summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
-rw-r--r--marginal.tex142
1 files changed, 81 insertions, 61 deletions
diff --git a/marginal.tex b/marginal.tex
index f46ed38..038f214 100644
--- a/marginal.tex
+++ b/marginal.tex
@@ -1820,42 +1820,45 @@ full-RSB setting.
Using the $\mathbb R^{N|2}$ superfields
\begin{equation}
- \pmb\phi_a(1)=\mathbf x+\bar\theta_1\pmb\eta+\bar{\pmb\eta}\theta_1+\bar\theta_1\theta_1\hat{\mathbf x},
+ \pmb\phi_a(1)=\mathbf x_a+\bar\theta_1\pmb\eta_a+\bar{\pmb\eta}_a\theta_1+\bar\theta_1\theta_1\hat{\mathbf x}_a,
\end{equation}
the replicated count of stationary points can be written
\begin{equation}
\begin{aligned}
&\mathcal N(E,\mu)^n
- =\int\prod_{a=1}^nd\hat\beta_a\,d\pmb\phi_a\,
- \\
- &\qquad\times\exp\left[
- \hat\beta_a E-\frac12\int d1\,B_a(1)\sum_{k=1}^MV^k(\pmb\phi_a(1))^2
- \right]
+ =\int d\hat\beta\prod_{a=1}^n\,d\pmb\phi_a\,
+ \exp\bigg[
+ N\hat\beta E \\
+ &\qquad-\frac12\int d1\,\left(
+ B(1)\sum_{k=1}^MV_k(\pmb\phi_a(1))^2
+ -\mu\big(\|\pmb\phi_a(1)\|^2-N\big)
+ \right)
+ \bigg]
\end{aligned}
\end{equation}
-for $B_a(1)=1-\hat\beta_a\bar\theta_1\theta_1$.
+for $B(1)=1-\hat\beta\bar\theta_1\theta_1$.
The derivation of the complexity follows from here nearly identically to that
in Appendix A.2 of \citeauthor{Fyodorov_2022_Optimization} with superoperations
replacing standard ones \cite{Fyodorov_2022_Optimization}. First we insert
-Dirac $\delta$ functions to fix each of the $M$ energies $V^k(\pmb\phi_a(1))$ as
+Dirac $\delta$ functions to fix each of the $M$ energies $V_k(\pmb\phi_a(1))$ as
\begin{equation} \label{eq:Vv.delta}
\begin{aligned}
- &\int dv^k_a\,\delta\big(V^k(\pmb\phi_a(1))-v^k_a(1)\big)
+ &\delta\big(V_k(\pmb\phi_a(1))-v_{ka}(1)\big)
\\
- &\quad=\int dv^k_a\,d\hat v^k_a\,\exp\left[i\int d1\,\hat v^k_a(1)\big(V^k(\pmb\phi_a(1))-v^k_a(1)\big)\right]
+ &=\int d\hat v_{ka}\,\exp\left[i\int d1\,\hat v_{ka}(1)\big(V_k(\pmb\phi_a(1))-v_{ka}(1)\big)\right]
\end{aligned}
\end{equation}
-The squared $V^k$ appearing in the energy can now be replaced by the variables
-$v^k$, leaving the only remaining dependence on the disordered $V$ in the
+The squared $V_k$ appearing in the energy can now be replaced by the variables
+$v_k$, leaving the only remaining dependence on the disordered $V$ in the
contribution of \eqref{eq:Vv.delta}, which is linear. The average over the
disorder can then be computed, which yields
\begin{equation}
\begin{aligned}
- &\overline{\sum_{k=1}^M\sum_{a=1}^n\exp\left[i\int d1\,\hat v^k_a(1)V^k(\pmb\phi_a(1))\right]}
+ &\overline{\sum_{k=1}^M\sum_{a=1}^n\exp\left[i\int d1\,\hat v_{ka}(1)V_k(\pmb\phi_a(1))\right]}
\\
&
=\exp\left[
- -\frac12\sum_{k=1}^M\sum_{ab=1}^n\int d1\,d2\,\hat v_a^k(1)f\left(\frac{\pmb\phi_a(1)^T\pmb\phi_b(2)}N\right)\hat v_b^k(2)
+ -\frac12\sum_{k=1}^M\sum_{ab}^n\int d1\,d2\,\hat v_{ka}(1)f\left(\frac{\pmb\phi_a(1)\cdot\pmb\phi_b(2)}N\right)\hat v_{kb}(2)
\right]
\end{aligned}
\end{equation}
@@ -1863,24 +1866,26 @@ The result is factorized in the indices $k$ and Gaussian in the superfields $v$
and $\hat v$ with kernel
\begin{equation}
\begin{bmatrix}
- B_a(1)\delta_{ab}\delta(1,2) & i\delta_{ab}\delta(1,2) \\
- i\delta_{ab}\delta(1,2) & f\left(\frac{\pmb\phi_a(1)^T\pmb\phi_b(2)}N\right)
+ B(1)\delta_{ab}\delta(1,2) & i\delta_{ab}\delta(1,2) \\
+ i\delta_{ab}\delta(1,2) & f\left(\frac{\pmb\phi_a(1)\cdot\pmb\phi_b(2)}N\right)
\end{bmatrix}
\end{equation}
-Making the $M$ independent Gaussian integrals, we therefore have
+Making the $M$ independent Gaussian integrals, we find
\begin{equation}
\begin{aligned}
&\mathcal N(E,\mu)^n
- =\int\left(\prod_{a=1}^nd\hat\beta_a\,d\pmb\phi_a\right)
+ =\int d\hat\beta\left(\prod_{a=1}^nd\pmb\phi_a\right)
\exp\bigg[
- \sum_a^n\hat\beta_aE \\
- &\qquad-\frac M2\log\operatorname{sdet}\left(
- \delta_{ab}\delta(1,2)+B_a(1)f\left(\frac{\pmb\phi_a(1)^T\pmb\phi_b(2)}N\right)
+ nN\hat\beta E+\frac\mu2\sum_a^n\int d1\,\|\pmb\phi_a\|^2 \\
+ &\quad-\frac M2\log\operatorname{sdet}\left(
+ \delta_{ab}\delta(1,2)+B(1)f\left(\frac{\pmb\phi_a(1)\cdot\pmb\phi_b(2)}N\right)
\right)
\bigg]
\end{aligned}
\end{equation}
-We make a change of variables from the fields $\pmb\phi$ to matrices $\mathbb Q_{ab}(1,2)=\frac1N\pmb\phi_a(1)^T\pmb\phi_b(2)$. This transformation results in a change of measure of the form
+We make a change of variables from the fields $\pmb\phi$ to matrices $\mathbb
+Q_{ab}(1,2)=\frac1N\pmb\phi_a(1)\cdot\pmb\phi_b(2)$. This transformation results
+in a change of measure of the form
\begin{equation}
\prod_{a=1}^n d\pmb\phi_a=d\mathbb Q\,(\operatorname{sdet}\mathbb Q)^\frac N2
=d\mathbb Q\,\exp\left[\frac N2\log\operatorname{sdet}\mathbb Q\right]
@@ -1889,18 +1894,20 @@ We therefore have
\begin{equation}
\begin{aligned}
&\mathcal N(E,\mu)^n
- =\int\left(\prod_{a=1}^nd\hat\beta_a\right)\,d\mathbb Q\,
- \exp\bigg[
- \sum_a^n\hat\beta_aE
- +\frac N2\log\operatorname{sdet}\mathbb Q
+ =\int d\hat\beta\,d\mathbb Q\,
+ \exp\bigg\{
+ nN\hat\beta E+N\frac\mu2\operatorname{sTr}\mathbb Q
+ +\frac N2\log\operatorname{sdet}\mathbb Q
\\
- &\qquad-\frac M2\log\operatorname{sdet}\left(
- \delta_{ab}\delta(1,2)+B_a(1)f(\mathbb Q_{ab}(1,2))
- \right)
- \bigg]
+ &\qquad
+ -\frac M2\log\operatorname{sdet}\left[
+ \delta_{ab}\delta(1,2)+B(1)f(\mathbb Q_{ab}(1,2))
+ \right]
+ \bigg\}
\end{aligned}
\end{equation}
-We now need to blow up our supermatrices into our physical order parameters. We have that
+We now need to blow up our supermatrices into our physical order parameters. We
+have from the definition of $\pmb\phi$ and $\mathbb Q$ that
\begin{equation}
\begin{aligned}
&\mathbb Q_{ab}(1,2)
@@ -1913,7 +1920,7 @@ where $C$, $R$, $D$, and $G$ are the matrices defined in
\eqref{eq:order.parameters}. Other possible combinations involving scalar
products between fermionic and bosonic variables do not contribute at physical
saddle points \cite{Kurchan_1992_Supersymmetry}. Inserting this expansion into
-the expression above and evaluating the superdeterminants, we find
+the expression above and evaluating the superdeterminants and supertrace, we find
\begin{equation}
\mathcal N(E,\mu)^n=\int d\hat\beta\,dC\,dR\,dD\,dG\,e^{nN\mathcal S_\mathrm{KR}(\hat\beta,C,R,D,G)}
\end{equation}
@@ -1921,63 +1928,76 @@ where the effective action is given by
\begin{widetext}
\begin{equation}
\begin{aligned}
- &\mathcal S_\mathrm{KR}(\hat\beta,C,R,D,G)
- =\hat\beta E-\frac1n\operatorname{Tr}(G+R)\mu
- +\frac1n\frac12\Big(\log\det(CD+R^2)-\log\det G^2\Big)
+ \mathcal S_\mathrm{KR}(\hat\beta,C,R,D,G)
+ &=\hat\beta E+\lim_{n\to0}\frac1n\Bigg(-\mu\operatorname{Tr}(G+R)
+ +\frac12\log\det\big[G^{-2}(CD+R^2)\big]
+ +\alpha\log\det\big[I+G\odot f'(C)\big]
\\
- &-\frac1n\frac\alpha2\left\{\log\det\left[
+ &\qquad-\frac\alpha2\log\det\left[
\Big(
- f'(C)\odot D-\hat\beta I+(G\odot G-R\odot R)\odot f''(C)
+ f'(C)\odot D-\hat\beta I+(G^{\circ2}-R^{\circ2})\odot f''(C)
\Big)f(C)
+(I-R\odot f'(C))^2
- \right]-\log\det(I+G\odot f'(C))^2\right\}
+ \right]\Bigg)
\end{aligned}
\end{equation}
-where $\odot$ gives the Hadamard or componentwise product between the matrices, while other products and powers are matrix products and powers.
+where $\odot$ gives the Hadamard or componentwise product between the matrices
+and $A^{\circ n}$ gives the Hadamard power of $A$, while other products and
+powers are matrix products and powers.
-In the case where $\mu$ is not specified, the model has a BRST symmetry whose
-Ward identities give $D=\hat\beta R$ and $G=-R$
-\cite{Annibale_2004_Coexistence, Kent-Dobias_2023_How}. Using these relations,
-the effective action becomes particularly simple:
+In the case where $\mu$ is not specified, we can make use of the BRST symmetry
+of Appendix~\ref{sec:brst} whose Ward identities give $D=\hat\beta R$ and
+$G=-R$. Using these relations, the effective action becomes particularly
+simple:
\begin{equation}
- \mathcal S(\hat\beta, C, R)
+ \mathcal S_\mathrm{KR}(\hat\beta, C, R)
=
\hat\beta E
- +\lim_{n\to0}\frac1n\left[
- -\frac\alpha2\log\det\left[
- I-\hat\beta f(C)(I-R\odot f'(C))^{-1}
+ +\frac12\lim_{n\to0}\frac1n\Big(
+ \log\det(I+\hat\beta CR^{-1})
+ -\alpha\log\det\left[
+ I-\hat\beta f(C)\big(I-R\odot f'(C)\big)^{-1}
\right]
- +\frac12\log\det(I+\hat\beta CR^{-1})
- \right]
+ \Big)
\end{equation}
-This effective action is general for arbitrary matrices $C$ and $R$. When using
-a replica symmetric ansatz of $C_{ab}=\delta_{ab}+c_0(1-\delta_{ab})$ and
+This effective action is general for arbitrary matrices $C$ and $R$, and
+therefore arbitrary \textsc{rsb} order. When using a replica symmetric ansatz
+of $C_{ab}=\delta_{ab}+c_0(1-\delta_{ab})$ and
$R_{ab}=r\delta_{ab}+r_0(1-\delta_{ab})$, the resulting function of
$\hat\beta$, $c_0$, $r$, and $r_0$ is
\begin{equation}
\begin{aligned}
- \mathcal S=
+ &\mathcal S_\mathrm{KR}(\hat\beta,c_0,r,r_0)=
\hat\beta E
- -\frac\alpha 2\left[
- \log\left(1-\frac{\hat\beta\big(f(1)-f(c_0)\big)}{1-rf'(1)+r_0f'(c_0)}\right)
- -\frac{\hat\beta f(c_0)+r_0f'(c_0)}{
- 1-\hat\beta\big(f(1)-f(c_0)\big)-rf'(1)+rf'(c_0)
- }+\frac{r_0f'(c_0)}{1-rf'(1)+r_0f'(c_0)}
- \right] \\
+\frac12\left[
\log\left(1+\frac{\hat\beta(1-c_0)}{r-r_0}\right)
+\frac{\hat\beta c_0+r_0}{\hat\beta(1-c_0)+r-r_0}
-\frac{r_0}{r-r_0}
\right]
+ \\
+ &\qquad-\frac\alpha 2\left[
+ \log\left(1-\frac{\hat\beta\big(f(1)-f(c_0)\big)}{1-rf'(1)+r_0f'(c_0)}\right)
+ -\frac{\hat\beta f(c_0)+r_0f'(c_0)}{
+ 1-\hat\beta\big(f(1)-f(c_0)\big)-rf'(1)+rf'(c_0)
+ }+\frac{r_0f'(c_0)}{1-rf'(1)+r_0f'(c_0)}
+ \right]
\end{aligned}
\end{equation}
+\end{widetext}
When $f(0)=0$ as in the cases directly studied in this work, this further
-simplifies as $c_0=r_0=0$. Extremizing this expression with respect to the
+simplifies as $c_0=r_0=0$. The effective action is then
+\begin{equation}
+ \mathcal S_\mathrm{KR}(\hat\beta,r)=
+ \hat\beta E
+ +\frac12
+ \log\left(1+\frac{\hat\beta}{r}\right)
+ -\frac\alpha 2
+ \log\left(1-\frac{\hat\beta f(1)}{1-rf'(1)}\right)
+\end{equation}
+Extremizing this expression with respect to the
order parameters $\hat\beta$ and $r$ produces the red line of dominant minima
shown in Fig.~\ref{fig:ls.complexity}.
-\end{widetext}
-
\bibliography{marginal}
\end{document}