0cfGXt/Xk+
+sNDD/f/rBcn5nwZytIeDG3xWjPaHhR7ug4R4K4wr/2HI0R4O3rKZWRcMCz0c
+vMGz0JyBhR4O7rlitfxuA472cPDu+bLdlWChh/soIVVNMdKHBnC0h4MXPOgY
+rAsLPRyscWvSwhP9OdrDwbsDFl8yhoUeDi4+46tzqR9He7hP+Pl0R6SOh4Ue
+Do7a9Wh0iT5Hezj4X8bYT3aw0MPBX42XnX+ix9Ee7jPu9+/mxcyDhR4Olt8m
+s+udLkd7OHh96fqDy2Ghh4PLVu2/2abD0R4O7hrn27kZFnq4LzivNL2excJC
+DwcfnMgV7dXmaA8HH/hdadMbFno4+PQzi/eHtTjaw8GbEy2TDGGhh2vE95+v
+XXROk6M9HLynTtbOAhZ6OPjm+3vWhRoc7eHg/a/7zJ0OCz0c7BbzeceTvhzt
+4Zok5N2NCWUesNDDwbGDFfU/qHO0h4OnpnrE+cNCDwevrNfR7OjD0R4O7rgy
+M287LPRwzRLi86VtrSws9HDwyYldVglqHO3hYOewlUZ6sNDDwYs2TzA81Zuj
+PRwc9H3pOHNY6OG+SsjRnK+Lb6pytIeDA3eWnbaFhR4O1hvTwj9R4WgPB5OE
+hUGesNDDwZ1L9ZhPyhzt4b7h/rJN99haWOjh4MQsT49OJY72cPCC7OdDdsFC
+D/f/ry/YqawCCz0czEQvUTyiyNEergXnBy7IYBAs9HBwy8Fc54sKHO3h4FBV
+1QMEFno4eLZ9wre78hzt4VolJF9xlLcrLPRw8K4R3z7Xy3G0h4P5iPzIlbDQ
+w8G96lImdshytIeDP8pEyofDQg/3HfefhpA2RVjo4WB2/MZvKTIc7eHgdR9X
+SwbBQg8H97mxaOilXhzt4eCKfbNXWsFCD9cmIR8sRpXel+ZoDwdPie5hPhcW
+ejh4wuKSax96crSHg08lL3FdBws9HPyeaZHuDgs9XLuElAa6Pt3bg6M9HJz+
+5OClvrDQw8HOX8+dPcFztIeDjTKSboyAhR4O/nNv1tsCjqM93A/8/DYvdBxh
+oYeDnZv11tawHO3h4B/JQ2uXwEIPB98f9tPjJ8PRHg7uvzOoPQwWerifeD+C
+c9KVYKGHg1+1pixOlXC0h4OnlJhPNoaFHg42eRIwMk+Koz0cPLtrnuU0WOjh
+fuH8ZfDO80V3jvZwcNbgHvF+sNDDwRebi9+0deNoDwdfc+o9ZTss9HDwq5G/
+8hVhoYf7je/3Fj/H1C6W9nDwRiWPH8aw0MPBqZXPc250srSHg62TH+20g4Ue
+Dv45z3ZN9T+W9nAd+Pt/jFq7FBZ6OFjKMTHy91+W9nDw0+nLr0TAQg8Hpz/O
++qsGCz3cH9zn7jm4nvjD0h4OdtF1LRsJCz0cvDU337G0g6U9HGyyZmvTbFjo
+4f63VVJaw2+W9nB/8fmT7bF8PSz0cHBpfpEdCws9HDzHsnxS/C+W9nCwaZCa
+0wBY6OHgEPcT6y7+ZGkP9w/nw7vrz06BhR4OXnwtpPPpD5b2cPAZpXxfP1jo
+4eDcApM3P9pZ2sPBv3Mr1+6EhR6uE/fpl4c0+8BCDwdH6EZWZ7axtIeDNQOS
+z1nAQg8H7yivSCr/ztIeDt4nq5YyFxZ6uC7MB5MNuY2tLO3h4F56n94Ew0IP
+By94vHiAPCz0cHC/0a0hqS0s7eHgJRO3Ng+HhR6uG0NuvlFcV/SNpT0cbCiT
+Kj8bFno4WDXXsOD9V5b2cPC6exkRG2Ghh4PT7JT9pGGhh+vOkJUGq9ySm1na
+w8E6M3K9jWGhh4NX3Xy19VYTS3s4OGLp50vOsNDDwb1sHndvaGRpDyfFEGnH
+eO8NsNDD/e8NQ6p6wkIPB0td2b8w+QtLezjYU7qcN4GFHk7CkA6/spsFn1na
+w8H9bu/eOwsWejg4ub/C6g+fWNrDwQcCnZYGwUIPB1+6NT1QFhZ6OIYh8u0d
+KakfWdrDwYOU5r4wg4UeDu5UXjzw9geW9nDw9x9aUe6w0MPBby9v7Nn8nqU9
+HMuQ3rPWJW6FhR4Otr0jM1EVFno4OEN1wr/MBpb2cHDhKKZyHCz0cPAZ47mX
+HrxjaQ/HMaTu94QcX1jo4eBJh06V/HrL0h4ONpFNadoDCz0cvMJFfrAeLPRw
+sFlAZ/DFepb2cDw+Dyv93tvCQg8He5JJvq/esLSHg92/7vu5BhZ6OFguZHoq
+Dws9HPz860rP5Ncs7eF6MGSHzc/hw2Ghh4Od97zuW1rH0h4O/nDTQH0uLPRw
+8NyPJUO+vWJpDweb9ro2ewcs9HA9GeJh3BXXFxZ6OHjMnJgP2bUs7eHg/dHL
+Z0yBhR4Ozqjec/9lDUt7OFhmcvMCf1jo4aTx+j3YI83BQg8HH4z0LUuqZmkP
+B+sHrU4aDgs9HPwgM3v77Zcs7eFgH12NrR6w0MP1YkiPL9lx36tY2sPBrspL
+r++ChR4Ods6Y8ksHFno4eFHWhGmXXrC0h5NhiL+x03k7WOjh4HOWgUPfPmdp
+Dwc/+3QhPxAWejj4j0WHrwIs9HDw0fHTdU88Y2kPJ8uQq1JHv42HhR4OPpjQ
+8fTJU5b2cHC3Xk4PlsFCDwdrLk+rk4KFHg7eWv5BkviEpT2cHEOMR+qOHw4L
+PRwceXPq7rLHLO3h4IUbXJvnw0IPB3esdPD7+YilPRz85bLh9yhY6OHk8Xn1
+rdtvAAs9HBwQvnp6/kOW9nCw1/CXvV1goYeDp2xU/dn0gKU9HPxopU7jDljo
+4RTw8xu1tWvBQg8HH7kerXKpkqU9HDxhbLO1Ayz0cPCUG732vb/P0h4OXuT6
+rjEEFno4RQbv4zpPNVjo4eC7Qy6/y77H0h4ODojPCrWBhR4OllttbfKmgqU9
+HGz7fM/3QFjo4ZTw7329vkIJFno4OCSj8+qpuyzt4eD6cf3yJsNCDwffLKx7
+VFvO0h4OLncc1hkACz2cMkO0OhUmKMBCDweP/hgcm3WHpT0c3N1o7R8rWOjh
+4OLqxo01ZSzt4VQYMkzzg3QALPRw8DzO87w8LPRwcOEl++VZt1naw8GTpl0Y
+OwkWejhY79VOndpSlvZwqgzh9pWrbYCFHg7uCg7orwgLPRwcUrpzyqkSlvZw
+sFtER9AUWOjh4PL68uK6Ypb2cL3x/Ghv0w+ChR4Otn29Ll4FFno4OL9oqmZ2
+EUt7ODjhlt9lW1jo4eBuvx74vStkaQ+nxpBdu7cOCoWFHg7un7JOqi8s9HDw
+QMfjzbkFLO3hYIdipa+OsNDDwed0Lkm+3GJpD9eHIffC9gwJh4UeDt6pFrtE
+DxZ6OFjnb+G1vJss7eHgca4aunNgoYeDG+wTDn3PZ2kPp86QMNbMMBoWeji4
+If1z2SBY6OHgEY7XQkpvsLSHg7sbH7bxhoUeDh6/KNagM4+lPVxfhljox/VJ
+hIUeDs4MT9YeCQs9HJyWd3L0o+ss7eHghMarfithoYeDF1iWZkrDQg+nwZBR
+r+52Hr/G0h4OvtBaungSLPRw8J3jOe/rrrK0h4Of9o/auBkWejg4NsFZWx0W
+ejhNhqgN+vf84hWW9nDwaz7ymDMs9HBw6bz28K+XWdrDwVKzx27eAws9nBY+
+v1pzdhjBQg8H2+CgXnqJpT0cnP6Qe+wDCz0c/LtPjFp3WOjhYJ/39asOX2Rp
+D6eNeb34V/VYWOjh4FP37s2tymVpDwfHT5n/NQAWejg4qyvzgAos9HBw1eAT
+ThdyWNrD6TA4p8zWnQELPRw8Ivm8VPMFlvZwsLbVpV+7YaGHg49qeUkNgoUe
+Dt7tdUqn7DxLezhdhkjG75/hBws9HBzT0DuegYUeDtbYa9J09BxLezi4we/l
+nImw0MPB0ceVX9Rls7SH02NIny3Pl4bAQg8H1xjqK2rBQg8HH3j0tfz6WZb2
+cLDHxXEH3WGhh4MzWDbw9xmW9nD6+Pz9nrziICz0cPCc0l/rRsFCDweHpmvu
+e3aapT0cnHT7dP56WOjh4JYlx7qpwkIP1w/nt0Ipl9xTLO3hYJMeBfkzYaGH
+g/3X1Yz5fpKlPRx82NKpPBYWeji44qjGClNY6OH6M2Tp81H9HmWxtIeDJ6kd
+bVwNCz0cHJrsckcRFno4+Gia09XzmSzt4QYwZM+C6DwnWOjh4I1qMo9bTrC0
+h4P/dRb9jYGFHg6WnZVjYQoLPRz8w/nZrkfHWdrDGTDEe7RR0xpY6OHg2RMz
+fZRhoYeDTU45NuUcY2kPB5/K0YicBQs9HFx3sMeY9gyW9nCGDBl7SOlfPCz0
+cPCe7+aPR8JCDwf/fL8y73k6S3s4uOvC1SsbYaGHg0MTlMrUYaGHG8iQ00/W
+f752lKU9HKx+qk5nHiz0cHD2XLvF/9JY2sPBFw2vFB2GhR4OLp+hY0pgoYcz
+wnmvT0jOm1SW9nCwV+ED6+2w0MPBb6OVv/aHhR4O3lhslVV6hKU9nNH/nx/3
+gMWw0MMNYkiuv6uLNCz0cPAQf3Pb04dZ2sPBs95/c3CAhR4OblcLX/QthaU9
+HGwyrSU2FhZ6uMEMCS40fjgCFno4OLd0jP7zZJb2cHBXsmJ4ICz0cPD73dl/
+NWChh4OnvlQIz09iaQ83BM+3yuH6C2Chh4OzL8g9lMBCDwebVaTHHk9kaQ8H
+G/o2+dnCQg8HDyj6YN94iKU93FA8r0yjraNhoYeDV3bUzTSFhR4Ozlr4bM3T
+gyzt4eBHN1ZmbISFHs6YIcT+2EcNWOjh4FTPAMubCSzt4eCOca8yvWGhh4NP
+mlX152Chh4OXRPnkZB1gaQ9nwpDJhwJn2cNCDwdnpKr1aIlnaQ8HT2mxuL8f
+Fno42PJFzfHRsNDDwV1H/8bU7GdpDzeMIfZH4qO3wEIPB0/RyDjSHxZ6ONhz
+Yf/CsjiW9nCwT4XSz+Ww0MPBgUeWTVCEhR5uOM6DxoMPXoxlaQ8H65TZM+6w
+0MPBZ25UbuuMYWkPB1vPP6OcDgs9HHz7X/0la1jo4UxxPvq8fHnjPpb2cHB0
+gPWIGFjo4eDxbSvlRsJCDwcnXazreBnN0h4OHil74HcoLPRwZgxptY+SHgAL
+PRzc427x0PIolvZwcM8X5j6rYKGHg2vLak+qwEIPBxe1XGGu7WVpDzcC55UT
+Rf7zYaGHg5dN6GhmYKGHg+fJuIWe3MPSHg6+6lejNwMWejh4TfqWZ+27WdrD
+mWN+9rFKSYKFHg721dIKmAgLPRw8uIfcgg+RLO3h4CXDFD33wkIPNxLn1yb9
+FWaw0MPBugcto6p2sbSHg1/s9CkIhYUeDo5Q3c0ZwEIPBxsmXvCoiGBpDzeK
+IcyqZ6VrYKGHg281tU5Uh4UeDnb1Zypv7mRpDwerOvEr/WChh4OPfv6pLQsL
+PdxohvxKePQmJ5ylPRy8ODfukjss9HDwwaRRKd1hoYeDw7KuxWfuYGkPB4eO
+UU91hIUezgLnkVOOeT/CWNrDwfFz3D+nwEIPB3dPNR80BRZ6OFijrnZT43aW
+9nBw/VrHujhY6OHG4PuXFz5rLCz0cLBGny3V9dtY2sPBIxpGrYuEhR4Ott1+
+UtsUFno4WMr5ycuqrSzt4cZi3p4/n7kVFno4OLe7ZYQRLPRw8Mn0jYEPt7C0
+h4Mn/HLfHAgLPRxc6lW/Tw8WerhxDPk0odflO6Es7eHgE20Pm1fDQg8HO70z
+Hd0XFno4ONZ/UFxhCEt7ONjvb27XUljo4cbjPvHlfrAyLPRw8JLUdbJ5wSzt
+4eDxW46e9YWFHg5uap61QBYWerj/f79TxIBLm1naw03A+bOXxR9PWOjhYLcw
+n3oeFno4eJYuU31uE0t7OLhgilqDGyz0cJYMaXY/1E0CCz0cvLU0fOjpIJb2
+cPC6r9XLZsNCDwerjo+/3hnI0h4O5tWyNTNhoYcjDLFqGBDtBAs9HKys8EPp
+z0aW9nCwVjfNzAxY6OFgF+39Dg6w0MPBPZ+4c782sLSHm8iQ55HLK9NgoYeD
+c0+XZE2HhR4Obkz3jm8PYGkPB2tUW8YegYUeDja/4ZZqCws9nBVDtl88ffP7
+epb2cPBRE/NvKbDQw8HbEr4Ot4GFHg5e6vYirHUdS3s4+MebLx+TYaGHm8QQ
+lcMGntaw0MPBPf+EvWtZy9IeDl7lJ9mcDAs9HGzmcLi/NSz0cPBBXedXLWtY
+2sNNxufdTiMrGRZ6OLjN8keYNSz0cHCfZXWrW1eztIeDR45/vCoFFno4eJTB
+/RAbWOjhpjDE/UDF4e/+LO3hYLPO8srDsNDDwSfvlyhOg4UeDu7YeNW3fRVL
+ezj48sqjZamw0MNNZUiJXvB4O1jo4WAvZmrRz5Us7eFgtV2/3dJhoYeD7+vv
+7+4ICz2cNeblZKVrHStY2sPBG739tx+HhR4Ofvn1pIczLPRwsOaCfJvO5Szt
+4eCKQScmn4SFHs4G97GCBU4usNDDwbZJn1dKwUIPBz8fMiHl7DKW9nCwU+Oc
+GndY6OHgz46jhvCw0MPZMmTo/ad7cpaytIeDf9QO65wPCz0cvOHH5C0ysNDD
+wRbRcspXl7C0h4N760ZeWggLPdw0nEf0cpcqwUIPB4/rtcvk5mKW9nBwgwvL
+LoeFHg5eHjzgSx9Y6OHgmb8a3pQsYmkPN50hARMnfVoDCz0cLPXYorsuLPRw
+8GbDUqN7fizt4eBrV995B8FCDwc3MrGnDWGhh7NjSFxYOfd0IUt7ODgiN3L1
+Nljo4eCfCpWNJrDQw8HevfdvrPVlaQ8HH5n4TGU3LPRw9rhfyccWjIaFHg5O
+7CwKee/D0h4Ozt692G4/LPRwsLX55kFWsNDDwW8D//T55s3SHs4B8+xFvdph
+WOjh4GeVxoZ2sNDDwVV11VM7FrC0h4PHRrwPyISFHg42sJ1+2QUWejhHzId0
+rgcL0/1wuI/1Vl2S48WK++EwTwesfbkApvvhcN920pqnANP9cJi/GgrN+fNZ
+cT8cQ/ayNvtWwHQ/HEPk4gqsNGG6Hw7vx9RA9q4nK+6HYwiXvuxFIEz3wzHE
+eEj89YEw3Q+H78vC1rPPPVhxPxzm55PQC+Ew3Q/HkB1/LErNYbofjiF/vLQ+
+v5vHivvhGJK5y0B7P0z3wzFE8Y+T9ySY7ofDnzc2+VLrXFbcD8eQ15XdNY7C
+dD8cnt8kNNoJpvvh8PlTUlTpDtP9cAyRuZ+Tec6dFffD4T7U4WPvBdP9cDgf
+6GpLKcB0P9z/94tXpTfdWHE/HP59AUeTVsF0Pxw+T1cXbtGB6X44zCO1Aesr
+57DifjjMN43awFCY7ofD89A+MsoEpvvhcP8cY5RT58qK++EYYrT00odomO6H
+w31pifEQAtP9cDg/Fe7d8s2FFffDMWRi94fvUmG6Hw7z53zbHCeY7ofD89ur
+vaY7TPfD4fl4qNL/wmxW3A+H8/bnUBUfmO6HY8iuOqkyZZjuh8N85GfvLp7F
+ivvhGJL8dY3nepjuh8P91cBtogFM98Ph8zeGGfF8Jivuh2PI+uv+IyNguh8O
+58FRSTYWMN0Ph9fPcsvSz86suB8O9wdvzeQkmO6Hw+dx+PJaO5juh8P9atxy
+404nVtwPh8+Linp0Nkz3w+F+P31VlxdM98Ph9Vi7LFQJpvvhGOKoLS1fPIMV
+98MxpLjW+ux6mO6Hw3lzsp6HIUz3w+E8+yFWo8qRFffD4f7veuhTJEz3w+Hz
+YTT89jiY7ofD/anVJbfZgRX3w+H+N4U/nwrT/XAMUbgy4YYzTPfDMcSu7vcL
+Bqb74fA8n2HOXLZnxf1wDPmS1jRhCUz3w+G8sURnlwZM98MxZMX42/X37Fhx
+Pxz+/Itvpm+B6X44hmxatKzYFKb74fDzNXrZNUxnxf1wmA/V+W8TYLofDvOo
+YmvkNJjuh8P9ye04+TeNFffD4fPQ14g7B9P9cLg/ZXLV3jDdD8eQDyljb6rC
+dD8c7of7iy+U2bLifjiGyBscvrgJpvvh8Ho3Fd82hul+OIb02mn+6Y0NK+6H
+Y8i5PY3q8TDdD8eQY4nv3Wxguh8Ozw973aw/1qy4Hw7zkxzgs2G6H44hfRWn
+rPeG6X64///3SqNWVZjuh2PIjVuWIXemsuJ+OPz7X4apB8N0Pxzua7btRcNg
+uh8O5+eTe4PfTWHF/XAMuZcybepBmO6Hw/wpHKhtB9P9cAx5dak/2w2m++Fw
+ntEc+ydnMivuh8PPE7u422KY7ofDn3ctS0UTpvvhGMyFP6MeTGLF/XA4P2W4
+LQ2D6X44PM8zC06Nhul+OIYcf2fyt9GKFffD4Xz3J3VuGkz3w2HeRymWz4bp
+fjict6xCrKVhuh8O5/+rbx/nT2TF/XCY/wcnrFoL0/1wuE9u360+EKb74XAe
+0779qIaw4n44nD/lmhNjYLofDt/v339XT4Xpfjicl8K+uf6xZMX9cDiPzS6x
+OwfT/XD4+ZU3zlgI0/1wDHniy/r0hel+OPx535aEVU5gxf1wDCn0OJobBtP9
+cDifzTr13QKm++FwHwzeOvHreFbcD4fzwha9wxkw3Q/HkAdcRE93mO6Hw+t5
+9fx2eZjuh2NIP6skmZJxrLgfjiHl0yZmBMF0PxzmWXDqtGEw3Q+H58mOi10N
+Y1lxPxzOn7LBRUkw3Q+H52XB93gnmO6Hw3lheu8NPEz3wzHkt9sbvxtjWHE/
+HENaE5wWroXpfjiGnLngs8YIpvvhGLLQVSWqzoIV98NhHpl5XYmH6X44vJ/t
+k1qmw3Q/HJ6H0/NGS8F0PxxDst6WRF0ZzYr74fD6r/D4vhKm++EYcuVgqN8A
+mO6Hw/NNxehj9ShW3A+H3x/jsjEWpvvh8P27xajZwnQ/HEOmOQ0r7hrJivvh
+GKL+42noJZjuh8P3y6vVdgVM98Nh3k3cpt8fpvvhcN6139az2pwV98PhPGr+
+tTMGpvvhGPLidImULUz3wzEkYZGUajeY7ofD9039qPnlEay4Hw7Pl4A035Uw
+3Q+H+6rZv7QBMN0Ph/sKc6GpxowV98PhPJiaZ70fpvvhMI/y1M9Nh+l+OIZE
+ypUaSGC6H44h7+zyT10zZcX9cAw5YNw1YQ1M98MxpHrpjtdGMN0PxxD7q/b7
+3gxnxf1w+P0PZzkcgul+OIb8XZ7Q1wmm++Hwek1Sau8B0/1wON/LFtbeGsaK
+++FwXwtPf7IRpvvh8Pf75VQNg+l+ODwvFzc3fjRhxf1wDJlk7SSXBtP9cDgv
+3Hgx3g2m++EYsjp86yZFmO6Hw3nU0+b2HWNW3A+HP6/bIL1tMN0Px5CgQf12
+jYHpfjjMg4PDulqHsuJ+ONwvezhuPwXT/XD4fozcpOoL0/1w+Hnrz1/UhOl+
+ONzXy7/6PB3CivvhMO9PD9eNgul+OIZEWa/7PBWm++Hw+szLLewazIr74XD+
+OtmceQWm++EYktqik7IapvvhGDL1++Qjg2C6Hw72d89+O4gV98MxRH+Qx71k
+mO6HY0heve3v2TDdD8eQufO0zORhuh8O3we3J0FlRqy4H44hOSnLHmyF6X44
+3Ne+1JmNhel+OJzHexgfaxvIivvhGBJzybn/WZjuh8P8uz7t/CKY7odjyKca
+JTs9mO6Hw3277kTbS0NW3A+H530Ed2o/TPfD4ft0ePAqB5juh8N5+pPyxB4w
+3Q+Hz9vQPN1CA1bcD4f71gg9uc0w3Q/HEOcSy54jYbofDvfXEypK3waw4n44
+fB8ykgeehOl+OIZ8DHti5wvT/XAMua14NUQbpvvh8HxUtc5/0Z8V98Ph9Zmz
+qVdcf7GHg+eecPaz7y/2cHD93Tv3+f5iDwfHxtROLuwn9nCwZnFk2eZ+Yg8X
+hPuayX23Uf3EHg7emZrxq0Vf7OHg22+lj53WF3s4+FjpP89F+mIPtwnPg95B
+Bvr6Yg8Hzz+6+U+NntjDwZWjpF4l6Ik9HMwc5+8764k9HGybt+uurJ7Yw23G
+eXPajmdlumIPB5vo/mzeriv2cPASuRoVS12xh4PfNQyz6dARezj464bWiIs6
+Yg8XjPPbAa3n/jpiDwd/V8o2HaIj9nDwvlvpSR+0xR4Olqz5pZiuLfZwcFpH
+VrynttjDheC+YXzRoK+22MPBt173LnmqJfZwcNv7u/4xWmIPB19XfWhkryX2
+cHCAVb9vPbTEHi4Unzerm0XFmmIPB9s1pWVs0RR7ONi0T1nsOE2xh4PTEo2j
+fmmIPRwssXt0IFdD7OG24D7GnDvtryH2cPDCpOLKIRpiDwdP/yzT7VNfsYeD
+2+7sGH+sr9jDwTXKQyIW9BV7uK34/qT9rdPqK/Zw8DKHtskv1cUeDtZok798
+QF3s4WCdlXYjZ6qLPRzMHTxeKK8u9nDb8Hmy15hX0Ufs4eA7y05I7eoj9nBw
+1X3rS1P6iD0cbDrrd4BUH7GH247zUNWVyTfVxB4Ovj5uu85mNbGH+//X583m
+LdTEHg6OUxvyt7232MPBXvZM54XeYg8XxpDDtS9l/HuLPRy8LvP0wKG9xR4O
+DooKcPqsKvZw8Dl/850nVMUeDt4x7P0dX1Wxh9vBkMfZO9T1VcUeDn79QCGg
+TkXs4WCvgLC6ZBWxh4PXbK+d7a4i9nBwenWfKjUVsYcLZ0ijt9mSp8piDwfn
+/DPi4pTFHg6+v+939gxlsYeDN3U/4ienLPZw8FJztUEVSmIPtxPPD6X5HbuU
+xB4O/hy69rm1ktjDwX99nApYJbGHg52Pt18uUhR7OPimscf1rYpiDxeB82JD
+2F1LRbGHg51ylnz8pyD2cPDkrT2U8hTEHg7+MtrTJkhB7OFgy+JFu0criD3c
+LoacltWv/iEv9nBwr26Roy7Kiz0cnB6enLpWXuzh4KF7XXqbyos9HHyvK/fg
+Nzmxh4vEvLuba5gtJ/ZwsFaNc9EKObGHg6119ywbIif2cHDIDg/dL7JiDwer
+dRS9yZIVe7jdOD8tz8teLCv2cHB7xaRIQ1mxh4NVpF1Xv5cRezh4usp332My
+Yg+3hyG6NSoLfWXEHg7e7Xx1dT8ZsYeD2xbXRtb3Ens42Ewx5FxaL7GHg+PG
+H6z36iX2cHvx/r8eqKfbS+zhYKXmIcvrpMUeDv4zJ63osLTYw8FJqtsNPaXF
+Hg5e3acyQUta7OGiYJdtKrU9xR4O7lZyKCW5p9jDwe1uSmbzeoo9HHyo16cn
+Gj3FHg7OfNB3e3UPsYeLZsiM1IzxST3EHg42XbOdmdtD7OFgrwm5z/v2EHs4
+eME/s8svebGHg40zu44m8mIPtw/P79EqSe682MPBTidWHunLiz0cXPW117mX
+nNjDwbEynyoSObGHgy/+kvrhzok9XAxDWrJdBmtwYg8HLzR+s7yaFXs4OMv/
+yLUkVuzh4JK1USrzWLGHg0eZnwrSZMUeLpYh3y60NtYwYg8Hz/myYFkKI/Zw
+8LTa9nYPRuzhYNWIU3u0GbGHg4O/hJrUScQeLo4h+bz/qyMSsYeDw2o3HvKS
+iD0c3L4iwUtPIvZwcNa1MrN6KbGH28+Q7JKeyulSYg8H745x7fSREns42EIv
+u72/lNjDwQYbZX83dBd7OHhM4qoeJ7qLPVw8Qx7uftRvcXexh4PznMymG3UX
+e7j4////41Ehn7uJPRxs5F9/41Q3sYeDU58M6rmim9jDHWDI7AELvYy7iT0c
+vGxJVNHXLkbcD4f7dGa66XmY7ofD5/dz2pk1MN0Ph/PC6PARI2C6Hw73mUT7
+2+2djLgfjiFNfdsXXobpfjjcX4oCFQJhuh8O54WUF6VjYLofjiFvLsrt+vuP
+EffDYX72VnfNh+l+OLyfd9uGbYHpfjh8fl4f7m0F0/1weD98VHowMN0Ph593
+gTNb+pcR98Ph+/thtlwETPfDMYRlNPtNg+l+OPx6SdokGZjuh8PfN/bdqvv/
+FXWW8V3l3BZmyCHBrTiDu7sUDcwwuHtxd7fBobhT3GFwdxjctbhT3L24611z
+dtZ775f3t26ZyvnnJDvJ2s/65jk+nGcfd7+zbCK08OFQLwRPfl4NWvhwno3Z
+/Wuh+NDCh/Nslnpxp1356jk+nGeTl736fSa08OE8e6Vy2U71oYUPh/E9uGl4
+cmjhw6F+fZOy190vnuPDYb+waXD0xdDCh/Ns2muD17SEFj6cZxf3SR6UCVr4
+cJ6ds6JG3BefPceH82ytfqkur4UWPhz2L5GDl3SBFj4c/n3zboPyQgsfDvX+
+srctP33yHB8O+9PH3+vsgBY+HH7PIhNq9YcWPhz2H/uWNrLQwofz7JBRtruC
+Fj4c9tsb60458tFzfDjUN9Vf7R0FLXw4/P4jf36sAC18ONRX7YYGxoYWPpxn
+EyQYMOLCB8/x4TA+ljy5Mw1a+HDYr+XbXyoIWvhwnu1119uaDFr4cJ7ddnR9
+rrvvPceH82yZSAe2LYYWPpxn02zLV741tPDhME5+Rn6aBVr4cFiPPhec9Oqd
+5/hweH4HD/y1CVr4cFgPBy/SvaCFD/fffcbVc4WghQ+Her1Gw+U/33qOD4fn
+uCb36APQwofDetyvWq/h0MKH82yHBzs6lYMWPpxnp0Ru0y0mtPDhPBsQPSj4
+/BvP8eEwfuKOmTMNWvhwqPdLfNkfBC18OLxHO/95mxxa+HAY/8sHZ7//2nN8
+OKx/Wab1WAYtfDjPHulw42g7aOHDYRxPqZouJ7Tw4Tys42/HvX/lOT4cfs9s
+u3/bDi18ONSXr9YM6g8tfDjMTwUORC0JLXw47I+zfZqvoYUPh/H+taw98dJz
+fDjMD6H/Pp8ALXw4zPfHii6sAS18OHw9WVizxNDCh/Ps/U/Dc94K9xwfzrP1
+g/+MvAha+HAYJ89iPm8FLXw4/Jz6969mhRY+3H/3B3vPvXnhOT6cZx8mmn9p
+K7Tw4fBc9w560Bda+HCYf7M0+WmhhQ+H7z+2aBoNLXw41DNxAqqfeO45Phy+
+z4tb4yZCCx8O80ileRdqQgsfDp9Dm0ppk0ILHw71bqcXA+888xwfDs9nco9H
+S6CFD+fZYlEe124HLXw4zEOq2MWc0MKH8+zPf3vV+/jUc3w4/D5BIeE7oYUP
+59ntKUeOHgwtfDj8frZu7tLQwofD/Pf6t4fRoYUPh+/XcuDC8088x4fDunD9
+dNsZ0MKHQ708PLxoQ2jhw2GeW3A1aVpo4cNhfWgyznv22HN8OPy9KsrnddDC
+h/Nsq31lPvaAFj6cZ0efL/urMLTw4Tz7tnuUgIjQwofDc7o/NNexR57jw+Hv
+rrM9aDy08OE8mzhg8fga0MKHw3tTqeSpJNDCh8P+o0xIgrsPPceH8+yM4uPb
+LoMWPhx+Xpf8xztACx8O9XfyEbnzQgsfDu/xsP5Lvz7wHB/OsyGPEqTbDy18
+OMzXwVXWjoAWPhzG68wMJStBCx8O467TzDvxoIUPh/r/j0Wjrt/3HB8O81C9
+kkUXQgsfDu/x527fWkMLHw7jtGG+QzmghQ+Hdef8kOkf73mOD4d5aEb9Hruh
+hQ+HeebDrgZDoYUPh88558Iq5aGFD+fZ+ROiVIoLLXw4z76s87pm2F3P8eGw
+3lys3noBtPDhMF+WzTWsFbTw4bDuRhi+Oju08OHwPEtWvvXhjuf4cHgP6o5O
+shta+HDYj47P22QotPDh8PdlK7+xPLTw4bAuDTwRIwBa+HCe7XxuY7drtz3H
+h8Pz6vjz/j/QwofD+7h4VcM20MKH82zo3n/v54QWPhx0jJTdPt/yHB/Osw9u
+3I2+75bn+HCYZ/p+XT8CWvhw2A8FtmpUGVr4cNhPtEyXKCG08OGwn6qa+/qt
+m57jw6Geqjhm+VJo4cNhflyRbVBHaOHD4evbEzTNDy18OPwdp/+o9POG5/hw
+qBcKb/zzCLTw4Tx7s3qjUuOhhQ+H9aV9mSq1oIUPh3XtatsWyaGFD4fP6eXB
+oY+ue44P59lGEauuXQstfDjM++1i3esJLXw4z24c+D1FcWjhw6E+nRa/tYEW
+PhzGs6mz48w1z/HhPPs58/4EM6CFD4dxVLdS/8bQwofDOH3xPTwjtPDhsJ8v
+Gtr6TZjn+HAYl8s2hW+HFj4c5v+hW/sFQwsfDu9XjrPxy0MLHw51mP65LQBa
++HAY582Ktrxx1XN8OIzXJWOSLYEWPhyeZ6ZHtzpACx8O62eFcivzQwsfDu9b
+xy0Df13xHB8Ov0d42kbHoIUPh3ki07QyIdDCh8PnNkQXCYIWPpxnJ9TrFpgG
+WvhwqE8CrtkXlz3Hh8O8F61gtS3QwofDz1s+usMAaOHD4XMuf2ZSaWjhw+E5
+1VYHYkMLHw77hdxpv4Vd8hwf7j8/Uo5ii6CFD+fZHQ9SjWkPLXw4vF/Dv9zN
+By18OKwXYzaV/HXRc3w4jN+gimuOXfQcHw7PNehQqknQwofD5/8u/oJ60MKH
+Q50+rnjGdNDCh8N+PqTYjpcXPMeHw/dtE7vWNmjhw6FO6L/x22Bo4cNh3BVK
+vao8tPDhUO9GadA8PrTw4TD+ajXOcPu85/hwWF/HZXq/HFr4cFivf98a2hVa
++HBYbzuqVUWghQ/n2RLvYk7V0MKHw+ec8PLIs+c8x4fDfFau1vBZ0MKHwzzz
+fey45tDCh8Pznd1rXnZo4cPh+c0M2P75rOf4cPi9Wza8eQBa+HBYX3vUjDYO
+WvhweG/yfyxZG1r4cFhPkhUbmgpa+HD4vnMzn3l+xnN8ODy3TNvTbIUWPpxn
+k+R/PHgQtPDhPNuy4Man5aCFD4fnuiRhvfjQwofzbNl38S7fPu05Phz24zOW
+Ba2EFj4c6o1op550hxY+HMbHweBBxaGFD4f9UOCRVFGhhQ+HevjRlJMXT3mO
+D4dxWvLFoPnQwodDfXD0eLG20MKHw3r6KrPOBy18OMw7+WNc+XXSc3w4zH8J
+Om4IhRY+HMZ59PJTp0ILHw7PZco/wY2hhQ+H+Tdzp95ZoIUPB11xQ++PJzzH
+h8P46NtiyH5o4cNh/5F71LSx0MKHw/ryJvGm2tDCh8N+u2D8sNTQwofD5zHy
+78gvQz3Hh8P63KREie3QwofDfqFUhyFDoYUPh/G15cvpytDCh/PspHwP0iSF
+Fj4c5q/SmYMfHfccHw7juNPxpxughQ+H+T3n3qD+xz3Hh0P9HifKpTLQwofD
+OJq6uE48aOHDYd/wx4SHt/G/wof7///l/5//jv8dvw+/L38Ofy5/D/5e/D35
+e/Pv4N/Fv5N/N58DnwufE58bnyOfK58znzs/B34u/Jz4ufFz5OfKz5mf+//G
+gRsXHCccNxxHHFccZxx3HIcclxynHLccxxzXHOcc93wP+F7wPeF7w/eI7xXf
+M753fA/5XvI95XvL95jvNd9zvvecBzgvcJ7gvMF5hPMK5xnOO5yHOC9xnuK8
+xXmM8xrnOc57nAc5L3Ke5LzJeZTzKudZzruchzkvc57mvM15nPM653nO+1wH
+uC5wneC6wXWE6wrXGa47XIe4LnGd4rrFdYzrGtc5rntcB7kucp3kusl1lOsq
+11muu1yHuS5znea6zXWc6zrXea77rANYF7BOYN3AOoJ1BesM1h2sQ1iXsE5h
+3cI6hnUN6xzWPayDWBexTmLdxDqKdRXrLNZdrMNYl7FOY93GOo51Hes81n2s
+A1kXsk5k3cg6knUl60zWnaxDWZeyTmXdyjqWdS3rXNa9rINZF7NOZt3MOpp1
+Nets1t2sw1mXs05n3c46nnU963zW/dwHcF/AfQL3DdxHcF/BfQb3HdyHcF/C
+fQr3LdzHcF/DfQ73PdwHcV/0v32S2zdxH8V9FfdZ3HdxH8Z9Gfdp3LdxH8d9
+Hfd53PdxH8h9IfeJ3DdyH8l9JfeZ3HdyH8p9Kfep3LdyH8t9Lfe53PdyH8x9
+MffJ3DdzH819NffZ3HdzH859Offp3LdzH899Pff53PfzHIDnAjwn4LkBzxF4
+rsBzBp478ByC5xI8p+C5Bc8xeK7Bcw6ee/AchOciPCfhuQnPUXiuwnMWnrvw
+HIbnMjyn4bkNz3F4rsNzHp778ByI50I8J+K5Ec+ReK7EcyaeO/EciudSPKfi
+uRXPsXiuxXMunnvxHIznYjwn47kZz9F4rsZzNp678RyO53I8p+O5Hc/xeK7H
+cz6e+/EckOeCPCfkuSHPEXmuyHNGnjvyHJLnkjyn5LklzzF5rslzTp578hyU
+56I8J+W5Kc9Rea7Kc1aeu/IclueyPKfluS3PcXmuy3NenvvyHJjnwjwn5rkx
+z5F5rsxzZp478xya59I8p+a5Nc+xea7Nc26ee/McnOfiPCfnuTnP0XmuznN2
+nrvzHJ7n8jyn57k9z/F5rs9zfp778x6A9wK8J+C9Ae8ReK/AewbeO/AegvcS
+vKfgvQXvMXivwXsO3nvwHoT3Irwn4b0J71F4r8J7Ft678B6G9zK8p+G9De9x
+eK/Dex7e+/AeiPdCvCfivRHvkXivxHsm3jvxHor3Uryn4r0V77F4r8V7Lt57
+8R6M92K8J+O9Ge/ReK/Gezbeu/EejvdyvKfjvR3v8Xivx3s+3vvxHpD3grwn
+5L0h7xF5r8h7Rt478h6S95K8p+S9Je8xea/Je07ee/IelPeivCflvSnvUXmv
+yntW3rvyHpb3sryn5b0t73F5r8t7Xt778h6Y98K8J+a9Me+Rea/Me2beO/Me
+mvfSvKfmvTXvsXmvzXtu3nvzHpz34rwn570579F5r857dt678x6e9/K8p+e9
+Pe/xea/Pe37e+9MHQF8AfQL0DdBHQF8BfQb0HdCHQF8CfQr0LdDHQF8DfQ70
+PdAHQV8EfRL0TdBHQV8FfRb0XdCHQV8GfRr0bdDHQV8HfR70fdAHQl8IfSL0
+jdBHQl8JfSb0ndCHQl8KfSr0rdDHQl8LfS70vdAHQ18MfTL0zdBHQ18NfTb0
+3dCHQ18OfTr07dDHQ1/P/3w+zvdDHxB9QfQJ0TdEHxF9RfQZ0XdEHxJ9SfQp
+0bdEHxN9TfQ50fdEHxR9UfRJ0TdFHxV9VfRZ0XdFHxZ9WfRp0bdFHxd9XfR5
+0fdFHxh9YfSJ0TdGHxl9ZfSZ0XdGHxp9afSp0bdGHxt9bfS50fdGHxx9cfTJ
+0TdHHx19dfTZ0XdHHx59efTp0bdHHx99ffT50fdHHyB9gfQJ0jdIHyF9hfQZ
+0ndIHyJ9ifQp0rdIHyN9jfQ50vdIHyR9kfRJ0jdJHyV9lfRZ0ndJHyZ9mfRp
+0rdJHyd9nfR50vdJHyh9ofSJ0jdKHyl9pfSZ0ndKHyp9qfSp0rdKHyt9rfS5
+0vdKHyx9sfTJ0jdLHy19tfTZ0ndLHy59ufTp0rdLHy99vfT50vdLHzB9wfQJ
+0zdMHzF9xfQZ03dMHzJ9yfQp07dMHzN9zfQ50/dMHzR90fRJ0zdNHzV91fRZ
+03dNHzZ92fRp07dNHzd93fR50/dNHzh94fSJ0zdOHzl95fSZ03dOHzp96fSp
+07dOHzt97fS50/dOHzx98fTJ0zdPHz199fTZ03dPHz59+fTp07dPHz99/fT5
+0/fPPgD2BbBPgH0D7CNgXwH7DNh3wD4E9iWwT4F9C+xjYF8D+xzY98A+CPZF
+sE+CfRPso2BfBfss2HfBPgz2ZbBPg30b7ONgXwf7PNj3wT4Q9oWwT4R9I+wj
+YV8J+0zYd8I+FPalsE+FfSvsY2FfC/tc2PfCPhj2xbBPhn0z7KNhXw37bNh3
+878+HNeXwz4d9u2wj4d9PezzYd8P+4DYF8Q+IfYNsY+IfUXsM2LfEfuQ2JfE
+PiX2LbGPiX1N7HNi3xP7oNgXxT4p9k2xj4p9VeyzYt8V+7DYl8U+LfZtsY+L
+fV3s82LfF/vA2BfGPjH2jbGPjH1l7DNj3xn70NiXxj419q2xj419bexzY98b
+++DYF8c+OfbNsY+OfXXss2PfHfvw2JfHPj327bGPj3197PNj3x/7ANkXyD5B
+9g2yj5B9hewzZN8h+xDZl8g+RfYtso+RfY3sc2TfI/sg2RfJPkn2TbKPkn2V
+7LNk3yX7MNmXyT5N9m2yj5N9nezzZN8n+0DZF8o+UfaNso+UfaXsM2XfKftQ
+2ZfKPlX2rbKPlX2t7HNl3yv7YNkXyz5Z9s2yj5Z9teyzZd8t+3DZl8s+Xfbt
+so+Xfb3s82XfL/uA2RfMPmH2DbOPmH3F7DNm3zH7kNmXzD5l9i2zj5l9zexz
+Zt8z+6DZF80+afZNs4+afdXss2bfNfuw2ZfNPm32bbOPm33d7PNm3zf7wNkX
+zj5x9o2zj5x95ewzZ985+9DZl84+dfats4+dfe3sc2ffO/vg2RfPPnn2zbOP
+nn317LNn3z378NmXzz599u2zj599/ezzZ98/OQDkApATQG4AOQLkCpAzQO4A
+OQTkEpBTQG4BOQbkGpBzQO4BOQjkIpCTQG4COQrkKpCzQO4COQzkMpDTQG4D
+OQ7kOpDzQO4DORDkQpATQW4EORLkSpAzQe4EORTkUpBTQW4FORbkWpBzQe4F
+ORjkYpCTQW4GORrkapCzQe4GORzkcpDTQW4HOR7kepDzQe4HOSDkgpATQm4I
+OSLkipAzQu4IOSTkkpBTQm4JOSbkmpBzQu4JOSjkopCTQm4KOSrkqpCzQu4K
+OSzkspDTQm4LOS7kupDzQu4LOTDkwpATQ24MOTLkypAzQ+4MOTTk0pBTQ24N
+OTbk2pBzQ+4NOTjk4pCTQ24OOTrk6pCzQ+4OOTzk8pDTQ24POT7k+pDzQ+4P
+OUDkApETRG4QOULkCpEzRO4QOUTkEpFTRG4ROUbkGpFzRO4ROUjkIpGTRG4S
+OUrkKpGzRO4SOUzkMpHTRG4TOU7kOpHzRO4TOVDkQpETRW4UOVLkSpEzRe4U
+OVTkUpFTRW4VOVbkWpFzRe4VOVjkYpGTRW4WOVrkapGzRe4WOVzkcpHTRW4X
+OV7kepHzRe4XOWDkgpETRm4YOWLkipEzRu4YOWTkkpFTRm4ZOWbkmpFzRu4Z
+OWjkopGTRm4aOWrkqpGzRu4aOWzkspHTRm4bOW7kupHzRu4bOXDkwpETR24c
+OXLkypEzR+4cOXTk0pFTR24dOXbk2pFzR+4dOXjk4pGTR24eOXrk6pGzR+4e
+OXzk8pHTR24fOX7k+pHzR+4fOYDkApITSG4gOYLkCpIzSO4gOYTkEpJTSG4h
+OYbkGpJzSO4hOYjkIpKTSG4iOYrkKpKzSO4iOYzkMpLTSG4jOY7kOpLzSO4j
+OZDkQpITSW4kOZLkSpIzSe4kOZTkUpJTSW4lOZbkWpJzSe4lOZjkYpKTSW4m
+OZrkapKzSe4mOZzkcpLTSW4nOZ7kepLzSe4nOaDkgpITSm4oOaLkipIzSu4o
+OaTkkpJTSm4pOabkmpJzSu4pOajkopKTSm4qOarkqpKzSu4qOazkspLTSm4r
+Oa7kupLzSu4rObDkwpITS24sObLkypIzS+4sObTk0pJTS24tObbk2pJzS+4t
+Objk4pKTS24uObrk6pKzS+4uObzk8pLTS24vOb7k+pLzS+4vOcDkApMTTG4w
+OcLkCpMzTO4wOcTkEpNTTG4xOcbkGpNzTO4xOcjkIpOTTG4yOcrkKpOzTO4y
+OczkMpPTTG4zOc7kOpPzTO4zOdDkQpMTTW40OdLkSpMzTe40OdTkUpNTTW41
+OdbkWpNzTe41OdjkYpOTTW42OdrkapOzTe42OdzkcpPTTW43Od7kepPzTe43
+OeDkgpMTTm44OeLkipMzTu44OeTkkpNTTm45OebkmpNzTu45OejkopOTTm46
+OerkqpOzTu46OezkspPTTm47Oe7kupPzTu47OfDkwpMTT248OfLkypMzT+48
+OfTk0pNTT249Ofbk2pNzT+49Ofjk4pOTT24+Ofrk6pOzT+4+Ofzk8pPTT24/
+Of7k+pPzT+4/cwCYC8CcAOYGMEeAuQLMGWDuAHMImEvAnALmFjDHgLkGzDlg
+7gFzEJiLwJwE5iYwR4G5CsxZYO4CcxiYy8CcBuY2MMeBuQ7MeWDuA3MgmAvB
+nAjmRjBHgrkSzJlg7gRzKJhLwZwK5lYwx4K5Fsy5YO4FczCYi8GcDOZmMEeD
+uRrM2WDuBnM4mMvBnA7mdjDHg7kezPlg7gdzQJgLwpwQ5oYwR4S5IswZYe4I
+c0iYS8KcEuaWMMeEuSbMOWHuCXNQmIvCnBTmpjBHhbkqzFlh7gpzWJjLwpwW
+5rYwx4W5Lsx5Ye4Lc2CYC8OcGObGMEeGuTLMmWHuDHNomEvDnBrm1jDHhrk2
+zLlh7g1zcJiLw5wc5uYwR4e5OszZYe4Oc3iYy8OcHub2MMeHuT7M+WHuD3OA
+mAvEnCDmBjFHiLlCzBli7hBziJhLxJwi5hYxx4i5Rsw5Yu4Rc5CYi8ScJOYm
+MUeJuUrMWWLuEnOYmMvEnCbmNjHHiblOzHli7hNzoJgLxZwo5kYxR4q5UsyZ
+Yu4Uc6iYS8WcKuZWMceKuVbMuWLuFXOwmIvFnCzmZjFHi7lazNli7hZzuJjL
+xZwu5nYxx4u5Xsz5Yu4Xc8CYC8acMOaGMUeMuWLMGWPuGHPImEvGnDLmljHH
+jLlmzDlj7hlz0JiLxpw05qYxR425asxZY+4ac9iYy8acNua2MceNuW7MeWPu
+G3PgmAvHnDjmxjFHjrlyzJlj7hxz6JhLx5w65tYxx465dsy5Y+4dc/CYi8ec
+PObmMUePuXrM2WPuHnP4mMvHnD7m9jHHj7l+zPlj7h9zAJkLyJxA5gYyR5C5
+gswZZO4gcwiZS8icQuYWMseQuYbMOWTuIXMQmYvInETmJjJHkbmKzFlk7iJz
+GJnLyJxG5jYyx5G5jsx5ZO4jcyCZC8mcSOZGMkeSuZLMmWTuJHMomUvJnErm
+VjLHkrmWzLlk7iVzMJmLyZxM5mYyR5O5mszZZO4mcziZy8mcTuZ2MseTuZ7M
++WTuJ3NAmQvKnFDmhjJHlLmizBll7ihzSJlLypxS5pYyx5S5psw5Ze4pc1CZ
+i8qcVOamMkeVuarMWWXuKnNYmcvKnFbmtjLHlbmuzHll7itzYJkLy5xY5sYy
+R5a5ssyZZe4sc2iZS8ucWubWMseWubbMuWXuLXNwmYvLnFzm5jJHl7m6zNll
+7i5zeJnLy5xe5vYyx5e5vsz5Ze4vc4CZC8ycYOYGM0eYucLMGWbuMHOImUvM
+nGLmFjPHmLnGzDlm7jFzkJmL/L+cZJebzBxl5iozZ5m5y8xhZi4zc5qZ28wc
+Z+Y6M+eZuc/MgWYuNHOimRvNHGnmSjNnmrnTzKFmLjVzqplbzRxr5loz55q5
+18zBZi42c7KZm80cbeZqM2ebudvM4WYuN3O6mdvNHG/mejPnm7nfzAFnLjhz
+wpkbzhxx5oozZ5y548whZy45c8qZW84cc+aaM+ecuefMQWcu+v9y0l1uOnPU
+mavOnHXmrjOHnbnszGlnbjtz3Jnrzpx35r4zB5658MyJZ248c+SZK8+ceebO
+M4eeufTMqWduPXPsmWvPnHvm3vt+OOgtLw/dfQ/t++GgV2SJPLXlb1r8cNAv
+0z9oeBXa98NB1/xVv3i5iFr8cJ/wvC72zL8L2vfDQZc6nO/P7EqLHw761tu5
+rRdA+3446D39Ny2K62nxw0GnHdHnw1Bo3w/3UdnTOT81+ATt++GgP87JdrNN
+JC1+OOhqL1N1uwHt++GgE5W5mqKy1uKHg/52qsb9/dC+H+6DspkWz96d12jx
+w0FXe7V+7TJo3w8HvejijK1JImvxw0Ef6V370jho3w8H/ch7E/W3KFr8cO+V
+XTWnTe3u0L4fDrpY68M7HkP7fjjoUhMi56sXVYsfDvpxYIEjp6F9Pxz0yYk1
+O5aMpsUP9w6//+5W2bZC+3446O5PuqjM0bX44aAjFf379Vxo3w8H3e3hgPdx
+Ymjxw0E/iT461nBo3w/3Fu/37bklvkL7fjhoM3LP6I4xtfjhoEflff3sHrTv
+h4PeE6dA09qxtPjhoGtWnP76BLTvh3uD+SF+/Gk2thY/HPSbGZurbYH2/XDQ
+t3Wf9JnjaPHDQXsT2sSZD+374V4rO6vJiIB4cbX44aCbrLuSdRS074f77+sr
+Gjb4Ce374aCjB6dc0i1Aix8O+mfbVN5TaN8P90pZO71Fn4bxtPjhoFMVemMu
+Qvt+OOjeI46tLhtfix8OeuGmV633Qvt+OOg+79oWyZdAix/upbKt+hXLsAra
+98NBVxvaMVOqhFr8cNArS/wqOR3a98NBN3v+vluMRFr8cNBft1XfNQTa98OF
+K9vxXorfv0L7fjjovxY0mNw5sRY/HPSkLHFSP4b2/XDQD3YXO9YgiRY/HHTd
+kGfDLkL7frgXyk65k6he+aRa/HDQex+dKn0A2vfDQY+9HaNC4O9a/HDQ+czN
+VuuhfT8cdL9ZxWdnSKbFD/dc2dWXAx/Ng/b9cNDTvpwpkyC5Fj8c9IwS+uA4
+aN8PBz09/E6NSCm0+OGgfxVp/rMftO+He6bssU5T9r6H9v1w0D2O9JjRPqUW
+Pxx0rODoox5A+3446GwP6ofUT6XFDwf9Knu7DRehfT/cU2V/LC78tEJqLX44
+6PGjzhc8DO374aCbpsy7oGgaLX446ENrmqfYCu374Z4oO6Zn663Z02rxw0En
+3fdHi2XQvh8OusnZr1lSptPih4MOCw+JOhPa98P99983ivFb3PRa/HCPlY3S
+oUusMdC+Hw66V8MD+bwMWvxw0IP6ed37Q/t+OOimsYuEfoT2/XDQD5t1KNg5
+oxY/3CNlG++fs+cptO+Hg97W7XT9Zpm0+OH++/oRHXAT2vfDQQdFKne3VmYt
+fjjoAv3nHD0L7fvhHiqbsG/EI+WyaPHDQS+vMOjGIWjfDwed0SaJVjyrFj8c
+dMvFF6tuh/b9cNB7j21anyebFj/cA2VT/9iZYS2074eDjjHpzdaM2bX44aAn
+Xq3TcBG074eDLpf6Y7LkObT44aA77D/1YQa074e7r+zOyA8eBuTU4oeDHlW+
+6Mvx0L4fDnrXzZsxo+bS4oeDPh0QWnoYtO+Hgz5WUs+MkFuLH+4e1sN90yL2
+g/b9cNB97w0c+gna98NBZ4xwJHm3PFr8cNCLOnc49xLa98NBXx7TZ07bvFr8
+cHeVLb7yzcBH0L4fDvpV2it9m+bT4oeDHlszx8Rb0L4fDrrKtJ+7gvJr8cNB
+RytZNuIVaN8Pd0fZlJsDGlcvoMUPBz2yTNPLZ6B9Pxz0xXqBLSoU1OKHg05f
+fm7049C+H+62soHdJ50sFajFDwfdKF+yJQegfT8c9IDwEtOKF9Lih4OO991b
+sAva98NB59vf9kBgYS1+uFvKTpjb68dWaN8PB93ibY6qeYto8cNBh6SasXsD
+tO+Hgx4xbnPJHEW1+OGgq80cdWc1tO+Hu4n5YnnS6ZmLafHDQU9M0anlcmjf
+Dwcdr9nISumLa/HDQU++2q7yYmjfDwcd91GyNqmtFj/cDWXzv104ewG074eD
+Dmz+61HyElr8cNBvFhUoPxfa98NBn05c5VjSklr8cNA3s1dsOAva98NdV/Zg
+hTwxEv+hxQ8Hve+mvjQd2vfDQW+qcHJLgj+1+OGg40UauW4qtO+Hg/7UtdiB
+eKW0+OGuYfyr9+GToX0/HPSi1GtyB/ylxQ/3ny7eceIkaN8PBz3lWGETt7QW
+Pxz0rKxJpodA+364MNRr12PYOGW0+OGgx5ZKGjEE2vfDQV+6/tfN2GW1+OGg
+X8aaem4itO+Hg45TI+rt2OW0+OGuKps46apIIdC+Hw6639W+peKU1+KHg64e
+YfC8EGjfDwddw+yNHbeCFj8c9NWmheZMgvb9cFfw80d+sgEVtfjhoO+9+vpz
+MrTvh4MuGKvs5XiVtPjhoNc1fHRkKrTvh7us7IFaV84mqKzFDwc9rnPK99Oh
+fT8c9Ml0R3ImrqLFDwd9+/XJ4bOgfT8c9LEKgR+TVtXih7uE+m1LrIFzoX0/
+HHS5pTVSpaimxQ8HHW9u9JsLoH0/HHT8hEU2pq6uxQ8H3XfS4wWLoX0/3EVl
+k40PWJG+hhY/HHSXUYdCl0P7fjjoKd6vSFlqavHDQZcedDRoDbTvh4N+0z/1
+8Ry1tPjhLig7Z2C8qhuhfT8c9Bez8G3e2lr8cNANZ51Z8y+074eDPrrjn+BC
+dbT44aAvhf/eZTe074c7r+yFbaV627pa/HDQ6/5JOfsgtO+Hg46QY+Plv4K0
++OGg1ZOfWUKhfT8c9Nwa0WZXrKfFD3dO2fo/rqc5B+374aB7tOtxpEZ9LX44
+6MMZbwRfhfb9cNAX9sarW7+BFj8c9Kmdacregfb9cGexPi6PUb15Qy1+OOgJ
+ca/0fALt++GgI40Yurl9Iy1+OOgDk5NEfwPt++GgSx2d279HYy1+uDNY/9bH
+jfIV2vfDQb+53X/tgCZa/HDQnR7e76CaavHDQTesVrb0SGjfD3da2anbNhaK
+0UyLHw56+sq0ZSZB+3446Mk7F3VK2FyLHw66+cC8G+ZA+3446Cmjr0dP3UKL
+H+4U9nNd5wYvg/b9cNATTg6Im62lFj8c9OkcQ3dthPb9cNDV8mwcVLCVFj8c
+tO4Uo9EeaN8PdxL7576zav/ZWosfDjrx2wZtQ6F9Pxz0jvb1p1dpo8UPBx17
++Kxbl6F9Pxx017DfbYO2WvxwJ7Afifhk531o3w8HnXZ+hGpt22nxw0FPKd8u
+4hto3w8HXXFp1lO92mvxw0EnqlR2409o3w8Xqmzne4c3DOugxQ8HPVgtOxG9
+oxY/HHTGam9+TYb2/XDQ7zutqJS0kxY/HHSmXxf+XQjt++GO4+9Z2KNw5s5a
+/HDQlX9OCtsA7fvhoP/YmnNSYBctfjjoJZ2qt9gP7fvhoPOf/VWtbFft+HDK
+th9QqN45aOHDYf+TKvKAut2048Ph5zfpsPMutPDhlE3zqGNA2+7a8eFQv9eN
+M/wttPDhlN3dom5A3x7a8eEwn24pv1P11I4Ph+f/7kX/sdDCh1P2xokS9eL3
+0o4Pp2yFF5Wqz4MWPhzqhd8St8zwt3Z8OOxfdi6evB5a+HDKzj/y8Xpgb+34
+cFjPLwYUPwgtfDhlt0+JsLtCH+34cMqe37a/5mVo4cMpO/ptvSiN+2rHh8P+
+5v2FK0+hhQ+H9aFL9v3d+mnHh1P2Q/LOh39ACx8O43P93Acj+mvHh1N26PWd
+yeMO0I4Ph/Wy1pluc6CFD4f9W9iN++kHaseHw/dL/LTjBmjhwyn72/nP8YoM
+0o4Pp2ylHbEvH4EWPhzqubH5NlYdrB0fTmEL0X7FDWjhw6E+ub5tZ6tg7fhw
+ym44nfLpW2jhwymbd/byXAOGaMeHQ731s8bUKEO148Nh/dqaOd5UaOHD4ecH
+Z1+bcph2fDhlo6Zu0Ww1tPDhlA2odSFPweHa8eGw/t/un+IQtPDhMN8MapO+
+ygjt+HCYP77PKnMDWvhwymZNkHB465Ha8eEwv4fcu/UeWvhweN/zRaw+eJR2
+fDisL4f73IsxWjs+HNazyFXHzYIWPhzW46OjqmcYox0fTtnQY5nybYYWPhz2
+V5fy5S4xVjs+HN7HbRvLnYYWPhzel0JLBtQbpx0fDl/PEPf0E2jhw+HvKfez
+YM/x2vHhUN916bhXTdCOD4f5uHWrJiHQwodTdtXP8OQpJmrHh1M2T0TzeTW0
+8OFQ3/7x74tCIdrx4ZRdHKJ+HIMWPhzqtb2vM9aepB0fTtkjc4d0fggtfDi8
+TxH2X+g2WTs+nLL/bF9TLeIU7fhw+PvnVQqfCC18ONRTQ5cvSjFVOz4cPs8S
++3qshRY+nLJLV85qVnSadnw47K9mFOlwElr4cMp+v79yUr3p2vHhlH3a/NmF
+Z9DCh8P69+FXzj4ztOPDKZuj8+sVUWZqx4dDPbB+X7GZ0MKHw/o5qcerjLO0
+48OhXnkbsGsbtPDhMH7XLVhcZrZ2fDh8vstSrrgKLXw4zC/bZxxvPUc7PhzW
+68Mx9Bdo4cMpG3P10Iaj5mrHh8P3rxzxQuJ52vHhlH07aUyzldDCh8N+uE66
+2IXna8eHw/gaevHqCWjhwykb/H3u7voLtOPDKdtmyfA94dDCh1P2W4vJ1wf8
+ox0fDv8+3fF4sRdqx4fDfvJk1rb/QAsfDp9XyYPXcy/Sjg+n7JWuIW0OQQsf
+Dvun0nMCai3Wjg+H/f2qJ2GPoYUPh99vdN9dvZdox4dDfXCh7s5oS7Xjw2F+
+7jLy8lxo4cNhvaoZPWbOZdrx4bAed3jW5AC08OGUjbgyw/kay7Xjwylb9/ux
+ho+hhQ+nbOFaF0yfFdrx4ZSttbL8qegrtePDKZv9Rf5186GFD6dsktiz1uRe
+pR0fTtmS0focOwwtfDi8bxeu/6qzWjs+HOaTxoeqv4AWPpyyuZcXPDRwjXZ8
+OOzPFhetGrBWOz6csn9Vuvp1KbTw4ZRdOz/G/kLrtOPDKbtx8r1Fp6GFD4f1
+K339RU3Xa8eHw36++sC9H6GFD6fsnsRVP4/eoB0fDvvrnpcrptioHR9O2RNt
+4u3bBC18OGXfvY1Vucwm7fhw2M8EnP56A1r4cMqeOVH9YJfN2vHhUA+mWLpc
+b9GOD4fnFzd05Wxo4cMpu3/ZoeM5t2rHh1M2+cNZkY5ACx9O2aZnqzas9692
+fDhl63R+eeE1tPDhlF1xskfL4du048Nh/xH+Iv7v27Xjw6E+uFnn3gZo4cMp
+m27JnhOld2jHh1N2UpU0529CCx9O2f7Px3zotlM7Ppyym4N/5Iu6Szs+nLIP
+0vSfvABa+HDYv96MFbPAbu34cHj/9+5Ycgpa+HDKfrwaHNR8j3Z8OKznRTpk
+/QYtfDjUH18HJJ20Vzs+HL6eYXeGTPu048Nh/biUteo+aOHD4fdJcmF67f3a
+8eGUvRtty7eX0MKHU3bg3iv9hh/Qjg+H+rKCTZr8oHZ8ONQXJ95d3gItfDjU
+fzU/rat4SDs+HH6eV2XpQ2jhwyl7/G3EHf0Pa8eHw3gqEv95/CPa8eEwv/8Y
+E7gWWvhwyras3n7JX0e148MpG6vBzuy3oYUPp2yzwAGXeh3Tjg+H/WXkHTNj
+H9eOD4f383m3viughQ+nbJja0KdkqHZ8OLz/3XtOvw4tfDjUN02On+t+Qjs+
+HPYTr9ZminlSOz6csu3+yDp/GbTw4fDvh/yVu8Qp7fhwypqrEe9fgxY+nLIF
+Wrfc0P20dnw4ZXs16Dk35hnt+HDKHrpbYNlyaOHDob5Juf50ybPa8eGg/3wQ
+cBNa+HDK9ukT1rPXOe34cFjf30z5FOe8dnw4ZXNdTjptNbTw4bA/qdutWukL
+2vHhsP6vWpD1HrTw4ZQd8n152v4XtePDKXtxYEihRJe048NhvmzdqOMmaOHD
+KTvracJ9lS5rx4fD+hm4L8czaOHDYX0a22D3sCva8eGwv07yoXWqq9rx4fA+
+Jh2beze08OGUPXskQ5K6Ydrx4bB/r30qxQdo4cOhvtXBf4Rc044Pp2zOOOWH
+ZbuuHR8O42tjtofHoYUPh/c7Y45mLW9ox4fD57O+xq+IN7Xjw2F/MWbR9vnQ
+wofD+PiUclKRW9rx4VAP5z8/Mgxa+HDYT4zeNbfnbe34cMqWLfDwbMAd7fhw
+2D8NrJp6A7Tw4fC+LNeTKt3Vjg+HevRzlJQvoIUPh/G/ufHJUfe048MpOzx9
+7OkZ7mvHh1P2+tRkgw5DCx9O2cYVxo9o9kA7PhzWuymt1vz2UDs+nLK/71j7
+Zj608OEwn0dpU6PYI+34cKjPz8y+dANa+HDKlq5XoUffx9rx4fB8vg3Mk+SJ
+dnw4jM/fisTeDi18ONTzu4dFq/NUOz4c6oXgpuk+QQsfDuNr4ZUG055px4fD
+/qXrs835nmvHh1M2aZkFmS9BCx9O2YV//9zT/YV2fDhlW9SL2jVeuHZ8OGU7
+ljn+x2Zo4cOhHpxh89Z4qR0fTtkmS3v88R5a+HCYj0926DLllXZ8ONRDLbPv
+yftaOz4cxuu5XZkuQQsfDvVWu+Sbe7zRjg+H8T2lToMEb7Xjw+HzXdk53b/Q
+wofD843VPnqdd9rx4VDPpq0S9wu08OFQ/1dMXWDWe+34cPi8wh/3KfxBOz4c
+xkebpTdvQAsfDvv9DM0aDfioHR8O9cH4NBFSftKOD4f1J1L43v3QwodDvfbx
+0Lxmn7XjwymbPnT9nEhftOPDof56vmX7Mmjhwyk74mjYh7JftePDKbvteKqq
+L6CFD4fx3njyifHftOPD4X37mqdFru/a8eFQL5goyS9CCx8O7+vnhB97/tCO
+D4f1sFjL8MQ/tePDKVus0he1G1r4cJi/Z10ObPxLOz6csvOmqwkqgnF8OGXb
+7hqmlkELH+6/96fp9HK/GceHQ71cZ365l9DCh8N+cH+JZJMiGseHw+efp3Ks
+/Mo4Phzqw0ynUl6DFj4c9oMp9lcd4BnHh1P25OScC1NHMo4Ph/VGpYp7FFr4
+cJgPw6f/004bx4dT9v65WVViG+P4cKj/cudIsQVa+HDKrgkJihEU2Tg+HJ5X
+19RJf0ELH07ZkXXGllkcxTg+nLKRQ+dOLRvVOD6csvEr1o/4Clr4cPj5bU6N
+nxLNOD4cxuvSj4UKRTeOD4f3bcJNfQda+HDKxl0z4u2wGMbx4ZQtNPbrjywx
+jePDYX+6vXCm89DCh1N26/4q3f+OZRwfDs87b/HbyWMbx4dDvfBP9LaHoYUP
+h/E7c0+89nGM48OhXl0bdDtuXOP4cNgfdHt0fDu08OGwn+rb6mLjAOP4cMou
+aHD/p4lnHB8O9eDaRmXXQQsfDt9f39tUK75xfDhlL33vVOwntPDhsH5nifV0
+SQLj+HDKHs16eFPFhMbx4ZQtMmf6vA/QwofDepNg7Iq5iYzjw/23Hi2/WCqx
+cXw4ZS8vfJPiJbTw4fD+veswZloS4/hweP9Ppk5YPKlxfDhl556Of/AxtPDh
+8H7NrTBh4u/G8eGwn791sm9gMuP4cMo+zztn5D1o4cMpm7jMvi1jkhvHh8P7
+sbeYypfCOD4c/t6SybrcghY+HJ5/vya/RqQ0jg+HeiBBnLW5UhnHh0P9sTtX
+/+vQwodDvZ/sePthqY3jw2H9f3ijX440xvHhMP8e6LomDFr4cNhvt5z4c0ha
+4/hweL+CC3fOns44Phzel2O9I4ZBCx9O2ZkvqmwZkt44PhzW04VHRmbPYBwf
+TtkIC+70C4MWPtx/n8fikKEZjePDKfuzUqKjOTIZx4dTtkyXEsmuQwsfDv9+
+d7opwzMbx4fD83oZmiV3FuP4cBjP+/I/uAktfDjMv2867h6V1Tg+HObL4r3/
+zZfNOD4c5su29c7fhRY+HOrPPEljjs9uHB9O2SgN9rQtlMM4PpyyWVeUe/II
+Wvhwyo66cXj45JzG8eEw/nbl+8vmMo4Ph/kn1oL04dDCh1PWzo2acVZu4/hw
+ynbN3rdc6TzG8eGw3o/7NO49tPDhUD8MGfb2n7zG8eGwnt7O/HflfMbx4ZS9
+0z48+Q9o4cNhvvx6/tHK/Mbx4ZStXOfumToFjOPDKbupVvJruqBxfDjs145O
+iLQFWvhw2J8OKFytWaBxfDhlD1bKsC9OIeP4cJh/Y9atvA9a+HD4+uTLvzoW
+No4Pp+zfW5ecS1bEOD4cnnflk4dOQgsfDuOhYJWwvkWN48Mp+2+FArGyFDOO
+D6fs4tYjWl6DFj4c5oM2f90eVdw4Phzen+x9egda4/hwqGenZcz3FFr4cPi8
+h9SOO7OEcXw4rFeXo8cpW9I4PpyyfbtVyvUFWvhwqI+Lp+624g/j+HDKzkk+
+/nLdP43jw6He+zK9XtRSxvHhsB/bWiriTmjhw2G8Fp8b2u4v4/hwyn4fuHjz
+76WN48Ohnm/aZN8paOHDKXv7fFj4gDLG8eGU7b4voGjOssbx4fB+JY6/9i60
+8OEwfs7ct5PLGceHQ711ftiHP8sbx4dD/Z3gt5MfoYUPh/35+HqHllcwjg+H
+/UqO2beCKhrHh8N4eX04SYxKxvHhsB4cv/v3XmjhwymbasP7z10qG8eHw/56
+oTc7bRXj+HDKLpqZsNEVaOHDYf0MyVNqdFXj+HDKxhvZsGLRasbx4bBe9ZvX
+6zW08OEwPjp8ObiounF8OGWbN+iRu3YN4/hweH8rJToYtaZxfDjsh/940mMP
+tPDh8PWSz8t1rWUcHw66SoaS6Wsbx4fD/Nh9Yb1r0MKHw/Pb1nT6+DrG8eGU
+/Za244eSdY3jwymb+XBoj0/QwodTNnDJgESrg4zjwyk79vyEm43rGceHU/Zw
+Pe9w/PrG8eGwPlW5dzoUWvhwyk48kOPbwAbG8eGgD74tm6+hcXw4Zau1yrXz
+GbTw4TDeD7yptKCRcXw47EeeB0aq1dg4Phye15dYt6I1MY4Ph8/f6xO2H1r4
+cJg/Mgz41KupcXw4PM9+qQtmb2YcHw6fX4oOsx9ACx8O73uO5qlmNzeOD4f3
+MTRGaNUWxvHh8PnH7jw1ckvj+HCYb1OHDNkLLXw41Ldpek3p2co4PpyyKQtk
+PJattXF8OOy3glcmfwgtfDhlb2X1ZsxpYxwfTtnQ+oXz1mhrHB8O82fhWu+i
+tTOOD6dsuXdBlw5CCx9O2UHrKl/r2944Ppyyj+cUipi3g3F8OOyXnqaq+AJa
++HDKhhyKtnNxR+P4cKi3Gv4s36CTcXw4ZVc9/fUrfmfj+HDQMxJcOQ0tfDhl
+Ey4oc25EF+P4cNgv5Zvz0nY1jg+H/c/EhDm+QgsfDvX7k32TNnUzjg+H+bPX
+vMQduhvHh8N89PfWg+l7GMeHw/udPlbIHWjhw6F+27928KyexvHhsJ8bNntq
+jV7G8eGUzb75+smYfxvHh0O9Mr5HhuPQwodT9mutTkuG9DaOD6fs/qpn/irW
+xzg+nLIxD82O9gVa+HDYn72/9m5TX+P4cMreyzz5V8d+xvHhUP+vD82eub9x
+fDhlX54ZMfghtPDhlH118eynBQOM48MpuyX66pD6A43jw6F+OJyicqJBxvHh
+8D5Wzp3zIrTw4TBevj/NO3GwcXw4zA/JKjaoEGwcHw7zq266IvIQ4/hwyvaM
+kSPxYWjhw2G+HLlj9eChxvHhlC1+JmrzYsOM48Mp+7FQ+uLfoIUPh78/fUCx
+bcON48NhP/TiSuMeI4zjwyn75FmfZblHGseHQ70xKGLc19DCh1O2VPQeC9aM
+Mo4Pp2z011ertRttHB8Of8/4vJkyjTGOD4f3qdz4NI+hhQ+nbNTRL0osGWsc
+Hw77gU01hzYbZxwfTtlcOc4+SzXeOD6css9aNO1xB1r4cFjvD8RNO3+CcXw4
+fF7rH39sMNE4Phzm/3mPw38PMY4Ph/3y10RRbkALHw773zzBZWZPMo4Ph/lg
+V6bVQZON48NhvEVOkDfJFOP4cMpuHF3xThi08OGUjbX98vqZU43jw6H+jbpt
+Sd1pxvHhlJ3x6dOexNON48Mpe+XLnO9h0MKHU7bd2DUNZ80wjg+n7MUsOR8G
+zTSOD6fs65pZJiadZRwfDuvx6CWNbkALHw71QZkl1efONo4Ph/ESL1f7hnOM
+48MpO6FT5RUp5hrHh1P2y20d7S608OEw/z5vELJwnnF8ONRTiesVaT7fOD4c
+6vf3XvT0C4zjwym72msa4Qm08OHw+V/5O/HKf4zjw2F9+FK5dvuFxvHhlM3x
+JXx79kXG8eGUzd+qbok30MKHU/bExRnhmxYbx4dT9uzFjXt6LjGOD6fs1G9r
+NgcuNY4Pp+yFWxPPfIcWPpyy6+M3jbVvmXF8OLxfBTN2H7LcOD4c/t67T3/8
+tcI4PpyyZ1avWR11pXF8OMxn+fsMOg0tfDjUM7/X6j1plXF8OLzvP0tPr7Xa
+OD4c9p8Dal1LssY4PpyyG4qNLHkbWvhw2L/dv39m0Vrj+HB4nrE7B7deZxwf
+DvVhpzxB2dYbx4dTdsfSvLXfQgsfDn9P4z69/91gHB8O+8ky0fb322gcH07Z
+p1FfZiu5yTg+nLI/ambaZzYbx4dTNijsYK9T0MKHw/74r0M1Jm8xjg+H9aRS
+rtp1txrHh1P23NI4A1P8axwfDvOz1/7kQ2jhw6EeS1a6+OptxvHhUB+tWnGl
+63bj+HBYD1vPmhq4wzg+nLIvYqTsHWGncXw41OtBJYKPQgsfDvu/qJE2jN9l
+HB8O89XtLpFq7TaOD6fs5pnjBybbYxwfDvXh9yYpHkILHw71TujbB6v3GseH
+w/4qtPTZ7vuM48Ph9z/U6m6R/cbx4ZTNM7BuokgHjOPDoR45nKbHKWjhw6E+
+a3bq09SDxvHh8P6ma7Cg4SHj+HDKDr4W1jHDYeP4cMo2qlau2Wto4cMpu6vh
+lv7bjxjHh8N+6XyqPcFHjePD4fMNnpa2wjHj+HB4HqWSbIh/3Dg+HOrBN5ua
+3YYWPhzmw8Zti6wINY4Ph/W9/Z+Fu50wjg+H3+9tmcZFTxrHh8N6eWbAKnPK
+OD6csvPvv/j9PLTw4TC/xJy1ec5p4/hw2H/lHte11Rnj+HDKjs5zqlbus8bx
+4TD/fGzc5Ae08OGUTdGs8qRj54zjwym7rfH8p5PPG8eHw/oTVrtVowvG8eHw
+9W0Do2W5aBwfTtkWz5Nd/ggtfDisj40Cjx64ZBwfDvWeDrs1/rJxfDhlE5xV
+yepdMY4Ph89z/b7BGa4ax4dTdtrsBDHeQwsfDvXDyOh794UZx4fDfNthxfRx
+14zjw2E/VOr9tKDrxvHhlA2I+n5XhhvG8eGULb9tXZQP0MKHw/OsmL3/gZvG
+8eHw+4f2TDjxlnF8uP/8hhOvNrhtHB8O63//wfuy3DGOD6fs6Z1Vz3yBFj6c
+siVfmkjH7hrHh8P+4PdVTabdM44Ph+9XueTD5veN48Mp7KMvTsjzwDg+HD6/
+162bRHxoHB8O+7leOugctPDhlL2Wf3PvBY+M48MpW794732dHhvHh8N/v6h+
+9uJPjOPDKat7tTgY86lxfDhlD52ZNfAWtPDhUI8cUs3WPjOOD4fx2mlZhwHP
+jePDYXw/GTu/0gvj+HDKHq2483PycOP4cPh8dwb2fgUtfDhlq1aLlWrfS+P4
+cBgfuf54PfGVcXw4jL9+Nx41eW0cH07Z47XueXneGMeHw3h4VK+c99Y4Phzq
+1apV/r0ELXw4zKcHjpRf9s44Phx+n6ZHTO/3xvHhUG83rPW83Afj+HCoPx70
+//j7R+P4cFjPU/+Z6RW08OHw35dbP2T/J+P4cNg/TTgeacpn4/hwqO/TTl/X
+8otxfDi8L8VTDg78ahwfTtmGidv3if7NOD6csjGeDZ59G1r4cFg/X7R+sPG7
+cXw4PM8GGWsO/2EcHw71Sd+j4XV/GseHU3bn0Iprs/0yNuxHnSktoSP4/xfZ
+/h+/kT1/
+ "]]}, Annotation[#, "Charting`Private`Tag#6"]& ],
+ TagBox[{
+ Hue[0.08640786499873876, 0.6, 0.6],
+ Directive[
+ PointSize[
+ NCache[
+ Rational[1, 360], 0.002777777777777778]],
+ RGBColor[0.363898, 0.618501, 0.782349],
+ AbsoluteThickness[2]],
+ LineBox[CompressedData["
+1:eJxM3Hk8Vlvfx3HKtS8iiaSiWWVIg1AIG5VEpVCSUpokjUJzSCVRNCAaRIOp
+UUpSNFCSRhooDVRUEhUp6fmetffvfj3PP/fr/Zz7PqdTl3XtvdZn/fp6LZ+6
+oJ2MjEyKoozMf/8p/J88v/TfqFkTZCW8wvCeM//9k/L+Y2pP/ude34qO7YRP
+9TijvhmuarrbpgF/+LZ6Sybcu32vxcfapHyv22YNH+Hnj/OrhsHTD8l4arWT
+8K7a55Zd/Svld/sV3nOC+1z8ojABvmMfYbYVlrVbmfW0VcrL9Jmacvk/x4xe
+OQ82bdLo+hVe4uVo8e2PlF9579WWfu0lfNGSw903wmlJyQ3T4A8rh3Ed4Ko1
+iz13wiVGMu1jf0t5zclDS/Lgu6sVVbRhlwE/zX7AixonG5xrkfIRf3JSdOQk
+/Kplxe6WcMGjoK6z4J+p6+OKf0n5vyfHhUbDoxfO/uAGm2xSaiyAn8xfOeZD
+s5Rf5vLY8ze8bdH5837wSb24kiESCe85rPdwWfi1zGzzeXBacFberiYp3+1Z
+/9RYuLGn32wt2OlUbdd7sMwd145pP6X8ji1nQmU4Cf/aZua9kfD1Gf6NRvCz
+KcEJBT+k/O+h5nMWwyuzC9Y5w4ac7P1DcIDZQJ+336X8kpeF5o/huoTExcvh
+5PMRqZxUwmsdNVz7t1HKvwybqmEOhymXx+2E1T27bV0ON6fsu9Mdnmhc2ZgM
++xrPkU9pkPLbFI/NeQ7rrTVzM4GvvV18X0lewp837Zt965uUb740dLQ1XDBa
+VccZHrrrZ6o/7DVeMeVtvZT3nn9FIw2+3a/DqBVwolnw1kp4xR6l521fpfwL
+FbvvqgoSvvtslbBIuPNHpbl2cI6j2ngteMLVx/fXwxED1Lql10n5kL1xo8/C
+krMdf5nCVxbPTquGyzNlau58kfLfrbS7de8g4f/9qv04HR7c9dPWiXCy3e3m
+D5+l/PwvZ74HwyO9YzQC4EM3/OdehL37u9pJ4LI48wef4L42stv3fZLyystl
+LXorSvidkXFP+8Pjxt5Oc4aVH3QzyayV8ps1I7uFwZMfbj5uA2c3TN2WCw+f
+Waz9uEbKf7vd7cc3+IlpS+ZcWPdw5dwBShJ+v4nUueGjlJ+7+tiDGbCq1nfZ
+YDh+go/FLrhfVk6+Cvy4z7D0G3DlvZm7Ez9IecXmn92a4QNDSpcOg21LrmzT
+74ifx+N9PfLfS/kNycE/POHINmt3J/jCWjuvfXCS3AjvN9VSvm5yx4d3YJ/Q
+xq0r4AEDn1j8hX0nbMqUgWe3xqUPV8bPW//Sb1FVUj7m8ezuC2Hvlw0WfeEH
+Kdrb4+HDNmXx595JeenmTz/uwzv6b5DawLzrWa/2nfDrdaze8vitlF+jH/Bw
+JBwdoagyDz4nO9rSF358tj79+xspX/tMNiMRVg7bNT0U7nf6dvcyuO7Ne1V1
+eGZo5HYFFQk/Lfz7q+Ovpfxed+efFrCPc1a2CXxvWPd5q+AwRd3k25VSXk76
++uEJ2CHE8ZAbbPHqmGUFvGN7z5O1r7CeZfpkdOqMv9/nA/nr4NM7hvUYA8tu
+yqtVhD94Nm1fA6urRPQ79FLK9zbJ/ZkBu6/66zMEnq4UMu8t/MS/8828Cikf
+9c7ukbqqhM/7XKA3Bb6T3dFqAnzgeLekd+VSXnb3k4xNcDd/qe5q2HTBgR6Z
+8JDBUXkSeJW5Z9hHWPHQ2QWxL7CedR7QpKkm4bvGL9TUhas+fprnBDf/PPMm
+5znWs2tnH4XCEVvCsxxhl30BVpfhH+o/DlQ+k/KRPqNP1cGhQZ8iV8AFfDvN
+fl0k/KOYJdHt4Laud8KmwSmD/Y/te4r1rC6yKRxW7Sq5PRBeftN5fh7sMqh7
+S3YZ1rMD3R9/h78anTFzgN8sf22lo45/P7WCna9KsZ6NO37KA3aMc/uyHJ6i
+tUQzGjaJW+TRDt7ROGxHAXyzpr5i3xMpf+NOU1MLHO9Z7zMI/n04d/6QrvDj
+eQo5j6X8CP+Qx17waw2HS47wEofxfCycJ0le/fqRlD/WV/l0MVy8arH1Kvhl
+8xNNGQ2s98YHe0pg9fsHdhjB9waYKsQ9xHp2zLPZG5b2sJTTh7etG7DgENxS
+m6J87QHWM6fPjx/B05YG6kyBmwee47luEl5pw8kp1fel/LC/AafN4LFfTcID
+Ye8no7WWw/MP9n/cAT6a2i48GeY8l+geLsF6tvlO8zNYtpNS1HBYddquBUrd
+8fOztT1XcA/r2WCXJzwcmjB5pxu8pV0Pa3+4Qu9r7y/FWM+evz6dCut1fHVz
+M/zj9HGtSthXq0egGjx465Jw1R4S/qFhsunJu1J+wczhv8bBN/UCFM3hQ8Ob
+F6yHP1VGfblfJOWfSq8+OQP312t46QUrV4ZYV8PbPu572XRHyttdGH+mm6aE
+X9C49nM4vDlcuedEeMLAwwq94ew5peHB8O/Z/0wyb2M9M4n/lQWvWpPgZwfr
+dpyz8BNcM2lFXkWhlPeqGlDaSwt/PtfW91gBx1/+bO0M3zp2JVQOfrL73Jnt
+8MVXBm1xBVjPFgb2zIUvj3u4zQAeM9pi5ze4/9XEXjduYT1Tbd+i3VPCb+51
+qGAanFVzZ+EMeM/4m+s/38R6dm1XaSQ8o3tn6yB44H4Xmxtwx+Wh6urw7CU9
+zjbBmjqaLak3pHys9Zue+r0k/OD+Tz5bwg80Tuz0hPtYpdU9uS7l5b8uadkL
+d5p5uM0b5m8NX3QHdph2qldbvpRfG99c2grPUimbuBc+t+KqzfDe+HwtVovQ
+gT+N23J2AWzLL3xxNQ/rWU/7XvHwmIBiY2d45nfliPvw6s/80ZprWM+KSlva
+9ZHw/kG3NDfB947ELxoJ9+/qclwNlgTMKVsC746ss0i9ivXMcaBtIiy5s+u9
+JRzQ78vZUlh60vhgaS7Ws1/nein0xfeR0pu5PvDH+4ERFvDDFztNZODexy1+
+r4QzG0x6xFyR8m7r23ufgN1NXisNhqOmFJWVw7PDQ5Rv5Ej5okG7bTv1wz//
+Ya/ebrBsm8s5W7j58znLr5elvFlpj95r4LI806Wh8Kq0NxEZcOLQC2k94PSg
+E7/fwNLevZvPZmM9m+brrd5fwtevXDPVDtYyMHxqDwcoXct9dQnrWftftpvg
+hsd1xqvhyBdXz52HP6dKrnWAC85s6f0RHhTQ3vXoRaxnW+0jNbUl/BGt979H
+wiM9Ov2ZDG8JSTlzPwvrmWGZdyhsHungtwBOkU94mg0v6ndvbOsFrGeVc8bU
+wS8H6QzaC3fPGni+7wAJf2LLLA09eMrOL72nwfJaPl2vZ0r58LnnI8Phjc8c
+tN3gGyPX/LkGZx2Usa4/L+X/dLRc/B2Om7rNdxs8orr9s0ED8Xl4U36iJ+yb
+UzTGA1Y0aK2/cA7rWdTu81Hw+j41do7wq4WufQpgl6SDp6vOYj2z0NzVAkfG
+a2ivhyepvf1jMAjP0w3TUlThbbUnFnvBKrvdzNPOSPm8PN9nMfAMjx6vrOHm
+/YZji2EZm/jIF6exnvn+Ov8PVtR96rgS9ra51sdIB89bv4t7KMBHu4Xu8oY3
+Jq5tTjwl5cu/2rcehNvav3o3ClYt6OTzCNbq9OPlwwwp75BQ9kyiK+G/pOe+
+94a3rEwYawZfvmX0VwbOtZubuQxuN8a9/4F0rGc9B/VNhjd30XcbDhv8+LLr
+GazZ93hCURrWs7vnWxX1JPwvl8K6ufDhxDU+POybEDHpdyrWswDL56thyZuf
+V/fAnSbKjUuFtynLjNaH7frfzXwFv1dNvXMzRcoHtezuq6qPn4cXX+d5wNkP
+XHePg3UnPej486SUbziu+XcdLD97fGEkrLvhrc8Z+MrP6ZEDYa+pJ59Xwbbt
+Wr3yTmA901k6rttgCf9ihaGdG/ykzfCCI1w7pMW04TjWs7JffYNhdb1J5uHw
+mPRru7NgI6ehDv3hjcGhf2vhKbvjF+cew3o2fcKSXgYS/lRZZIwr/NVA5cVU
++Fpn6eOvyVjP5J6O2w4PNZTTCoM9yxMuXIFfD9iyui8ce3Zuv2/wu4rgipwk
+Kf9w26Ao7SESPsi2zckFlp9V99cNNnVsKq07KuWtR2QuiYRz3y9atB1eq7D2
+xXX4+z8n+b7w+deWdk1wc/iZSzmJWM+y5LL0huL5PDDY3wXuH3G3nyf88sIt
+669HsJ55RUXthX8bBWqFwftGTWu7Dc+piZH0g+8pa/m2wkPz+/69chjr2fu3
+L4YNwz//lHr7abDFlZN2C+DopBUa3w5hPYtemnUAXho1zCwcPrNoRP/7sM1i
+5yXa8EeLlqh2w/F80ftZ2rWDUr5Pl7w2Ezjp2OVfbrDbp1DfJbDGl18u3xOk
+fHT+hPIjsGvNnrxIuChGZXwp7ByxdZQO3G7p0yx5Q7zfFd/PuxGP9cz2YH8L
+2DfO13UW7NfdK3olHPjRo6X5ANaz+kH/jsN9Mw6l74GrC+p8y+F55YN9DWCt
+g5nlyiPwfLpQ3vxOnJR3XbV2vC0cO2ZIt3lw5Hiri4HwpsUH27fFSvnCXhLt
+DPhDkdPfOLjtx93oN3Cxu73ECB5ZHPWvixHW586hmg9isJ4dnbbUHv75rs3K
+B04J1KrYCI8ouLRKAr+Z+G78ebj8VEZm4n6sZ9opFz/ANXsq2o2Gp/5eqq1p
+jOdHH5s5z/ZhPXs4Ys9keKD+6+JV8M0TLf+2wBOLz4xVhv9syFuaDd+1Pl+S
+ulfKGzlvrfgCx26tnjcW9tV1sO9rIuGrI8fIv90j5Y//U7nkCqtOfZizAX5V
+9lQ7HM4q2rq+G9w14+Cea/C+L14TLkRjPQvxkvkOp59fMMgJ3u6ms2zQSPx6
+ukSofonCejbka8VMeL5CqWIY/Evugn0U3BJurqYND6tYe+kWnBqdr5O/W8ov
+Pmc1oAVe2nWuowd8dLtkr8EoCb9cVXPTr11Yz2YVy3jBSpu/XN0HqxpFL4uB
+n7g+URwOO3SY/vIuvD2qZFFJpJQPfaM14R+spfvi0WI49+K7SyNMsb51/2HP
+wT8jUgZ4w9keWg+TIrCezVu29yCc/GXyfCt4oamR7CPY9FYE93In1rNOv5dJ
+zPD5qHx4cQ387H3eS1PYzaSHvzrcKXfrhGX/+fZC6/PhUn78HofsJLgh4oLm
+ZDjIu/PAZ3B5iKzclx1S/rLls72K5njfPebwOwxu6HJIloc31ke1DYD1Pnst
+Xw0nzX6gcjMM69l1nVcpcP1XueFz4ITYrxNewRqHhnr+3Y71bOmF7M6jJfzf
+BRMT4mGlMesGjhv93/OZx/uR8Jge/L518J7R7hZl27CefZO0OwPLjh2bvArO
+KixeXgVnztLUUIG/Hox+pWGB593Q8rhTW6X8IL/pDo7wlktBOg6wp33Py0Hw
+tx+KhTWhUj6ud9XALNjCfN3KbfDDnyn7amHlHUV62rDCvWXtelni/f1Vc8P1
+LVjPkoxWTIWvmbS/7QmvW/P71Ta4Yl9t6t8QrGeT8h2uwE1NKfEJ8GftbZfr
+4XQPqwOmcP8/DoO0rSR8QUHa8WfBUt7jUef9bjBvWJvnD+87+axdJDwh6ddH
+Nbhk46EV12Hbrs96ng/CeuYyr/InfGVXyFwn2FJP11GPl/B+Si3nv27GeiZT
+f3k2PDtqlGokfObphUF74SOaVpv14Y8Z6/bfhsPPdPhdtAnr2Ra+fSt8YuKB
+EG94xgxu5TBrCX+yuaabFI4eeq9yPhxwpjn3+EYpf1eyx/EArBd4c9kYuN3L
+6TklsNKUCUOqNkh58/M9ddrZSPgYq/A/wbBfWNV+E3jV2OCnfeCM2antl8Dr
+Fxjk5a3Hema0fOURODcpIms23FPR+PWT//77Mocu/12H9eztb0d5WwnfIcSj
++CC861J+zmi4r37RJ3O4MHKbzko49N8bjYq1Uv7fPMeY4/CI9klT18EjzVTl
+ymEPsw4J3eEVKs9XKo/B70+qRkP2GqxnHw69toGLXO64uMFvc+dNDIRnWfco
+bA7EerZX90o6rLhacWwsPHVxvc4buKHhwCMTONwqK6bLWAnvlX9zydMArGfq
+6+Xs4dfV29QC4NbP/KqNsMaCt3fUYaMb3Jtz8Ndxj3Zm+Uv5pXH3Jn6A/aJc
+PFzh48v2XOkxDt/vdovNfq6W8pVj3HQnw/l+HQfuh7tq9ordAif0sOptDE9u
+qJLLhifYtg4o88N6djt11Rf44Q8bM384/9DyN33s8O9v0tlDHf7lZzzJFZ7S
+acHOrFVSfviEP1d2wJbbR99xhRf3ua57Df5wfL9q00opn9S0LbYRHuW3zCcG
+Lr/nKBk0Hs+LzbcemMBqyap+M+GdZrE2z1ZgPVv7/M1ueObYqhuBcOjkw5Nu
+wav7nHTqBucOmJ/7C75Y+uZz9nKsZ3909QzsJbzBkl37ZsAGj+tj58Ld6k5N
++L0M61lKliQGrp5noZwAH9m03u8uPPSF2Wtz+JmL9ds2+Na0Y1dfLpXyKvrS
+ySMm4PP+ITB1IzxetiR3Efx5T2ZSLzj42R69g3C7ha6peb5Yz065xT2El/vM
+vDoHbtzSi5M44Pc/7WalLKznXu1nCrsbRnRMXiLl5w1Le7sUfq6YaT8GTuBW
+TE6C021M9r73kfKlL42vPoXt3ql92gYrZf7RU3TE93+T/SQdeOyO63FW8NHw
+p3lFi7GeeW7nVsNG6Zcsl8AXjSeuToH5+Z/vKsFfFdXevYS1byyff9ob69m7
+55M7T5TwKx7ZKDrBntmHr46F3x/2ymtYhPVs13z9dfDykSVBe+FH8/UOnIb1
+UoImG8MK5t+4Knh+2zr9ZwulvE3ni6s1Jkn4/XY5XdbC6z6uf+cAL4oeragJ
+Z161dgqCM2v/KV9dgPVsr/TaBXjj7HZ9PGFtnxL9WvjvX2tLWdiD33ug52T8
+/Z7mLk6eL+X3d50hnQo/b1qRNBYu+dLLfxscttSj5uM8Kc/drH6XA++z32ge
+DlseSHOqhzXjHyUMhgOXr7jW30nCey+brvDAC+vZWJPBbnBLmVLoSrhGs/VA
+BOz/pl6xC9yn8br0OnzxUFvixblYz+5s9/8J3+g50nYGHH14YpXuFAl/f0Vs
+4585WM9Wq02ZDVuc7HnmMNzO4cW1PfDRR7fXWMPmfY8Mvg1fltk3udpTyq9u
+nh//B/YfGzRiO5xRoic/bCq+386Ga+vB75O/+c+HV7uc61cyG+vZuotVcfB6
+60aDFfA0pw1TSuD0HQ7j1OBdA23yZJ3xfG95ZcnFWVL+dqvUwARW8LM6PAP+
+97gk3gf2HfX0VauHlB+Vulf+CDzn6Ea9RHjF5hkBT2C//BGhtnCqa+9qqQv+
+ekrTpw8zsZ7pv58yGlbxvTU7HO7RLj1vBZzQK+G1ATz1+QqD4/CYJ2uWPnKX
+8jtPmyS8gIMOzZT3h2+Gtsoru0r4uijrs93gVvcbATawx3WdBbkzsJ4ND6sO
+gItsOg2aAy+VTpqa/t9f1/3+sz184pVa/mt42Y7Hj066YT3LfGHQZZqE3xqY
+nuMAa4QfSRgPu8hvOFs/HevZnAUKG+EcJ5vMvXCYiX7gOfjOgtYbI+F8pYbq
+99P+e/5JeV0xTcq3vLs4tcd0PJ9OGKMQBA+/vCF/Eqw+7r6VNuyz22bIFrhy
+3pgtd1yxni2QP3gJts459sQXrjC/r/AFnu1ZN6wzrKa6L7CPG54XFmslZLlI
+eceaGe9dYN36oarucOi13s474BZuYEybs5S/uu99/lW46HbrwGT4p0/6kEY4
+fvz5W3bwEOuVBwfOkPCHEscs/zIV65nGyA4z4aEfzw2Mho/UtQbuhstH/Ppk
+DD+7eeP9TXj6YfXc8ilYz+LDnH/BOy3l4zfD9ismXR/sjp+fwfdDteHgcV2G
+zoUjgxZsKHKS8jla5Qf3w1Lne0HL4MbGIx3uwrtzZfaowfpFC9a0wXVlMmez
+J2M9O6L/wXAmfr+y75bPgg/6Nzgvggdt8FBtD5c6XLqeAK80vzAtZZKU79hv
+49CH8PJOD09OhMf+sjkk54E/n86nJd8nSvlN9+UVTeGpHo4r4uCLx+6vWQor
+K6R+tIDr1+37cBQebHhjSZUj1rMp7i5PYa5xf2sYPGdQnxsdZuF5fF6/+CFw
+3N/3Q61gm8QFY0odsJ49ST/kB5vdmvVnLayQtlIxBe79ST6vN2wTNHLtS9jA
+YMHugglYz6b9/aAyG+83KSt8l8CZg2+6jIWj1uhO6wx/abfjxlrYIjvS8ZI9
+1rMXk4adhm9sSZg8C551psvhd7Bps5Nne3j/1nJFDU98nwzJWJ86Xsrfn5m4
+1gF2tEs/NhnmDBd+3Az/83As/2kn5a3kB7tegB9GRGodhAMrG27UwDnffZfY
+wGcvXBrWcw7W79M1hTXjsJ6Fbzw8BU6uaBuyG+4711ZpG+wfeyrZGJ4xUmFd
+Diwv81375Vgpv6fjg49f4REjSs6HwHer9rn2nyvh2yaZTdSF2+e435wOx60c
+9ePBGKxnUX2GR8BelwtOBsCrF344nA9Xj3mzqCecMTpD6Sf8zHCb0S1brGeq
+q9bpekn4nklZHZfAvWpH1syCC875fu8MT8v767oH7hic+j7bRsrv3n/zZiE8
+c6hPtSd8e8mO4X/gsS8z6jlYxmbykaHz8Px5crn0tDXWs27qHefDGufO6rvC
+K7+Wr4uDue7LPFp5rGe3EmvuwQf/HT+QDL+LXzhNdj6ed7ZOq5oA91g5+JYx
+fOruRtNGKynvbNc43Afe9a37wQPwzp7ZRw7D7zV0Fa3hW983dnwCP5qbuq3G
+EutZke166QKs9/VxylGwcaJCrTn84N3PpJHw0oAH01bAMrOu2b62wHrmuP/W
+MVga9O3bNriy30zDF/CbpeFpQ2CNlj6JHRfi+2d8+Iqno7GePfjQ0QZ+bfjV
+ZhMcdjxjfQBcMelC34Hw9fWratNgt7xypfvmWM+mjJr+Gh5+0lMuADbUabul
+tkjCL9a1lu8F+7TdNBwPD1+8sVuhmZRPLt2RuAGu2aFqvAyuSJusfA5WP9M2
+qyvcJVh9w3t4aavV3mumWM+mV9R298a///7S0oXwVoOj0yfBDkdy+nWCr7Zf
+VBACq1t823BplJRvejF4xCU4eq9flSc85Gxj4md40m2bafLwom3Zyn0W4/P4
+d2bZ2ZFYzzw2bXCBT8y4OmcG/NxwzKcweFS7Bb9kYRWFDm5X4b+aUw6mmWA9
+e/2goAH2vLfZ0RkOzto/YqCPhG8cVS/faoz1bOfMo+5w4PZDj47B3+f27bQb
+rngVdmIirD/q44absLHXme1NRlJ+vvKpT83wHbNO/kfgg9Wr3AYvkfDtd51Y
+Nh4uyxlVOAcOCvFb3TAC61l024j9MGe1els8PG7RraNF8NZPJ47Zwpsswju1
+wT0yFB58MZTyl9ScNhr64vOeHi+Jgetr1T8vhB8ru423gnXyK9wSYPl/VrE1
+w7GexRwtfACvTXZqjIYP+C4ykluK93vtsBnm8CMbg6RRsEpq9b3qYVK+Q/fv
+nZbCSe7zHXfBNvXZG4/CDnMlz0fC6ws2fS6DT70vWP52KNazhDEzOiyT8LEq
+x9R2wl9WdrhtCbdTPHzTCNYe/9DID1ZrO7e5cgjWs14xSSdhTbVKuzA45sdM
+lZfwPr8+Wobw/bt9N6ksx/pvH9haYSDlpUc/fh4DJ199U7MVtgo8NWMtLP/H
+/e1QeM1Ev9un4PX61e9fDMZ61t/U+B3svHZd0xa4tqUtqesKvD910lIbAvd9
+eEvFAZ6scdv8ub6Udz8Rvmkz/CN37YoQeM8Gpy+Z8C89w3OD4eKpXd1r4LCI
+r3+f6mE90315W2ulhP+tdGpaMDz631HjKXDJsyVX9OHVZYuSt8Jnu+kOfqor
+5U+lG3TOgdf+eZcSBL8P/r7pK6yXETtcH+7ldvlLv1V4n5s2trBMB+vZkM3u
+0+GBOp8WBsG75cbe2Qk7Ooaq6cN3yjuY5MOq3zrfKxuE9ezcw+Qf8FQ+OioI
+Nt0e01nXT8J38pGZqw+vnOWxeRa8Jn6WxdOBUj5tRL+6aLim7cSAYPidQo17
+IVx1q7z7YFjzzak7v+EePZq7PxuA9eyin8nQ1XgeH/x7QAgcEWF6bB78SPed
+hQF8y+tf5zh4O39q7nNtKf93VMHme6v/ex+YEb0FNu60s07GH9/ffu/vDYGX
+vXeaaQy/+jKpS3l/rGdXuhYthuXM9i3aCr+OfmlyGK7bkVk4DNbwTjr2GL6r
+mD78ZT8p72TprSoNkPBNX9ekbIfDugwJMod/e2nqj4Cvf/petxzeFht1ubIv
+1rP8yzOPwYG5T53DYcPYzUXP4TLZLy3G8JKlY0d2DMS/T+z99Ld9sJ7ZKh63
+hotOb1gcCb/s/kg1AB4T+MPQFO7yLSYoDf7R10j+fW8pP7HQ42slnPXatDYK
+3nqwn4faGny/v23/dDR8bVVNkR18yS3qfk0vrGfjT4/cAG8LePV4Hzy09+rj
+Z+GtvrXveHjRT1O19/BC3/NtX3pK+cTif0Hd12J9SDEZeAB+frTg60TYd8rq
+GWPhzmt2eoTAd+MXxzVoYT2bNOXuRXjjxS5Vh+AQbY1Rn2HFZ36mE+Cc3y+P
+916Hn6+hWxOaNLGePUxSc4FPNYxTSIb1T3oHh8HHplwKmQzP3zikPhceHVIq
+be2B9cz5h0cD/PjiwbgUuEw35+6A9fjz6qds7AorywSNcoctfg98JQuPezr2
+xC740Ir3Uae7S/nNGYpdbsLqOXZOM+FLIY+Cm+EnHRw15eFvbrH1+hvwPBH7
+reFCN6xnQ2fNmgNf2TuidC48V9K/eB+saax2Qxk+UFEzqggefDbyyhUNKf/4
+3OkTf+HvpkfzveEOYau7GG7E96vU8ZE6bDvbLGQhHDkpou5GV6xnRjLf4mGL
+MXPUV8AXOhTOegB79ioc3xP+8mZncftNEv6eau72u+pSfsClKaaj4G3T+ceB
+8KxIjZO+8NV+U3QGwDHzXnU5Ct9O+7LjcResZ6bJIWWwzsDOzZthqcribwqb
+JXxEce5yA5j/MGS2JXz3Ud33cjWsZ7k/ilfB1cuTtoTB5/bkmJ6EJa+e9zKB
+a72DTlbAW512F1SpSvl+VuPUVYIk/DvZW4HRsLu60pYx8F0df2MreO/nR9/W
+wJ3+JrZ96Yz17Hrs7FNw5sWxT+JhubhZ997ClZFzM8fDo5f1N+sajJ/fnMbD
+TSpiDwfbBTTvP6Yi9nBw+q+lcVNVxB4O/rDO5YSMitjDwd+NU/NOdxJ7uBAJ
+/8fLp9qjk9jDwU7mMV0UO4k9HLz0l57TZWWxh4N/PRkYu0hZ7OHgm9KwWnVl
+sYfbgt/fEke7Wx3FHg7Wn+N3dlVHsYeDR7e0aPftKPZw8OonlcceKIk9HLxG
+t8+wTUpiDxcq4buY5BYOVhJ7ONja6Jx3haLYw8F9Pf+qhyuKPRws23j4/ihF
+sYeDp+ns2/Oxg9jDbcWv16JibkwHsYeDOy9bNXpsB7GHg01+Tu/3Q0Hs4bb+
+tx8WrpasIPZw2yR8xi9OZaqC2MPBOXX3NGQVxB4O7q5frndWXuzh4Oi6wfae
+8mIPB6uturlKWV7s4bbj8/kz4eRVqdjDwWVZFz76SsUeDr5brzhCSyr2cPCo
+t0d2FHNiDwdX3V72eR0n9nBh+PW8DXDT48QeDn7me/HhC4nYw8HrT+q77JCI
+PRzc5WHpu1ESsYeDzQac3VAjJ/ZwOyT86fdX+sbJiT0c7OHU9MhOTuzhYLdj
+syKb24s9HFzV55vzyfZiDwcvlGQMmN5e7OHCJXxA9O520vZiDwc/lDvw6WI7
+sYeDZx4pfLWwndjDwfpHu77s2k7s4eANE7a/L5QVe7id+Hmp6Po7QFbs4eC5
++292HyQr9nAwn71zzDMZsYeDjbYuXbddRuzh4IkWi66MlBF7uAh8PvoGSmv+
+cUIPB//yS5gdB7MeDl7j/zh/PMx6OLh1UY8hLW2c0MPB8yJXnkiFWQ8XKeGz
+Bz3VdYdZDwcPWzsuuwPMejhY71b+lCt/OaGHg4c62DYtgVkPBzc63TuuBbMe
+bhd+Pru5zylp5YQe7j9XfxqwCWY9HKz9a0PTEJj1cPCAWOXHr/9wQg+3W8KX
+yx3OjoJZDwc3huqmWcOsh4PHzTxzovE3J/Rw8Itig9PJMOvh4Oc9kvNdYNbD
+ReH9K6JjpQRmPRx8fMES7lILJ/Rw8OFPOabeMOvh4Nlzfgd2h1kPB1cp6ly/
++4sTerhofJ4MbdQ3wKyHgzt1t1ttALMeDt4mMa6sbOaEHg5eaNHBOQpmPRy8
+iSt4bA2zHm4Pvh9OzJv1vYkTejh49fzqxmMw6+Hg21vH7p0Gsx4Otpyy1VIe
+Zj0cvLFj0o/LPzmhh9uL5znZ+KwlMOvh4At+S4J7wqyHgwvTu7g9+MEJPRz8
+5Nte02CY9XDwlPCPA0bArIfbh/fDvI4933/nhB4OnvBCrncszHo4eEuvYn17
+mPVwcOqz2bZ/Gjmhh4PlJl5bcApmPdx+vH/e/rjHE2Y9HDxx14u7nWHWw8EH
+P0d3vNXACT0c/H5Qp5kBMOvhYNuIyZk6MOvhYvD5nzula8U3TujhYP9G1dBI
+mPVwsNP2Pa1WMOvh4Ik+9zc31nNCDxcr4We8v9XxOMx6ODjMZvWJ6TDr4eCe
+98rtO8Csh4ND7jU1537lhB4OdthVeHY5zHq4OKx/HuNX94NZDwcPD15nU1bH
+CT0cbD9+pmYYzHo4+GprTZsZzHo4+Edt37q6L5zQwx2Q8Jtnyn1IhFkPB3c/
+tKvWGWY9HJzy+1ozB7MeDjbP36uS85kTejhY0UzRaCnMerh4rE8X+nv1gVkP
+B2tuqIh/8okTejg48dWwym0w6+HgugH9BpvBrIeDOyadCq2r5YQeLkHCjzzy
+6GMizHo4uNgnwtUFZj0cPHXqyxIpzHo4OCQ5z+lKDSf0cPCoDKPKZTDr4Q7i
+15djGtAPZj0cvEWrpNvTj5zQw8En+9QV7IBZDwevUI/baAGzHg6Osr9n1fCB
+E3q4QxL+rWKY0nGY9XCwd3pRlRvMejjYNXB3gRLMejhYNu/Zufz3nNDDwQ2P
+ElNWw6yHO4zn/X81qTow6+HgdXGns15Wc0IPB3/9XF8cBbMeDnafkP5lDMx6
+OLiL3GuNlipO6OGO4PO+eMfEUzDr4eBDxSmRc2HWw8F168yfq8Osh4N33rEy
+uPuOE3q4RPx5SS5EbIJZDwdv3hLTZAizHg4+ufe9z8e3nNDDwfnbj9QmwKyH
+gxPO3VjlBLMe7iieL+ZN5CQw6+Hgi18tjl1+wwk9HLzsxB7HZTDr4eBnL+3/
+9YNZDwfHVs/NffaaE3q4JPx6VF5siYBZDwdvzzzlag2zHg4u7VM5vKmSE3o4
+OCvdu1s6zHo4+OhJB4U5MOvhkvG87b1VTh1mPRzsYt2lw91XnNDDwa+3NXXf
+DLMeDv4XoWdkBLMeDpZNOe1W+5ITerhj+PMZHLz9MMx6ODhjWWK+M8x6OPj6
+zQ5yCjDr4eDdQdemXKvghB4ONvp9OdUPZj3ccQn/d+sfRV2Y9XDwzLXBayrL
+OaGHg+t1J9TvhVkPBwfXOa+wh1kPB8v1OPSn7QUn9HAnJHyMRDv6Asx6OHgz
+93GYD8x6ONjQr7q8N8x6ONgxqcfusuec0MPBez9tn7gTZj3cSQnfkqTX1Rpm
+PRyc0E+2tukZJ/Rw8LV8hcIMmPVw8JNSm1NeMOvh4MCLaYe7wayHS8Hn4apV
+/P2nnNDDwSnWMomhMOvhYD7h0xkzmPVw8IZ+f4u+lXFCD5eK58ehJl9PwKyH
+gws092nNglkPBw+3UndVg1kPB7c2XootKuWEHg62jlpXvRlmPVwa3rdXzDQ3
+gVkPB6/84nbwyxNO6OHgebNXSpNh1sPBr3onb5gBsx4OLgn/8qcTzHq4dPx+
+tjhsLXzMCT0cnFCQ120jzHo4WG/CuIsjYNbDpf/3/v5q1qdHnNDDwbs/hHY6
+CrMeLkPCd71gWjwdZj0cbH78d5QyzHo42Ea9cE7BQ07o4eA4z3izDTDr4eDS
+1/69RsCshzuF57eGaUqfHnBCDwcPbzCXOwqzHg52M+vPucGsh4OX6SqqdoJZ
+Dwe/7tE4qPA+J/Rwp/H7t+Sp3UaY9XCwZ+DFlUYw6+FgrYNRxz+XcEIPB+81
+mVeVBLMeDuaODdZ3h1kPdwbPT9afN3SGWQ8H5y899PzOPU7o4eC5W60tg2DW
+w8HnP5SdGgmzHg4urncbVF/MCT3cWayvbXfSTsCsh4PDV2mPmg2zHg42SV38
+QB1mPRx8QTZ2RcldTujhzuH7tTxNcyvMejhYaV/yw9Ew6+Fgm4jNu38UcUIP
+B8v2t3DLgFkPB1dfKtebD7Me7jzeP9KmSbVg1sPBk2aeqXtyhxN6OLhSt+rV
+Tpj1cHBiwLdntjDr4WAuqaziz21O6OEy8fOjFF2bCbMeDnbQ6CvrC7MeDn7T
+L7SfNsx6ODgkKnviy0JO6OFg/+u5Iftg1sNdwPuJxu7rjjDr4WCr7wYdJDDr
+4eA1l2I9rhZwQg8HFxbczfaHWQ8H2wUV9BoCsx4uC78/9tt2fbjFCT0crLtF
+Uf4IzHo4OD7Keed0mPVw8OxSj24qMOvh4IXnBpy5c5MTeriLWF/CMyYHw6yH
+g+tu1reYwqyHg/Xy60413uCEHg7WqTq2JB1mPRycGaU2Yj7MerhL+HwNHiXX
+E2Y9HLxCs/Prsuuc0MPBna4fvLkLZj0crB7y4pwdzHo4WPtmQaoMzHq4bAkv
+X+uZfjmfE3o4+IrbiYurYNbDwXMDY4v1YdbDwXZpwz9V53FCDwfXTvNTPQyz
+Hu6yhP/8zn3MdJj1cHCvCx82q8Csh4M3DVMvKLrGCT0cPPxatdoWmPVwOfi8
+33T2HQ2zHg7mTs65//MqJ/Rw8KQHCmZnYNbDwSbJE894w6yHg6/u0BvSD2Y9
+3BU8z306fLEilxN6OHiDfur4/TDr4eCILLvqSTDr4eDa+jU75GHWw8FLbMxH
+3bjCCT1cLn4/1SO/rYdZD/efH/qeN4ZZDwcXVDzfWJ/DCT0cnJH4YGoqzHo4
+eM32ycPnwayHu4rf/5Zp3XvCrIeD586u7vDsMif0cHB2nyZJNMx6ONgnNbyD
+A8x6OFjWK7GbBGY93DUJP+KC8bC8bE7o4eC3CvZT1sKsh4M1Sp6vHwGzHg7u
+6F11pu4SJ/Rw8MCxi+pOwqyHy8Pz4X0vIy+Y9XCw7orSUC2Y9XBw5t6cyqcX
+OaGHg48eU7OJhlkPBw9XrjztALMeLh/fh+bdBnAw6+Hgdgfyj+VncUIPB8dF
+lxmsh1kPB6+Jds03hlkPB+fIWXl8u8AJPdx1CX9kepRsOsx6ODi2ye7sApj1
+cPDoSfO9+8Csh4Ndiqt0KzI5oYe7IeEflt/6sR9mPRx8v1ZS5ASzHg6OWXD8
+hCLMejj4yJWjkYXnOaGHg8NmtGwMhlkPdxPvU6fSAkfDrIeDp2tfWNd8jhN6
+ONjdoMv28zDr4WB/k6KDS2HWw8Hapx9d0YFZD3dLwiu3H1xddZYTejhYeuyp
++hGY9XD//XWZh07uMOvh4Inbuu5Xh1kPB2udSHn38Awn9HAFeL64H2oaAbMe
+Dj68IvWAHcx6OLjid5f27WHWw8GXXxX4XzvNCT0c7Lsjp2EtzHq4Qrz/LGsI
+MIZZDwf/bPWWNJzihB4OVjzR+1AGzHo4OLBczdIbZj0cbKc4pqY/zHq423g+
+Tj2d8DqDE3o4WHfQVLcEmPVwsNHPwb2mw6yHg/dvtahThVkPB4+cEFJwP50T
+erg7+PxltZwIh1kPBxeMSooeB7MeDvayW7e1Hcx6ODjZOSjkWhon9HDwlIfn
+w9bBrIcrkvCzhqnEmcCsh4NrPsScbUzlhB4Otlg09vFpmPVwcJl2j78+MOvh
+YOe9asMHwayHu4vPz8Bhy6pSOKGHg1dOXXbhCMx6ONhk5732HjDr4WCDsfYe
+3WDWwxXj/eTHu6ulJzmhh4OrlON0omHWw8G68osOToRZDwefdZ3UvQPMejg4
+w9fxSOEJTujh7kn49Tc8h2yBWQ8Hp9zbVmgFsx4O/iKTv6j1OCf0cLBemYLq
+ZZj1cPDqPK8Cf5j1cCVYv02Kgg1h1sPBE86Y29Uf44QeDn56NFs9A2Y9HLwk
+1LLOG2Y9HPy7pLhkAMx6uPt4n/w5+9K7ZE7o4eCEVU2pR2DWw8E+uVHHPWDW
+w8HpEwandYdZDwfr7b996WkSJ/RwDyT8O7W59/fCrIeDf1s21znBrIeDb+0K
+66oMsx4Ozl+vNr74KCf0cHDCppiQMJj1cA/x56OiUjgWZj0cvCF1k2p7mPVw
+8JWbbxblJ3JCDwfbPzcq3AizHg4+O2etgTnMerhH+PU/zTj06wgn9HCw1oWS
+rhdh1sPBGn7lcX4w6+Hg8shH/YfDrIeDH246d+nrYU7o4R5L8Ny3xiUDZj0c
+/K5kwO/FMOvh4Ky+l1IGwayHg3VG6s95f4gTergnEn7bjqA+yTDr4eDx+7Jq
+58Csh4PVnty50gtmPRx86Xp2zMuDnNDDwcYvt6yLh1kPV4q/flhnkRvMerjS
+/+4THPfoCrMeDp7RscW9NIETejj47Pm+Xntg1sPBGxp7rnKCWQ9XJuGL7L+E
+K8Osh4MfGO/MuBfPCT0c3DSi5Wk4zHo4+NF1ow72MOvh4N6zRo+TwqyHe4r/
+/RblnQUHOKGHg/9kpj7fArMeDv60RGmoDcx6OLiznvEuGZj1cLDq0n5N1+I4
+oYd7hj//zMcLN8Ksh4MVNo55Yw6zHg7WHh/g9TuWE3o4eN6+hXXZMOvhYPu3
+asGBMOvhnuPP4/SGniYw6+Hg3+uP3PgRwwk9HHyqaN2KTJj1cPALjY6DVsGs
+h4OrP7h8GAazHu4F3ocuOZ2u388JPRys2OHfptMw6+Hgp56z3ZbCrIeDX5gu
+NRsMsx4OntVdb8DnfZzQw5Vjfdq8t1sazHo4uPbryS6LYdbDwfNrFnTXgVkP
+B4/5Wjzw415O6OHgrJDno0/ArIerwPOtTvjMBTDr4eCnc16HaMOsh4OvnXl6
+vmoPJ/RwcErsss9JMOvhXuL5JOH4YC+Y9XDwe8t1AX1h1sPBFXKf77yJ5oQe
+DtZa2dQ/EWY9HOwjTdjuCbMe7hU+vw7PvveCWQ8H972R6l0ZxQk93Kv/zuNV
+PhyCWQ8Hn5mm6DsLZj0c/GNj7G8tmPVwlXi/qM2MfrmbE3o4+Fgvz+EHYdbD
+wTZJsS9mwqyHg0tbZoZrwqyHg6vS0mwrdnFCD/ca70fmIZIEmPVw8J5hbx+4
+w6yHgwd3LkzqAbMeDraYN3RTeSQn9HCwySlNr3iY9XBv8Lznv2OSO8x6ODjY
+NtC2B8x6OPjAoSq+PIITeji4v2LJuHiY9XCwv5qhqzvMeri3El7FsrNvD5j1
+cPBJ1cU7y3dyQg8Ha3QflRkPsx4OXvZiQ5U7zHo4+H2FsZYmzHq4dxL+Q8rc
+WRXhnNDDwVxR24kEmPVwcIcCRfyOcUIPB1cP2O6sBbMeDs5cvfziyx2c0MNV
+SfjbZjf7HoJZDwfHywbvnwWzHg5+PvVk514w6+Fgt2yjmMowTujhqrGe5A7q
+fwRmPRw8r2ZTtifMejh42+1R0/rArIeDNaqdW99s54QeDi67cz/tKMx6uPf4
+vpZJmesFsx4OvtS1sk9/mPVwsGXM8pqqbZzQw8HZHWZmH4NZDwcX/zsctQBm
+PdwHrCeyZisHwqyHg0ck6Ll/3MoJPRx8ecZyhxSY9XDwqCJu7GKY9XCwRUD9
+OD2Y9XAf8b5eN2jK51BO6OHgr1dOz8uAWQ8Hxy8L2bQUZj0cfGfP0aNDYNbD
+wXVZHUrqt3BCD1eD778FuTLnYNbDwY+GZo1eBbMeDp6V9D1oBMx6OHi9Q0DJ
+jxBO6OHgsMvm/S7CrIerxXq23mZzIMx6OPhqrx3Vo2DWw8GhI5Sn/g7mhB4O
+9h//8PYVmPVw8KMvJWM3wqyH+4S/31nJPUuY9XDwjb4B7jIw6+Hgwkc9G64H
+cUIPB6s6/dm9BWY9HPxocMeRY2HWw33G+vtrygcOZj0cbGt759CdzZzQw8Ej
+Di+bFQ6zHg7WiLcd4AizHg6WvTP2Z0eY9XBf8Lx82a/kwSZO6OHgfv+KT0XD
+rIeDffQnxjjDrIeDKx783KYOsx6uTsL7bbq1+dlGTujhYI+iS0EHYNbDwQ02
+93fMhFkPB+du5BJ6wqyHg/2VPC+83sAJPdxX/PpCnpYdhVkPBweuXPJvHsx6
+OLjHMq3hA2HWw8GzFGt8atZzQg8H4yEzIw1mPVy9hF8bUNTkC7MeDu7r+3L8
+UJj1cLDCVLnkhnWc0MPBEblWkgsw6+HgkXzk8gCY9XDf8Ly38vPbUTDr4WCt
+D24ef9ZyQg/37b/z0dLKqzDr4b79N+9j5uIgmPVwcOHJr39sYNbDNeB5qDU8
+RgKzHg5eu2mo6Z01nNDDwa23yqvCYdbDwfcW7IyZCLMeDnZstpqiArMerhH/
+PirNak8COaGHg2+NO1O5H2Y9HOxjuOicG8x6OLibT88ITZj1cHD3rQ+XVQZw
+Qg/3He8vPTbPOAqzHg4eenOQ43yY9XDwbfWicYNg1sPBl9Pm2n/y54QeDjbv
+8c35FMx6uB8S/kLrqoUrYNbDwdmfaoJGwKyHg5U3OiU3reaEHg4+6ZhSchlm
+PdxPfF83fv23AWY9HOwl39+Mh1kPB08fZLuhPcx6OHhk7cTCQj9O6OHgdx+t
+u4XDrIdrkvALr/ZcNRFmPRzcTu7NExWY9XBw/2nbLUpXcUIPBy+apHomFmY9
+HBy3fbPOTJj1cM34fjhYktoLZj0c/E7nj+G7lZzQw8GbbnO3jsOsh4NVu9R7
+LIZZDwe7pp3/OxhmPdwvCT9soNOJbys4oYeDc/oXTrsAsx4ONrNS67QGZj0c
+PFDd5IE5zHo4uL+NQey/5ZzQw7VIeOm85oU3YdbDwWVd9lpuh1kPB9/80dbT
+AWY9HGyYaCrpBLMeDr54wfrH42Wc0MP9xq//ofrnGJj1cLBJ1IVad5j1cPDY
+vVrfesGsh4N3Bzq2vVvKCT0cvK/CpstJmPVwfyS8ZHbb8CUw6+Hg/EMbpw+F
+WQ8HPzXNC/3uywk9HBz66PrlSzDr4WBTudCm9TDr4VrxPLNSzpyHWQ8Hz7ps
+vV0OZj0cHLferOLOEk7o4eDlbnUmkTDr4WCLb27xU2DWw/3F+1HVeklXmPVw
+sPYTlzXlPpzQw8FVnu8aD8Osh4Nr9fr7z4NZD9cm4YPK1P8NglkPB2vLXo76
+spgTejh402RFvXMw6+Fgby/FYn+Y9XDw14pLfmYw6+H+SXi72Z20/3lzQg8H
+V+5UeXkTZj0c7CDNSQiDWQ8Hz/DrMG8izHo4+N8qGUNVmPVwMniuT42Xf7aI
+E3o4+OPlZx8SYNbDwYrjL96bA7MeDt7RbJQzAGY9HGzvO/XMp4Wc0MPJcvyC
+CR0zzsDCfDj8c0zmn10NC/PhOP7PE9dcU1iYD4fn0jtvHrQt4MT5cBxflN3+
+801YmA+H72X7qx13wMJ8OI6f1Edp1CRYmA+H9+53XxerwcJ8ODzHGs9Pfj6f
+E+fDYd245lN9CBbmw+G5SFvWYB4szIfD57bjwI06sDAfDu+tvZ6X1s3jxPlw
+HL9KpqtRJizMh8NzqFtl/BpYmA/H8dYlQxUsYWE+HD7nnMLm9rAwH47j96V7
+t97x4sT5cHiPmzcxeBcszIfDr+dpVkcXWJgPx/El6YlHu8PCfDj8vu9Usng9
+lxPnw+H3o9ev18dgYT4cx59X8gr3gYX5cByf0DZ+9DBYmA/H8QMPpf/8OYcT
+58Phzys67OIVWJgPh3UktHJTMCzMh8N7aO+MSXawMB8O64bitwEdYWE+HH5d
+31Pknnhy4nw4/O+Dyz7FwcJ8OPw+zlr9fDYszIfDe5ZRaIk2LMyH4/iHp9vf
+/TSbE+fDcfywNQ0lZ2FhPhy+p80dXwTAwnw4vCclq34ZDQvz4fCe4G7LtYeF
++XB4jun4alDRLE6cD4f3YO9Kp92wMB8On1P1ccGusDAfjuPz8lUva8LCfDj8
++WrY/nrrwYnz4Th+bUGZZQoszIfDOhZYFLEMFubD4b30hdY7I1iYD4d/bvx9
+yz8zOXE+HMe/mf8q6ToszIfDc8VHO+UwWJgPh8/pQ6XgSbAwHw6/rmK9P11g
+YT4cx3cNS9xQ4c6J8+GwDmT6SpJgYT4c1pXWyP3e7mIPB7/r3N5gqLvYw8HO
+R+8W/5wh9nCwmnvVytwZYg8HD/js0HvLDLGH6/jfc3P7UvsZYg8HWztLo1Rm
+iD0cPG7HdOdnbmIPB+9xbex52E3s4WBN76f1893EHk4Z69TKdkX6bmIPB5/t
+45/aOF3s4eCDgwyiL08Xezg41EQ3KGi62MN14vgpbYsC7KaLPRzcc1iNn/J0
+sYeDR2xMWVM2TezhYOXYk6EHp4k9HOw2tDp23jSxh1Ph+K/NHuf1pok9HFyZ
+pFLa4Cr2cPD8d39bs13FHu6//753f4MgV7GHgzVrN8+3cxV7uM743KirJiu7
+ij0cfP/o85oyF7GHg0P5x8aHXMQeDrY6/nfHfBexh4Ojt8x4r+8i9nCqWDd3
+V9t9dxZ7ONhow6FzOc5iDwcfbgvpF+Is9nCq/z3n7o23dxZ7OHjC/vvdOzuL
+PZwa1k9Vw8TnU8UeDh7+K9cgcarYw8Hxv5feWDRV7OHgSQ9sZw+dKvZwcIG+
+hWzzFLGH64K/b4Fb+rUpYg8HP5+632PbFLGHg913NHSZNEXs4eBlvX1L1aeI
+PRwcVNw+4ZWT2MOp4z1szCXv405iDwfb81stljqJPRz8IMC3u7GT2MPBjYeX
+tLZOFns4WHVF8Idbk8Ueriv+/0cznkVMFns4uPDz5wcuk8UeDlblLB9oTRZ7
+OPhuytGy6kliD6eB9SlCvSpjktjDwfKL45pXTxJ7OLikWUfNYpLYw8HrGgqM
+JZPEHg7W77TMs2Si2MN1w3NHhz5R+yeKPRz8NaH89qyJYg/331/fdJAbOFHs
+4eALPvMdvzqKPRx8RHP4gYuOYg/XHT/3DrJ1mxzFHg6+nvnEzs5R7OFgBZWT
+qZ0cxR4OftJjnepzB7GHg/vsdghJdBB7uB74udXp0eLtIPZwsN3R6oDhDmIP
+B2tdTP3TMkHs4WCfft7bb0wQezhYN6lXj50TxB5OE++9DcWZzhPEHg4uubfM
+RWuC2MPBcd8krdX2Yg8HH+welXbKXuzh4DtySnMC7MUeTovjRy1fo2VlL/Zw
+sEXX0tdSe7GHg10v9Ux7OF7s4WBDFZf1B8aLPRycVenv7DVe7OF6Yl1/E2yo
+P17s4eChZQHdftiJPRxcudZZctVO7OHglMiuLVvtxB4O9npw7fskO7GH64X1
+uW3CTw07sYeD255f/vtmnNjDwVt6d+iYNk7s4WDbaLP+fuPEHg5W+GrPjx4n
+9nC9Ob70p8l8yTixh4OfeMvsvj9W7OHgRdLj+bFjxR4O7rOnf8ucsWIP1wef
+h6J1o/TGij0cbLk8ddP3MWIPB+fani7OHSP2cHC0fFjvbWPEHg623Wy8bvIY
+sYfry/E7F2dVdBsj9nCw8w5uzDtbsYeDsxIHZabbij0c3LpSQ9ffVuzh4BN5
+pcctbcUerh++pxxn68rbij0crFRxPvORjdjDwdlDHo1JsBF7OPhEh+yX823E
+Hg62N1y4foiN2MP1x8/r4vI+v6zFHg5e7qdWct1a7OHg+11UgnZaiz0cHN/5
+gamrtdjDweZDJv/uZS32cNoc7zB09/UaXuzh4JgXkbvP82IPB3drtJ+/gRd7
+OPifxQ2rcbzYw8FpIT/7qvBiDzcA3vquQ7mV2MPBeUphv5OtxB4Ofvmq+ttS
+K7GHgwfmNdeNtBJ7OPhbQF6DrJXYww3k+JvFZq3FlmIPB7uGeneMsRR7ODhq
+kd2AOZZiDwfvGv3UVs9S7OHgA3fVFv+wEHu4Qfj8v2jbd81C7OHgf0NjbodZ
+iD0c/CHmuYyzhdjDwT/LbvE9LcQeDl6eNWP7x9FiD6fD8bf/7i89N1rs4eDE
+wDU6G0aLPRz86PO/kHGjxR4OntNfv1pltNjD6eLX8fGXQ4W52MPBGbLeOcfN
+xR4OXmoeOHSFudjDwftmD0g3Mxd7OLiP8UoDibnYw+nh+3bHjIsPzMQeDp4y
+4NXYeDOxh4M/PvldMd9M7OHgAs9za4aaiT0c/HLvP83fpmIPp4/PlXl1wS1T
+sYeDQ/rODthtKvZwcH1nXwN3U7GHg52fK33WNhV7OPgAb3WmfpTYww3G379r
+u3U5o8QeDl4yyMVh6yixh4NvWBr1dxol9nDwHt2jspqjxB4Ozr1w4MP7kWIP
+Z8DxU09pPT47Uuzh4Lg3OrfWjxR7OFhO62ruuJFiDwebGTy/0nmk2MPBau/W
+XH9pIvZwQ/DrlT9cctJE7OFgyfJxb1aZiD0cfKNqRYuFidjDwcuNtbormIg9
+HPzC0M6q1Fjs4Ybi85X2bckRY7GHg7ss1TjiYyz2cPDa8TnPjY3FHg6+ofS8
+m6yx2MPBF3Ys97xnJPZww/Dzv3tzRqyR2MPBB+s4mXlGYg8Hd/GXcx9iJPZw
+sElTQE7LCLGHG47vbetZfQtGiD0cfEDn4q6oEWIPB79fH9TOY4TYw8GNSlc2
+DBoh9nCw9an5fxsNxR4O/xk6ZEPoNUOxh8N/HvGSUQ03FHu4//ef9P+n/x79
+7+jvQ39f+ufQP5d+HfTrol8n/brp34P+vejfk/696feBfl/o94l+3+j3kX5f
+6feZft/pz4H+XOjPif7c6M+R/lzpz5n+3OlzQJ8L+pzQ54Y+R/S5os8Zfe7o
+c0ifS/qc0ueWPsf0uabPOX3u6eeAfi7o54R+bujniH6u6OeMfu7o55B+Lunn
+lH5u6eeYfq7p55x+7mkdoHWB1glaN2gdoXWF1hlad2gdonWJ1ilat2gdo3WN
+1jla92gdpHWR1klaN2kdpXWV1llad2kdpnWZ1mlat2kdp3Wd1nla9+l7gL4X
+6HuCvjfoe4S+V+h7hr536HuIvpfoe4q+t+h7jL7X6HuOvvfoe5C+F+l7kr43
+6XuUvlfpe5a+d+l7mL6X6Xuavrfpe5y+1+l7nr736TmAngv+95wgPjfQcwQ9
+V9BzBj130HMIPZfQcwo9t9BzDD3X0HMOPffQcxA9F9FzEj030XMUPVfRcxY9
+d9FzGD2X0XMaPbfRcxw919FzHj330XMgPRfScyI9N9JzJD1X0nMmPXfScyg9
+l9JzKj230nMsPdfScy4999JzMD0X03MyPTfTczQ9V9NzNj1303M4PZfTczo9
+t9NzPD3X03M+PffTewC9F9B7Ar030HsEvVfQewa9d9B7CL2X0HsKvbfQewy9
+19B7Dr330HsQvRfRexK9N9F7FL1X0XsWvXfRexi9l9F7Gr230XscvdfRex69
+99F7IL0X0nsivTfSeyS9V9J7Jr130nsovZfSeyq9t9J7LL3X0nsuvffSezC9
+F9N7Mr0303s0vVfTeza9d9N7OL2X03s6vbfTezy919N7Pr330z4A7QvQPgHt
+G9A+Au0r0D4D7TvQPgTtS9A+Be1b0D4G7WvQPgfte9A+CO2L0D4J7ZvQPgrt
+q9A+C+270D4M7cvQPg3t29A+Du3r0D4P7fvQPhDtC9E+Ee0b0T4S7SvRPhPt
+O9E+FO1L0T4V7VvRPhbta9E+F+170T4Y7YvRPhntm9E+Gu2r0T4b7bvRPhzt
+y9E+He3b0T4e7evRPh/t+9E+IO0L0j4h7RvSPiLtK9I+I+070j4k7UvSPiXt
+W9I+Ju1r0j4n7XvSPijti9I+Ke2b0j4q7avSPivtu9I+LO3L0j4t7dvSPi7t
+69I+L+370j4w7QvTPjHtG9M+Mu0r0z4z7TvTPjTtS9M+Ne1b0z427WvTPjft
+e9M+OO2L0z457ZvTPjrtq9M+O+270z487cvTPj3t29M+Pu3r0z4/7fvTOQCd
+C9A5AZ0b0DkCnSvQOQOdO9A5BJ1L0DkFnVvQOQada9A5B5170DkInYvQOQmd
+m9A5Cp2r0DkLnbvQOQydy9A5DZ3b0DkOnevQOQ+d+9A5EJ0L0TkRnRvRORKd
+K9E5E5070TkUnUvRORWdW9E5Fp1r0TkXnXvRORidi9E5GZ2b0TkanavRORud
+u9E5HJ3L0TkdndvROR6d69E5H5370TkgnQvSOSGdG9I5Ip0r0jkjnTvSOSSd
+S9I5JZ1b0jkmnWvSOSede9I5KJ2L0jkpnZvSOSqdq9I5K5270jksncvSOS2d
+29I5Lp3r0jkvnfvSOTCdC9M5MZ0b0zkynSvTOTOdO9M5NJ1L0zk1nVvTOTad
+a9M5N5170zk4nYvTOTmdm9M5Op2r0zk7nbvTOTydy9M5PZ3b0zk+nevTOT+d
++1MHQF0AdQLUDVBHQF0BdQbUHVCHQF0CdQrULVDHQF0DdQ7UPVAHQV0EdRLU
+TVBHQV0FdRbUXVCHQV0GdRrUbVDHQV0HdR7UfVAHQl0IdSLUjVBHQl0JdSbU
+nVCHQl0KdSrUrVDHQl0LdS7UvVAHQ10MdTLUzVBHQ10NdTbU3VCHQ10OdTrU
+7VDHQ10PdT7U/VAHRF0QdULUDVFHRF0RdUbUHVGHRF0SdUrULVHHRF0TdU7U
+PVEHRV0UdVLUTVFHRV0VdVbUXVGHRV0WdVrUbVHHRV0XdV7UfVEHRl0YdWLU
+jVFHRl0ZdWbUnVGHRl0adWrUrVHHRl0bdW7UvVEHR10cdXLUzVFHR10ddXbU
+3VGHR10edXrU7VHHR10fdX7U/VEHSF0gdYLUDVJHSF0hdYbUHVKHSF0idYrU
+LVLHSF0jdY7UPVIHSV0kdZLUTVJHSV0ldZbUXVKHSV0mdZrUbVLHSV0ndZ7U
+fVIHSl0odaLUjVJHSl0pdabUnVKHSl0qdarUrVLHSl0rda7UvVIHS10sdbLU
+zVJHS10tdbbU3VKHS10udbrU7VLHS10vdb7U/VIHTF0wdcLUDVNHTF0xdcbU
+HVOHTF0ydcrULVPHTF0zdc7UPVMHTV00ddLUTVNHTV01ddbUXVOHTV02ddrU
+bVPHTV03dd7UfVMHTl04deLUjVNHTl05debUnVOHTl06derUrVPHTl07de7U
+vVMHT108dfLUzVNHT109dfbU3VOHT10+dfrU7VPHT10/df7U/dM9ALoXQPcE
+6N4A3SOgewV0z4DuHdA9BLqXQPcU6N4C3WOgew10z4HuPdA9CLoXQfck6N4E
+3aOgexV0z4LuXdA9DLqXQfc06N4G3eOgex10z4PufdA9ELoXQvdE6N4I3SOh
+eyV0z4TundA9FLqXQvdU6N4K3WOhey10z4XuvdA9GLoXQ/dk6N4M3aOhezV0
+z4bu3dA9HLqXQ/d06N4O3eOhez10z4fu/dA9ILoXRPeE6N4Q3SOie0V0z4ju
+HdE9JLqXRPeU6N4S3WOie010z4nuPdE9KLoXRfek6N4U3aOie1V0z4ruXdE9
+LLqXRfe06N4W3eOie110z4vufdE9MLoXRvfE6N4Y3SOje2V0z4zundE9NLqX
+RvfU6N4a3WOje210z43uvdE9OLoXR/fk6N4c3aOje3V0z47u3dE9PLqXR/f0
+6N4e3eOje310z4/u/dE9QLoXSPcE6d4g3SOke4V0z5DuHdI9RLqXSPcU6d4i
+3WOke410z5HuPdI9SLoXSfck6d4k3aOke5V0z5LuXdI9TLqXSfc06d4m3eOk
+e510z5PufdI9ULoXSvdE6d4o3SOle6V0z5TundI9VLqXSvdU6d4q3WOle610
+z5XuvdI9WLoXS/dk6d4s3aOle7V0z5bu3dI9XLqXS/d06d4u3eOle710z5fu
+/dI9YLoXTPeE6d4w3SOme8V0z5juHdM9ZLqXTPeU6d4y3WOme810z5nuPdM9
+aLoXTfek6d403aOme9V0z5ruXdM9bLqXTfe06d423eOme910z5vufdM9cLoX
+TvfE6d443SOne+V0z5zundM9dLqXTvfU6d463WOne+10z53uvdM9eLoXT/fk
+6d483aOne/V0z57u3dM9fLqXT/f06d4+3eOne/10z5/u/dMcAJoLQHMCaG4A
+zRGguQI0Z4DmDtAcAppLQHMKaG4BzTGguQY054DmHtAcBJqLQHMSaG4CzVGg
+uQo0Z4HmLtAcBprLQHMaaG4DzXGguQ4054HmPtAcCJoLQXMiaG4EzZGguRI0
+Z4LmTtAcCppLQXMqaG4FzbGguRY054LmXtAcDJqLQXMyaG4GzdGguRo0Z4Pm
+btAcDprLQXM6aG4HzfGguR4054PmftAcEJoLQnNCaG4IzRGhuSI0Z4TmjtAc
+EppLQnNKaG4JzTGhuSY054TmntAcFJqLQnNSaG4KzVGhuSo0Z4XmrtAcFprL
+QnNaaG4LzXGhuS4054XmvtAcGJoLQ3NiaG4MzZGhuTI0Z4bmztAcGppLQ3Nq
+aG4NzbGhuTY054bm3tAcHJqLQ3NyaG4OzdGhuTo0Z4fm7tAcHprLQ3N6aG4P
+zfGhuT4054fm/tAcIJoL9L85QeLcIJojRHOFaM4QzR2iOUQ0l4jmFNHcIppj
+RHONaM4RzT2iOUg0F4nmJNHcJJqjRHOVaM4SzV2iOUw0l4nmNNHcJprjRHOd
+aM4TzX2iOVA0F4rmRNHcKJojRXOlaM4UzZ2iOVQ0l4rmVNHcKppjRXOtaM4V
+zb2iOVg0F4vmZNHcLJqjRXO1aM4Wzd2iOVw0l4vmdNHcLprjRXO9aM4Xzf2i
+OWA0F4zmhNHcMJojRnPFaM4YzR2jOWQ0l4zmlNHcMppjRnPNaM4ZzT2jOWg0
+F43mpNHcNJqjRnPVaM4azV2jOWw0l43mtNHcNprjRnPdaM4bzX2jOXA0F47m
+xNHcOJojR3PlaM4czZ2jOXQ0l47m1NHcOppjR3PtaM4dzb2jOXg0F4/m5NHc
+PJqjR3P1aM4ezd2jOXw0l4/m9NHcPprjR3P9aM4fzf2jOYA0F5DmBNLcQJoj
+SHMFac4gzR2kOYQ0l5DmFNLcQppjSHMNac4hzT2kOYg0F5HmJNLcRJqjSHMV
+ac4izV2kOYw0l5HmNNLcRprjSHMdac4jzX2kOZA0F5LmRNLcSJojSXMlac4k
+zZ2kOZQ0l5LmVNLcSppjSXMtac4lzb2kOZg0F5PmZNLcTJqjSXM1ac4mzd2k
+OZw0l5PmdNLcTprjSXM9ac4nzf2kOaA0F5TmhNLcUJojSnNFac4ozR2lOaQ0
+l5TmlNLcUppjSnNNac4pzT2lOaj/19O5h/V4/388y+0tYQ4zp5ybM5tTzty1
+WiiEIiTHnHLImbE5NVpqzqSwhK9i5nxqyNDUzPk0Z5tTVMgpTPk9vV/v52//
+PS7XNfH53Pf9vnc993jQi0pPKr2p9KjSq0rPKr2r9LDSy0pPK72t9LjS60rP
+K72v9MDSC0tPLL2x9MjSK0vPLL2z9NDSS0tPLb219NjSa0vPLb239ODSi0tP
+Lr259OjSq0vPLr279PDSy0tPL7299PjS60vPL72/9ADTC0xPML3B9AjTK0zP
+ML3D9BDTS0xPMb3F9BjTa0zPMb3H9CDTi0xPMr3J9CjTq0zPMr3L9DDTy0xP
+M73N9DjT60zPM73P9EDTC01PNL3R9EjTK03PNL3T9FDTS01PNb3V9FjTa03P
+Nb3X9GDTi01PNr3Z9GjTq03PNr3b9HDTy01PN73d9HjT603PN73f9IDTC05P
+OL3h9IjTK07POL3j9JDTS05POb3l9JjTa07POb3n9KDTi05POr3p9KjTq07P
+Or3r9LDTy05PO73t9LjT607PO73v9MDTC09PPL3x9MjTK0/PPL3z9NDTS09P
+Pb319NjTa0/PPb339ODTi09PPr359OjTq0/PPr379PDTy09PP7399PjT60/P
+P73/7ACwC8BOALsB7AiwK8DOALsD7BCwS8BOAbsF7Biwa8DOAbsH7CCwi8BO
+ArsJ7Ciwq8DOArsL7DCwy8BOA7sN7Diw68DOA7sP7ECwC8FOBLsR7EiwK8HO
+BLsT7FCwS8FOBbsV7Fiwa8HOBbsX7GCwi8FOBrsZ7Giwq8HOBrsb7HCwy8FO
+B7sd7Hiw68HOB7sf7ICwC/L/nRDTDWFHhF0RdkbYHWGHhF0SdkrYLWHHhF0T
+dk7YPWEHhV0UdlLYTWFHhV0VdlbYXWGHhV0WdlrYbWHHhV0Xdl7YfWEHhl0Y
+dmLYjWFHhl0ZdmbYnWGHhl0admrYrWHHhl0bdm7YvWEHh10cdnLYzWFHh10d
+dnbY3WGHh10ednrY7WHHh10fdn7Y/WEHiF0gdoLYDWJHiF0hdobYHWKHiF0i
+dorYLWLHiF0jdo7YPWIHiV0kdpLYTWJHiV0ldpbYXWKHiV0mdprYbWLHiV0n
+dp7YfWIHil0odqLYjWJHil0pdqbYnWKHil0qdqrYrWLHil0rdq7YvWIHi10s
+drLYzWJHi10tdrbY3WKHi10udrrY7WLHi10vdr7Y/WIHjF0wdsLYDWNHjF0x
+dsbYHWOHjF0ydsrYLWPHjF0zds7YPWMHjV00dtLYTWNHjV01dtbYXWOHjV02
+dtrYbWPHjV03dt7YfWMHjl04duLYjWNHjl05dubYnWOHjl06durYrWPHjl07
+du7YvWMHj108dvLYzWNHj109dvbY3WOHj10+dvrY7WPHj10/dv7Y/WMHkF1A
+dgLZDWRHkF1BdgbZHWSHkF1CdgrZLWTHkF1Ddg7ZPWQHkV1EdhLZTWRHkV1F
+dhbZXWSHkV1GdhrZbWTHkV1Hdh7ZfWQHkl1IdiLZjWRHkl1JdibZnWSHkl1K
+dirZrWTHkl1Ldi7ZvWQHk11MdjLZzWRHk11NdjbZ3WSHk11OdjrZ7WTHk11P
+dj7Z/WQHlF1QdkLZDWVHlF1RdkbZHWWHlF1SdkrZLWXHlF1Tdk7ZPWUHlV1U
+dlLZTWVHlV1VdlbZXWWHlV1WdlrZbWXHlV1Xdl7ZfWUHll1YdmLZjWVHll1Z
+dmbZnWWHll1admrZrWXHll1bdm7ZvWUHl11cdnLZzWVHl11ddnbZ3WWHl11e
+dnrZ7WXHl11fdn7Z/WUHmF1gdoLZDWZHmF1hdobZHWaHmF1idorZLWbHmF1j
+do7ZPWYHmV1kdpLZTWZHmV1ldpbZXWaHmV1mdprZbWbHmV1ndp7ZfWYHml1o
+dqLZjWZHml1pdqbZnWaHml1qdqrZrWbHml1rdq7ZvWYHm11sdrLZzWZHm11t
+drbZ3WaHm11udrrZ7WbHm11vdr7Z/WYHnF1wdsLZDWdHnF1xdsbZHWeHnF1y
+dsrZLWfHnF1zds7ZPWcHnV10dtLZTWdHnV11dtbZXWeHnV12dtrZbWfHnV13
+dt7ZfWcHnl14duLZjWdHnl15dubZnWeHnl16durZrWfHnl17du7Zvdd7OHCl
+hD3FQsF6Dwe+0nhe0+NgvYcbiPOQ551hlTyV7OHAgw6kbpoM1ns4cMy4Fi/P
+gPUeDpzfpVXnOl5K9nDgJk1O7ZwD1nu4Afg+OrxwvQHWezjwpJVb1zf7Rske
+Drz+en7DhWC9hwPf/zXjjwyw3sOBk1+MCvXwVrKH64/3n6hol9VgvYcDfwjy
+vfYKrPdwYF/vLRu6dlCyhwNnNvxlehJY7+HALXP9+jt2VLKHC7bso3PjuvYD
+6z0cuO3+aN99YL2HAy+aWqdnyU5K9nDgk4lho0LBeg8HbtAgZGEqWO/h+ll2
+lceFU6r4KNnDgVsd7/ffNLDew4E94kM8L4L1Hg5cc3D12Ia+SvZw4ELPl7+P
+AOs9XBDOc42Pht4F6z0cuLhT0sO2nZXs4cDdg3zDYsB6DwdOK/mr9QKs93Dg
+sZ+e3dS5i5I9XF88v1vv7pkI1ns4cK0ZQaUcuyrZw4HL7P/zWj+w3sOBsy85
+bN8P1nu4Ppa98KDDktJ+SvZwYNXjr1ljwHoPB46eFTIjHaz3cOCI+qfDXbsp
+2cOBF7QrHDsTrPdwvS2719oyB6+B9R4OfK3Jm8fNuivZw4G/fLij5mKw3sOB
+18R7js0C6z0cOLbDzuPePZTs4QJxnjrxvuZ6sN7Dgd8WqrkiH6z3cOA6T78s
+1cdfyR4OPHeES9wesN7DgYP7Z39VMkDJHq4X3s+SN1wYBdZ7OPCtwZ5z08B6
+Dwcu883p9q49lezhwK86eTrNAus9HHh/UOLt62C9h+uJzyfk/dHmvZTs4cDJ
+fh67loL1Hg7sX3jG9qdgvYcD/zBlS7JPoJI9HHjMj+fPbQLrPVwA3t/rvHjl
+2FvJHg6c7vFprQFgvYf7+Ou/1w45CNZ7OHD2Ivft5foo2cOBZ63pW3gSWO/h
+/HE+vTB19Dmw3sOB4yrH3W7QV8keDlxi1PHgSLDew4EHJL5+/ACs93DgCUea
+hH8dpGQP1wO/vu67uvFgvYcDj2px+eZ7sN7DgZ0mtF/bu5+SPRz4arvfQveC
+9R4OvOVHn29KByvZw3XH+cb9eYMwsN7DgSf676h+Cqz3cOCn2yNd6/ZXsocD
+T/Ka1WQ+WO/huln2AYdlXe+B9R4OvO7cianuA5Ts4cBtN1Xathas93Dg02Er
+n/8H1ns48NFKzb/uPVDJHs4Pz581+fF7wXoPB55056nzZ4OU7OHAby8VDR8H
+1ns48PAxvZzOgPUeDlwx9lxc/cFK9nBdcf7q+F3rSLDew4EjRgdlPATrPRz4
+79dhCV5DlOzhwMsvHxyxHqz3cOC8PPd2BUKU7OG64P0o+JOq/cF6Dwfe9ehD
+8UNgvYcDD1vcxrniUCV7OPBy7+TPpoH1Hg48JP/belfAeg/XGefhxFldmw1T
+socDj21+atZSsN7Ddf74PjAoJQes93DgsHMezn7DlezhwK5Hxw75Faz3cL6W
+bQ/J/LPoCCV7OHDTLfvahYL1Hg68LvJySjpY7+HAPV537FJ7pJI9HNj739KP
+54H1Hs4H3xcPt6X3wXoPB/7beVdHz1Alezhwn8ZRxdaD9R4O/GjzsVsFRinZ
+w4HHjux7aABY7+E64Xw7NCApBaz3cODMJbsSKo9WsocD//xgStJ3YL2HAx/v
+ueHQDbDew3XE/etqq9utxyjZw4HvDW5bPA6s93DgctlbO70D6z0cuEHoT8t6
+j1WyhwPvvXgncz9Y7+E64PtedZNfuTAlezhwX6+7R6eA9R4OvKDVSo8rYL2H
+A/vnHj/jNk7JHg7cYsKYkSvAeg/nbdkPNi4v9Rqs93DgdvPbpAWMV7KH8/74
+38NCFuwB6z0cOMitZFCZCUr2cOCzLz1aTQLrPdw3OO98/f6LS2C9hwPHVWhf
+pdlEJXs48JEJxWouB+s9HPiR94hWr8B6DweesMg/KGCSkj2cl2U/+ebcgj1g
+vYcDlw35J63MZCV7OPDte/NKTwbrPRx40JFjoZfBeg8HzslZdc5tipI9nCfe
+nyY6e60E6z0cuJ97hT9ywXoPB073T/MPnKpkDwcOTiqbsx+s93DgoFZF4spP
+U7KH+xrnHceE7t+C9R4OHP7hTtnrYL2HA1erl/649bdK9nDgInOCTq4G6z0c
+eLzDmgN5YL2H87DsgwlRe4KnK9nDgaeHNEhJAes9HHi81+zLVWco2cOBV7SP
+/G82WO/hwEW7dWp4F6z3cO64XqccG+P5nZI9HHjyttyDG8F6DwfelJtRTn2v
+ZA8H/l/nVXOGg/Uezsb5c1uRd+lgvYcD/1yx/cx6M5Xs4cDBi1qUigbrPRx4
+QtG3O5+A9R4O/NtPcwb6zVKyh2tv2V9/fqXSTrDew4E7Jbx5WHq2kj0c2G78
+KGUSWO/hwKmpmzdeAes9HHhLUPtVLeco2cO1s+zXrxNj48B6Dwe+vuxRUh5Y
+7+HAh90cT/Sfq2QPB25+Mzfnd7Dew4GL/5he1zVcyR6uLe7/rb8dNw+s93Dg
+Zy+d/8gA6z0ceO6+WbV9flCyhwOHh1+L2QrWezjwrn4Vy5aYp2QP18ayC3h5
+rR8P1ns48JI2fdpeAus9HPjAN0H3m89XsocD54V0josF6z0cuOyaL/vngfUe
+rjWeb08KNhoQoWQPB04IPlPiGFjv4cDfPV2U/8WPSvZw4A8bfN5FgPUeDnxt
+ToGCWWC9h2uF6yNqd8WukUr2cODAE0Pdd4L1Hu4ju1WYVGaBkj0ceOSts3un
+gvUeDtzyeFShG2C9h2uJ83xW1yHto5Ts4Vp+PP+4nE0A6z0c+ED5lx0LRSvZ
+w4Fd6lw9NwKs93AtLHv+olPDToH1Hg58IeCCc6OflOzhwEVnZh1aBtZ7OPDY
+UhW/fwPWezjw6M8H+gYtVLKHa27ZSYuP1D4C1ns48NvI1qVdFynZw4GHOF10
+jgDrPRy45mdRpbLAeg8H3rIzpJbfYiV7ODc8n7MGddoN1ns48J70H6aXW6Jk
+Dwcu1f1s8gyw3sOB70V7Fv4HrPdwbh//f4J7g72WKtnDNbPsP913nkoC6z0c
+uPPJbV7FlynZw4Fr1rt9cjxY7+HAUSM9BlwB6z0cOGPJ9U/aLFeyh2uKz3fr
+L7viwXoPB26Sum+8tULJHg786t/89iPBeg8H7lMyvOIZsN7DgU/26Wg1Xalk
+D9cEz4d0v7wYsN7Dgb8fsdoxH6z3cOCVng3LDY5RsocDjxxauHUaWO/hwIOv
+1R/VYJWSPVxj3A9/WbNlCVjv4cBTHga9zQWLHw7nw5hRAf1ilfHDWXabk6dT
+joLFD4fnf9QPLWrHKeOHs+yAjCUp0WDxw+F6yXrj/wIsfjhcHxsOvAlcrYwf
+zrLdqlzZfBgsfji8j43oEeq6Rhk/HL4/i75qFQkWP5xlL04IK/sMLH443J+3
+lnHsuVYZPxye70eq5f0GFj8czrsZK6zqPyvjh7Psd02nuESAxQ9n2Td2H3d/
+AhY/nGWXnzJ7kn+8Mn44y86N3LYvGSx+OMt+8cGvcLV1yvjh8PvfHzZsPlj8
+cLj+fF9fzAaLHw7n+a/z/fwTlPHDWfa/12dfTwaLHw7Pyy/mTqy2Xhk/HH7+
+xgVdIsDih8P9sqQ6/wQsfjjL3nopekXABmX8cDgPLIwdcRAsfjic1/y+9Kmx
+URk/HN6H6nZpHQkWPxye7w3ftswBix8O5/uwxt6B/1PGD4fnwSfvB6WAxQ+H
+58WrXtE1Nynjh7PswsEd/ogGix8O729dzhR7BRY/nGV3vfpkcFCiMn44nD9L
+JaUdA4sfzrLnFXdoUy9JGT+cZVt3Xh1aAhY/HL5vcVFd3oHFD2fZb/z/yB64
+WRk/HM7n1TbGpYPFD2fZMz+rF9hoizJ+OJwPPfvUWAUWPxzub8eb5jn8oowf
+zrKzthy8Pxwsfjjc7z59eeMsWPxwlp3vePPfFluV8cPh/h0/LTceLH44vB++
+O1nB6Vdl/HA4v9S57DsOLH44y3bwiI2+ChY/nGX3Dqpw032bMn44vK8tDGy9
+GSx+OFwvOT0TS21Xxg+H9/XYsq7TweKHw3kxYfWvd8Hih8P5o2qGt+8OZfxw
++P0bvH+6Gyx+OHx+d679r9JOZfxwlh3Tfd6oeWDxw+H+uNrB/SlY/HD4813x
+cQ3cpYwfDp+vy8jPfweLHw7nj7n9ytbdrYwfDtdLrdq1loLFD4f3lep/eb0H
+ix/OsltH+0wI2aOMHw7P5zmJ206DxQ+H84rL/XfN9yrjh7PsWpMdA9aBxQ+H
+83ySdbjIPmX8cHgens9uNhEsfjicl4oePngTLH44PH/HTe3uvV8ZP5xlqypV
+creDxQ9n2fFf7t5c4YAyfjjLvpTScnQ4WPxwuL4zd7R7AhY/nGUvPFu5SmCy
+Mn44nKci5xQ/ChY/HO7PbreL1v9NGT8czhc5bhVWgMUPh/P31QVuDgeV8cPh
+eih6Z+BIsPjh8PNtarb6Ilj8cPj+p/10v90hZfxw+P2js9smgcUPZ9k1Pvff
+WPqwMn44vM/OOl7xe7D44fD+kWmvywCLH86yPSefbNYjRRk/HL4P9tCrh8Di
+h8PvP6J0VO0jyvjhcN4ucanzUrD44Szbp+fWyvlg8cNZ9qd91+YP/10ZP5xl
+V22/OfsCWPxwll2/xoXMdkeV8cPh+qxd8W0SWPxwll1sbHiZMseU8cPheihf
+0n0WWPxwOH91ODY9Eyx+OFzPldek9jyujB8Of/5D8ZWPgsUP9/F8dnZeg1Rl
+/HB4H7vZID8GLH44vO9t+C284B/K+OHw/Dw8vUIYWPxweD53CUu5DhY/HM7v
+U+MmeJ9Qxg+H50PwB7ddYPHD4Txcc61TlTRl/HCWHfJ8WmYkWPxwuJ89XHbj
+NVj8cPh56+bcGJSujB/Osh/fWpR1Gix+OMs+Vneyc+s/lfHD4fvSeH3LTWDx
+w+H+51JhSumTyvjh8L5Q7OaxmWDxw+E8XfdJlSyw+OFw3o3ruiDwL2X8cJY9
+/AfHQqlg8cPhvPtp0UWNTinjh7PsQv1D66wFix8O563VNc4XOa2MH86yvZ64
+RU4Bix8O57sZm7rdA4sfzrJ7jp5Su9sZZfxwOL89Six+GCx+OHy/KrQrWO+s
+Mn44y/7ri5ZOMWDxw1n2qWarK1nnlPHD4fMZP8J9PFj8cJadYq2feBssfjg8
+H8v67PM9r4wfzrJjzw92SgaLHw7c/+nIWheU8cPh7zfj6fVlYPHD4XwRMyzo
+k4vK+OEs2zcmMGssWPxwlr2qdOqCm2Dxw+H9tum2Vj6XlPHD4f5bq/zb/WDx
+w+E8+bl1ouZlZfxwlp1Yf9KGZWDxw1n2uRWhiz+5oowfDp/PrMfRYWDxw1n2
+yzIvV90Cix8O58e5kXt8/1bGD4f70attd5LB4oez7M9jh1asc1UZPxzu92u2
+h6wEix/OshvWX5RiXVPGD2fZ5SapOhPB4ofDn29juYR/weKH++j7SK3b7boy
+fjic5yeVPJYCFj8c7m/j80Y2vKGMHw7nhxJR1deAxQ+H79P3KY+cbyrjh8P3
+IXPVkW/B4oez7B/nV9r0CCx+ONxP5viuCbyljB/OsiOc66w/ARY/HM6nPfbs
+d7utjB8O/77IFzc3gsUPZ9nZd+6XKnNHGT8c3g8jfuoVDhY/nGWf3/50ywuw
++OFwPoxyLjH4H2X8cJZ9y/fe3PNg8cPh56sxQ3n8q4wfzrLXelyK3QEWPxyu
+nxs5bavdVcYPZ9mhNS4+WwQWPxyuz07f73K4p4wfDj9/+PMfwsDih8P5tmCT
+4XfA4ofD8zzfvY/ffWX8cJZ9d2O1oCNg8cPh82l4cfRXD5Txw+Hn/avvwniw
++OEsu/qe5CMlHirjh8P3z+VFgdlg8cNZ9nI31SMHLH44fJ4t3+4amGH2cM6W
+3ajvSdfzGWYPB+56duZGj0dmDwcufqac265HZg8HXhAdc7nGY7OHA1fzKDB/
+2WOzhyuCv58aAd5WptnDgZsPX1F2cqbZw4HXe5/IfZBp9nDgD28ePeyVZfZw
+4Gu7HDLSsswezgnPv+3F3rTMNns4cNQXpcttyTZ7OHCyb+kOLk/MHg5cPrhE
+RPQTs4cDhy0p+nf+E7OHK2zZJ6oXaRH21OzhwIM6OCf+89Ts4cCpbUrV7vHM
+7OHAO1tW23/8mdnDgetOaxXolmP2cAqfd7MBhRNzzB4OnJu4LK38c7OHA0cU
+vxaz4LnZw4Fd1jWelvfc7OHA2XHxI8a+MHu4Qji/tKo58p8XZg8HHrc/9dse
+L80eDnyl2+y41JdmDwe+7dH3r+avzB4O7JAWUGzzK7OHsyz7eaUJwS6vzR4O
+vHn2npSfXps9HLj/V1UaFcg1ezjwvGE7d07INXu4gvi+DBnn+SDX7OHAbYYG
+Pwh8Y/Zw4FdJ02NOvjF7OPD4MSf7tHtr9nDgYc+7Ntjx1uzhHPH+PNG5hOs7
+s4cDn2rq4LjyndnDgR+M+6pQkf/MHg6cHrq2/Hf/mT0cOHSQb9tn/5k93Ce4
+36xoM27we7OH+8je4/Zcfm/2cOCqe7OcOuWZPRw4wHXHmEN5Zg8H/vv8kbtf
+5Zs9XAHLruJYecSGfLOHA999/Wd+2Q9mDweu/Cx9w4IPZg8HdmpUqe8H8OgP
+Lfp9ZAf9T2H7/wAt9W9m
+ "]]}, Annotation[#, "Charting`Private`Tag#7"]& ],
+ TagBox[{
+ Hue[0.3224758424985268, 0.6, 0.6],
+ Directive[
+ PointSize[
+ NCache[
+ Rational[1, 360], 0.002777777777777778]],
+ RGBColor[1, 0.75, 0],
+ AbsoluteThickness[2]],
+ LineBox[CompressedData["
+1:eJxF23lcT2nYBvAsdUpIiwhJy1AhVGStX5SihSyVZCwpS5ukKClr1km0og0R
+SpYKEaUFIevQpminJAzaVO/lfT/X551/fL4zjer8zrnP89z39aiu8Vzk3FtM
+TEyrj5jYnz//7x9J0YVXGdrjlwgiDWfr/n/clT981B+7LL6ol9cjiKacqvpn
+NezV+G1VMOzhldQZAUuvGhM+D04yc9/wGFZoNC/qD79X1ivuhgPvLe3/olsQ
+Df3RZqK3VBAtlbeyCYNtHt+7vg6+OVInxhY+mLB3VAxcptj2WQnO9Z0f8gKW
+1L00p6JLEHVYDvrd11YQJZ6fk5AA66m/3TANVk/O670Wdm0/VewOy/pquY6B
+E5+vNj0DyxtuKW38LYjenRuT9haunHbWKhUeHNA8StpOEM1OyHjoBVstSgsx
+gtUuXDKbDAdr+v32hrce2FXU1imI7nUbbrwA22ybtiwLbv23b8k7+E3qy8Yg
+eELyY1NZe0Fk6DRv9xx4/a7QNFP43dN4FQFOsLNV9YeHqP+b+7hDEJWOH3E0
+Fd4QW+caAsv2rf5dDbt4vx62CJ5flrRxyDJBdONdzPPB8J6r7iUW8GBZ40Ol
+7YLoTrDe3J2wvXn2/Fj4h2N7Wjq8/rai7Gp4nF626ifYJH5uhQbsLLXvqLKD
+IOo1wfrKxzZBFPt+fpcNXHh63P4U+G3GINdguHJC1dpN8MAjb0tuwxGyrub6
+sNmamLktsENQ4aS2VkEUNHVNuvpyQXTtWueoLPjWQE01e3hilZjiTvhrbfPR
+I/DeuSWDTGCtO2ldObD3sF2ykvDqY36uP+HXER1Dnv4SRCfXGZVqOeL7fZuj
+EQq/miVu9jd8z8VxyhJYWuFJ+nF4nc4c66HwnMZQtYfw/V2tru9+CqKAHNvQ
+Tlj+5LajCXB65IjuCSsEUebVgltr4Wa3ate1sEZPRYMmPHrOhdJouPxezojm
+H4LobyUPsyI4UMvd7hoc1aKX0etvfP9t1VE+8POCdrUp8Np6lcppsGRMduhG
+2CZFQ7v7P0Ek2ryvOw7e1vfr9lzYz9zC7TVco7nrdTB8baRsmbASP9fi4okW
+cOOPt2YzYdXsb2EysNqTmIxN8JZzz3+//i6Ilp9eo34OHmS8yTUaDtuqeawU
+dn/66r0j/NTqS/eAVXiudv9apgr31Uh3mw2nx5SV1n0TRLM6/Mp84Q7bwJWX
+YJ8XRubJcGbTh0YPOPW8+I338JuIXgF6cH3AE3WF1bjvQt/LtX0VRCqLjx0z
+h0cr+l/Jgu217HoC4GNrXtjsgkN7Rrhfgx9crWo3hQvfVJfVwUNmXk7qB/dK
+uWA+bI0gajLSXf68RRBN3+1xwxrOafVUCIc32+tr7IE1451f28PJOh3HbsJF
+XnLRynBN35yeJtgj2WdN9RdBNKJ8n/soJ9yf+0N0k+Al1yzKl8BScxwl3eB/
+9svOOwi3DK2smQgXrCi+cRc+Zypf8LNZEHXrxWp8h+3EO5Nvw1P6OR0fvVYQ
+mYeHRwfBnh80xZbDz3TeHzKBk258cT8K28mW7ZaCPxxJL8+DXbbt3fnsM667
+k/+8Njg8oWJPGGwzTXRznLMgOvqg9og9fFBG4q/V8IgxJ04pw7l1T45HwIN7
+2q9UNwmizjvHxB7DroclHifBesftPLphDal7n9xgt/XK73RdcB9kqMjowomG
+NfPWwcZF2tNbGwVRhcLFm6dglZDKjVnw4CaPv17AiyZPP70Ltr6vH9Z3nSCy
+FJtVMRcOjuoQmwZHjasf2R/Ods/xcIdftuq7vPyEejYn+N1pODVeMy0SnjjM
+cv5buGN1jrgjvP6r7K1+6/H7BnSuUIVPPyj+ywj2Gl96p/4j6llMbJg3HH/d
+XiUFlvN26nUBNpzvd8ALnj9Py/MdHKw7vXUKvEel5d2gDYIo7+JJ198NqGc/
+0+ebwg5fTtTdh3888b/l9+e/Gxo474fHnxGNToWPlHo1WsLO2yTCq/98fZe5
+jxwcZ/2015CNgqjh4x3xknrUM43jnhZw3/LCU7GwTKddRRAcKbfZwAk2e6ls
+kQ6feJZWognvTKq59RFWsQ4J+lKHerbj4mhlV1zHF2Lj0uFviz3DbWDn8H6V
+frCW9uTewXBG6aUII3iNWKfnbfji+w+LxOGTb3MqvsB365IHP6lFnUsJtlB3
+E0QHxkpXhsLSeywz7eC0r13JtrDJMrkxR+DuLXuCRsABE0rCc2CjtpP21TX4
+PuJxvX/Ca27PMbgAN5c7bdJyx+fSGTDcAx59Xatyxf/aVFwf/vtAi8VxOLQj
+9kd7NT73vzMyH8Dq0/Z+yoZf6G8f0wn7tbbW7IMlpY0jJnjgufVtq7GAjask
++qyFjX7u/SQL+918uikaLsqI+VFcJYiu/3O88ins2GYoHgc3Otlb9vJEneva
+OHwtrD595O3J8AWJUQba8PJBtWM2wrpLVth//YD7qP5iRBxsO0Yt6Ab8NMuz
+z+s///2+e3IALB422UvYJIja1xhVzIZnbeisnAF/t4pUkIJ9je5bboJ35HnZ
+PH+P+3bw/tuJ8EDxl2ERcEOTpWYprLMkrXw5rJIrFznAC/X9+xAtNdg+uqTP
+bDhdtXv7x0pcJ484L1/4lLrzv6lwocna95dghemWuj5wr+HaVu9hxaTrETPg
+6d9abstvFkRXUqK6e8HeDzM0zWGxfzrcHlWgnsVujwyATQ6VfQiBa72N+16D
+H9ZPcVgKj5gvbK6DW2oHlg6Hl44qeq/kLYgmP1y9ovod6tmv41bWsOYLnYYL
+8IOn9nd2w56zfXw94e4zI7VuwgWr9KWnwAZ+tZFNcKe767nf5fi6BZf6jtoi
+iNpSlEzz4At/bdq8BM5cZdh4EP7QOfnDAXjh05LwhbDSq06ru3C97keTIbDN
+hft3vv35+mLXjooyQXQocL/WaB9BpNy9JiMRzl1iFeUAb//01McV7tSWFz8K
+L6m4MEMX1utVujkPnqX8S6K9FPWsOO5DK1z1Oa04Gz53ea31OF9cr9Cqy8Fw
+xR7trFWw9/zAg1awosNXrQhYY9XBjQqw9cQbUYXw0MG9bcpLBNF+iQDxbtj5
+csPMM3D2O2Nv3a34XNyn6WyA264LVS5wefQvjYnwxINF1qfghC0jVVuLse5a
+GZb1HO40uap2Dz49eZl23224btbJWvvgMmmV6Klw9JuBUyxhuepacXd4tEqZ
+mTxsceuS92n4g2f/lWVvUc9CNlW9gc/2P7f9NJy1dsqCfn6CaNX0s7Hr4R/T
+f2cZwiqGEgUT4PGyudrecLdj0bdfb/B7NOyPToInvWtVvwfH3bWSeAeL9dq3
+fB/8Nkx+yyB/PCeDtkRbwjIbS6tMYEmb/DJ52FwUv8APNhJ81Mr/RT1TdL57
+GZb32+d5Bs78rD22Gp76+cf9DfC33K/Ritvx+Z3PVZoEa5+4IWEB32tu9m17
+jTrjGbAlCG4TfEuz4VOms6vTYIMZDsb74dfDJRd+hOOKTqRaw/2/F90dEYD3
+o7i+qiJs8ihsrA1coal5ouIVntO4ZSf2wesDfRTPwRlbVITb8C7L4Sfc4C/z
+67Z8gW+VDlXVh0erJler7cDz6eae2vlSEK1s3bTQDp5gOdQ4D44qmnLvMNx5
+b2jpIfjF2d9jc+AeaQ/fRbCkf+6JH/BU/yFKw2DjhQcErUBch4UK96teCCL/
+0dY+K+BLb508LsLXf8vXHIPnLRZX9YKbXpUufAA3DWgrmQqrX4y/1wG3W82I
+FIMdg5zHTQgSRP85PLN/9Bz1bOnYk06wR8DVUaFw0dhvQjQ8uONDsx0s3vum
+z1P44vCVOSqwYUlAjdhO1BUt7eiGZ6hnqbNtJsNSG419rsBX9kpmb4DzRifa
+bYUbHJ6Ni4PNkmyMjOBRk8JPvoLz9eaNE2B7wUFS2IXPU+HQyOdFWKdVqPjO
+gB8ek1eMggvT6mo8YcUftXIr4d6Hkm0S4eY9XQpj4OmrvLJL4IaDjiNanuI5
+nGIwfsBuXH/rXlo34eT+XSeN4WHDm6YHwbXVuZK+8E8DpUVmsHLmAd9L8OQv
+hzxk4KVHrWsr4Zpgo9DiJ4IoxFlhkfwe1D2LKTfj4QczyrLNYLm9HjXr4B7Z
+hPEB8IDtDQoTYYOPzqeuwu5+CRZtjwXRpntjpergxEfR+3PgC+HffJX24jpe
+f/7oAFy18WatFVwaZCJjAysZ71i0G9be/stBCV40ZE7ODbiruTa5qhD1rFlS
+pwnWU5PpfQnOy3t2SmUf9hOrt6zYDHeeCJdaAqf/kr83Hdbf5LD1ADxhbLN6
+H9ht7qi6LHj9vJ6QJ49Qz0bUL/oGp56a1xMGV3xPzvkrWBA5uT3Z4ggrFnrp
+OMC9JPa2aMDW8QYxIbBi2mbP5oeoZz5dUnnw3HuRPzLgHIu8ra2w5eaWwEC4
+TfVg3dj9WKcpBQw0gye1WS9eBY8Xm3lWBt7wTOF+ONzoqTOr5IEgOpNYplMI
+G6UvepcAl/knxHTBNkMv7NwAy9u49NM9gOeqYby2LmwxZtw2F/i2W01JRwH2
+bV3f6k7Chf89PJIHZ72+ufg5LP2ozPQI/PPijvt9DuL9OHl436Xw+J1zJkyF
+DwcfeKgMu9hKxbrBkyTVQuvzUSfGPe93Gi4Vb1hxBS7uHbHtDezx5O3EbbBM
+qUO91CHsGxO/ShrD5ldGLTGEfSr16qXgnfvq72+GNfPjH73Kw3O8PGVCEjz/
+jN7VU/D3SZtjy2Hdgi8xa2FtyanSgw7j+vm9CBkPO1V2bTOBR0iX7PuVi3qW
+nle/DZ76sO/ubPjfQweXXIYXdCzdcwDuv3pBbhWs/u3xQRvY1GDwRMUjWN+3
+rYkYBu8YUB47H965Qvl8zX3s02sSpIPgTrf2Oynwl0wXvzR4+JZfb33gMaHj
+GhpgmRz5VkN4pcv3JSP+wXMTt3CEJBw981buQjhhecrclzmoZ3KBE/fBUnNH
++56EpT7NicuEKy/dveQEG2dL9f8C3y32qh0H+0c891MLwX5l2Gz1X9moZ64R
+Dbawd874ddlwk/HypYfhliH6Vw/A6kNV87LhbI8l3Taw45f6iT/gJrkQm+Fw
+RH5KnOZR1JFFHy7W3kM9O7m5/wq4fvt8IRWW8JrqfwzWq3iyYStsaNbdUAAX
+5zu9FMFblfOXdsDzdska9oOv/HcwTycU993qf6+8viuIPhYumOQEv7mePDoW
+HpUwOD4KNi2IPOMCL/Mt7/8UntgQrj4RPmZ52l/sGOrkunMX27ME0WO1dR/1
+4UERD/Xz4N7t42w3wFLZHflH4BnPv+fFwvv0DR1sYe9ztya9gu+YHPuhAqds
+D4yXOI56bvhf2Kc7qGc2JgNmwGc3O01Ng5U1+233hHUnVFUFwEu7n388C0/O
+dw2dC4f8G2FbAi/c1dtkEPzw0vL8/mFY79xI/F16G/Vsp6quMfzkus3ts/BU
+u4Z4H7j6geQOd3jT+MsDLsH+swtNDOCLfby3V8LnfY7L9oKrSqd+kgvH83TV
+qeZxJuru1W5bM9h5zszb4fCi4Pz87XBw4PDIv+HDjod0r8JLr4tt1YTzdBcm
+1MILJjQ5fr8liH5LKg5UihBEwtwysyxY/335ditYw6zIIBh2zzj9aRfsvCdv
+3EL43OF1djfgWIus0cPgytXjCxrh9K83/qq9ibo19T9dlUi8P/Oua6XCCwZm
+JiyGwwZf0d0G768NHHgAjjZIFs2Gc26bBGTBHf7nF/eH20L7NX6FB0xKcH17
+A3Vi3Qu7v6LwuSVHHUiAN86KLFgGCzOOXNoIn5F31AuB++rueKkPl39SPZ0L
+f6ja0NWdgfsqp2FgK7w8xkanELaMvBwwNhp1LU1vbRi81827cSUct00mfgV8
+d/Y0+3DY1rC2cgz8c2hPwSP4oO019e/p2De05Ot1wS7yvu5ZsEvBodOTTqD+
+P5yUFQzHn1oo4wLPzK+RsYGLvRR3nIQ7HQ+vHw4PMn/X+Az+WjPmQV0a6tnI
+M/Z9TmLdk3xL8yq868e6BwZwq8SsUH848/F4fTc4wDz9twn8PeG/0wmwcp6y
+hwysvTVT5g38uHBbbel11DOroB1Sp3Cdr+SvTIRj1E2bZsGbHop98ID/be+3
+bDOcvnac8zR4wIsXD87Dp8rmtvSBTc9H6pfDgQELAp9d+/On4xmZGEH0LNZU
+7gR8Y5HaIBNY4bhmshPcovlxxzb4U0qruQ48pudyUwrca/b1prarWOe+8V5W
+BaudswvLg6OTpz0cHIufW7vBKAR+uatHfz4s9deqb/awlH3BmUC48NP9JHV4
+ts7hQWnw/qfSTl+u4LnoaxPYAPuqzlLPhNPKFD8Pj8N9OHPpxz1w09V3yxbC
+yt6Lr1vDGvvPPNwLJw012KUEO65YPzkTFt/ds6Q2FfVMT+dsM/y2T8r4K3CR
+1I9BavH4fb/PkPaHJT5kBtrCN8+mNpvARjeCPh+CvVz7vJGBtx4xdciGW+Km
+3S+7LIiurpF+9B88M2zh9XPwx6kvJ2smYJ8ca3ZhE6wqE3XWES6XG3l2Brys
+zlH2GJxi/vqMBHz8jlpQAWwV7pL0MgWf67GPn9thfYviqzFwn/WpDjqnsT7L
+1cheB88w3PJoDTzUxvqVLrxFYfqUKNjNYnFjVzL+3saes0/gDEFPKITrcgpk
+xc6gvpZ/1gyHlaMOB+nDuco7F6yEbd1tmtfDh9Q/+2vDIXOGLI+FreZMTP55
+CfVMqeLRS9jktcWHHLin5cwUibNYB2gZDjsCT32wPnE6PCRWYpkdvClGR84T
+LtqTGKMGX9z8I+gs7Ko/pK75Iuqe+e3mYjhS/G/dTHiYys7l/RPxPFtv27sX
+XvzTtFAE713rXL4APvxE2sAHbo/XMBgO559+mXgx8c96Nz2q/gLq2dYouUr4
+bpVi1zV4svWKnXLnUH8jzdftgN011L/MhYc8nffWHD7f8XH5dvhkmdJ8Bbjy
+RWrhFVhT6Vbu+yR8XdIWg9o///97dVEyvGDH9HNDz2N9t9cx1xc+sFhM3gq2
+XLV63mw4R+vBzl1w4uNJbwbA7T2Hv2Sc//8/+e/5dfz/+Pfw7+X34fflz8Gf
+iz8nf27+Hvy9+Hvy9+Z14HXhdeJ143XkdeV15nXn58DPhZ8TPzd+jvxc+Tnz
+c+d9wPuC9wnvG95HvK94n/G+433I+5L3Ke9b3se8r3mf877nc8Dngs8Jnxs+
+R3yu+JzxueNzyOeSzymfWz7HfK75nPO5Zx1gXWCdYN1gHWFdYZ1h3WEdYl1i
+nWLdYh1jXWOdY91jHWRdZJ1k3WQdZV1lnWXdZR1mXWadZt1mHWddZ51n3ed7
+gO8Fvif43uB7hO8Vvmf43uF7iO8lvqf43uJ7jO81vuf43uN7kO9Fvif53uR7
+lO9Vvmf53uV7mO9lvqf53uZ7nO91vuf53uc6gOsCrhO4buA6gusKrjO47uA6
+hOsSrlO4buE6husarnO47uE6iOsirpO4buI6iusqrrO47uI6jOsyrtO4buM6
+jus6rvO47uM6kOtCrhO5buQ6kutKrjO57uQ6lOtSrlO5buU6lutarnO57uU6
+mOtirpO5buY6mutqrrO57uY6nOtyrtO5buc6nut6rvO57uc+gPsC7hO4b+A+
+gvsK7jO47+A+hPsS7lO4b+E+hvsa7nO47+E+iPsi7pO4b+I+ivsq7rO47+I+
+jPsy7tO4b+M+jvs67vO47+M+kPtC7hO5b+Q+kvtK7jO57+Q+lPtS7lO5b+U+
+lvta7nO57+U+mPti7pO5b+Y+mvtq7rO57+Y+nPty7tO5b+c+nvt67vO572cf
+gH0B9gnYN2AfgX0F9hnYd2Afgn0J9inYt2Afg30N9jnY92AfhH0R9knYN2Ef
+hX0V9lnYd2Efhn0Z9mnYt2Efh30d9nnY92EfiH0h9onYN2IfiX0l9pnYd2If
+in0p9qnYt2Ifi30t9rnY92IfjH0x9snYN2MfjX019tnYd2Mfjn059unYt2Mf
+j3099vnY92MfkH1B9gnZN2QfkX1F9hnZd2Qfkn1J9inZt2Qfk31N9jnZ92Qf
+lH1R9knZN2UflX1V9lnZd2Ufln1Z9mnZt2Ufl31d9nnZ92UfmH1h9onZN2Yf
+mX1l9pnZd2Yfmn1p9qnZt2Yfm31t9rnZ92YfnH1x9snZN2cfnX119tnZd2cf
+nn159unZt2cfn3199vnZ9+ccgHMBzgk4N+AcgXMFzhk4d+AcgnMJzik4t+Ac
+g3MNzjk49+AchHMRzkk4N+EchXMVzlk4d+EchnMZzmk4t+Ech3Mdznk49+Ec
+iHMhzok4N+IciXMlzpk4d+IcinMpzqk4t+Ici3Mtzrk49+IcjHMxzsk4N+Mc
+jXM1ztk4d+McjnM5zuk4t+Mcj3M9zvk49+MckHNBzgk5N+QckXNFzhk5d+Qc
+knNJzik5t+Qck3NNzjk59+QclHNRzkk5N+UclXNVzlk5d+UclnNZzmk5t+Uc
+l3Ndznk59+UcmHNhzok5N+YcmXNlzpk5d+YcmnNpzqk5t+Ycm3Ntzrk59+Yc
+nHNxzsk5N+ccnXN1ztk5d+ccnnN5zuk5t+ccn3N9zvk592cOgLkA5gSYG2CO
+gLkC5gyYO2AOgbkE5hSYW2COgbkG5hyYe2AOgrkI5iSYm2COgrkK5iyYu2AO
+g7kM5jSY22COg7kO5jyY+2AOhLkQ5kSYG2GOhLkS5kyYO2EOhbkU5lSYW2GO
+hbkW5lyYe/n/HMz/5WKYk2Fuhjka5mqYs2Huhjkc5nKY02Fuhzke5nqY82Hu
+hzkg5oKYE2JuiDki5oqYM2LuiDkk5pKYU2JuiTkm5pqYc2LuiTko5qKYk2Ju
+ijkq5qqYs2Luijks5rKY02Juizku5rqY82Luizkw5sKYE2NujDky5sqYM2Pu
+jDk05tKYU2NujTk25tqYc2PujTk45uKYk2Nujjk65uqYs2Pujjk85vKY02Nu
+jzk+5vqY82PujzlA5gKZE2RukDlC5gqZM2TukDlE5hKZU2RukTlG5hqZc2Tu
+kTlI5iKZk2RukjlK5iqZs2TukjlM5jKZ02RukzlO5jqZ82TukzlQ5kKZE2Vu
+lDlS5kqZM2XulDlU5lKZU2VulTlW5lqZc2XulTlY5mKZk2Vuljla5mqZs2Xu
+ljlc5nKZ02Vulzle5nqZ82Xulzlg5oKZE2ZumDli5oqZM2bumDlk5pKZU2Zu
+mTlm5pqZc2bumTlo5qKZk2Zumjlq5qqZs2bumjls5rKZ02Zumzlu5rqZ82bu
+mzlw5sKZE2dunDly5sqZM2funDl05tKZU2dunTl25tqZc2funTl45uKZk2du
+njl65uqZs2funjl85vKZ02dunzl+5vqZ82fun+cAeC6A5wR4boDnCHiugOcM
+eO6A5xB4LoHnFHhugecYeK6B5xx47oHnIHguguckeG6C5yh4roLnLHjugucw
+eC6D5zR4boPnOHiug+c8eO6D50B4LoTnRHhuhOdIeK7kpe2N/z13wnMo/wNq
+u39g
+ "]]}, Annotation[#, "Charting`Private`Tag#8"]& ]}}, {{}, {}}}, {
+ DisplayFunction -> Identity, DisplayFunction -> Identity, AspectRatio ->
+ 1, Axes -> {True, True}, AxesLabel -> {None, None},
+ AxesOrigin -> {1.9000000000000041`, 1.9000000000000041`},
+ DisplayFunction :> Identity, Frame -> {{True, True}, {True, True}},
+ FrameLabel -> {{
+ FormBox[
+ TagBox[
+ SubscriptBox["\[Omega]", "2"], HoldForm], TraditionalForm], None}, {
+
+ FormBox[
+ TagBox[
+ SubscriptBox["\[Omega]", "1"], HoldForm], TraditionalForm], None}},
+ FrameStyle -> GrayLevel[0],
+ FrameTicks -> {{Automatic, Automatic}, {Automatic, Automatic}},
+ GridLines -> {None, None}, GridLinesStyle -> Directive[
+ GrayLevel[0.5, 0.4]], LabelStyle -> {FontFamily -> "Times",
+ GrayLevel[0], FontSize -> 12},
+ Method -> {
+ "AxisPadding" -> Scaled[0.02], "DefaultBoundaryStyle" -> Automatic,
+ "DefaultGraphicsInteraction" -> {
+ "Version" -> 1.2, "TrackMousePosition" -> {True, False},
+ "Effects" -> {
+ "Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2},
+ "Droplines" -> {
+ "freeformCursorMode" -> True,
+ "placement" -> {"x" -> "All", "y" -> "None"}}}},
+ "DefaultMeshStyle" -> AbsolutePointSize[6], "DefaultPlotStyle" -> {
+ Directive[
+ RGBColor[0.368417, 0.506779, 0.709798],
+ AbsoluteThickness[2]],
+ Directive[
+ RGBColor[0.880722, 0.611041, 0.142051],
+ AbsoluteThickness[2]],
+ Directive[
+ RGBColor[0.560181, 0.691569, 0.194885],
+ AbsoluteThickness[2]],
+ Directive[
+ RGBColor[0.922526, 0.385626, 0.209179],
+ AbsoluteThickness[2]],
+ Directive[
+ RGBColor[0.528488, 0.470624, 0.701351],
+ AbsoluteThickness[2]],
+ Directive[
+ RGBColor[0.772079, 0.431554, 0.102387],
+ AbsoluteThickness[2]],
+ Directive[
+ RGBColor[0.363898, 0.618501, 0.782349],
+ AbsoluteThickness[2]],
+ Directive[
+ RGBColor[1, 0.75, 0],
+ AbsoluteThickness[2]],
+ Directive[
+ RGBColor[0.647624, 0.37816, 0.614037],
+ AbsoluteThickness[2]],
+ Directive[
+ RGBColor[0.571589, 0.586483, 0.],
+ AbsoluteThickness[2]],
+ Directive[
+ RGBColor[0.915, 0.3325, 0.2125],
+ AbsoluteThickness[2]],
+ Directive[
+ RGBColor[0.40082222609352647`, 0.5220066643438841, 0.85],
+ AbsoluteThickness[2]],
+ Directive[
+ RGBColor[
+ 0.9728288904374106, 0.621644452187053, 0.07336199581899142],
+ AbsoluteThickness[2]],
+ Directive[
+ RGBColor[0.736782672705901, 0.358, 0.5030266573755369],
+ AbsoluteThickness[2]],
+ Directive[
+ RGBColor[0.28026441037696703`, 0.715, 0.4292089322474965],
+ AbsoluteThickness[2]]}, "DomainPadding" -> Scaled[0.02],
+ "PointSizeFunction" -> "SmallPointSize", "RangePadding" ->
+ Scaled[0.05], "OptimizePlotMarkers" -> True, "IncludeHighlighting" ->
+ "CurrentSet", "HighlightStyle" -> Automatic, "OptimizePlotMarkers" ->
+ True, "CoordinatesToolOptions" -> {"DisplayFunction" -> ({
+ Identity[
+ Part[#, 1]],
+ Identity[
+ Part[#, 2]]}& ), "CopiedValueFunction" -> ({
+ Identity[
+ Part[#, 1]],
+ Identity[
+ Part[#, 2]]}& )}}, PlotRange -> {{1.9, 3.}, {1.9, 3.}},
+ PlotRangeClipping -> True, PlotRangePadding -> {{0, 0}, {0, 0}},
+ Ticks -> {Automatic, Automatic}}],
+ FormBox[
+ FormBox[
+ TemplateBox[{
+ "0.`", "0.2`", "0.4`", "0.6000000000000001`", "0.8`", "1.`",
+ "1.2000000000000002`", "1.4`"}, "LineLegend",
+ DisplayFunction -> (FormBox[
+ StyleBox[
+ StyleBox[
+ PaneBox[
+ TagBox[
+ GridBox[{{
+ StyleBox["\[Epsilon]", {FontFamily -> "Times",
+ GrayLevel[0], FontSize -> 12}, Background -> Automatic,
+ StripOnInput -> False]}, {
+ TagBox[
+ GridBox[{{
+ TagBox[
+ GridBox[{{
+ GraphicsBox[{{
+ Directive[
+ EdgeForm[
+ Directive[
+ Opacity[0.3],
+ GrayLevel[0]]],
+ PointSize[0.5],
+ RGBColor[0.368417, 0.506779, 0.709798],
+ AbsoluteThickness[2]], {
+ LineBox[{{0, 12.5}, {20, 12.5}}]}}, {
+ Directive[
+ EdgeForm[
+ Directive[
+ Opacity[0.3],
+ GrayLevel[0]]],
+ PointSize[0.5],
+ RGBColor[0.368417, 0.506779, 0.709798],
+ AbsoluteThickness[2]], {}}}, AspectRatio -> Full,
+ ImageSize -> {20, 12.5}, PlotRangePadding -> None,
+ ImagePadding -> Automatic,
+ BaselinePosition -> (Scaled[0.116] -> Baseline)], #}, {
+ GraphicsBox[{{
+ Directive[
+ EdgeForm[
+ Directive[
+ Opacity[0.3],
+ GrayLevel[0]]],
+ PointSize[0.5],
+ RGBColor[0.880722, 0.611041, 0.142051],
+ AbsoluteThickness[2]], {
+ LineBox[{{0, 12.5}, {20, 12.5}}]}}, {
+ Directive[
+ EdgeForm[
+ Directive[
+ Opacity[0.3],
+ GrayLevel[0]]],
+ PointSize[0.5],
+ RGBColor[0.880722, 0.611041, 0.142051],
+ AbsoluteThickness[2]], {}}}, AspectRatio -> Full,
+ ImageSize -> {20, 12.5}, PlotRangePadding -> None,
+ ImagePadding -> Automatic,
+ BaselinePosition -> (Scaled[0.116] -> Baseline)], #2}, {
+ GraphicsBox[{{
+ Directive[
+ EdgeForm[
+ Directive[
+ Opacity[0.3],
+ GrayLevel[0]]],
+ PointSize[0.5],
+ RGBColor[0.560181, 0.691569, 0.194885],
+ AbsoluteThickness[2]], {
+ LineBox[{{0, 12.5}, {20, 12.5}}]}}, {
+ Directive[
+ EdgeForm[
+ Directive[
+ Opacity[0.3],
+ GrayLevel[0]]],
+ PointSize[0.5],
+ RGBColor[0.560181, 0.691569, 0.194885],
+ AbsoluteThickness[2]], {}}}, AspectRatio -> Full,
+ ImageSize -> {20, 12.5}, PlotRangePadding -> None,
+ ImagePadding -> Automatic,
+ BaselinePosition -> (Scaled[0.116] -> Baseline)], #3}, {
+ GraphicsBox[{{
+ Directive[
+ EdgeForm[
+ Directive[
+ Opacity[0.3],
+ GrayLevel[0]]],
+ PointSize[0.5],
+ RGBColor[0.922526, 0.385626, 0.209179],
+ AbsoluteThickness[2]], {
+ LineBox[{{0, 12.5}, {20, 12.5}}]}}, {
+ Directive[
+ EdgeForm[
+ Directive[
+ Opacity[0.3],
+ GrayLevel[0]]],
+ PointSize[0.5],
+ RGBColor[0.922526, 0.385626, 0.209179],
+ AbsoluteThickness[2]], {}}}, AspectRatio -> Full,
+ ImageSize -> {20, 12.5}, PlotRangePadding -> None,
+ ImagePadding -> Automatic,
+ BaselinePosition -> (Scaled[0.116] -> Baseline)], #4}, {
+ GraphicsBox[{{
+ Directive[
+ EdgeForm[
+ Directive[
+ Opacity[0.3],
+ GrayLevel[0]]],
+ PointSize[0.5],
+ RGBColor[0.528488, 0.470624, 0.701351],
+ AbsoluteThickness[2]], {
+ LineBox[{{0, 12.5}, {20, 12.5}}]}}, {
+ Directive[
+ EdgeForm[
+ Directive[
+ Opacity[0.3],
+ GrayLevel[0]]],
+ PointSize[0.5],
+ RGBColor[0.528488, 0.470624, 0.701351],
+ AbsoluteThickness[2]], {}}}, AspectRatio -> Full,
+ ImageSize -> {20, 12.5}, PlotRangePadding -> None,
+ ImagePadding -> Automatic,
+ BaselinePosition -> (Scaled[0.116] -> Baseline)], #5}, {
+ GraphicsBox[{{
+ Directive[
+ EdgeForm[
+ Directive[
+ Opacity[0.3],
+ GrayLevel[0]]],
+ PointSize[0.5],
+ RGBColor[0.772079, 0.431554, 0.102387],
+ AbsoluteThickness[2]], {
+ LineBox[{{0, 12.5}, {20, 12.5}}]}}, {
+ Directive[
+ EdgeForm[
+ Directive[
+ Opacity[0.3],
+ GrayLevel[0]]],
+ PointSize[0.5],
+ RGBColor[0.772079, 0.431554, 0.102387],
+ AbsoluteThickness[2]], {}}}, AspectRatio -> Full,
+ ImageSize -> {20, 12.5}, PlotRangePadding -> None,
+ ImagePadding -> Automatic,
+ BaselinePosition -> (Scaled[0.116] -> Baseline)], #6}, {
+ GraphicsBox[{{
+ Directive[
+ EdgeForm[
+ Directive[
+ Opacity[0.3],
+ GrayLevel[0]]],
+ PointSize[0.5],
+ RGBColor[0.363898, 0.618501, 0.782349],
+ AbsoluteThickness[2]], {
+ LineBox[{{0, 12.5}, {20, 12.5}}]}}, {
+ Directive[
+ EdgeForm[
+ Directive[
+ Opacity[0.3],
+ GrayLevel[0]]],
+ PointSize[0.5],
+ RGBColor[0.363898, 0.618501, 0.782349],
+ AbsoluteThickness[2]], {}}}, AspectRatio -> Full,
+ ImageSize -> {20, 12.5}, PlotRangePadding -> None,
+ ImagePadding -> Automatic,
+ BaselinePosition -> (Scaled[0.116] -> Baseline)], #7}, {
+ GraphicsBox[{{
+ Directive[
+ EdgeForm[
+ Directive[
+ Opacity[0.3],
+ GrayLevel[0]]],
+ PointSize[0.5],
+ RGBColor[1, 0.75, 0],
+ AbsoluteThickness[2]], {
+ LineBox[{{0, 12.5}, {20, 12.5}}]}}, {
+ Directive[
+ EdgeForm[
+ Directive[
+ Opacity[0.3],
+ GrayLevel[0]]],
+ PointSize[0.5],
+ RGBColor[1, 0.75, 0],
+ AbsoluteThickness[2]], {}}}, AspectRatio -> Full,
+ ImageSize -> {20, 12.5}, PlotRangePadding -> None,
+ ImagePadding -> Automatic,
+ BaselinePosition -> (Scaled[0.116] -> Baseline)], #8}},
+ GridBoxAlignment -> {
+ "Columns" -> {Center, Left}, "Rows" -> {{Baseline}}},
+ AutoDelete -> False,
+ GridBoxDividers -> {
+ "Columns" -> {{False}}, "Rows" -> {{False}}},
+ GridBoxItemSize -> {
+ "Columns" -> {{All}}, "Rows" -> {{All}}},
+ GridBoxSpacings -> {
+ "Columns" -> {{0.5}}, "Rows" -> {{0.8}}}], "Grid"]}},
+ GridBoxAlignment -> {
+ "Columns" -> {{Left}}, "Rows" -> {{Top}}}, AutoDelete ->
+ False, GridBoxItemSize -> {
+ "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}},
+ GridBoxSpacings -> {"Columns" -> {{1}}, "Rows" -> {{0}}}],
+ "Grid"]}}, GridBoxAlignment -> {"Columns" -> {{Center}}},
+ AutoDelete -> False,
+ GridBoxItemSize -> {
+ "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}},
+ GridBoxSpacings -> {
+ "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}], "Grid"],
+ Alignment -> Left, AppearanceElements -> None,
+ ImageMargins -> {{5, 5}, {5, 5}}, ImageSizeAction ->
+ "ResizeToFit"], LineIndent -> 0, StripOnInput -> False], {
+ FontFamily -> "Times",
+ GrayLevel[0], FontSize -> 12}, Background -> Automatic,
+ StripOnInput -> False], TraditionalForm]& ),
+ InterpretationFunction :> (RowBox[{"LineLegend", "[",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{
+ RowBox[{"Directive", "[",
+ RowBox[{
+ RowBox[{"PointSize", "[",
+ FractionBox["1", "360"], "]"}], ",",
+
+ TemplateBox[<|
+ "color" -> RGBColor[0.368417, 0.506779, 0.709798]|>,
+ "RGBColorSwatchTemplate"], ",",
+ RowBox[{"AbsoluteThickness", "[", "2", "]"}]}], "]"}], ",",
+ RowBox[{"Directive", "[",
+ RowBox[{
+ RowBox[{"PointSize", "[",
+ FractionBox["1", "360"], "]"}], ",",
+
+ TemplateBox[<|
+ "color" -> RGBColor[0.880722, 0.611041, 0.142051]|>,
+ "RGBColorSwatchTemplate"], ",",
+ RowBox[{"AbsoluteThickness", "[", "2", "]"}]}], "]"}], ",",
+ RowBox[{"Directive", "[",
+ RowBox[{
+ RowBox[{"PointSize", "[",
+ FractionBox["1", "360"], "]"}], ",",
+
+ TemplateBox[<|
+ "color" -> RGBColor[0.560181, 0.691569, 0.194885]|>,
+ "RGBColorSwatchTemplate"], ",",
+ RowBox[{"AbsoluteThickness", "[", "2", "]"}]}], "]"}], ",",
+ RowBox[{"Directive", "[",
+ RowBox[{
+ RowBox[{"PointSize", "[",
+ FractionBox["1", "360"], "]"}], ",",
+
+ TemplateBox[<|
+ "color" -> RGBColor[0.922526, 0.385626, 0.209179]|>,
+ "RGBColorSwatchTemplate"], ",",
+ RowBox[{"AbsoluteThickness", "[", "2", "]"}]}], "]"}], ",",
+ RowBox[{"Directive", "[",
+ RowBox[{
+ RowBox[{"PointSize", "[",
+ FractionBox["1", "360"], "]"}], ",",
+
+ TemplateBox[<|
+ "color" -> RGBColor[0.528488, 0.470624, 0.701351]|>,
+ "RGBColorSwatchTemplate"], ",",
+ RowBox[{"AbsoluteThickness", "[", "2", "]"}]}], "]"}], ",",
+ RowBox[{"Directive", "[",
+ RowBox[{
+ RowBox[{"PointSize", "[",
+ FractionBox["1", "360"], "]"}], ",",
+
+ TemplateBox[<|
+ "color" -> RGBColor[0.772079, 0.431554, 0.102387]|>,
+ "RGBColorSwatchTemplate"], ",",
+ RowBox[{"AbsoluteThickness", "[", "2", "]"}]}], "]"}], ",",
+ RowBox[{"Directive", "[",
+ RowBox[{
+ RowBox[{"PointSize", "[",
+ FractionBox["1", "360"], "]"}], ",",
+
+ TemplateBox[<|
+ "color" -> RGBColor[0.363898, 0.618501, 0.782349]|>,
+ "RGBColorSwatchTemplate"], ",",
+ RowBox[{"AbsoluteThickness", "[", "2", "]"}]}], "]"}], ",",
+ RowBox[{"Directive", "[",
+ RowBox[{
+ RowBox[{"PointSize", "[",
+ FractionBox["1", "360"], "]"}], ",",
+
+ TemplateBox[<|"color" -> RGBColor[1, 0.75, 0]|>,
+ "RGBColorSwatchTemplate"], ",",
+ RowBox[{"AbsoluteThickness", "[", "2", "]"}]}], "]"}]}],
+ "}"}], ",",
+ RowBox[{"{",
+
+ RowBox[{#, ",", #2, ",", #3, ",", #4, ",", #5, ",", #6, ",", #7,
+ ",", #8}], "}"}], ",",
+ RowBox[{"LegendMarkers", "\[Rule]",
+ RowBox[{"{",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"False", ",", "Automatic"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"False", ",", "Automatic"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"False", ",", "Automatic"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"False", ",", "Automatic"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"False", ",", "Automatic"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"False", ",", "Automatic"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"False", ",", "Automatic"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"False", ",", "Automatic"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"False", ",", "Automatic"}], "}"}]}], "}"}]}], ",",
+ RowBox[{"Joined", "\[Rule]",
+ RowBox[{"{",
+
+ RowBox[{
+ "True", ",", "True", ",", "True", ",", "True", ",", "True",
+ ",", "True", ",", "True", ",", "True", ",", "True"}],
+ "}"}]}], ",",
+ RowBox[{"LegendLabel", "\[Rule]", "\[Epsilon]"}], ",",
+ RowBox[{"LegendLayout", "\[Rule]", "\"Column\""}]}], "]"}]& ),
+ Editable -> True], TraditionalForm], TraditionalForm]},
+ "Legended",
+ DisplayFunction->(GridBox[{{
+ TagBox[
+ ItemBox[
+ PaneBox[
+ TagBox[#, "SkipImageSizeLevel"], Alignment -> {Center, Baseline},
+ BaselinePosition -> Baseline], DefaultBaseStyle -> "Labeled"],
+ "SkipImageSizeLevel"],
+ ItemBox[#2, DefaultBaseStyle -> "LabeledLabel"]}},
+ GridBoxAlignment -> {"Columns" -> {{Center}}, "Rows" -> {{Center}}},
+ AutoDelete -> False, GridBoxItemSize -> Automatic,
+ BaselinePosition -> {1, 1}]& ),
+ Editable->True,
+ InterpretationFunction->(RowBox[{"Legended", "[",
+ RowBox[{#, ",",
+ RowBox[{"Placed", "[",
+ RowBox[{#2, ",", "After"}], "]"}]}], "]"}]& )]], "Output",
+ CellChangeTimes->{
+ 3.909045677015095*^9, 3.909046340411375*^9, {3.909047439726328*^9,
+ 3.909047526046637*^9}, 3.909047564404361*^9, 3.9155360776765347`*^9,
+ 3.9155368604895*^9, 3.915772759432945*^9},
+ CellLabel->"Out[37]=",ExpressionUUID->"0062a0bc-735d-4365-b826-64b7fedf2201"]
+}, Open ]]
+}, Closed]]
+},
+WindowSize->{1918.5, 1023.75},
+WindowMargins->{{0, Automatic}, {Automatic, 0}},
+FrontEndVersion->"14.0 for Linux x86 (64-bit) (December 12, 2023)",
+StyleDefinitions->"Default.nb",
+ExpressionUUID->"fe7785c4-a5eb-46c5-8188-772697b31ba4"
+]
+(* End of Notebook Content *)
+
+(* Internal cache information *)
+(*CellTagsOutline
+CellTagsIndex->{}
+*)
+(*CellTagsIndex
+CellTagsIndex->{}
+*)
+(*NotebookFileOutline
+Notebook[{
+Cell[CellGroupData[{
+Cell[580, 22, 153, 3, 50, "Section",ExpressionUUID->"926df485-ea0b-4c71-a1d6-03ba4988e06d"],
+Cell[736, 27, 553, 11, 22, "Input",ExpressionUUID->"a4718025-6526-4aa1-b1d9-23f283157609"],
+Cell[1292, 40, 751, 18, 53, "Input",ExpressionUUID->"6297bd5f-9997-4788-b876-fdf7032919da"]
+}, Open ]],
+Cell[CellGroupData[{
+Cell[2080, 63, 171, 3, 50, "Section",ExpressionUUID->"e26a72a6-0937-45b0-a625-f1bdf166fa4e"],
+Cell[2254, 68, 900, 29, 48, "Input",ExpressionUUID->"50c08a66-4e65-4112-8ad7-d5d45f281a8c"],
+Cell[CellGroupData[{
+Cell[3179, 101, 1923, 47, 24, "Input",ExpressionUUID->"6c00d5eb-8ba7-405a-9bf1-5d71e992492f"],
+Cell[5105, 150, 27148, 541, 226, "Output",ExpressionUUID->"aaad5116-5d58-4d08-9a56-b793fa18fceb"]
+}, Open ]],
+Cell[CellGroupData[{
+Cell[32290, 696, 311, 6, 22, "Input",ExpressionUUID->"0c67dbb9-49b6-4edb-9219-e0a5cdf9b31d"],
+Cell[32604, 704, 324, 4, 25, "Output",ExpressionUUID->"e38ca9d1-d354-4596-95f2-a529f7487594"]
+}, Open ]],
+Cell[32943, 711, 438, 12, 35, "Input",ExpressionUUID->"06818f5b-ee0e-4634-b547-e05e415c12a6"],
+Cell[33384, 725, 312, 8, 27, "Input",ExpressionUUID->"ab28ae26-b52f-4a56-978d-e7ee3f806eda"],
+Cell[33699, 735, 676, 19, 44, "Input",ExpressionUUID->"eec97d73-ae34-443d-825f-cbb8adebe02f"],
+Cell[34378, 756, 1783, 46, 39, "Input",ExpressionUUID->"def223fd-aeee-4091-9e76-97462b62b6cc"],
+Cell[36164, 804, 5154, 133, 116, "Input",ExpressionUUID->"f1078ecd-48ad-4003-b086-93bd8c2242bb"],
+Cell[41321, 939, 7161, 184, 193, "Input",ExpressionUUID->"244eac76-0bbb-4e5a-9b06-0f294e654a3f"],
+Cell[CellGroupData[{
+Cell[48507, 1127, 575, 11, 22, "Input",ExpressionUUID->"28a195c1-e132-4911-80e7-05e2e1470f78"],
+Cell[49085, 1140, 32102, 587, 100, "Output",ExpressionUUID->"cc0cbfd4-3639-4208-9b14-59bc95d581ed"]
+}, Open ]],
+Cell[CellGroupData[{
+Cell[81224, 1732, 475, 10, 22, "Input",ExpressionUUID->"e68d9ce5-814e-4498-aeeb-52ccf1b87537"],
+Cell[81702, 1744, 31256, 570, 100, "Output",ExpressionUUID->"3c5405c9-baef-4a9a-9cf9-a1990522ea6a"]
+}, Open ]],
+Cell[CellGroupData[{
+Cell[112995, 2319, 528, 10, 22, "Input",ExpressionUUID->"9df7247c-bae3-4562-95d7-d5d547f8369d"],
+Cell[113526, 2331, 31230, 574, 100, "Output",ExpressionUUID->"3f12c55c-759f-4a69-abfd-c867f63cceda"]
+}, Open ]],
+Cell[144771, 2908, 752, 19, 53, "Input",ExpressionUUID->"9c8fbe7e-534f-4567-b9e1-d7a5c3ce1086"]
+}, Open ]],
+Cell[CellGroupData[{
+Cell[145560, 2932, 157, 3, 50, "Section",ExpressionUUID->"8475cc42-326a-4ebf-b66b-7d80366a5280"],
+Cell[145720, 2937, 6536, 183, 341, "Input",ExpressionUUID->"830d12ec-ccc1-4fbc-9de0-2282430f4840"],
+Cell[152259, 3122, 1571, 48, 22, "Input",ExpressionUUID->"bcf9e08b-5bc8-4156-8987-ae991b3777be"],
+Cell[153833, 3172, 706, 19, 38, "Input",ExpressionUUID->"90676af5-535d-4801-950c-574cc68db098"],
+Cell[CellGroupData[{
+Cell[154564, 3195, 241, 5, 22, "Input",ExpressionUUID->"3e4fb69d-9599-4326-945e-414023395a5f"],
+Cell[154808, 3202, 1351, 30, 111, "Output",ExpressionUUID->"31ed0430-b8ee-4e74-8482-c51b4ee8b6d3"]
+}, Open ]],
+Cell[CellGroupData[{
+Cell[156196, 3237, 472, 13, 22, "Input",ExpressionUUID->"692c829b-e066-4a5e-bd71-7d2bb33fb03d"],
+Cell[156671, 3252, 1358, 31, 111, "Output",ExpressionUUID->"5c44de21-95e3-40ea-8171-bdba9bd0ca88"]
+}, Open ]],
+Cell[CellGroupData[{
+Cell[158066, 3288, 714, 21, 22, "Input",ExpressionUUID->"9dee447a-c909-40cb-8546-4295c33c7ecb"],
+Cell[158783, 3311, 579, 9, 25, "Output",ExpressionUUID->"a4b05569-f206-413a-a53c-79ed31b50a77"]
+}, Open ]],
+Cell[159377, 3323, 3810, 99, 78, "Input",ExpressionUUID->"ae225317-c8f2-42eb-a092-5a3d6696fcf1"],
+Cell[CellGroupData[{
+Cell[163212, 3426, 998, 25, 22, "Input",ExpressionUUID->"27f3f5fd-a103-416e-9e22-49288939ab46"],
+Cell[164213, 3453, 6479, 175, 73, "Output",ExpressionUUID->"7c116b5c-7bb6-4259-98ab-703694af8842"]
+}, Open ]],
+Cell[CellGroupData[{
+Cell[170729, 3633, 910, 26, 24, "Input",ExpressionUUID->"ad63e4bc-666e-46ed-8c23-6d418adb2b5d"],
+Cell[171642, 3661, 3851, 116, 55, "Output",ExpressionUUID->"2f3c957d-28b6-4286-a434-e11d516208bf"]
+}, Open ]],
+Cell[175508, 3780, 988, 21, 22, "Input",ExpressionUUID->"c88cdbf9-9e5d-49a2-927e-12c0fc1e998e"],
+Cell[176499, 3803, 2608, 55, 24, "Input",ExpressionUUID->"13c828e2-dc96-418a-98b1-bcedb602773f"],
+Cell[CellGroupData[{
+Cell[179132, 3862, 423, 11, 22, "Input",ExpressionUUID->"5547b70f-6ccc-4c3c-b7a2-430267adff70"],
+Cell[179558, 3875, 5699, 145, 160, "Output",ExpressionUUID->"36211747-6213-49d3-af64-0c1c0cf9c4be"]
+}, Open ]],
+Cell[CellGroupData[{
+Cell[185294, 4025, 435, 11, 22, "Input",ExpressionUUID->"87393889-0e58-4140-85b8-c09bdfb83fa6"],
+Cell[185732, 4038, 11216, 318, 177, "Output",ExpressionUUID->"45c1ecc4-6c35-4af1-a8c6-4c6db7168bb2"]
+}, Open ]],
+Cell[CellGroupData[{
+Cell[196985, 4361, 476, 13, 22, "Input",ExpressionUUID->"4d2d8f62-3f6d-45b3-9a63-780219e0e7e8"],
+Cell[197464, 4376, 1353, 37, 27, "Output",ExpressionUUID->"76297447-9a1b-4498-9d3f-c2078f821920"]
+}, Open ]],
+Cell[CellGroupData[{
+Cell[198854, 4418, 951, 21, 22, "Input",ExpressionUUID->"83eebe5d-3503-4b31-b14f-639ea14a0248"],
+Cell[199808, 4441, 800, 15, 22, "Message",ExpressionUUID->"8caaea4c-f1d2-4f89-97f5-7e5b71ca8e2a"]
+}, Open ]],
+Cell[200623, 4459, 1110, 23, 22, "Input",ExpressionUUID->"4c448220-e031-41d2-9096-b9e341dcd981"],
+Cell[201736, 4484, 3839, 84, 41, "Input",ExpressionUUID->"63ea8c17-6059-4955-9b14-1b9deb692962"],
+Cell[CellGroupData[{
+Cell[205600, 4572, 1255, 27, 24, "Input",ExpressionUUID->"7fe546c9-0af1-4973-85bb-971e16ca3307"],
+Cell[206858, 4601, 1678, 39, 38, "Output",ExpressionUUID->"fafa3e14-532d-4f8f-a8ed-c5504aa4836f"]
+}, Open ]],
+Cell[208551, 4643, 968, 26, 24, "Input",ExpressionUUID->"84934d64-fc27-4a55-a1de-6f9f09494033"],
+Cell[209522, 4671, 362, 10, 22, "Input",ExpressionUUID->"83f76904-20b3-4c92-8479-9704a86e9bc3"],
+Cell[209887, 4683, 890, 19, 22, "Input",ExpressionUUID->"82f4b3f0-5071-4e29-8e26-febf3110e5e0"],
+Cell[CellGroupData[{
+Cell[210802, 4706, 3664, 87, 107, "Input",ExpressionUUID->"acfb6249-e04b-4f94-810b-05af73aac0bc"],
+Cell[214469, 4795, 3554, 69, 59, "Output",ExpressionUUID->"22fa23af-56ac-41f0-bad7-75e203e68dfd"]
+}, Open ]],
+Cell[CellGroupData[{
+Cell[218060, 4869, 2813, 63, 24, "Input",ExpressionUUID->"2a2f7dd9-b465-4d3a-81cf-abf195bcfc21"],
+Cell[220876, 4934, 680, 13, 22, "Message",ExpressionUUID->"fd049e2d-b962-42ba-8dca-46fc9644cce9"],
+Cell[221559, 4949, 505, 11, 22, "Message",ExpressionUUID->"5cb44bf7-173f-499b-851b-adf000d36880"],
+Cell[222067, 4962, 505, 11, 22, "Message",ExpressionUUID->"3413d04c-3008-4bee-a8ec-f365f773087f"],
+Cell[222575, 4975, 505, 11, 22, "Message",ExpressionUUID->"982a2288-fc78-4c1e-8b15-7a87bdc87b9b"],
+Cell[223083, 4988, 549, 11, 22, "Message",ExpressionUUID->"a6869e09-be0b-47fc-9d8f-a7b647e3ebf2"],
+Cell[223635, 5001, 680, 13, 22, "Message",ExpressionUUID->"3e572292-7317-4d82-b804-f7ec1744c5da"],
+Cell[224318, 5016, 680, 13, 22, "Message",ExpressionUUID->"d651ce85-ec36-45c7-9151-74cc477901a5"],
+Cell[225001, 5031, 549, 11, 22, "Message",ExpressionUUID->"9996e476-8dd5-4dff-abe4-3dc38d2bcc7b"]
+}, Open ]],
+Cell[CellGroupData[{
+Cell[225587, 5047, 1907, 53, 39, "Input",ExpressionUUID->"f6acd6ad-220b-4828-a7d3-5558b5c91e4c"],
+Cell[227497, 5102, 3373, 87, 75, "Output",ExpressionUUID->"9b8635de-045e-4f3a-b8b3-4a1dc739d03e"]
+}, Open ]],
+Cell[230885, 5192, 1583, 41, 24, "Input",ExpressionUUID->"b04acde6-1c4d-4632-b34e-b05a8c3158f7"],
+Cell[CellGroupData[{
+Cell[232493, 5237, 310, 8, 22, "Input",ExpressionUUID->"bb7ea87c-a295-4530-bdcd-103371a64b77"],
+Cell[232806, 5247, 75439, 1299, 183, "Output",ExpressionUUID->"471fcd6b-1223-49d9-962f-85e668fab430"]
+}, Open ]],
+Cell[308260, 6549, 23716, 405, 174, "Input",ExpressionUUID->"c8acd08e-419d-47df-95d8-cd474e7cf4f4"],
+Cell[CellGroupData[{
+Cell[332001, 6958, 3692, 87, 56, "Input",ExpressionUUID->"0012cb53-2118-4c32-9687-3900486d9017"],
+Cell[335696, 7047, 609, 12, 22, "Message",ExpressionUUID->"a407657b-19ae-486f-b6cf-16ca559b3fb6"],
+Cell[336308, 7061, 611, 12, 22, "Message",ExpressionUUID->"2a251b03-af55-4ee8-b6ee-dc27429eff8a"],
+Cell[336922, 7075, 611, 12, 22, "Message",ExpressionUUID->"466d17bf-ce0f-47a2-8764-46320b67ac6e"],
+Cell[337536, 7089, 478, 10, 22, "Message",ExpressionUUID->"841bbca7-6ddd-4432-bc00-7d704794b41e"]
+}, Open ]],
+Cell[CellGroupData[{
+Cell[338051, 7104, 2254, 58, 22, "Input",ExpressionUUID->"abdd1227-571e-42c2-ba14-b0236a50da8f"],
+Cell[340308, 7164, 258497, 4393, 294, "Output",ExpressionUUID->"ccc0c10d-374b-4561-9b69-130306acddb0"]
+}, Open ]]
+}, Open ]],
+Cell[CellGroupData[{
+Cell[598854, 11563, 157, 3, 50, "Section",ExpressionUUID->"3e089f73-01c1-4198-8f45-28504d7853b6"],
+Cell[599014, 11568, 8352, 226, 562, "Input",ExpressionUUID->"32615cc9-ab89-4fec-9507-d4081e5ab9af"],
+Cell[607369, 11796, 665, 21, 24, "Input",ExpressionUUID->"b5146e99-78bb-48d4-9374-7b833d3a6574"],
+Cell[608037, 11819, 1566, 47, 22, "Input",ExpressionUUID->"ae37dedd-da6c-42ec-ae9b-796780482b37"],
+Cell[609606, 11868, 701, 18, 38, "Input",ExpressionUUID->"3d84f495-773b-4ce0-a779-44c19e0915c3"],
+Cell[610310, 11888, 371, 9, 22, "Input",ExpressionUUID->"618a42f8-b051-4cdf-8473-21e9de937b82"],
+Cell[610684, 11899, 373, 9, 22, "Input",ExpressionUUID->"9a83e28a-4231-4cff-9a04-fac75f5e1b4d"],
+Cell[611060, 11910, 427, 11, 22, "Input",ExpressionUUID->"43300cae-9f4f-47cf-9813-49db8b5d69a9"],
+Cell[611490, 11923, 379, 10, 22, "Input",ExpressionUUID->"e7afa4f7-6f52-45c9-9d8a-53932a27bcf7"],
+Cell[CellGroupData[{
+Cell[611894, 11937, 384, 7, 22, "Input",ExpressionUUID->"c1a6934f-6252-4ba2-8a31-abb6a974a91c"],
+Cell[612281, 11946, 617, 15, 35, "Output",ExpressionUUID->"bafdc24d-ce74-44fa-81b1-b5eed3c1c110"]
+}, Open ]],
+Cell[612913, 11964, 146, 3, 22, "Input",ExpressionUUID->"c7e4db28-e1d9-4e45-8d64-b45ae3f3b02a"],
+Cell[CellGroupData[{
+Cell[613084, 11971, 237, 4, 22, "Input",ExpressionUUID->"90f8e6cf-a2cb-4fc4-af6b-a2643f1c18bc"],
+Cell[613324, 11977, 1350, 30, 111, "Output",ExpressionUUID->"761ce714-4f2f-4e7a-9a77-4aeb97c7b9e3"]
+}, Open ]],
+Cell[CellGroupData[{
+Cell[614711, 12012, 468, 12, 22, "Input",ExpressionUUID->"8fc542b7-ffb8-43ab-82fe-a6e3bc6c4dc1"],
+Cell[615182, 12026, 1356, 31, 111, "Output",ExpressionUUID->"ba200cb0-9e0e-423b-9f5f-963ad56ef299"]
+}, Open ]],
+Cell[CellGroupData[{
+Cell[616575, 12062, 710, 20, 22, "Input",ExpressionUUID->"d97a16cb-8f13-463e-9235-10cf798e882c"],
+Cell[617288, 12084, 575, 8, 25, "Output",ExpressionUUID->"ab9cfbb0-fc67-419d-ba7f-6c7524f65677"]
+}, Open ]],
+Cell[617878, 12095, 4382, 113, 78, "Input",ExpressionUUID->"1be6ad59-07a8-4e68-a148-615473405a94"],
+Cell[CellGroupData[{
+Cell[622285, 12212, 244, 5, 22, "Input",ExpressionUUID->"31ecc6b1-3013-4df7-a379-762ad87db2ba"],
+Cell[622532, 12219, 4838, 148, 66, "Output",ExpressionUUID->"c29d260e-8842-437a-a5aa-1328cb436e45"]
+}, Open ]],
+Cell[627385, 12370, 5182, 145, 95, "Input",ExpressionUUID->"95097ec5-8784-4805-b556-6daf94695fcf"],
+Cell[CellGroupData[{
+Cell[632592, 12519, 197, 3, 22, "Input",ExpressionUUID->"54fb42a2-4e37-42ef-bcb5-a2ee989bb8c3"],
+Cell[632792, 12524, 9842, 287, 152, "Output",ExpressionUUID->"75df506e-ff6a-4923-b1da-38da451a259d"]
+}, Open ]],
+Cell[CellGroupData[{
+Cell[642671, 12816, 5332, 137, 148, "Input",ExpressionUUID->"f0db1c0b-165f-4f87-9592-b5d10a026867"],
+Cell[648006, 12955, 13259, 326, 176, "Output",ExpressionUUID->"94abb570-dead-4d27-9ab4-47b0a6832b02"]
+}, Open ]],
+Cell[CellGroupData[{
+Cell[661302, 13286, 458, 12, 22, "Input",ExpressionUUID->"dca0231b-2ccb-4ad8-ba7d-c5644fabf4cd"],
+Cell[661763, 13300, 10619, 274, 154, "Output",ExpressionUUID->"93fcca29-6cfb-44b9-a537-5fa298b15766"]
+}, Open ]],
+Cell[CellGroupData[{
+Cell[672419, 13579, 192, 2, 22, "Input",ExpressionUUID->"b5c3d02d-a185-4dd1-b953-b06af4d48aed"],
+Cell[672614, 13583, 10234, 310, 107, "Output",ExpressionUUID->"a298f61a-4c39-4526-8144-4a1ce684b3a3"]
+}, Open ]],
+Cell[CellGroupData[{
+Cell[682885, 13898, 1098, 27, 22, "Input",ExpressionUUID->"85b738a2-9ed8-4758-a6c3-13831de84fcb"],
+Cell[683986, 13927, 5347, 154, 66, "Output",ExpressionUUID->"7780f5a5-3b9f-4878-bca1-49d638b2ede5"]
+}, Open ]],
+Cell[CellGroupData[{
+Cell[689370, 14086, 910, 26, 24, "Input",ExpressionUUID->"54f4b878-a43b-49d6-b99e-acf114036072"],
+Cell[690283, 14114, 4849, 146, 66, "Output",ExpressionUUID->"8ab0a219-d516-4630-ab17-d2c9ecd07701"]
+}, Open ]],
+Cell[695147, 14263, 3835, 83, 41, "Input",ExpressionUUID->"19946ab1-9943-42ba-8c04-694cc1f0098d"],
+Cell[CellGroupData[{
+Cell[699007, 14350, 1251, 26, 24, "Input",ExpressionUUID->"623df1f0-acb4-43e6-b11b-11cede6c62f1"],
+Cell[700261, 14378, 1648, 37, 38, "Output",ExpressionUUID->"f98a2dfe-f238-4006-aca1-8b523c40cf8d"]
+}, Open ]],
+Cell[CellGroupData[{
+Cell[701946, 14420, 490, 11, 22, "Input",ExpressionUUID->"2dd75e13-4f61-4be7-b65b-acbf57a3d45b"],
+Cell[702439, 14433, 8242, 189, 117, "Output",ExpressionUUID->"c4f58aa5-4d98-4810-9646-4e8d42c22b4d"]
+}, Open ]],
+Cell[CellGroupData[{
+Cell[710718, 14627, 1216, 36, 24, "Input",ExpressionUUID->"785da43f-dcbf-49db-b834-5c4280942ceb"],
+Cell[711937, 14665, 7508, 186, 122, "Output",ExpressionUUID->"ef9ef3d0-78d5-4ee8-9f3f-0ea8bcf8e2ee"]
+}, Open ]],
+Cell[CellGroupData[{
+Cell[719482, 14856, 1044, 24, 22, "Input",ExpressionUUID->"aff1542a-e458-46e1-bc4e-b34eedfeafcd"],
+Cell[720529, 14882, 207, 3, 25, "Output",ExpressionUUID->"540af864-3347-4186-9e31-aa1340e04ef2"]
+}, Open ]],
+Cell[720751, 14888, 2604, 54, 24, "Input",ExpressionUUID->"b1a9bc1c-abed-43f0-a0e6-669043a8612a"],
+Cell[CellGroupData[{
+Cell[723380, 14946, 919, 22, 22, "Input",ExpressionUUID->"d0e2a3ad-c754-4c6f-892c-e1eb7382819e"],
+Cell[724302, 14970, 9406, 209, 75, "Output",ExpressionUUID->"2ab0480a-d3ff-4a97-b7ed-5c8b82ae738f"]
+}, Open ]],
+Cell[CellGroupData[{
+Cell[733745, 15184, 1564, 47, 24, "Input",ExpressionUUID->"bb7b14e3-b7dc-4aab-b889-d2be5f9e5ca1"],
+Cell[735312, 15233, 3570, 109, 76, "Output",ExpressionUUID->"dc4be792-83a9-4fbe-af25-cb419d9bd7f5"]
+}, Open ]],
+Cell[CellGroupData[{
+Cell[738919, 15347, 711, 18, 22, "Input",ExpressionUUID->"e749859b-f1bb-4500-b28b-6db621a38217"],
+Cell[739633, 15367, 4407, 112, 76, "Output",ExpressionUUID->"d7d109d7-3932-47b3-bf98-64b81ad6ca17"]
+}, Open ]],
+Cell[CellGroupData[{
+Cell[744077, 15484, 635, 15, 23, "Input",ExpressionUUID->"1e958760-e7cd-4052-b9b9-908474376dba"],
+Cell[744715, 15501, 489, 10, 35, "Output",ExpressionUUID->"2ad54e2e-1894-4c5a-b49c-69dc3d8f2778"]
+}, Open ]],
+Cell[CellGroupData[{
+Cell[745241, 15516, 718, 14, 22, "Input",ExpressionUUID->"e3e9458f-95e8-4772-8a74-726345ff1051"],
+Cell[745962, 15532, 12022, 346, 180, "Output",ExpressionUUID->"365b5ad7-7989-4846-bb39-0e6808cb0ccd"]
+}, Open ]],
+Cell[CellGroupData[{
+Cell[758021, 15883, 698, 14, 22, "Input",ExpressionUUID->"13c24c5e-bb61-4d7d-b2bf-3c3997d9edaa"],
+Cell[758722, 15899, 205, 4, 35, "Output",ExpressionUUID->"98447f30-3d37-4177-8919-efee0d8245af"]
+}, Open ]],
+Cell[CellGroupData[{
+Cell[758964, 15908, 177, 3, 22, "Input",ExpressionUUID->"af6aac65-5a4e-453d-b4b6-17d282a20e18"],
+Cell[759144, 15913, 11800, 322, 196, "Output",ExpressionUUID->"3e4a980e-1533-48dd-9ff1-621494d5b9c2"]
+}, Open ]],
+Cell[CellGroupData[{
+Cell[770981, 16240, 234, 5, 22, "Input",ExpressionUUID->"f42329fb-b20f-4aaa-a8d2-db55af9748ac"],
+Cell[771218, 16247, 225, 4, 35, "Output",ExpressionUUID->"05e474ca-1e55-4d23-afd9-d0f3a09207a6"]
+}, Open ]],
+Cell[CellGroupData[{
+Cell[771480, 16256, 179, 3, 22, "Input",ExpressionUUID->"d10961b8-b152-4e5e-9c29-4145a2972d3d"],
+Cell[771662, 16261, 22623, 476, 264, "Output",ExpressionUUID->"c36222bd-4f89-4cc7-a993-0cf35af05bc7"]
+}, Open ]],
+Cell[CellGroupData[{
+Cell[794322, 16742, 419, 10, 22, "Input",ExpressionUUID->"58abea83-2416-4b80-aea1-49c6f03cd553"],
+Cell[794744, 16754, 5669, 143, 160, "Output",ExpressionUUID->"e15a4a61-3508-49a6-873c-f26ddee17deb"]
+}, Open ]],
+Cell[CellGroupData[{
+Cell[800450, 16902, 431, 10, 22, "Input",ExpressionUUID->"4538f42b-62c4-4651-9986-8bec11748d70"],
+Cell[800884, 16914, 11191, 317, 177, "Output",ExpressionUUID->"7c39a957-cd36-48d3-a034-eee66c14231d"]
+}, Open ]],
+Cell[CellGroupData[{
+Cell[812112, 17236, 472, 12, 22, "Input",ExpressionUUID->"b2530e76-38c3-48b8-85fb-23b713cd8c3c"],
+Cell[812587, 17250, 1322, 35, 27, "Output",ExpressionUUID->"abded75c-64eb-402a-9a69-78d296d1035c"]
+}, Open ]],
+Cell[CellGroupData[{
+Cell[813946, 17290, 947, 20, 22, "Input",ExpressionUUID->"583ab52e-3647-429c-9c33-fd12ede259b8"],
+Cell[814896, 17312, 775, 15, 22, "Message",ExpressionUUID->"2f4c2728-fd8d-46d6-a68a-371b7c8a7ba9"]
+}, Open ]],
+Cell[815686, 17330, 1004, 20, 22, "Input",ExpressionUUID->"e570420b-e9e0-4c23-ae5b-1941f99cb727"],
+Cell[816693, 17352, 3835, 83, 41, "Input",ExpressionUUID->"83b8cb66-7a5d-443e-8848-d633f7da5d42"],
+Cell[CellGroupData[{
+Cell[820553, 17439, 1251, 26, 24, "Input",ExpressionUUID->"408b9498-9f18-42c3-a258-3358b138cc65"],
+Cell[821807, 17467, 1626, 37, 38, "Output",ExpressionUUID->"e46e4e60-dba7-4188-9de8-05742c779360"]
+}, Open ]],
+Cell[823448, 17507, 964, 25, 24, "Input",ExpressionUUID->"59c41cae-4e24-4a51-a7a3-7d500a289340"],
+Cell[824415, 17534, 358, 9, 22, "Input",ExpressionUUID->"10d3cd49-4d16-4520-bb58-ea59fc8d7b92"],
+Cell[824776, 17545, 886, 18, 22, "Input",ExpressionUUID->"93de0c72-ab3d-4e0e-91df-edd506da949b"],
+Cell[CellGroupData[{
+Cell[825687, 17567, 3660, 86, 107, "Input",ExpressionUUID->"9e5141ea-32bd-48b0-8277-cb026f090ea9"],
+Cell[829350, 17655, 3546, 66, 59, "Output",ExpressionUUID->"0ec956b2-4200-4dbd-bf3a-8e1ba4f9fb29"]
+}, Open ]],
+Cell[CellGroupData[{
+Cell[832933, 17726, 2809, 62, 24, "Input",ExpressionUUID->"15a4bc43-3d38-4bf8-ab87-9fe6c3c52fd5"],
+Cell[835745, 17790, 633, 13, 22, "Message",ExpressionUUID->"021c4989-876c-4967-bcac-1f978a0f6419"],
+Cell[836381, 17805, 633, 13, 22, "Message",ExpressionUUID->"4c8cb9d5-8149-4cd8-9ae8-7fb98ffaf525"],
+Cell[837017, 17820, 633, 13, 22, "Message",ExpressionUUID->"9bc6aaf1-acad-42a4-8e8c-3d1bc23999cc"],
+Cell[837653, 17835, 502, 11, 22, "Message",ExpressionUUID->"f629becb-1a0a-41c4-982d-075455cd242a"]
+}, Open ]],
+Cell[CellGroupData[{
+Cell[838192, 17851, 1903, 52, 39, "Input",ExpressionUUID->"a6ab04f8-b182-4e06-87d3-44cf4d55f296"],
+Cell[840098, 17905, 3335, 87, 75, "Output",ExpressionUUID->"e43b3e00-885a-43e1-b26b-8b1a2615d3fc"]
+}, Open ]],
+Cell[843448, 17995, 1579, 40, 24, "Input",ExpressionUUID->"cc4f2eca-a54d-413e-8b18-94ba1c2bbbc2"],
+Cell[CellGroupData[{
+Cell[845052, 18039, 306, 7, 22, "Input",ExpressionUUID->"971b5a9c-8ceb-429f-9eab-88056cb74ad9"],
+Cell[845361, 18048, 75499, 1300, 183, "Output",ExpressionUUID->"e2ba4c38-edde-4b75-bc95-88dc47d04160"]
+}, Open ]],
+Cell[920875, 19351, 23714, 405, 174, "Input",ExpressionUUID->"596a8ce7-fc36-4ac8-af24-031757805468"],
+Cell[CellGroupData[{
+Cell[944614, 19760, 3572, 83, 39, "Input",ExpressionUUID->"22832d0e-448c-47f2-8f0e-e89d73befd40"],
+Cell[948189, 19845, 702, 14, 22, "Message",ExpressionUUID->"0e26f2eb-9d86-492c-91a9-5ea47d8e976a"],
+Cell[948894, 19861, 702, 14, 22, "Message",ExpressionUUID->"d7d2d2b6-5759-4cc8-9a15-621a513b57c6"]
+}, Open ]],
+Cell[CellGroupData[{
+Cell[949633, 19880, 2196, 57, 22, "Input",ExpressionUUID->"e61533c0-9653-4007-9f77-db9184a97720"],
+Cell[951832, 19939, 216473, 3703, 282, "Output",ExpressionUUID->"0062a0bc-735d-4365-b826-64b7fedf2201"]
+}, Open ]]
+}, Closed]]
+}
+]
+*)
+
diff --git a/marginal.bib b/marginal.bib
index 166acf2..9f56ed1 100644
--- a/marginal.bib
+++ b/marginal.bib
@@ -1,3 +1,17 @@
+@article{Annibale_2004_Coexistence,
+ author = {Annibale, Alessia and Gualdi, Giulia and Cavagna, Andrea},
+ title = {Coexistence of supersymmetric and supersymmetry-breaking states in spherical spin-glasses},
+ journal = {Journal of Physics A: Mathematical and General},
+ publisher = {IOP Publishing},
+ year = {2004},
+ month = {11},
+ number = {47},
+ volume = {37},
+ pages = {11311--11320},
+ url = {https://doi.org/10.1088%2F0305-4470%2F37%2F47%2F001},
+ doi = {10.1088/0305-4470/37/47/001}
+}
+
@article{Bray_2007_Statistics,
author = {Bray, Alan J. and Dean, David S.},
title = {Statistics of Critical Points of {Gaussian} Fields on Large-Dimensional Spaces},
@@ -39,6 +53,21 @@
series = {Cambridge monographs on mathematical physics}
}
+@article{Foini_2012_On,
+ author = {Foini, Laura and Krzakala, Florent and Zamponi, Francesco},
+ title = {On the relation between kinetically constrained models of glass dynamics and the random first-order transition theory},
+ journal = {Journal of Statistical Mechanics: Theory and Experiment},
+ publisher = {IOP Publishing},
+ year = {2012},
+ month = {June},
+ number = {06},
+ volume = {2012},
+ pages = {P06013},
+ url = {http://dx.doi.org/10.1088/1742-5468/2012/06/P06013},
+ doi = {10.1088/1742-5468/2012/06/p06013},
+ issn = {1742-5468}
+}
+
@article{Folena_2020_Rethinking,
author = {Folena, Giampaolo and Franz, Silvio and Ricci-Tersenghi, Federico},
title = {Rethinking Mean-Field Glassy Dynamics and Its Relation with the Energy Landscape: The Surprising Case of the Spherical Mixed $p$-Spin Model},
@@ -97,6 +126,21 @@
issn = {1751-8121}
}
+@article{Gamarnik_2021_TheA,
+ author = {Gamarnik, David},
+ title = {The overlap gap property: A topological barrier to optimizing over random structures},
+ journal = {Proceedings of the National Academy of Sciences},
+ publisher = {Proceedings of the National Academy of Sciences},
+ year = {2021},
+ month = {October},
+ number = {41},
+ volume = {118},
+ pages = {e2108492118},
+ url = {http://dx.doi.org/10.1073/pnas.2108492118},
+ doi = {10.1073/pnas.2108492118},
+ issn = {1091-6490}
+}
+
@article{Ikeda_2023_Bose-Einstein-like,
author = {Ikeda, Harukuni},
title = {{Bose}--{Einstein}-like condensation of deformed random matrix: a replica approach},
@@ -222,6 +266,20 @@
eprinttype = {arxiv}
}
+@article{Ros_2019_Complex,
+ author = {Ros, Valentina and Ben Arous, GĂ©rard and Biroli, Giulio and Cammarota, Chiara},
+ title = {Complex Energy Landscapes in Spiked-Tensor and Simple Glassy Models: Ruggedness, Arrangements of Local Minima, and Phase Transitions},
+ journal = {Physical Review X},
+ publisher = {American Physical Society (APS)},
+ year = {2019},
+ month = {1},
+ number = {1},
+ volume = {9},
+ pages = {011003},
+ url = {https://doi.org/10.1103%2Fphysrevx.9.011003},
+ doi = {10.1103/physrevx.9.011003}
+}
+
@article{Subag_2020_Following,
author = {Subag, Eliran},
title = {Following the Ground States of Full-{RSB} Spherical Spin Glasses},
diff --git a/marginal.tex b/marginal.tex
index 7df99d5..c461f81 100644
--- a/marginal.tex
+++ b/marginal.tex
@@ -238,8 +238,10 @@ with the effective action
We need to evaluate the integral above using the saddle point method, but in the limit of $\beta\to\infty$.
We expect the overlaps to concentrate on one as $\beta$ goes to infinity. We therefore take
\begin{align}
+ \label{eq:q0.limit}
q_0&=1-y\beta^{-1}-z\beta^{-2}+O(\beta^{-3})
\\
+ \label{eq:q0t.limit}
\tilde q_0&=1-\tilde y\beta^{-1}-(z+\Delta z)\beta^{-2}+O(\beta^{-3})
\end{align}
However, taking the limit with $y\neq\tilde y$ results in an expression for the
@@ -506,7 +508,8 @@ $\mathcal O$ then the average gives
\end{equation}
The result is an integral that only depends on the many vector variables we
have introduced through their scalar products with each other. We therefore make a change of variables in the integration from those vectors to matrices that encode their possible scalar products. These matrices are
-\begin{align}
+\begin{equation} \label{eq:order.parameters}
+ \begin{aligned}
C_{ab}=\frac1N\mathbf x_a\cdot\mathbf x_b
&&
R_{ab}=-i\frac1N\mathbf x_a\cdot\hat{\mathbf x}_b
@@ -520,7 +523,8 @@ have introduced through their scalar products with each other. We therefore make
X^c_{ab}=\frac1N\mathbf x_a\cdot\mathbf s_b^c
\\
\hat X^c_{ab}=\frac1N\hat{\mathbf x}_a\cdot\mathbf s_b^c
-\end{align}
+ \end{aligned}
+\end{equation}
Order parameters that mix the normal and Grassmann variables generically vanish
in these settings \cite{Kurchan_1992_Supersymmetry}.
@@ -843,7 +847,7 @@ When expanded, this supermatrix is constructed of the scalar products of the
real and Grassmann vectors that make up $\pmb\phi$. The change of variables to
these order parameters again results in the Jacobian of \eqref{eq:coordinate.jacobian}, contributing
\begin{equation}
- \frac N2\log\det J(C,R,D,G,Q,X,\hat X)
+ \frac N2\log\det J(C,R,D,Q,X,\hat X)-\frac N2\log\det G^2
\end{equation}
Up to this point, the expressions above are general and independent of a given
ansatz. However, we expect that the order parameters $X$ and $\hat X$ are zero,
@@ -881,56 +885,52 @@ Now we have reduced the problem to an extremal one over the order parameters
$\hat\beta$, $\hat\lambda$, $C$, $R$, $D$, $G$, and $Q$, it is time to make an
ansatz for the form of order we expect to find. We will focus on a regime where
the structure of stationary points is replica symmetric, and further where
-typical pairs of stationary points have no overlap. This gives
+typical pairs of stationary points have no overlap. This requires that $f(0)=0$, or that there is no constant term in the random polynomials. This gives
\begin{align}
- C=I && R=r_dI && D = d_dI && G = g_dI
+ C=I && R=rI && D = dI && G = gI
\end{align}
We further take a planted replica symmetric structure for the matrix $Q$,
-identical to that in \eqref{eq:Q.structure}.
+identical to that in \eqref{eq:Q.structure}. The resulting effective action is
+the same as if we had made an annealed calculation in the complexity, though
+the previous expressions are general.
\begin{equation}
\begin{aligned}
- \mathcal S
- =-\frac\alpha2\log\left[
+ \mathcal S_\beta
+ =\hat\beta E-\mu(r+g)
+ +\frac12\log\frac{d+r^2}{g^2}\frac{1-2q_0+\tilde q_0^2}{(1-q_0)^2}
+ -\frac\alpha2\log\left(\frac{1-f'(1)(2\beta(1-q_0)+\hat\lambda-(1-2q_0+\tilde q_0^2)\beta(\beta+\hat\lambda)f'(1))}{(1-(1-q_0)\beta f'(1))^2}\right)
+ \\
+ -\frac12\mu\hat\lambda+\hat\lambda\lambda^*-\frac\alpha2\log\left[
\frac{
- (f'(1)d-\hat\beta-f''(1)(r^2-g^2+q_0^2\beta^2-\tilde q_0^2\beta(\beta+\hat\lambda)+\beta\hat\lambda+\frac12\hat\lambda^2)))(f(1)-f(0))+(1-rf'(1))^2)
+ \big[f'(1)d-\hat\beta-f''(1)(r^2-g^2+q_0^2\beta^2-\tilde q_0^2\beta(\beta+\hat\lambda)+\beta\hat\lambda+\frac12\hat\lambda^2)\big]f(1)+(1-rf'(1))^2
}{
(1+gf'(1))^2
}
- \right] \\
- +\frac{\alpha f(0)}2\frac{
- \hat\beta-df'(1)+(r^2-g^2+q_0^2\beta^2-\tilde q_0^2\beta(\beta+\lambda)+\lambda\beta+\frac12\lambda^2)f''(1)
- }{
- (f'(1)d-\hat\beta- (r^2-g^2+q_0^2\beta^2-\tilde q_0^2\beta(\beta+\hat\lambda)+\beta\hat\lambda+\frac12\hat\lambda^2)f''(1))(f(1)-f(0))+(1-rf'(1))^2
- }
- \\
- -\frac\alpha2\log\left(\frac{1-f'(1)(2\beta(1-q_0)+\lambda-(1-2q_0+\tilde q_0^2)\beta(\beta+\lambda)f'(1))}{(1-(1-q_0)\beta f'(1))^2}\right)
- +\frac12\log\frac{d+r^2}{g^2}\frac{1-2q_0+\tilde q_0^2}{(1-q_0)^2}
- -\mu(r+g)-\frac12\mu\hat\lambda+\hat\beta E+\hat\lambda\lambda^*
+ \right]
\end{aligned}
\end{equation}
+We expect as before the limits of $q_0$ and $\tilde q_0$ as $\beta$ goes to
+infinity to approach one, defining their asymptotic expansion as in
+\eqref{eq:q0.limit} and \eqref{eq:q0t.limit}. Upon making this substitution and
+taking the zero-temperature limit, we find
\begin{equation}
\begin{aligned}
\mathcal S_\infty
- =-\frac\alpha2\log\left[
- \frac{
- (f'(1)d-\hat\beta-f''(1)(r^2-g^2+2y_0\hat\lambda+\Delta z+\frac12\hat\lambda^2)))(f(1)-f(0))+(1-rf'(1))^2)
- }{
- (1+gf'(1))^2
- }
- \right] \\
- +\frac{\alpha f(0)}2\frac{
- \hat\beta-df'(1)+(r^2-g^2+2y_0\hat\lambda+\Delta z+\frac12\lambda^2)f''(1)
- }{
- (f'(1)d-\hat\beta- (r^2-g^2+2y_0\hat\lambda+\Delta z+\frac12\lambda^2)f''(1))(f(1)-f(0))+(1-rf'(1))^2
- }
- \\
+ =\hat\beta E-\mu(r+g)
+ +\frac12\log\frac{d+r^2}{g^2}\frac{y_0^2-\Delta z}{y_0^2}
-\frac\alpha2\log\left(
\frac{
1-(2y_0+\hat\lambda)f'(1)+(y_0^2-\Delta z)f'(1)^2
}{(1-y_0f'(1))^2}
\right)
- +\frac12\log\frac{d+r^2}{g^2}\frac{y_0^2-\Delta z}{y_0^2}
- -\mu(r+g)-\frac12\mu\hat\lambda+\hat\beta E+\hat\lambda\lambda^*
+ \\
+ -\frac12\mu\hat\lambda+\hat\lambda\lambda^*-\frac\alpha2\log\left[
+ \frac{
+ \big[f'(1)d-\hat\beta-f''(1)(r^2-g^2+2y_0\hat\lambda+\Delta z+\frac12\hat\lambda^2)\big]f(1)+\big[1-rf'(1)\big]^2
+ }{
+ (1+gf'(1))^2
+ }
+ \right]
\end{aligned}
\end{equation}
\begin{equation}
@@ -950,43 +950,163 @@ replica symmetric structure, formulas for the effective action are generic to
any structure and provide a starting point for analyzing the challenging
full-RSB setting.
+Using the $\mathbb R^{N|2}$ superfields
+\begin{equation}
+ \pmb\phi_a(1)=\mathbf x+\bar\theta_1\pmb\eta+\bar{\pmb\eta}\theta_1+\bar\theta_1\theta_1\hat{\mathbf x},
+\end{equation}
+the replicated count of stationary points can be written
+\begin{equation}
+ \begin{aligned}
+ &\mathcal N(E,\mu)^n
+ =\int\prod_{a=1}^nd\hat\beta_a\,d\pmb\phi_a\,
+ \\
+ &\qquad\times\exp\left[
+ \hat\beta_a E-\frac12\int d1\,B_a(1)\sum_{k=1}^MV^k(\pmb\phi_a(1))^2
+ \right]
+ \end{aligned}
+\end{equation}
+for $B_a(1)=1-\hat\beta_a\bar\theta_1\theta_1$.
+The derivation of the complexity follows from here nearly identically to that
+in Appendix A.2 of \citeauthor{Fyodorov_2022_Optimization} with superoperations
+replacing standard ones \cite{Fyodorov_2022_Optimization}. First we insert
+Dirac $\delta$ functions to fix each of the $M$ energies $V^k(\pmb\phi_a(1))$ as
+\begin{equation} \label{eq:Vv.delta}
+ \begin{aligned}
+ &\int dv^k_a\,\delta\big(V^k(\pmb\phi_a(1))-v^k_a(1)\big)
+ \\
+ &\quad=\int dv^k_a\,d\hat v^k_a\,\exp\left[i\int d1\,\hat v^k_a(1)\big(V^k(\pmb\phi_a(1))-v^k_a(1)\big)\right]
+ \end{aligned}
+\end{equation}
+The squared $V^k$ appearing in the energy can now be replaced by the variables
+$v^k$, leaving the only remaining dependence on the disordered $V$ in the
+contribution of \eqref{eq:Vv.delta}, which is linear. The average over the
+disorder can then be computed, which yields
+\begin{equation}
+ \begin{aligned}
+ &\overline{\sum_{k=1}^M\sum_{a=1}^n\exp\left[i\int d1\,\hat v^k_a(1)V^k(\pmb\phi_a(1))\right]}
+ \\
+ &
+ =\exp\left[
+ -\frac12\sum_{k=1}^M\sum_{ab=1}^n\int d1\,d2\,\hat v_a^k(1)f\left(\frac{\pmb\phi_a(1)^T\pmb\phi_b(2)}N\right)\hat v_b^k(2)
+ \right]
+ \end{aligned}
+\end{equation}
+The result is factorized in the indices $k$ and Gaussian in the superfields $v$
+and $\hat v$ with kernel
+\begin{equation}
+ \begin{bmatrix}
+ B_a(1)\delta_{ab}\delta(1,2) & i\delta_{ab}\delta(1,2) \\
+ i\delta_{ab}\delta(1,2) & f\left(\frac{\pmb\phi_a(1)^T\pmb\phi_b(2)}N\right)
+ \end{bmatrix}
+\end{equation}
+where $\delta(1,2)=(\bar\theta_1-\bar\theta_2)(\theta_1-\theta_2)$ is the
+identity operator for convolutions with $d1$ or $d2$.
+Making the $M$ independent Gaussian integrals, we therefore have
+\begin{equation}
+ \begin{aligned}
+ &\mathcal N(E,\mu)^n
+ =\int\left(\prod_{a=1}^nd\hat\beta_a\,d\pmb\phi_a\right)
+ \exp\bigg[
+ \sum_a^n\hat\beta_aE \\
+ &\qquad-\frac M2\log\operatorname{sdet}\left(
+ \delta_{ab}\delta(1,2)+B_a(1)f\left(\frac{\pmb\phi_a(1)^T\pmb\phi_b(2)}N\right)
+ \right)
+ \bigg]
+ \end{aligned}
+\end{equation}
+We make a change of variables from the fields $\pmb\phi$ to matrices $\mathbb Q_{ab}(1,2)=\frac1N\pmb\phi_a(1)^T\pmb\phi_b(2)$. This transformation results in a change of measure of the form
+\begin{equation}
+ \prod_{a=1}^n d\pmb\phi_a=d\mathbb Q\,(\operatorname{sdet}\mathbb Q)^\frac N2
+ =d\mathbb Q\,\exp\left[\frac N2\log\operatorname{sdet}\mathbb Q\right]
+\end{equation}
+We therefore have
+\begin{equation}
+ \begin{aligned}
+ &\mathcal N(E,\mu)^n
+ =\int\left(\prod_{a=1}^nd\hat\beta_a\right)\,d\mathbb Q\,
+ \exp\bigg[
+ \sum_a^n\hat\beta_aE
+ +\frac N2\log\operatorname{sdet}\mathbb Q
+ \\
+ &\qquad-\frac M2\log\operatorname{sdet}\left(
+ \delta_{ab}\delta(1,2)+B_a(1)f(\mathbb Q_{ab}(1,2))
+ \right)
+ \bigg]
+ \end{aligned}
+\end{equation}
+We now need to blow up our supermatrices into our physical order parameters. We have that
+\begin{equation}
+ \begin{aligned}
+ &\mathbb Q_{ab}(1,2)
+ =C_{ab}-G_{ab}(\bar\theta_1\theta_2+\bar\theta_2\theta_1) \\
+ &\qquad-R_{ab}(\bar\theta_1\theta_1+\bar\theta_2\theta_2)
+ -D_{ab}\bar\theta_1\theta_2\bar\theta_2\theta_2
+ \end{aligned}
+\end{equation}
+where $C$, $R$, $D$, and $G$ are the matrices defined in
+\eqref{eq:order.parameters}. Other possible combinations involving scalar
+products between fermionic and bosonic variables do not contribute at physical
+saddle points \cite{Kurchan_1992_Supersymmetry}. Inserting this expansion into
+the expression above and evaluating the superdeterminants, we find
+\begin{equation}
+ \mathcal N(E,\mu)^n=\int d\hat\beta\,dC\,dR\,dD\,dG\,e^{nN\mathcal S_\mathrm{KR}(\hat\beta,C,R,D,G)}
+\end{equation}
+where the effective action is given by
\begin{widetext}
\begin{equation}
\begin{aligned}
- &\mathcal S
- =-\frac1n\frac\alpha2\left\{\log\det\left[
- \hat\beta f(C)+\Big(
- f'(C)\odot D+(G\odot G-R\odot R)\odot f''(C)
+ &\mathcal S_\mathrm{KR}(\hat\beta,C,R,D,G)
+ =\hat\beta E-\frac1n\operatorname{Tr}(G+R)\mu
+ +\frac1n\frac12\Big(\log\det(CD+R^2)-\log\det G^2\Big)
+ \\
+ &-\frac1n\frac\alpha2\left\{\log\det\left[
+ \Big(
+ f'(C)\odot D-\hat\beta I+(G\odot G-R\odot R)\odot f''(C)
\Big)f(C)
- +(I+R\odot f'(C))^2
- \right]-\log\det(I+G\odot f'(C))^2\right\} \\
- &+\frac1n\frac12\Big(\log\det(CD+R^2)-\log\det G^2\Big)
- +\hat\beta E+(g_d-r_d)\mu
+ +(I-R\odot f'(C))^2
+ \right]-\log\det(I+G\odot f'(C))^2\right\}
\end{aligned}
\end{equation}
where $\odot$ gives the Hadamard or componentwise product between the matrices, while other products and powers are matrix products and powers.
+In the case where $\mu$ is not specified, the model has a BRST symmetry whose
+Ward identities give $D=\hat\beta R$ and $G=-R$
+\cite{Annibale_2004_Coexistence, Kent-Dobias_2023_How}. Using these relations,
+the effective action becomes particularly simple:
+\begin{equation}
+ \mathcal S(\hat\beta, C, R)
+ =
+ \hat\beta E
+ +\lim_{n\to0}\frac1n\left[
+ -\frac\alpha2\log\det\left[
+ I-\hat\beta f(C)(I-R\odot f'(C))^{-1}
+ \right]
+ +\frac12\log\det(I+\hat\beta CR^{-1})
+ \right]
+\end{equation}
+This effective action is general for arbitrary matrices $C$ and $R$. When using
+a replica symmetric ansatz of $C_{ab}=\delta_{ab}+c_0(1-\delta_{ab})$ and
+$R_{ab}=r\delta_{ab}+r_0(1-\delta_{ab})$, the resulting function of
+$\hat\beta$, $c_0$, $r$, and $r_0$ is
\begin{equation}
\begin{aligned}
- &\hat\beta E+\mu(g_d-r_d)+\frac12\log\frac{d_d+r_d^2}{g_d^2} \\
- &-\frac\alpha2\log\left[
- 1+\hat\beta\big(f(1)-f(0)\big)
- \Big(d_d\big(f(1)-f(0)\big)+r_d\big(2+r_df'(1)\big)\Big)f'(1)
- +(g_d^2-r_d^2)\big(f(1)-f(0)\big)f''(1)
+ \mathcal S=
+ \hat\beta E
+ -\frac\alpha 2\left[
+ \log\left(1-\frac{\hat\beta\big(f(1)-f(c_0)\big)}{1-rf'(1)+r_0f'(c_0)}\right)
+ -\frac{\hat\beta f(c_0)+r_0f'(c_0)}{
+ 1-\hat\beta\big(f(1)-f(c_0)\big)-rf'(1)+rf'(c_0)
+ }+\frac{r_0f'(c_0)}{1-rf'(1)+r_0f'(c_0)}
\right] \\
- &-\alpha f(0)\left(
- \big(f(1)-f(0)\big)+\frac{1+r_d\big(2+r_df'(1)\big)f'(1)}{\hat\beta+d_df'(1)+(g_d^2-r_d^2)f''(1)}
- \right)^{-1}
+ +\frac12\left[
+ \log\left(1+\frac{\hat\beta(1-c_0)}{r-r_0}\right)
+ +\frac{\hat\beta c_0+r_0}{\hat\beta(1-c_0)+r-r_0}
+ -\frac{r_0}{r-r_0}
+ \right]
\end{aligned}
\end{equation}
-
-In the case where $\mu$ is not specified, in which the model is supersymmetric, $D=\hat\beta R$ and the effective action becomes particularly simple:
-\begin{equation}
- \hat\beta e
- -\frac12\frac{\alpha f(0)}{1+\hat\beta\big(f(1)-f(0)\big)+r_df'(1)}
- -\frac\alpha2\log\left(1+\frac{\hat\beta\big(f(1)-f(0)\big)}{1+r_df'(1)}\right)
- +\frac12\log\frac{\hat\beta+r_d}{r_d}
-\end{equation}
+When $f(0)=0$ as in the cases directly studied in this work, this further
+simplifies as $c_0=r_0=0$.
\end{widetext}