summaryrefslogtreecommitdiff
path: root/marginal.tex
diff options
context:
space:
mode:
Diffstat (limited to 'marginal.tex')
-rw-r--r--marginal.tex28
1 files changed, 20 insertions, 8 deletions
diff --git a/marginal.tex b/marginal.tex
index 1ece03b..fdb7377 100644
--- a/marginal.tex
+++ b/marginal.tex
@@ -883,7 +883,9 @@ gradient. This means that the form of the Hessian is parameterized solely by
the values of the Lagrange multipliers $\omega^{(1)}$ and $\omega^{(2)}$, just
as $\mu=\omega$ alone parameterized the Hessian in the spherical spin glasses.
Unlike that case, however, the Hessian takes different shapes with different
-spectral widths depending on their precise combination.
+spectral widths depending on their precise combination. In
+Appendix~\ref{sec:multispherical.spectrum} we derive a variational form for the
+spectral density of the Hessian in these models using standard methods.
\begin{widetext}
\begin{equation}
@@ -911,6 +913,7 @@ spectral widths depending on their precise combination.
\begin{equation}
\begin{aligned}
+ \mathcal U_\mathrm{MSG}(
&\sum_a^n\left[\hat q_a(Q^{11}_{aa}+Q^{22}_{aa}-1)-\beta(\omega_1Q^{11}_{aa}+\omega_2Q^{22}_{aa}+2\epsilon Q^{12}_{aa})\right]
+\lambda(\omega_1Q^{11}_{11}+\omega_2Q^{22}_{11}+2\epsilon Q^{12}_{11}) \\
&+\sum_{i=1,2}f_i''(1)\left[\beta^2\sum_{ab}^n(Q^{ii}_{ab})^2-2\beta\lambda\sum_a^n(Q^{ii}_{1a})^2+\lambda^2(Q^{ii}_{11})^2\right]
@@ -921,13 +924,22 @@ spectral widths depending on their precise combination.
\end{aligned}
\end{equation}
\end{widetext}
-\begin{equation}
- \log\det\begin{bmatrix}
- Q^{11}&Q^{12}\\
- Q^{12}&Q^{22}
- \end{bmatrix}
- +\log\det(Q^{11}Q^{22}-Q^{12}Q^{12})
-\end{equation}
+
+\begin{figure}
+ \includegraphics{figs/msg_marg_legend.pdf}
+
+ \includegraphics{figs/msg_marg_params.pdf}
+ \hfill
+ \includegraphics{figs/msg_marg_spectra.pdf}
+
+ \caption{
+ \textsc{Left}: Values of the Lagrange multipliers $\omega_1$ and $\omega_2$
+ corresponding to a marginal spectrum for multispherical spin glasses with
+ $\sigma_1^2=f_1''(1)=1$, $\sigma_2^2=f_2''(1)=1$, and various $\epsilon$.
+ \textsc{Right}: Spectra corresponding to the parameters $\omega_1$ and
+ $\omega_2$ marked by the circles on the lefthand plot.
+ } \label{fig:msg.marg}
+\end{figure}
\subsection{Random nonlinear least squares}
\label{sec:least.squares}