summaryrefslogtreecommitdiff
path: root/marginal.tex
diff options
context:
space:
mode:
Diffstat (limited to 'marginal.tex')
-rw-r--r--marginal.tex27
1 files changed, 12 insertions, 15 deletions
diff --git a/marginal.tex b/marginal.tex
index 1fdaee4..bb4a96d 100644
--- a/marginal.tex
+++ b/marginal.tex
@@ -1018,9 +1018,9 @@ fully connected couplings between the spheres, for which it is possible to also
use configuration spaces involving spheres of different sizes
\cite{Subag_2021_TAP, Subag_2023_TAP, Bates_2022_Crisanti-Sommers,
Bates_2022_Free, Huang_2023_Strong, Huang_2023_Algorithmic,
-Huang_2024_Optimization}.
+Huang_2024_Optimization}. As far as we are aware, the deterministically coupled model has not been previously studied, except as a thought experiment in \cite{Kent-Dobias_2023_How}.
-The Lagrangian to be extremized to find stationary points and its gradient and Hessian are
+We again make use of the method of Lagrange multipliers to find stationary points on the constrained configuration space. The Lagrangian and its gradient and Hessian are
\begin{align}
&\begin{aligned}
L(\mathbf x)&=H(\mathbf x)
@@ -1092,16 +1092,15 @@ different effective actions depending now on overlaps inside each of the two
spheres and between the two spheres. The effective action for the traditional
complexity of the multispherical spin glass is
\begin{widetext}
-\begin{equation}
- \begin{aligned}
+\begin{align}
&\mathcal S_\mathrm{MSG}(\hat\beta,C^{11},R^{11},D^{11},G^{11},C^{22},R^{22},D^{22},G^{22},C^{12},R^{12},R^{21},D^{12},G^{12},G^{21}
- \mid E,\omega_1,\omega_2)= \hat\beta(E-E_1-E_2-\epsilon c_d^{12})\\
+ \mid E,\omega_1,\omega_2)= \hat\beta(E-E_1-E_2-\epsilon c_d^{12}) \notag \\
&
+\mathcal S_\mathrm{SSG}(\hat\beta,C^{11},R^{11},D^{11},G^{11}\mid E_1,\omega_1)
+\mathcal S_\mathrm{SSG}(\hat\beta,C^{22},R^{22},D^{22},G^{22}\mid E_2,\omega_2)
+\lim_{n\to0}\frac1n\Bigg\{
\epsilon\operatorname{Tr}(R^{12}+R^{21}+G^{12}+G^{21}-\hat\beta C^{12})
- \\
+ \notag \\
&\quad
+\frac12\log\det\left(
I-
@@ -1115,27 +1114,25 @@ complexity of the multispherical spin glass is
\end{bmatrix}
\right)
-\log\det(I-(G^{11}G^{22})^{-1}G^{12}G^{21})\Bigg\}
- \end{aligned}
-\end{equation}
+\end{align}
which is the sum of two effective actions \eqref{eq:spherical.action} for the spherical spin glass
associated with each individual sphere, and some coupling terms. The order
parameters are defined the same as in the spherical spin glasses, but now with
raised indices to indicate whether the vectors come from one or the other
spherical subspace. The effective action for the eigenvalue-dependent part of
the complexity is likewise given by
-\begin{equation} \label{eq:multispherical.marginal.action}
- \begin{aligned}
- &\mathcal U_\mathrm{MSG}(\hat q,\hat\lambda,Q^{11},Q^{22},Q^{12}\mid\beta,\lambda^*,\omega_1,\omega_2) \\
+\begin{align}
+ &\mathcal U_\mathrm{MSG}(\hat q,\hat\lambda,Q^{11},Q^{22},Q^{12}\mid\beta,\lambda^*,\omega_1,\omega_2) \notag \\
&\quad=\lim_{m\to0}\bigg\{\sum_{\alpha=1}^m\left[\hat q^\alpha(Q^{11,\alpha\alpha}+Q^{22,\alpha\alpha}-1)-\beta(\omega_1Q^{11,\alpha\alpha}+\omega_2Q^{22,\alpha\alpha}-2\epsilon Q^{12,\alpha\alpha})\right]
- +\hat\lambda(\omega_1Q^{11,11}+\omega_2Q^{22,11}-2\epsilon Q^{12,11}) \\
+ +\hat\lambda(\omega_1Q^{11,11}+\omega_2Q^{22,11}-2\epsilon Q^{12,11}) \notag \\
&\qquad\qquad+\sum_{i=1,2}f_i''(1)\left[\beta^2\sum_{\alpha\gamma}^m(Q^{ii,\alpha\gamma})^2+2\beta\hat\lambda\sum_\alpha^m(Q^{ii,1\alpha})^2+\hat\lambda^2(Q^{ii,11})^2\right]
+\frac12\log\det\begin{bmatrix}
Q^{11}&Q^{12}\\
Q^{12}&Q^{22}
\end{bmatrix}
\bigg\}
- \end{aligned}
-\end{equation}
+\label{eq:multispherical.marginal.action}
+\end{align}
\end{widetext}
The new variables $\hat q^\alpha$ are Lagrange multipliers introduced
to enforce the constraint that $Q^{11,\alpha\alpha}+Q^{22,\alpha\alpha}=1$.
@@ -1152,7 +1149,7 @@ diagonal not necessarily equal to 1, so
\tilde q^{ij}_0 & q^{ij}_0 & q^{ij}_0 & \cdots & q^{ij}_d
\end{bmatrix}
\end{equation}
-This requires us to introduce two new order parameters per pair $(i,j)$. When
+This requires us to introduce two new order parameters per pair $(i,j)$. We also need two separate Lagrange multipliers $\hat q$ and $\hat{\tilde q}$ to enforce the tangent space normalization for the tilde and untilde replicas, respectively. When
this ansatz is inserted into the expression \eqref{eq:multispherical.marginal.action} for the effective action and the
limit of $m\to0$ is taken, we find
\begin{widetext}