summaryrefslogtreecommitdiff
path: root/marginal.tex
diff options
context:
space:
mode:
Diffstat (limited to 'marginal.tex')
-rw-r--r--marginal.tex10
1 files changed, 5 insertions, 5 deletions
diff --git a/marginal.tex b/marginal.tex
index c8d0b8b..88809d2 100644
--- a/marginal.tex
+++ b/marginal.tex
@@ -1802,13 +1802,13 @@ Integrals involving superfields contracted into such operators result in schemat
\end{equation}
where the usual role of the determinant is replaced by the superdeterminant.
The superdeterminant can be defined using the ordinary determinant by writing a
-block version of the matrix $M$. If $\mathbf e(1)=\{1,i\bar\theta_1\theta_1\}$ is
+block version of the matrix $M$. If $\mathbf e(1)=\{1,\bar\theta_1\theta_1\}$ is
the basis vector of the even subspace of the superspace and $\mathbf
-f(1)=\{i\bar\theta_1,i\theta_1\}$ is that of the odd subspace, dual bases $\mathbf e^\dagger(1)=\{i\bar\theta_1\theta_1,1\}$ and $\mathbf f^\dagger(1)=\{-\theta_1,\bar\theta_1\}$ can be defined by the requirement that
+f(1)=\{\bar\theta_1,\theta_1\}$ is that of the odd subspace, dual bases $\mathbf e^\dagger(1)=\{\bar\theta_1\theta_1,1\}$ and $\mathbf f^\dagger(1)=\{-\theta_1,\bar\theta_1\}$ can be defined by the requirement that
\begin{align}
- &\int d1\,e_i^\dagger(1)e_j(1)=i\delta_{ij}
+ &\int d1\,e_i^\dagger(1)e_j(1)=\delta_{ij}
&&
- \int d1\,f_i^\dagger(1)f_j(1)=i\delta_{ij} \\
+ \int d1\,f_i^\dagger(1)f_j(1)=\delta_{ij} \\
&\int d1\,e_i^\dagger(1)f_j(1)=0
&&
\int d1\,f_i^\dagger(1)e_j(1)=0
@@ -1825,7 +1825,7 @@ block representation of $M$ in analogy to the matrix form of an operator in quan
&
\mathbf f^\dagger(1)M(1,2)\mathbf f(2)
\end{bmatrix}
- =i\begin{bmatrix}
+ =\begin{bmatrix}
A & B \\ C & D
\end{bmatrix}
\end{equation}