diff options
Diffstat (limited to 'examples')
28 files changed, 2637 insertions, 0 deletions
diff --git a/examples/CMakeLists.txt b/examples/CMakeLists.txt new file mode 100644 index 0000000..baf0a10 --- /dev/null +++ b/examples/CMakeLists.txt @@ -0,0 +1,7 @@ + +add_library(wolff_examples INTERFACE) + +target_include_directories(wolff_examples INTERFACE include) + +add_subdirectory(src) + diff --git a/examples/include/colors.h b/examples/include/colors.h new file mode 100644 index 0000000..abf137c --- /dev/null +++ b/examples/include/colors.h @@ -0,0 +1,34 @@ +#pragma once + +#include <wolff/types.h> + +double hue_to_R(double theta) { + if (((M_PI / 3 <= theta) && (theta < 2 * M_PI / 3)) || ((4 * M_PI / 3 <= theta) && (theta < 5 * M_PI / 3))) { + return 1.0 - fabs(fmod(theta / (2 * M_PI / 6), 2) - 1.0); + } else if (((0 <= theta) && (theta < M_PI / 3)) || ((5 * M_PI / 3 <= theta) && (theta <= 2 * M_PI))) { + return 1.0; + } else { + return 0.0; + } +} + +double hue_to_G(double theta) { + if (((0 <= theta) && (theta < M_PI / 3)) || ((M_PI <= theta) && (theta < 4 * M_PI / 3))) { + return 1.0 - fabs(fmod(theta / (2 * M_PI / 6), 2) - 1.0); + } else if (((M_PI / 3 <= theta) && (theta < 2 * M_PI / 3)) || ((2 * M_PI / 3 <= theta) && (theta < M_PI))) { + return 1.0; + } else { + return 0.0; + } +} + +double hue_to_B(double theta) { + if (((2 * M_PI / 3 <= theta) && (theta < M_PI)) || ((5 * M_PI / 3 <= theta) && (theta <= 2 * M_PI))) { + return 1.0 - fabs(fmod(theta / (2 * M_PI / 6), 2) - 1.0); + } else if (((M_PI <= theta) && (theta < 4 * M_PI / 3)) || ((4 * M_PI / 3 <= theta) && (theta < 5 * M_PI / 3))) { + return 1.0; + } else { + return 0.0; + } +} + diff --git a/examples/include/correlation.hpp b/examples/include/correlation.hpp new file mode 100644 index 0000000..042cff3 --- /dev/null +++ b/examples/include/correlation.hpp @@ -0,0 +1,23 @@ + +#pragma once + +#include <wolff/types.h> +#include <wolff/state.hpp> + +#include <fftw3.h> + +template <class R_t, class X_t> +double correlation_length(const state_t <R_t, X_t>& s) { + double total = 0; + +#ifdef DIMENSION + for (D_t j = 0; j < DIMENSION; j++) { +#else + for (D_t j = 0; j < s.D; j++) { +#endif + total += norm_squared(s.ReF[j]) + norm_squared(s.ImF[j]); + } + + return total / s.D; +} + diff --git a/examples/include/measure.hpp b/examples/include/measure.hpp new file mode 100644 index 0000000..e20353c --- /dev/null +++ b/examples/include/measure.hpp @@ -0,0 +1,63 @@ + +#pragma once + +#include <wolff/state.hpp> +#include "correlation.hpp" +#include <functional> + +#define POSSIBLE_MEASUREMENTS 4 +const unsigned char measurement_energy = 1 << 0; +const unsigned char measurement_clusterSize = 1 << 1; +const unsigned char measurement_magnetization = 1 << 2; +const unsigned char measurement_fourierZero = 1 << 3; + +char const *measurement_labels[] = {"E", "S", "M", "F"}; + +FILE **measure_setup_files(unsigned char flags, unsigned long timestamp) { + FILE **files = (FILE **)calloc(POSSIBLE_MEASUREMENTS, sizeof(FILE *)); + + for (uint8_t i = 0; i < POSSIBLE_MEASUREMENTS; i++) { + if (flags & (1 << i)) { + char *filename = (char *)malloc(255 * sizeof(char)); + sprintf(filename, "wolff_%lu_%s.dat", timestamp, measurement_labels[i]); + files[i] = fopen(filename, "wb"); + free(filename); + } + } + + return files; +} + +template <class R_t, class X_t> +std::function <void(const state_t <R_t, X_t>&)> measure_function_write_files(unsigned char flags, FILE **files, std::function <void(const state_t <R_t, X_t>&)> other_f) { + return [=] (const state_t <R_t, X_t>& s) { + if (flags & measurement_energy) { + float smaller_E = (float)s.E; + fwrite(&smaller_E, sizeof(float), 1, files[0]); + } + if (flags & measurement_clusterSize) { + fwrite(&(s.last_cluster_size), sizeof(uint32_t), 1, files[1]); + } + if (flags & measurement_magnetization) { + write_magnetization(s.M, files[2]); + } + if (flags & measurement_fourierZero) { + float smaller_X = (float)correlation_length(s); + fwrite(&smaller_X, sizeof(float), 1, files[3]); + } + + other_f(s); + }; +} + +void measure_free_files(unsigned char flags, FILE **files) { + for (uint8_t i = 0; i < POSSIBLE_MEASUREMENTS; i++) { + if (flags & (1 << i)) { + fclose(files[i]); + } + } + + free(files); +} + + diff --git a/examples/include/randutils b/examples/include/randutils new file mode 160000 +Subproject 8486a610a954a8248c12485fb4cfc390a5f5f85 diff --git a/examples/src/CMakeLists.txt b/examples/src/CMakeLists.txt new file mode 100644 index 0000000..3397426 --- /dev/null +++ b/examples/src/CMakeLists.txt @@ -0,0 +1,4 @@ + +add_subdirectory(models) +add_subdirectory(tools) + diff --git a/examples/src/models/CMakeLists.txt b/examples/src/models/CMakeLists.txt new file mode 100644 index 0000000..0b0c111 --- /dev/null +++ b/examples/src/models/CMakeLists.txt @@ -0,0 +1,6 @@ + +add_subdirectory(ising) +add_subdirectory(On) +add_subdirectory(potts) +add_subdirectory(roughening) + diff --git a/examples/src/models/On/CMakeLists.txt b/examples/src/models/On/CMakeLists.txt new file mode 100644 index 0000000..26985b9 --- /dev/null +++ b/examples/src/models/On/CMakeLists.txt @@ -0,0 +1,29 @@ + +add_executable(wolff_planar wolff_On.cpp) +add_executable(wolff_planar_2d_no-field wolff_On.cpp) +add_executable(wolff_heisenberg wolff_On.cpp) + +set_target_properties(wolff_planar PROPERTIES COMPILE_FLAGS "-DN_COMP=2") +set_target_properties(wolff_planar_2d_no-field PROPERTIES COMPILE_FLAGS "-DN_COMP=2 -DDIMENSION=2 -DNOFIELD") +set_target_properties(wolff_heisenberg PROPERTIES COMPILE_FLAGS "-DN_COMP=3") + +find_library(GL NAMES GL) +find_library(GLU NAMES GLU) +find_library(GLUT NAMES glut) + +if (${GLUT} MATCHES "GLUT-NOTFOUND") + target_link_libraries(wolff_planar wolff wolff_examples) + target_link_libraries(wolff_planar_2d_no-field wolff wolff_examples) + target_link_libraries(wolff_heisenberg wolff wolff_examples) +else() + target_compile_definitions(wolff_planar PUBLIC HAVE_GLUT) + target_compile_definitions(wolff_planar_2d_no-field PUBLIC HAVE_GLUT) + target_compile_definitions(wolff_heisenberg PUBLIC HAVE_GLUT) + + target_link_libraries(wolff_planar wolff wolff_examples glut GL GLU) + target_link_libraries(wolff_planar_2d_no-field wolff wolff_examples glut GL GLU) + target_link_libraries(wolff_heisenberg wolff wolff_examples glut GL GLU) +endif() + +install(TARGETS wolff_planar wolff_planar_2d_no-field wolff_heisenberg DESTINATION ${CMAKE_INSTALL_BINDIR}) + diff --git a/examples/src/models/On/orthogonal.hpp b/examples/src/models/On/orthogonal.hpp new file mode 100644 index 0000000..f13357f --- /dev/null +++ b/examples/src/models/On/orthogonal.hpp @@ -0,0 +1,202 @@ + +#pragma once + +#include <stdlib.h> +#include <random> +#include <cmath> + +#include <wolff/state.hpp> +#include <wolff/types.h> +#include "vector.hpp" + +template <q_t q, class T> +class orthogonal_t : public std::array<std::array<T, q>, q> { + public : + bool is_reflection; + + orthogonal_t() : is_reflection(false) { + for (q_t i = 0; i < q; i++) { + (*this)[i].fill(0); + (*this)[i][i] = (T)1; + } + } + + vector_t<q, T> act(const vector_t <q, T>& v) const { + vector_t <q, T> v_rot; + v_rot.fill(0); + + if (is_reflection) { + double prod = 0; + for (q_t i = 0; i < q; i++) { + prod += v[i] * (*this)[0][i]; + } + for (q_t i = 0; i < q; i++) { + v_rot[i] = v[i] - 2 * prod * (*this)[0][i]; + } + } else { + for (q_t i = 0; i < q; i++) { + for (q_t j = 0; j < q; j++) { + v_rot[i] += (*this)[i][j] * v[j]; + } + } + } + + return v_rot; + } + + orthogonal_t<q, T> act(const orthogonal_t <q, T>& m) const { + orthogonal_t <q, T> m_rot; + + m_rot.is_reflection = false; + + if (is_reflection) { + for (q_t i = 0; i < q; i++) { + double akOki = 0; + + for (q_t k = 0; k < q; k++) { + akOki += (*this)[0][k] * m[k][i]; + } + + for (q_t j = 0; j < q; j++) { + m_rot[j][i] = m[j][i] - 2 * akOki * (*this)[0][j]; + } + } + } else { + for (q_t i = 0; i < q; i++) { + m_rot[i].fill(0); + for (q_t j = 0; j < q; j++) { + for (q_t k = 0; k < q; k++) { + m_rot[i][j] += (*this)[i][j] * m[j][k]; + } + } + } + } + + return m_rot; + } + + vector_t <q, T> act_inverse(const vector_t <q, T>& v) const { + if (is_reflection) { + return this->act(v); // reflections are their own inverse + } else { + vector_t <q, T> v_rot; + v_rot.fill(0); + + for (q_t i = 0; i < q; i++) { + for (q_t j = 0; j < q; j++) { + v_rot[i] += (*this)[j][i] * v[j]; + } + } + + return v_rot; + } + } + + vector_t <q, T> act_inverse(const orthogonal_t <q, T>& m) const { + if (is_reflection) { + return this->act(m); // reflections are their own inverse + } else { + orthogonal_t <q, T> m_rot; + m_rot.is_reflection = false; + + for (q_t i = 0; i < q; i++) { + m_rot[i].fill(0); + for (q_t j = 0; j < q; j++) { + for (q_t k = 0; k < q; k++) { + m_rot[i][j] += (*this)[j][i] * m[j][k]; + } + } + } + + return m_rot; + } + } + +}; + + +template <q_t q> +orthogonal_t <q, double> generate_rotation_uniform (std::mt19937& r, const vector_t <q, double>& v) { + std::normal_distribution<double> dist(0.0,1.0); + orthogonal_t <q, double> ptr; + ptr.is_reflection = true; + + double v2 = 0; + + for (q_t i = 0; i < q; i++) { + ptr[0][i] = dist(r); + v2 += ptr[0][i] * ptr[0][i]; + } + + double mag_v = sqrt(v2); + + for (q_t i = 0; i < q; i++) { + ptr[0][i] /= mag_v; + } + + return ptr; +} + +template <q_t q> +orthogonal_t <q, double> generate_rotation_perturbation (std::mt19937& r, const vector_t <q, double>& v0, double epsilon, unsigned int n) { + std::normal_distribution<double> dist(0.0,1.0); + orthogonal_t <q, double> m; + m.is_reflection = true; + + vector_t <q, double> v; + + if (n > 1) { + std::uniform_int_distribution<unsigned int> udist(0, n); + unsigned int rotation = udist(r); + + double cosr = cos(2 * M_PI * rotation / (double)n / 2.0); + double sinr = sin(2 * M_PI * rotation / (double)n / 2.0); + + v[0] = v0[0] * cosr - v0[1] * sinr; + v[1] = v0[1] * cosr + v0[0] * sinr; + + for (q_t i = 2; i < q; i++) { + v[i] = v0[i]; + } + } else { + v = v0; + } + + double m_dot_v = 0; + + for (q_t i = 0; i < q; i++) { + m[0][i] = dist(r); // create a random vector + m_dot_v += m[0][i] * v[i]; + } + + double v2 = 0; + + for (q_t i = 0; i < q; i++) { + m[0][i] = m[0][i] - m_dot_v * v[i]; // find the component orthogonal to v + v2 += pow(m[0][i], 2); + } + + double mag_v = sqrt(v2); + + for (q_t i = 0; i < q; i++) { + m[0][i] /= mag_v; // normalize + } + + v2 = 0; + + double factor = epsilon * dist(r); + + for (q_t i = 0; i < q; i++) { + m[0][i] += factor * v[i]; // perturb orthogonal vector in original direction + v2 += pow(m[0][i], 2); + } + + mag_v = sqrt(v2); + + for (q_t i = 0; i < q; i++) { + m[0][i] /= mag_v; // normalize + } + + return m; +} + diff --git a/examples/src/models/On/vector.hpp b/examples/src/models/On/vector.hpp new file mode 100644 index 0000000..1cdb60a --- /dev/null +++ b/examples/src/models/On/vector.hpp @@ -0,0 +1,118 @@ + +#pragma once + +#include <stdlib.h> +#include <cmath> +#include <array> + +#include <wolff/types.h> + +template <q_t q, class T> +class vector_t : public std::array<T, q> { + public: + + // M_t needs to hold the sum of nv spins + typedef vector_t <q, T> M_t; + + // F_t needs to hold the double-weighted sum of spins + typedef vector_t <q, double> F_t; + + vector_t() { + this->fill((T)0); + (*this)[1] = (T)1; + } + + vector_t(const T *x) { + for (q_t i = 0; i < q; i++) { + (*this)[i] = x[i]; + } + } + + template <class U> + inline vector_t<q, T>& operator+=(const vector_t<q, U> &v) { + for (q_t i = 0; i < q; i++) { + (*this)[i] += (U)v[i]; + } + return *this; + } + + template <class U> + inline vector_t<q, T>& operator-=(const vector_t<q, U> &v) { + for (q_t i = 0; i < q; i++) { + (*this)[i] -= (U)v[i]; + } + return *this; + } + + inline vector_t<q, T> operator*(v_t x) const { + vector_t<q, T> result; + for (q_t i = 0; i < q; i++) { + result[i] = x * (*this)[i]; + } + + return result; + } + + inline vector_t<q, double> operator*(double x) const { + vector_t<q, double> result; + for (q_t i = 0; i < q; i++) { + result[i] = x * (*this)[i]; + } + + return result; + } + + inline vector_t<q, T> operator-(const vector_t<q, T>& v) const { + vector_t<q, T> diff = *this; + diff -= v; + return diff; + } +}; + + +template<q_t q, class T> +double norm_squared(vector_t<q, T> v) { + double tmp = 0; + for (T &x : v) { + tmp += pow(x, 2); + } + + return tmp; +} + +template <q_t q, class T> +void write_magnetization(vector_t <q, T> M, FILE *outfile) { + for (q_t i = 0; i < q; i++) { + fwrite(&(M[i]), sizeof(T), q, outfile); + } +} + +// below functions and definitions are unnecessary for wolff.h but useful. + +template <q_t q> // save some space and don't write whole doubles +void write_magnetization(vector_t <q, double> M, FILE *outfile) { + for (q_t i = 0; i < q; i++) { + float M_tmp = (float)M[i]; + fwrite(&M_tmp, sizeof(float), 1, outfile); + } +} + +template <q_t q, class T> +T dot(const vector_t <q, T>& v1, const vector_t <q, T>& v2) { + T prod = 0; + + for (q_t i = 0; i < q; i++) { + prod += v1[i] * v2[i]; + } + + return prod; +} + +template <q_t q, class T> +double H_vector(const vector_t <q, T>& v1, T *H) { + vector_t <q, T> H_vec(H); + return (double)(dot <q, T> (v1, H_vec)); +} + +char const *ON_strings[] = {"TRIVIAL", "ISING", "PLANAR", "HEISENBERG"}; + diff --git a/examples/src/models/On/wolff_On.cpp b/examples/src/models/On/wolff_On.cpp new file mode 100644 index 0000000..e3568c7 --- /dev/null +++ b/examples/src/models/On/wolff_On.cpp @@ -0,0 +1,268 @@ + +#include <getopt.h> +#include <stdio.h> + +#ifdef HAVE_GLUT +#include <GL/glut.h> +#endif + +#include "orthogonal.hpp" +#include "vector.hpp" + +#include <wolff.hpp> +#include <measure.hpp> +#include <colors.h> +#include <randutils/randutils.hpp> + +typedef orthogonal_t <N_COMP, double> orthogonal_R_t; +typedef vector_t <N_COMP, double> vector_R_t; +typedef state_t <orthogonal_R_t, vector_R_t> On_t; + +// angle from the x-axis of a two-vector +double theta(vector_R_t v) { + double x = v[0]; + double y = v[1]; + + double val = atan(y / x); + + if (x < 0.0 && y > 0.0) { + return M_PI + val; + } else if ( x < 0.0 && y < 0.0 ) { + return - M_PI + val; + } else { + return val; + } +} + +double H_modulated(vector_R_t v, int order, double mag) { + return mag * cos(order * theta(v)); +} + +int main(int argc, char *argv[]) { + + count_t N = (count_t)1e7; + +#ifdef DIMENSION + D_t D = DIMENSION; +#else + D_t D = 2; +#endif + L_t L = 128; + double T = 2.26918531421; + double *H_vec = (double *)calloc(MAX_Q, sizeof(double)); + + bool silent = false; + bool use_pert = false; + bool N_is_sweeps = false; + bool draw = false; + unsigned int window_size = 512; + + bool modulated_field = false; + unsigned int order = 1; + + int opt; + q_t H_ind = 0; + double epsilon = 1; + +// unsigned char measurement_flags = measurement_energy | measurement_clusterSize; + + unsigned char measurement_flags = 0; + + while ((opt = getopt(argc, argv, "N:D:L:T:H:spe:mo:M:Sdw:")) != -1) { + switch (opt) { + case 'N': // number of steps + N = (count_t)atof(optarg); + break; +#ifdef DIMENSION + case 'D': // dimension + printf("Dimension was specified at compile time, you can't change it now!\n"); + exit(EXIT_FAILURE); +#else + case 'D': // dimension + D = atoi(optarg); + break; +#endif + case 'L': // linear size + L = atoi(optarg); + break; + case 'T': // temperature + T = atof(optarg); + break; + case 'H': // external field. nth call couples to state n + H_vec[H_ind] = atof(optarg); + H_ind++; + break; + case 's': // don't print anything during simulation. speeds up slightly + silent = true; + break; + case 'p': + use_pert = true; + break; + case 'e': + epsilon = atof(optarg); + break; + case 'm': + modulated_field = true; + break; + case 'M': + measurement_flags ^= 1 << atoi(optarg); + break; + case 'o': + order = atoi(optarg); + break; + case 'S': + N_is_sweeps = true; + break; + case 'd': +#ifdef HAVE_GLUT + draw = true; + break; +#else + printf("You didn't compile this with the glut library installed!\n"); + exit(EXIT_FAILURE); +#endif + case 'w': + window_size = atoi(optarg); + break; + default: + exit(EXIT_FAILURE); + } + } + + unsigned long timestamp; + + { + struct timespec spec; + clock_gettime(CLOCK_REALTIME, &spec); + timestamp = spec.tv_sec*1000000000LL + spec.tv_nsec; + } + + const char *pert_type; + + std::function <orthogonal_R_t(std::mt19937&, vector_R_t)> gen_R; + + if (use_pert) { + double Hish; + if (modulated_field) { + Hish = fabs(H_vec[0]); + } else { + double H2 = 0; + for (q_t i = 0; i < N_COMP; i++) { + H2 += pow(H_vec[i], 2); + } + Hish = sqrt(H2); + } + + epsilon = sqrt((N_COMP - 1) * T / (D + Hish / 2)) / 2; + + gen_R = std::bind(generate_rotation_perturbation <N_COMP>, std::placeholders::_1, std::placeholders::_2, epsilon, order); + pert_type = "PERTURB5"; + } else { + gen_R = generate_rotation_uniform <N_COMP>; + pert_type = "UNIFORM"; + } + + FILE *outfile_info = fopen("wolff_metadata.txt", "a"); + + fprintf(outfile_info, "<| \"ID\" -> %lu, \"MODEL\" -> \"%s\", \"q\" -> %d, \"D\" -> %" PRID ", \"L\" -> %" PRIL ", \"NV\" -> %" PRIv ", \"NE\" -> %" PRIv ", \"T\" -> %.15f, \"FIELD_TYPE\" -> ", timestamp, ON_strings[N_COMP], N_COMP, D, L, (v_t)pow(L, D), D * (v_t)pow(L, D), T); + if (modulated_field) { + fprintf(outfile_info, "\"MODULATED\", \"ORDER\" -> %d, \"H\" -> %.15f, ", order, H_vec[0]); + } else { + fprintf(outfile_info, "\"VECTOR\", \"H\" -> {"); + for (q_t i = 0; i < N_COMP; i++) { + fprintf(outfile_info, "%.15f", H_vec[i]); + if (i < N_COMP - 1) { + fprintf(outfile_info, ", "); + } + } + fprintf(outfile_info, "}, "); + } + + fprintf(outfile_info, "\"GENERATOR\" -> \"%s\"", pert_type); + + if (use_pert) { + fprintf(outfile_info, ", \"EPS\" -> %g", epsilon); + } + + fprintf(outfile_info, " |>\n"); + + fclose(outfile_info); + + FILE **outfiles = measure_setup_files(measurement_flags, timestamp); + + std::function <void(const On_t&)> other_f; + uint64_t sum_of_clusterSize = 0; + + if (N_is_sweeps) { + other_f = [&] (const On_t& s) { + sum_of_clusterSize += s.last_cluster_size; + }; + } else if (draw) { +#ifdef HAVE_GLUT + // initialize glut + glutInit(&argc, argv); + glutInitDisplayMode(GLUT_SINGLE | GLUT_RGB); + glutInitWindowSize(window_size, window_size); + glutCreateWindow("wolff"); + glClearColor(0.0,0.0,0.0,0.0); + glMatrixMode(GL_PROJECTION); + glLoadIdentity(); + gluOrtho2D(0.0, L, 0.0, L); + + other_f = [&] (const On_t& s) { + glClear(GL_COLOR_BUFFER_BIT); + for (v_t i = 0; i < pow(L, 2); i++) { + vector_R_t v_tmp = s.R.act_inverse(s.spins[i]); + double thetai = fmod(2 * M_PI + theta(v_tmp), 2 * M_PI); + double saturation = 0.7; + double value = 0.9; + double chroma = saturation * value; + glColor3f(chroma * hue_to_R(thetai) + (value - chroma), chroma * hue_to_G(thetai) + (value - chroma), chroma * hue_to_B(thetai) + (value - chroma)); + glRecti(i / L, i % L, (i / L) + 1, (i % L) + 1); + } + glFlush(); + }; +#endif + } else { + other_f = [] (const On_t& s) {}; + } + + std::function <void(const On_t&)> measurements = measure_function_write_files(measurement_flags, outfiles, other_f); + + std::function <double(const vector_R_t&)> H; + + if (modulated_field) { + H = std::bind(H_modulated, std::placeholders::_1, order, H_vec[0]); + } else { + H = std::bind(H_vector <N_COMP, double>, std::placeholders::_1, H_vec); + } + + // initialize random number generator + randutils::auto_seed_128 seeds; + std::mt19937 rng{seeds}; + +#ifndef NOFIELD + state_t <orthogonal_R_t, vector_R_t> s(D, L, T, dot <N_COMP, double>, H); +#else + state_t <orthogonal_R_t, vector_R_t> s(D, L, T, dot <N_COMP, double>); +#endif + + if (N_is_sweeps) { + count_t N_rounds = 0; + printf("\n"); + while (sum_of_clusterSize < N * s.nv) { + printf("\033[F\033[J\033[F\033[JWOLFF: sweep %" PRIu64 " / %" PRIu64 ": E = %.2f, S = %" PRIv "\n", (count_t)((double)sum_of_clusterSize / (double)s.nv), N, s.E, s.last_cluster_size); + wolff <orthogonal_R_t, vector_R_t> (N, s, gen_R, measurements, rng, silent); + N_rounds++; + } + printf("\033[F\033[J\033[F\033[JWOLFF: sweep %" PRIu64 " / %" PRIu64 ": E = %.2f, S = %" PRIv "\n\n", (count_t)((double)sum_of_clusterSize / (double)s.nv), N, s.E, s.last_cluster_size); + } else { + wolff <orthogonal_R_t, vector_R_t> (N, s, gen_R, measurements, rng, silent); + } + + measure_free_files(measurement_flags, outfiles); + free(H_vec); + + return 0; +} + diff --git a/examples/src/models/ising/CMakeLists.txt b/examples/src/models/ising/CMakeLists.txt new file mode 100644 index 0000000..e8fbc9a --- /dev/null +++ b/examples/src/models/ising/CMakeLists.txt @@ -0,0 +1,28 @@ + +add_executable(wolff_ising wolff_ising.cpp) +add_executable(wolff_ising_2d wolff_ising.cpp) +add_executable(wolff_ising_2d_no-field wolff_ising.cpp) + +set_target_properties(wolff_ising_2d PROPERTIES COMPILE_FLAGS "-DDIMENSION=2") +set_target_properties(wolff_ising_2d_no-field PROPERTIES COMPILE_FLAGS "-DDIMENSION=2 -DNOFIELD") + +find_library(GL NAMES GL) +find_library(GLU NAMES GLU) +find_library(GLUT NAMES glut) + +if (${GLUT} MATCHES "GLUT-NOTFOUND") + target_link_libraries(wolff_ising wolff wolff_examples) + target_link_libraries(wolff_ising_2d wolff wolff_examples) + target_link_libraries(wolff_ising_2d_no-field wolff wolff_examples) +else() + target_compile_definitions(wolff_ising PUBLIC HAVE_GLUT) + target_compile_definitions(wolff_ising_2d PUBLIC HAVE_GLUT) + target_compile_definitions(wolff_ising_2d_no-field PUBLIC HAVE_GLUT) + + target_link_libraries(wolff_ising wolff wolff_examples glut GL GLU) + target_link_libraries(wolff_ising_2d wolff wolff_examples glut GL GLU) + target_link_libraries(wolff_ising_2d_no-field wolff wolff_examples glut GL GLU) +endif() + +install(TARGETS wolff_ising wolff_ising_2d wolff_ising_2d_no-field DESTINATION ${CMAKE_INSTALL_BINDIR}) + diff --git a/examples/src/models/ising/ising.hpp b/examples/src/models/ising/ising.hpp new file mode 100644 index 0000000..ae20840 --- /dev/null +++ b/examples/src/models/ising/ising.hpp @@ -0,0 +1,59 @@ +#pragma once + +#include <cmath> +#include <stdio.h> + +#include <wolff/types.h> + +class ising_t { + public: + bool x; + + typedef int M_t; + typedef double F_t; + + ising_t() : x(false) {} + ising_t(bool x) : x(x) {} + ising_t(int x) : x((bool)x) {} + + inline int operator*(v_t a) const { + if (x) { + return -(int)a; + } else { + return (int)a; + } + } + + inline double operator*(double a) const { + if (x) { + return -a; + } else { + return a; + } + } + + inline int operator-(const ising_t &s) const { + if (x == s.x) { + return 0; + } else { + if (x) { + return -2; + } else { + return 2; + } + } + } +}; + +double norm_squared(double s) { + return pow(s, 2); +} + +void write_magnetization(int M, FILE *outfile) { + fwrite(&M, sizeof(int), 1, outfile); +} + +#define N_STATES 2 +const ising_t states[2] = {ising_t(0), ising_t(1)}; +q_t state_to_ind(ising_t state) { return (q_t)state.x; } + diff --git a/examples/src/models/ising/wolff_ising.cpp b/examples/src/models/ising/wolff_ising.cpp new file mode 100644 index 0000000..5bdaa82 --- /dev/null +++ b/examples/src/models/ising/wolff_ising.cpp @@ -0,0 +1,198 @@ + +#include <getopt.h> +#include <stdio.h> + +// if you have GLUT installed, you can see graphics! +#ifdef HAVE_GLUT +#include <GL/glut.h> +#endif + +// include your group and spin space +#include "z2.hpp" +#include "ising.hpp" + +// finite_states.h can be included for spin types that have special variables +// defined, and it causes wolff execution to use precomputed bond probabilities +#include <wolff/finite_states.hpp> + +#include <randutils/randutils.hpp> + +// measure.hpp contains useful functions for saving timeseries to files +#include <measure.hpp> + +// include wolff.hpp +#include <wolff.hpp> + +int main(int argc, char *argv[]) { + + count_t N = (count_t)1e4; + + D_t D = 2; + L_t L = 128; + double T = 2.26918531421; + double H = 0.0; + + bool silent = false; + bool draw = false; + bool N_is_sweeps = false; + unsigned int window_size = 512; + + // don't measure anything by default + unsigned char measurement_flags = 0; + + int opt; + + while ((opt = getopt(argc, argv, "N:D:L:T:H:sdw:M:S")) != -1) { + switch (opt) { + case 'N': // number of steps + N = (count_t)atof(optarg); + break; + case 'D': // dimension + D = atoi(optarg); + break; + case 'L': // linear size + L = atoi(optarg); + break; + case 'T': // temperature + T = atof(optarg); + break; + case 'H': // external field + H = atof(optarg); + break; + case 's': // don't print anything during simulation. speeds up slightly + silent = true; + break; + case 'S': + N_is_sweeps = true; + break; + case 'd': +#ifdef HAVE_GLUT + draw = true; + break; +#else + printf("You didn't compile this with the glut library installed!\n"); + exit(EXIT_FAILURE); +#endif + case 'w': + window_size = atoi(optarg); + break; + case 'M': + measurement_flags ^= 1 << atoi(optarg); + break; + default: + exit(EXIT_FAILURE); + } + } + + // get nanosecond timestamp for unique run id + unsigned long timestamp; + + { + struct timespec spec; + clock_gettime(CLOCK_REALTIME, &spec); + timestamp = spec.tv_sec*1000000000LL + spec.tv_nsec; + } + + // initialize random number generator + randutils::auto_seed_128 seeds; + std::mt19937 rng{seeds}; + + // define spin-spin coupling + std::function <double(const ising_t&, const ising_t&)> Z = [] (const ising_t& s1, const ising_t& s2) -> double { + if (s1.x == s2.x) { + return 1.0; + } else { + return -1.0; + } + }; + + // define spin-field coupling + std::function <double(const ising_t&)> B = [=] (const ising_t& s) -> double { + if (s.x) { + return -H; + } else { + return H; + } + }; + + // initialize state object +#ifndef NOFIELD + state_t <z2_t, ising_t> s(D, L, T, Z, B); +#else + state_t <z2_t, ising_t> s(D, L, T, Z); +#endif + + // define function that generates self-inverse rotations + std::function <z2_t(std::mt19937&, ising_t)> gen_R = [] (std::mt19937&, const ising_t& s) -> z2_t { + return z2_t(true); + }; + + FILE **outfiles = measure_setup_files(measurement_flags, timestamp); + + std::function <void(const state_t<z2_t, ising_t>&)> other_f; + uint64_t sum_of_clusterSize = 0; + + if (N_is_sweeps) { + other_f = [&] (const state_t<z2_t, ising_t>& s) { + sum_of_clusterSize += s.last_cluster_size; + }; + } else if (draw) { +#ifdef HAVE_GLUT + // initialize glut + glutInit(&argc, argv); + glutInitDisplayMode(GLUT_SINGLE | GLUT_RGB); + glutInitWindowSize(window_size, window_size); + glutCreateWindow("wolff"); + glClearColor(0.0,0.0,0.0,0.0); + glMatrixMode(GL_PROJECTION); + glLoadIdentity(); + gluOrtho2D(0.0, L, 0.0, L); + + other_f = [] (const state_t <z2_t, ising_t>& s) { + glClear(GL_COLOR_BUFFER_BIT); + for (v_t i = 0; i < pow(s.L, 2); i++) { + if (s.spins[i].x == s.R.x) { + glColor3f(0.0, 0.0, 0.0); + } else { + glColor3f(1.0, 1.0, 1.0); + } + glRecti(i / s.L, i % s.L, (i / s.L) + 1, (i % s.L) + 1); + } + glFlush(); + }; +#endif + } else { + other_f = [] (const state_t<z2_t, ising_t>& s) {}; + } + + std::function <void(const state_t<z2_t, ising_t>&)> measurements = measure_function_write_files(measurement_flags, outfiles, other_f); + + // add line to metadata file with run info + { + FILE *outfile_info = fopen("wolff_metadata.txt", "a"); + + fprintf(outfile_info, "<| \"ID\" -> %lu, \"MODEL\" -> \"ISING\", \"q\" -> 2, \"D\" -> %" PRID ", \"L\" -> %" PRIL ", \"NV\" -> %" PRIv ", \"NE\" -> %" PRIv ", \"T\" -> %.15f, \"H\" -> %.15f |>\n", timestamp, s.D, s.L, s.nv, s.ne, T, H); + + fclose(outfile_info); + } + + // run wolff for N cluster flips + if (N_is_sweeps) { + count_t N_rounds = 0; + printf("\n"); + while (sum_of_clusterSize < N * s.nv) { + printf("\033[F\033[J\033[F\033[JWOLFF: sweep %" PRIu64 " / %" PRIu64 ": E = %.2f, S = %" PRIv "\n", (count_t)((double)sum_of_clusterSize / (double)s.nv), N, s.E, s.last_cluster_size); + wolff(N, s, gen_R, measurements, rng, silent); + N_rounds++; + } + printf("\033[F\033[J\033[F\033[JWOLFF: sweep %" PRIu64 " / %" PRIu64 ": E = %.2f, S = %" PRIv "\n\n", (count_t)((double)sum_of_clusterSize / (double)s.nv), N, s.E, s.last_cluster_size); + } else { + wolff(N, s, gen_R, measurements, rng, silent); + } + + measure_free_files(measurement_flags, outfiles); + + return 0; + +} + diff --git a/examples/src/models/ising/z2.hpp b/examples/src/models/ising/z2.hpp new file mode 100644 index 0000000..19b6c05 --- /dev/null +++ b/examples/src/models/ising/z2.hpp @@ -0,0 +1,53 @@ + +#pragma once + +#include <wolff/types.h> +#include "ising.hpp" + +/* The minimum definition for a group type R_t to act on a spin type X_t is + * given by the following. + * + * void init(R_t *p); + * void free_spin(R_t r); + * R_t copy(R_t r); + * X_t act(R_t r, X_t x); + * R_t act(R_t r, R_t r); + * X_t act_inverse(R_t r, X_t x); + * R_t act_inverse(R_t r, R_t r); + * + */ + +class z2_t { + public: + bool x; + + z2_t() : x(false) {} + + z2_t(bool x) : x(x) {} + + ising_t act(const ising_t& s) const { + if (x) { + return ising_t(!s.x); + } else { + return ising_t(s.x); + } + } + + z2_t act(const z2_t& r) const { + if (x) { + return z2_t(!r.x); + } else { + return z2_t(r.x); + } + } + + ising_t act_inverse(const ising_t& s) const { + return this->act(s); + } + + z2_t act_inverse(const z2_t& r) const { + return this->act(r); + } +}; + + diff --git a/examples/src/models/potts/CMakeLists.txt b/examples/src/models/potts/CMakeLists.txt new file mode 100644 index 0000000..53133b9 --- /dev/null +++ b/examples/src/models/potts/CMakeLists.txt @@ -0,0 +1,39 @@ + +add_executable(wolff_3potts wolff_potts.cpp) +add_executable(wolff_4potts wolff_potts.cpp) +add_executable(wolff_7potts wolff_potts.cpp) +add_executable(wolff_3clock wolff_clock.cpp) +add_executable(wolff_5clock wolff_clock.cpp) + +set_target_properties(wolff_3potts PROPERTIES COMPILE_FLAGS "-DPOTTSQ=3") +set_target_properties(wolff_4potts PROPERTIES COMPILE_FLAGS "-DPOTTSQ=4") +set_target_properties(wolff_7potts PROPERTIES COMPILE_FLAGS "-DPOTTSQ=7") +set_target_properties(wolff_3clock PROPERTIES COMPILE_FLAGS "-DPOTTSQ=3") +set_target_properties(wolff_5clock PROPERTIES COMPILE_FLAGS "-DPOTTSQ=5") + +find_library(GL NAMES GL) +find_library(GLU NAMES GLU) +find_library(GLUT NAMES glut) + +if (${GLUT} MATCHES "GLUT-NOTFOUND") + target_link_libraries(wolff_3potts wolff wolff_examples) + target_link_libraries(wolff_4potts wolff wolff_examples) + target_link_libraries(wolff_7potts wolff wolff_examples) + target_link_libraries(wolff_3clock wolff wolff_examples) + target_link_libraries(wolff_5clock wolff wolff_examples) +else() + target_compile_definitions(wolff_3potts PUBLIC HAVE_GLUT) + target_compile_definitions(wolff_4potts PUBLIC HAVE_GLUT) + target_compile_definitions(wolff_7potts PUBLIC HAVE_GLUT) + target_compile_definitions(wolff_3clock PUBLIC HAVE_GLUT) + target_compile_definitions(wolff_5clock PUBLIC HAVE_GLUT) + + target_link_libraries(wolff_3potts wolff wolff_examples glut GL GLU) + target_link_libraries(wolff_4potts wolff wolff_examples glut GL GLU) + target_link_libraries(wolff_7potts wolff wolff_examples glut GL GLU) + target_link_libraries(wolff_3clock wolff wolff_examples glut GL GLU) + target_link_libraries(wolff_5clock wolff wolff_examples glut GL GLU) +endif() + +install(TARGETS wolff_3potts wolff_4potts wolff_7potts wolff_3clock wolff_5clock DESTINATION ${CMAKE_INSTALL_BINDIR}) + diff --git a/examples/src/models/potts/dihedral.hpp b/examples/src/models/potts/dihedral.hpp new file mode 100644 index 0000000..cbc5687 --- /dev/null +++ b/examples/src/models/potts/dihedral.hpp @@ -0,0 +1,48 @@ + +#pragma once + +#include <wolff/types.h> +#include "potts.hpp" + +template <q_t q> +class dihedral_t { + public: + bool is_reflection; + q_t x; + + dihedral_t() : is_reflection(false), x(0) {} + dihedral_t(bool x, q_t y) : is_reflection(x), x(y) {} + + potts_t<q> act(const potts_t<q>& s) const { + if (this->is_reflection) { + return potts_t<q>(((q + this->x) - s.x) % q); + } else { + return potts_t<q>((this->x + s.x) % q); + } + } + + dihedral_t<q> act(dihedral_t<q> r) const { + if (this->is_reflection) { + return dihedral_t<q>(!(r.is_reflection), ((q + this->x) - r.x) % q); + } else { + return dihedral_t<q>(r.is_reflection, (this->x + r.x) % q); + } + } + + potts_t<q> act_inverse(potts_t<q> s) const { + if (this->is_reflection) { + return this->act(s); + } else { + return potts_t<q>(((s.x + q) - this->x) % q); + } + } + + dihedral_t<q> act_inverse(dihedral_t<q> r) const { + if (this->is_reflection) { + return this->act(r); + } else { + return dihedral_t<q>(r.is_reflection, ((r.x + q) - this->x) % q); + } + } +}; + diff --git a/examples/src/models/potts/potts.hpp b/examples/src/models/potts/potts.hpp new file mode 100644 index 0000000..f4765e2 --- /dev/null +++ b/examples/src/models/potts/potts.hpp @@ -0,0 +1,72 @@ +#pragma once + +#include <cmath> +#include <stdio.h> + +#include <wolff/types.h> +#include "../On/vector.hpp" + +template <q_t q> +class potts_t { + public: + q_t x; + + typedef vector_t<q, int> M_t; + typedef vector_t<q, double> F_t; + + potts_t() : x(0) {} + potts_t(q_t x) : x(x) {} + + inline vector_t<q, int> operator*(v_t a) const { + vector_t<q, int> result; + result.fill(0); + result[x] = (int)a; + + return result; + } + + inline vector_t<q, double> operator*(double a) const { + vector_t<q, double> result; + result.fill(0.0); + result[x] = a; + + return result; + } + + inline vector_t<q, int> operator-(const potts_t<q> &s) const { + vector_t<q, int> result; + result.fill(0); + + result[x]++; + result[s.x]--; + + return result; + } +}; + +// we could inherit norm_squared from vector.h, but convention dictates that +// potts norms be changed by a constant factor +template <q_t q> +double norm_squared(vector_t<q, double> s) { + double total = 0; + for (double& x : s) { + total += pow(x, 2); + } + + return total * (double)q / ((double)q - 1.0); +} + +// we could inherit write_magnetization from vector.h, but since M.x must sum +// to nv we don't need to write the last element +template <q_t q> +void write_magnetization(vector_t<q, int> M, FILE *outfile) { + for (int& x : M) { + fwrite(&x, sizeof(int), q - 1, outfile); + } +} + +// knock yourself out +const potts_t<POTTSQ> states[256] = {{0}, {1}, {2}, {3}, {4}, {5}, {6}, {7}, {8}, {9}, {11}, {12}, {13}, {14}, {15}, {16}, {17}, {18}, {19}, {20}, {21}, {22}, {23}, {24}, {25}, {26}, {27}, {28}, {29}, {30}, {31}, {32}, {33}, {34}, {35}, {36}, {37}, {38}, {39}, {40}, {41}, {42}, {43}, {44}, {45}, {46}, {47}, {48}, {49}, {50}, {51}, {52}, {53}, {54}, {55}, {56}, {57}, {58}, {59}, {60}, {61}, {62}, {63}, {64}, {65}, {66}, {67}, {68}, {69}, {70}, {71}, {72}, {73}, {74}, {75}, {76}, {77}, {78}, {79}, {80}, {81}, {82}, {83}, {84}, {85}, {86}, {87}, {88}, {89}, {90}, {91}, {92}, {93}, {94}, {95}, {96}, {97}, {98}, {99}, {100}, {101}, {102}, {103}, {104}, {105}, {106}, {107}, {108}, {109}, {110}, {111}, {112}, {113}, {114}, {115}, {116}, {117}, {118}, {119}, {120}, {121}, {122}, {123}, {124}, {125}, {126}, {127}, {128}, {129}, {130}, {131}, {132}, {133}, {134}, {135}, {136}, {137}, {138}, {139}, {140}, {141}, {142}, {143}, {144}, {145}, {146}, {147}, {148}, {149}, {150}, {151}, {152}, {153}, {154}, {155}, {156}, {157}, {158}, {159}, {160}, {161}, {162}, {163}, {164}, {165}, {166}, {167}, {168}, {169}, {170}, {171}, {172}, {173}, {174}, {175}, {176}, {177}, {178}, {179}, {180}, {181}, {182}, {183}, {184}, {185}, {186}, {187}, {188}, {189}, {190}, {191}, {192}, {193}, {194}, {195}, {196}, {197}, {198}, {199}, {200}, {201}, {202}, {203}, {204}, {205}, {206}, {207}, {208}, {209}, {210}, {211}, {212}, {213}, {214}, {215}, {216}, {217}, {218}, {219}, {220}, {221}, {222}, {223}, {224}, {225}, {226}, {227}, {228}, {229}, {230}, {231}, {232}, {233}, {234}, {235}, {236}, {237}, {238}, {239}, {240}, {241}, {242}, {243}, {244}, {245}, {246}, {247}, {248}, {249}, {250}, {251}, {252}, {253}, {254}, {255}}; +template <q_t q> +q_t state_to_ind(potts_t<q> state) { return (q_t)state.x; } + diff --git a/examples/src/models/potts/symmetric.hpp b/examples/src/models/potts/symmetric.hpp new file mode 100644 index 0000000..8636f15 --- /dev/null +++ b/examples/src/models/potts/symmetric.hpp @@ -0,0 +1,51 @@ + +#pragma once + +#include <stdlib.h> +#include <array> +#include <wolff/types.h> +#include "potts.hpp" + +template <q_t q> +class symmetric_t : public std::array<q_t, q> { + public: + + symmetric_t() { + for (q_t i = 0; i < q; i++) { + (*this)[i] = i; + } + } + + potts_t<q> act(const potts_t<q> &s) const { + return potts_t<q>((*this)[s.x]); + } + + symmetric_t<q> act(const symmetric_t<q>& r) const { + symmetric_t<q> r_rot; + for (q_t i = 0; i < q; i++) { + r_rot[i] = (*this)[r[i]]; + } + + return r_rot; + } + + potts_t<q> act_inverse(const potts_t<q>& s) const { + for (q_t i = 0; i < q; i++) { + if ((*this)[i] == s.x) { + return potts_t<q>(i); + } + } + + exit(EXIT_FAILURE); + } + + symmetric_t<q> act_inverse(const symmetric_t<q>& r) const { + symmetric_t<q> r_rot; + for (q_t i = 0; i < q; i++) { + r_rot[(*this)[i]] = r[i]; + } + + return r_rot; + } +}; + diff --git a/examples/src/models/potts/wolff_clock.cpp b/examples/src/models/potts/wolff_clock.cpp new file mode 100644 index 0000000..020415d --- /dev/null +++ b/examples/src/models/potts/wolff_clock.cpp @@ -0,0 +1,155 @@ + +#include <getopt.h> + +#ifdef HAVE_GLUT +#include <GL/glut.h> +#endif + +// include your group and spin space +#include "dihedral.hpp" +#include "potts.hpp" +#include <colors.h> + +// hack to speed things up considerably +#define N_STATES POTTSQ +#include <wolff/finite_states.hpp> + +#include <randutils/randutils.hpp> + +// include wolff.hpp +#include <wolff.hpp> + +typedef state_t <dihedral_t<POTTSQ>, potts_t<POTTSQ>> sim_t; + +int main(int argc, char *argv[]) { + + count_t N = (count_t)1e4; + + D_t D = 2; + L_t L = 128; + double T = 2.26918531421; + double *H_vec = (double *)calloc(MAX_Q, sizeof(double)); + + bool silent = false; + bool draw = false; + unsigned int window_size = 512; + + int opt; + q_t H_ind = 0; + + while ((opt = getopt(argc, argv, "N:D:L:T:H:sdw:")) != -1) { + switch (opt) { + case 'N': // number of steps + N = (count_t)atof(optarg); + break; + case 'D': // dimension + D = atoi(optarg); + break; + case 'L': // linear size + L = atoi(optarg); + break; + case 'T': // temperature + T = atof(optarg); + break; + case 'H': // external field. nth call couples to state n + H_vec[H_ind] = atof(optarg); + H_ind++; + break; + case 's': // don't print anything during simulation. speeds up slightly + silent = true; + break; + case 'd': +#ifdef HAVE_GLUT + draw = true; + break; +#else + printf("You didn't compile this with the glut library installed!\n"); + exit(EXIT_FAILURE); +#endif + case 'w': + window_size = atoi(optarg); + break; + default: + exit(EXIT_FAILURE); + } + } + + // initialize random number generator + randutils::auto_seed_128 seeds; + std::mt19937 rng{seeds}; + + // define spin-spin coupling + std::function <double(const potts_t<POTTSQ>&, const potts_t<POTTSQ>&)> Z = [] (const potts_t<POTTSQ>& s1, const potts_t<POTTSQ>& s2) -> double { + return cos(2 * M_PI * (double)(s1.x + POTTSQ - s2.x) / (double)POTTSQ); + }; + + // define spin-field coupling + std::function <double(const potts_t<POTTSQ>&)> B = [=] (const potts_t<POTTSQ>& s) -> double { + return H_vec[s.x]; + }; + + // initialize state object + state_t <dihedral_t<POTTSQ>, potts_t<POTTSQ>> s(D, L, T, Z, B); + + // define function that generates self-inverse rotations + std::function <dihedral_t<POTTSQ>(std::mt19937&, potts_t<POTTSQ>)> gen_R = [] (std::mt19937& r, potts_t<POTTSQ> v) -> dihedral_t<POTTSQ> { + dihedral_t<POTTSQ> rot; + rot.is_reflection = true; + std::uniform_int_distribution<q_t> dist(0, POTTSQ - 1); + q_t x = dist(r); + rot.x = (2 * v.x + x + 1) % POTTSQ; + + return rot; + }; + + // define function that updates any number of measurements + std::function <void(const sim_t&)> measurement; + + double average_M = 0; + if (!draw) { + // a very simple example: measure the average magnetization + measurement = [&] (const sim_t& s) { + average_M += (double)s.M[0] / (double)N / (double)s.nv; + }; + } else { + // a more complex example: measure the average magnetization, and draw the spin configuration to the screen + +#ifdef HAVE_GLUT + // initialize glut + glutInit(&argc, argv); + glutInitDisplayMode(GLUT_SINGLE | GLUT_RGB); + glutInitWindowSize(window_size, window_size); + glutCreateWindow("wolff"); + glClearColor(0.0,0.0,0.0,0.0); + glMatrixMode(GL_PROJECTION); + glLoadIdentity(); + gluOrtho2D(0.0, L, 0.0, L); + + measurement = [&] (const sim_t& s) { + average_M += (double)s.M[0] / (double)N / (double)s.nv; + glClear(GL_COLOR_BUFFER_BIT); + for (v_t i = 0; i < pow(L, 2); i++) { + potts_t<POTTSQ> tmp_s = s.R.act_inverse(s.spins[i]); + glColor3f(hue_to_R(tmp_s.x * 2 * M_PI / POTTSQ), hue_to_G(tmp_s.x * 2 * M_PI / POTTSQ), hue_to_B(tmp_s.x * 2 * M_PI / POTTSQ)); + glRecti(i / L, i % L, (i / L) + 1, (i % L) + 1); + } + glFlush(); + }; +#endif + } + + // run wolff for N cluster flips + wolff(N, s, gen_R, measurement, rng, silent); + + // tell us what we found! + printf("%" PRIcount " %d-Potts runs completed. D = %" PRID ", L = %" PRIL ", T = %g, H = %g, <M> = %g\n", N, POTTSQ, D, L, T, H_vec[0], average_M); + + // free the random number generator + + if (draw) { + } + + return 0; + +} + diff --git a/examples/src/models/potts/wolff_potts.cpp b/examples/src/models/potts/wolff_potts.cpp new file mode 100644 index 0000000..a1e9284 --- /dev/null +++ b/examples/src/models/potts/wolff_potts.cpp @@ -0,0 +1,213 @@ + +#include <getopt.h> +#include <stdio.h> + +#ifdef HAVE_GLUT +#include <GL/glut.h> +#endif + +// include your group and spin space +#include "symmetric.hpp" +#include "potts.hpp" + +// hack to speed things up considerably +#define N_STATES POTTSQ +#include <wolff/finite_states.hpp> + +// include wolff.h +#include <measure.hpp> +#include <colors.h> +#include <randutils/randutils.hpp> +#include <wolff.hpp> + +typedef state_t <symmetric_t<POTTSQ>, potts_t<POTTSQ>> sim_t; + +int main(int argc, char *argv[]) { + + count_t N = (count_t)1e4; + + D_t D = 2; + L_t L = 128; + double T = 2.26918531421; + double *H_vec = (double *)calloc(MAX_Q, sizeof(double)); + + bool silent = false; + bool draw = false; + bool N_is_sweeps = false; + unsigned int window_size = 512; + + // don't measure anything by default + unsigned char measurement_flags = 0; + + int opt; + q_t H_ind = 0; + + while ((opt = getopt(argc, argv, "N:D:L:T:H:sdw:M:S")) != -1) { + switch (opt) { + case 'N': // number of steps + N = (count_t)atof(optarg); + break; + case 'D': // dimension + D = atoi(optarg); + break; + case 'L': // linear size + L = atoi(optarg); + break; + case 'T': // temperature + T = atof(optarg); + break; + case 'H': // external field. nth call couples to state n + H_vec[H_ind] = atof(optarg); + H_ind++; + break; + case 's': // don't print anything during simulation. speeds up slightly + silent = true; + break; + case 'S': + N_is_sweeps = true; + break; + case 'd': +#ifdef HAVE_GLUT + draw = true; + break; +#else + printf("You didn't compile this with the glut library installed!\n"); + exit(EXIT_FAILURE); +#endif + case 'w': + window_size = atoi(optarg); + break; + case 'M': + measurement_flags ^= 1 << atoi(optarg); + break; + default: + exit(EXIT_FAILURE); + } + } + + // get nanosecond timestamp for unique run id + unsigned long timestamp; + + { + struct timespec spec; + clock_gettime(CLOCK_REALTIME, &spec); + timestamp = spec.tv_sec*1000000000LL + spec.tv_nsec; + } + + // initialize random number generator + randutils::auto_seed_128 seeds; + std::mt19937 rng{seeds}; + + // define spin-spin coupling + std::function <double(const potts_t<POTTSQ>&, const potts_t<POTTSQ>&)> Z = [] (const potts_t<POTTSQ>& s1, const potts_t<POTTSQ>& s2) -> double { + if (s1.x == s2.x) { + return 1.0; + } else { + return 0.0; + } + }; + + // define spin-field coupling + std::function <double(const potts_t<POTTSQ> &)> B = [=] (const potts_t<POTTSQ>& s) -> double { + return H_vec[s.x]; + }; + + // initialize state object + state_t <symmetric_t<POTTSQ>, potts_t<POTTSQ>> s(D, L, T, Z, B); + + // define function that generates self-inverse rotations + std::function <symmetric_t<POTTSQ>(std::mt19937&, potts_t<POTTSQ>)> gen_R = [] (std::mt19937& r, potts_t<POTTSQ> v) -> symmetric_t<POTTSQ> { + symmetric_t<POTTSQ> rot; + + std::uniform_int_distribution<q_t> dist(0, POTTSQ - 1); + q_t j = dist(r); + q_t swap_v; + if (j < v.x) { + swap_v = j; + } else { + swap_v = j + 1; + } + + rot[v.x] = swap_v; + rot[swap_v] = v.x; + + return rot; + }; + + FILE **outfiles = measure_setup_files(measurement_flags, timestamp); + + std::function <void(const sim_t&)> other_f; + uint64_t sum_of_clusterSize = 0; + + if (N_is_sweeps) { + other_f = [&] (const sim_t& s) { + sum_of_clusterSize += s.last_cluster_size; + }; + } else if (draw) { +#ifdef HAVE_GLUT + // initialize glut + glutInit(&argc, argv); + glutInitDisplayMode(GLUT_SINGLE | GLUT_RGB); + glutInitWindowSize(window_size, window_size); + glutCreateWindow("wolff"); + glClearColor(0.0,0.0,0.0,0.0); + glMatrixMode(GL_PROJECTION); + glLoadIdentity(); + gluOrtho2D(0.0, L, 0.0, L); + + other_f = [] (const sim_t& s) { + glClear(GL_COLOR_BUFFER_BIT); + for (v_t i = 0; i < pow(s.L, 2); i++) { + potts_t<POTTSQ> tmp_s = s.R.act_inverse(s.spins[i]); + glColor3f(hue_to_R(tmp_s.x * 2 * M_PI / POTTSQ), hue_to_G(tmp_s.x * 2 * M_PI / POTTSQ), hue_to_B(tmp_s.x * 2 * M_PI / POTTSQ)); + glRecti(i / s.L, i % s.L, (i / s.L) + 1, (i % s.L) + 1); + } + glFlush(); + }; +#endif + } else { + other_f = [] (const sim_t& s) {}; + } + + std::function <void(const sim_t&)> measurements = measure_function_write_files(measurement_flags, outfiles, other_f); + + // add line to metadata file with run info + { + FILE *outfile_info = fopen("wolff_metadata.txt", "a"); + + fprintf(outfile_info, "<| \"ID\" -> %lu, \"MODEL\" -> \"POTTS\", \"q\" -> %d, \"D\" -> %" PRID ", \"L\" -> %" PRIL ", \"NV\" -> %" PRIv ", \"NE\" -> %" PRIv ", \"T\" -> %.15f, \"H\" -> {", timestamp, POTTSQ, s.D, s.L, s.nv, s.ne, T); + + for (q_t i = 0; i < POTTSQ; i++) { + fprintf(outfile_info, "%.15f", H_vec[i]); + if (i < POTTSQ - 1) { + fprintf(outfile_info, ", "); + } + } + + fprintf(outfile_info, "} |>\n"); + + fclose(outfile_info); + } + + // run wolff for N cluster flips + if (N_is_sweeps) { + count_t N_rounds = 0; + printf("\n"); + while (sum_of_clusterSize < N * s.nv) { + printf("\033[F\033[J\033[F\033[JWOLFF: sweep %" PRIu64 " / %" PRIu64 ": E = %.2f, S = %" PRIv "\n", (count_t)((double)sum_of_clusterSize / (double)s.nv), N, s.E, s.last_cluster_size); + wolff(N, s, gen_R, measurements, rng, silent); + N_rounds++; + } + printf("\033[F\033[J\033[F\033[JWOLFF: sweep %" PRIu64 " / %" PRIu64 ": E = %.2f, S = %" PRIv "\n\n", (count_t)((double)sum_of_clusterSize / (double)s.nv), N, s.E, s.last_cluster_size); + } else { + wolff(N, s, gen_R, measurements, rng, silent); + } + + // free the random number generator + free(H_vec); + measure_free_files(measurement_flags, outfiles); + + return 0; + +} + diff --git a/examples/src/models/roughening/CMakeLists.txt b/examples/src/models/roughening/CMakeLists.txt new file mode 100644 index 0000000..51a8644 --- /dev/null +++ b/examples/src/models/roughening/CMakeLists.txt @@ -0,0 +1,21 @@ + +add_executable(wolff_dgm wolff_dgm.cpp) +add_executable(wolff_cgm wolff_cgm.cpp) + +find_library(GL NAMES GL) +find_library(GLU NAMES GLU) +find_library(GLUT NAMES glut) + +if (${GLUT} MATCHES "GLUT-NOTFOUND") + target_link_libraries(wolff_dgm wolff wolff_examples) + target_link_libraries(wolff_cgm wolff wolff_examples) +else() + target_compile_definitions(wolff_dgm PUBLIC HAVE_GLUT) + target_compile_definitions(wolff_cgm PUBLIC HAVE_GLUT) + + target_link_libraries(wolff_dgm wolff wolff_examples glut GL GLU) + target_link_libraries(wolff_cgm wolff wolff_examples glut GL GLU) +endif() + +install(TARGETS wolff_dgm wolff_cgm DESTINATION ${CMAKE_INSTALL_BINDIR}) + diff --git a/examples/src/models/roughening/dihedral_inf.hpp b/examples/src/models/roughening/dihedral_inf.hpp new file mode 100644 index 0000000..19fa195 --- /dev/null +++ b/examples/src/models/roughening/dihedral_inf.hpp @@ -0,0 +1,47 @@ + +#include <wolff/types.h> +#include <cmath> +#include "height.hpp" + +template <class T> +class dihedral_inf_t { + public: + bool is_reflection; + T x; + + dihedral_inf_t() : is_reflection(false), x(0) {} + dihedral_inf_t(bool x, T y) : is_reflection(x), x(y) {} + + height_t<T> act(const height_t<T>& h) const { + if (this->is_reflection) { + return height_t(this->x - h.x); + } else { + return height_t(this->x + h.x); + } + } + + dihedral_inf_t<T> act(const dihedral_inf_t<T>& r) const { + if (this->is_reflection) { + return dihedral_inf_t<T>(!r.is_reflection, this->x - r.x); + } else { + return dihedral_inf_t<T>(r.is_reflection, this->x + r.x); + } + } + + height_t<T> act_inverse(const height_t<T>& h) const { + if (this->is_reflection) { + return this->act(h); + } else { + return height_t(h.x - this->x); + } + } + + dihedral_inf_t<T> act_inverse(const dihedral_inf_t<T>& r) const { + if (this->is_reflection) { + return this->act(r); + } else { + return dihedral_inf_t<T>(r.is_reflection, r.x - this->x); + } + } +}; + diff --git a/examples/src/models/roughening/height.hpp b/examples/src/models/roughening/height.hpp new file mode 100644 index 0000000..4023063 --- /dev/null +++ b/examples/src/models/roughening/height.hpp @@ -0,0 +1,75 @@ + +#pragma once + +#include <cmath> +#include <stdio.h> + +#include <wolff/types.h> + +/* The following is the minimum definition of a spin class. + * + * The class must contain an M_t and an F_t for holding the sum of an + * integer number of spins and a double-weighted number of spins, + * respectively. + * + * void init(X_t *p); + * void free_spin(X_t p); + * void free_spin(M_t p); + * void free_spin(F_t p); + * X_t copy(X_t x); + * void add(M_t *x1, int factor, X_t x2); + * void add(F_t *x1, double factor, X_t x2); + * M_t scalar_multiple(int factor, X_t x); + * F_t scalar_multiple(double factor, X_t x); + * double norm_squared(F_t x); + * void write_magnetization(M_t M, FILE *outfile); + * + */ + +template <class T> +struct height_t { + T x; + + typedef T M_t; + typedef double F_t; + + height_t() : x(0) {} + + height_t(T x) : x(x) {} + + inline T operator*(v_t a) const { + return x * a; + } + + inline double operator*(double a) const { + return x * a; + } + + inline T operator-(const height_t& h) const { + return x - h.x; + } +}; + +template <class T> +inline T& operator+=(T& M, const height_t<T> &h) { + M += h.x; + + return M; +} + +template <class T> +inline T& operator-=(T& M, const height_t<T> &h) { + M -= h.x; + + return M; +} + +double norm_squared(double h) { + return pow(h, 2); +} + +template <class T> +void write_magnetization(T M, FILE *outfile) { + fwrite(&M, sizeof(T), 1, outfile); +} + diff --git a/examples/src/models/roughening/wolff_cgm.cpp b/examples/src/models/roughening/wolff_cgm.cpp new file mode 100644 index 0000000..65f8d66 --- /dev/null +++ b/examples/src/models/roughening/wolff_cgm.cpp @@ -0,0 +1,167 @@ + +#include <getopt.h> + +#ifdef HAVE_GLUT +#include <GL/glut.h> +#endif + +// include your group and spin space +#include "dihedral_inf.hpp" +#include "height.hpp" + +#include <randutils/randutils.hpp> + +// include wolff.h +#include <wolff.hpp> + +typedef state_t <dihedral_inf_t<double>, height_t<double>> sim_t; + +int main(int argc, char *argv[]) { + + count_t N = (count_t)1e4; + + D_t D = 2; + L_t L = 128; + double T = 2.26918531421; + double H = 0; + + bool silent = false; + bool draw = false; + unsigned int window_size = 512; + double epsilon = 1; + + int opt; + + while ((opt = getopt(argc, argv, "N:D:L:T:H:sdw:e:")) != -1) { + switch (opt) { + case 'N': // number of steps + N = (count_t)atof(optarg); + break; + case 'D': // dimension + D = atoi(optarg); + break; + case 'L': // linear size + L = atoi(optarg); + break; + case 'T': // temperature + T = atof(optarg); + break; + case 'H': // external field. nth call couples to state n + H = atof(optarg); + break; + case 'e': // external field. nth call couples to state n + epsilon = atof(optarg); + break; + case 's': // don't print anything during simulation. speeds up slightly + silent = true; + break; + case 'd': +#ifdef HAVE_GLUT + draw = true; + break; +#else + printf("You didn't compile this with the glut library installed!\n"); + exit(EXIT_FAILURE); +#endif + case 'w': + window_size = atoi(optarg); + break; + default: + exit(EXIT_FAILURE); + } + } + + // initialize random number generator + randutils::auto_seed_128 seeds; + std::mt19937 rng{seeds}; + + // define spin-spin coupling + std::function <double(const height_t<double>&, const height_t<double>&)> Z = [] (const height_t<double>& h1, const height_t<double>& h2) -> double { + return -pow(h1.x - h2.x, 2); + }; + + // define spin-field coupling + std::function <double(height_t<double>)> B = [=] (height_t<double> h) -> double { + return -H * pow(h.x, 2);; + }; + + // initialize state object + sim_t s(D, L, T, Z, B); + + // define function that generates self-inverse rotations + std::function <dihedral_inf_t<double>(std::mt19937&, height_t<double>)> gen_R = [=] (std::mt19937& r, height_t<double> h) -> dihedral_inf_t<double> { + dihedral_inf_t<double> rot; + rot.is_reflection = true; + std::normal_distribution<double> dist(0.0,1.0); + + double amount = epsilon * dist(r); + + rot.x = 2 * h.x + amount; + + return rot; + }; + + // define function that updates any number of measurements + std::function <void(const sim_t&)> measurement; + + double average_M = 0; + if (!draw) { + // a very simple example: measure the average magnetization + measurement = [&] (const sim_t& s) { + average_M += (double)s.M / (double)N / (double)s.nv; + }; + } else { + // a more complex example: measure the average magnetization, and draw the spin configuration to the screen + +#ifdef HAVE_GLUT + // initialize glut + glutInit(&argc, argv); + glutInitDisplayMode(GLUT_SINGLE | GLUT_RGB); + glutInitWindowSize(window_size, window_size); + glutCreateWindow("wolff"); + glClearColor(0.0,0.0,0.0,0.0); + glMatrixMode(GL_PROJECTION); + glLoadIdentity(); + gluOrtho2D(0.0, L, 0.0, L); + + measurement = [&] (const sim_t& s) { + average_M += (double)s.M / (double)N / (double)s.nv; + glClear(GL_COLOR_BUFFER_BIT); + double max_h = INT64_MIN; + double min_h = INT64_MAX; + for (v_t i = 0; i < pow(L, 2); i++) { + double cur_h = (s.R.act_inverse(s.spins[i])).x; + if (cur_h < min_h) { + min_h = cur_h; + } + if (cur_h > max_h) { + max_h = cur_h; + } + } + + for (v_t i = 0; i < pow(L, 2); i++) { + double cur_h = (s.R.act_inverse(s.spins[i])).x; + double mag = ((double)(cur_h - min_h)) / ((double)(max_h - min_h)); + glColor3f(mag, mag, mag); + glRecti(i / L, i % L, (i / L) + 1, (i % L) + 1); + } + glFlush(); + }; +#endif + } + + // run wolff for N cluster flips + wolff(N, s, gen_R, measurement, rng, silent); + + // tell us what we found! + printf("%" PRIcount " DGM runs completed. D = %" PRID ", L = %" PRIL ", T = %g, H = %g, <M> = %g\n", N, D, L, T, H, average_M); + + // free the random number generator + + if (draw) { + } + + return 0; + +} + diff --git a/examples/src/models/roughening/wolff_dgm.cpp b/examples/src/models/roughening/wolff_dgm.cpp new file mode 100644 index 0000000..8395382 --- /dev/null +++ b/examples/src/models/roughening/wolff_dgm.cpp @@ -0,0 +1,164 @@ + +#include <getopt.h> + +#ifdef HAVE_GLUT +#include <GL/glut.h> +#endif + +// include your group and spin space +#include "dihedral_inf.hpp" +#include "height.hpp" + +#include <randutils/randutils.hpp> + +// include wolff.h +#include <wolff.hpp> + +typedef state_t <dihedral_inf_t<int64_t>, height_t<int64_t>> sim_t; + +int main(int argc, char *argv[]) { + + count_t N = (count_t)1e4; + + D_t D = 2; + L_t L = 128; + double T = 2.26918531421; + double H = 0; + + bool silent = false; + bool draw = false; + unsigned int window_size = 512; + uint64_t epsilon = 1; + + int opt; + + while ((opt = getopt(argc, argv, "N:D:L:T:H:sdw:e:")) != -1) { + switch (opt) { + case 'N': // number of steps + N = (count_t)atof(optarg); + break; + case 'D': // dimension + D = atoi(optarg); + break; + case 'L': // linear size + L = atoi(optarg); + break; + case 'T': // temperature + T = atof(optarg); + break; + case 'H': // external field. nth call couples to state n + H = atof(optarg); + break; + case 'e': // external field. nth call couples to state n + epsilon = atof(optarg); + break; + case 's': // don't print anything during simulation. speeds up slightly + silent = true; + break; + case 'd': +#ifdef HAVE_GLUT + draw = true; + break; +#else + printf("You didn't compile this with the glut library installed!\n"); + exit(EXIT_FAILURE); +#endif + case 'w': + window_size = atoi(optarg); + break; + default: + exit(EXIT_FAILURE); + } + } + + // initialize random number generator + randutils::auto_seed_128 seeds; + std::mt19937 rng{seeds}; + + // define spin-spin coupling + std::function <double(const height_t<int64_t>&, const height_t<int64_t>&)> Z = [] (const height_t<int64_t>& h1, const height_t<int64_t>& h2) -> double { + return -pow(h1.x - h2.x, 2); + }; + + // define spin-field coupling + std::function <double(const height_t<int64_t> &)> B = [=] (const height_t<int64_t>& h) -> double { + return -H * pow(h.x, 2);; + }; + + // initialize state object + sim_t s(D, L, T, Z, B); + + // define function that generates self-inverse rotations + std::function <dihedral_inf_t<int64_t>(std::mt19937&, height_t<int64_t>)> gen_R = [=] (std::mt19937& r, height_t<int64_t> h) -> dihedral_inf_t<int64_t> { + dihedral_inf_t<int64_t> rot; + rot.is_reflection = true; + + std::uniform_int_distribution<int64_t> dist(-epsilon,epsilon); + + rot.x = 2 * h.x + dist(r); + + return rot; + }; + + // define function that updates any number of measurements + std::function <void(const sim_t&)> measurement; + + double average_M = 0; + if (!draw) { + // a very simple example: measure the average magnetization + measurement = [&] (const sim_t& s) { + average_M += (double)s.M / (double)N / (double)s.nv; + }; + } else { + // a more complex example: measure the average magnetization, and draw the spin configuration to the screen + +#ifdef HAVE_GLUT + // initialize glut + glutInit(&argc, argv); + glutInitDisplayMode(GLUT_SINGLE | GLUT_RGB); + glutInitWindowSize(window_size, window_size); + glutCreateWindow("wolff"); + glClearColor(0.0,0.0,0.0,0.0); + glMatrixMode(GL_PROJECTION); + glLoadIdentity(); + gluOrtho2D(0.0, L, 0.0, L); + + measurement = [&] (const sim_t& s) { + average_M += (double)s.M / (double)N / (double)s.nv; + glClear(GL_COLOR_BUFFER_BIT); + int64_t max_h = INT64_MIN; + int64_t min_h = INT64_MAX; + for (v_t i = 0; i < pow(L, 2); i++) { + int64_t cur_h = (s.R.act_inverse(s.spins[i])).x; + if (cur_h < min_h) { + min_h = cur_h; + } + if (cur_h > max_h) { + max_h = cur_h; + } + } + + for (v_t i = 0; i < pow(L, 2); i++) { + int64_t cur_h = (s.R.act_inverse(s.spins[i])).x; + double mag = ((double)(cur_h - min_h)) / ((double)(max_h - min_h)); + glColor3f(mag, mag, mag); + glRecti(i / L, i % L, (i / L) + 1, (i % L) + 1); + } + glFlush(); + }; +#endif + } + + // run wolff for N cluster flips + wolff(N, s, gen_R, measurement, rng, silent); + + // tell us what we found! + printf("%" PRIcount " DGM runs completed. D = %" PRID ", L = %" PRIL ", T = %g, H = %g, <M> = %g\n", N, D, L, T, H, average_M); + + if (draw) { + } + + return 0; + +} + diff --git a/examples/src/tools/CMakeLists.txt b/examples/src/tools/CMakeLists.txt new file mode 100644 index 0000000..1c73c2d --- /dev/null +++ b/examples/src/tools/CMakeLists.txt @@ -0,0 +1,7 @@ + +find_library(fftw REQUIRED NAMES fftw3) + +add_executable(analyze_correlations analyze_correlations.cpp) + +target_link_libraries(analyze_correlations fftw3 wolff) + diff --git a/examples/src/tools/analyze_correlations.cpp b/examples/src/tools/analyze_correlations.cpp new file mode 100644 index 0000000..abeaff3 --- /dev/null +++ b/examples/src/tools/analyze_correlations.cpp @@ -0,0 +1,486 @@ + +#include <wolff/types.h> +#include <cmath> +#include <cstring> +#include <stdio.h> +#include <stdlib.h> +#include <getopt.h> +#include <fftw3.h> + +template <class T> +double mean(int N, T *data) { + double total = 0; + for (int i = 0; i < N; i++) { + total += (double)data[i]; + } + + return total / N; +} + +double squared_mean(int N, double *data) { + double total = 0; + for (int i = 0; i < N; i++) { + total += pow(data[i], 2); + } + + return total / N; +} + +double central_moment(int N, double *data, double mean, int m) { + double total = 0; + for (int i = 0; i < N; i++) { + total += pow(data[i] - mean, m); + } + + return total / N; +} + +void compute_OO(int N, fftw_plan forward_plan, double *forward_data, fftw_plan reverse_plan, double *reverse_data) { + + fftw_execute(forward_plan); + + reverse_data[0] = forward_data[0] * forward_data[0]; + reverse_data[N / 2] = forward_data[N/2] * forward_data[N/2]; + + for (count_t i = 1; i < N / 2; i++) { + reverse_data[i] = pow(forward_data[i], 2) + pow(forward_data[N - i], 2); + reverse_data[N - i] = 0; + } + + fftw_execute(reverse_plan); + +} + +double finite_energy(q_t nb, double *J, q_t q, double *H, v_t nv, v_t ne, uint32_t *bo, uint32_t *so) { + double energy = 0; + + v_t tot = 0; + for (q_t i = 0; i < nb - 1; i++) { + energy -= J[i] * bo[i]; + tot += bo[i]; + } + + energy -= J[nb - 1] * (ne - tot); + + tot = 0; + for (q_t i = 0; i < q - 1; i++) { + energy -= H[i] * so[i]; + tot += so[i]; + } + + energy -= H[q - 1] * (nv - tot); + + return energy; +} + +int main (int argc, char *argv[]) { + count_t drop = (count_t)1e4; + count_t length = (count_t)1e4; + bool speedy_drop = false; + bool from_stdin = false; + bool oldstyle = false; + + int opt; + + while ((opt = getopt(argc, argv, "d:l:spo")) != -1) { + switch (opt) { + case 'd': + drop = (count_t)atof(optarg); + break; + case 'l': + length = (count_t)atof(optarg); + break; + case 's': + speedy_drop = true; + break; + case 'p': + from_stdin = true; + break; + case 'o': + oldstyle = true; + break; + default: + exit(EXIT_FAILURE); + } + } + FILE *metadata; + + fftw_set_timelimit(1); + + if (from_stdin) { + metadata = stdin; + } else { + metadata = fopen("wolff_metadata.txt", "r"); + } + + if (metadata == NULL) { + printf("Metadata file not found. Make sure you are in the correct directory!\n"); + exit(EXIT_FAILURE); + } + + unsigned long id; + char *model = (char *)malloc(32 * sizeof(char)); + + if (model == NULL) { + printf("Malloc failed.\n"); + exit(EXIT_FAILURE); + } + + q_t q; + D_t D; + L_t L; + v_t nv, ne; + + while (EOF != fscanf(metadata, "<| \"ID\" -> %lu, \"MODEL\" -> \"%[^\"]\", \"q\" -> %" SCNq ", \"D\" -> %" SCND ", \"L\" -> %" SCNL ", \"NV\" -> %" SCNv ", \"NE\" -> %" SCNv ", ", &id, model, &q, &D, &L, &nv, &ne)) { + + printf("%lu: Processing...\n", id); + +// bool is_finite = 0 == strcmp(model, "ISING") || 0 == strcmp(model, "POTTS") || 0 == strcmp(model, "CLOCK"); + + if (oldstyle) { + q_t nb; + double T; + fscanf(metadata, "\"NB\" -> %" SCNq ", \"T\" -> %lf, \"J\" -> {", &nb, &T); + double *J = (double *)malloc(nb * sizeof(double)); + double *H = (double *)malloc(q * sizeof(double)); + + if (J == NULL || H == NULL) { + printf("%lu: Malloc failed.\n", id); + break; + } + + for (q_t i = 0; i < nb - 1; i++) { + fscanf(metadata, "%lf, ", &(J[i])); + } + fscanf(metadata, "%lf}, \"H\" -> {", &(J[nb - 1])); + for (q_t i = 0; i < q - 1; i++) { + fscanf(metadata, "%lf, ", &(H[i])); + } + fscanf(metadata, "%lf} |>\n", &(H[q - 1])); + + char *filename_M = (char *)malloc(128 * sizeof(char)); + char *filename_B = (char *)malloc(128 * sizeof(char)); + char *filename_S = (char *)malloc(128 * sizeof(char)); + + if (filename_M == NULL || filename_B == NULL || filename_S == NULL) { + printf("%lu: Malloc failed.\n", id); + break; + } + + sprintf(filename_M, "wolff_%lu_M.dat", id); + sprintf(filename_B, "wolff_%lu_B.dat", id); + sprintf(filename_S, "wolff_%lu_S.dat", id); + + FILE *file_M = fopen(filename_M, "rb"); + FILE *file_B = fopen(filename_B, "rb"); + FILE *file_S = fopen(filename_S, "rb"); + + if (file_M == NULL || file_B == NULL || file_S == NULL) { + printf("%lu: Opening data file failed.\n", id); + break; + } + + fseek(file_S, 0, SEEK_END); + unsigned long N = ftell(file_S) / sizeof(uint32_t); + fseek(file_S, 0, SEEK_SET); + + if (speedy_drop) { + drop = N - pow(2, floor(log(N) / log(2))); + } else { + if (N % 2 == 1 && drop % 2 == 0) { + drop++; // make sure M is even + } + } + + if (N <= drop) { + printf("\033[F%lu: Number of steps %lu is less than %" PRIcount ", nothing done.\n", id, N, drop); + } else { + int M = N - drop; + + double M_f = (double)M; + + if (length > M) { + length = M; + } + + double *forward_data = (double *)fftw_malloc(M * sizeof(double)); + fftw_plan forward_plan = fftw_plan_r2r_1d(M, forward_data, forward_data, FFTW_R2HC, 0); + double *reverse_data = (double *)fftw_malloc(M * sizeof(double)); + fftw_plan reverse_plan = fftw_plan_r2r_1d(M, reverse_data, reverse_data, FFTW_HC2R, 0); + + + uint32_t *data_S = (uint32_t *)malloc(N * sizeof(uint32_t)); + fread(data_S, N, sizeof(uint32_t), file_S); + for (count_t i = 0; i < M; i++) { + forward_data[i] = (double)data_S[drop + i]; + } + free(data_S); + double mean_S = mean(M, forward_data); + double squaredMean_S = squared_mean(M, forward_data); + double moment2_S = central_moment(M, forward_data, mean_S, 2); + double moment4_S = central_moment(M, forward_data, mean_S, 4); + + compute_OO(M, forward_plan, forward_data, reverse_plan, reverse_data); + + sprintf(filename_S, "wolff_%lu_S_OO.dat", id); + + FILE *file_S = fopen(filename_S, "wb"); + fwrite(&M_f, sizeof(double), 1, file_S); + fwrite(&mean_S, sizeof(double), 1, file_S); + fwrite(&squaredMean_S, sizeof(double), 1, file_S); + fwrite(&moment2_S, sizeof(double), 1, file_S); + fwrite(&moment4_S, sizeof(double), 1, file_S); + fwrite(reverse_data, sizeof(double), length, file_S); + fclose(file_S); + + uint32_t *data_B = (uint32_t *)malloc((nb - 1) * N * sizeof(uint32_t)); + uint32_t *data_M = (uint32_t *)malloc((q - 1) * N * sizeof(uint32_t)); + fread(data_B, N * (nb - 1), sizeof(uint32_t), file_B); + fread(data_M, N * (q - 1), sizeof(uint32_t), file_M); + + for (count_t i = 0; i < M; i++) { + forward_data[i] = finite_energy(nb, J, q, H, nv, ne, data_B + (nb - 1) * (drop + i), data_M + (q - 1) * (drop + i)); + } + + double mean_E = mean(M, forward_data); + double squaredMean_E = squared_mean(M, forward_data); + double moment2_E = central_moment(M, forward_data, mean_E, 2); + double moment4_E = central_moment(M, forward_data, mean_E, 4); + + free(data_B); + free(data_M); + + compute_OO(M, forward_plan, forward_data, reverse_plan, reverse_data); + + sprintf(filename_B, "wolff_%lu_E_OO.dat", id); + + FILE *file_E = fopen(filename_B, "wb"); + fwrite(&M_f, sizeof(double), 1, file_E); + fwrite(&mean_E, sizeof(double), 1, file_E); + fwrite(&squaredMean_E, sizeof(double), 1, file_E); + fwrite(&moment2_E, sizeof(double), 1, file_E); + fwrite(&moment4_E, sizeof(double), 1, file_E); + fwrite(reverse_data, sizeof(double), length, file_E); + fclose(file_E); + + printf("\033[F%lu: Correlation functions for %d steps written.\n", id, M); + + fftw_destroy_plan(forward_plan); + fftw_destroy_plan(reverse_plan); + fftw_free(forward_data); + fftw_free(reverse_data); + + } + + fclose(file_M); + fclose(file_B); + fclose(file_S); + + free(J); + free(H); + + free(filename_S); + free(filename_B); + free(filename_M); + + } else { + char *junk = (char *)malloc(1024 * sizeof(char)); + fscanf(metadata, "%[^\n]\n", junk); // throw away the rest of the line, we don't need it + free(junk); + + char *filename_E = (char *)malloc(128 * sizeof(char)); + char *filename_F = (char *)malloc(128 * sizeof(char)); + char *filename_M = (char *)malloc(128 * sizeof(char)); + char *filename_S = (char *)malloc(128 * sizeof(char)); + + sprintf(filename_E, "wolff_%lu_E.dat", id); + sprintf(filename_F, "wolff_%lu_F.dat", id); + sprintf(filename_M, "wolff_%lu_M.dat", id); + sprintf(filename_S, "wolff_%lu_S.dat", id); + + FILE *file_E = fopen(filename_E, "rb"); + FILE *file_F = fopen(filename_F, "rb"); + FILE *file_M = fopen(filename_M, "rb"); + FILE *file_S = fopen(filename_S, "rb"); + + fseek(file_S, 0, SEEK_END); + unsigned long N = ftell(file_S) / sizeof(uint32_t); + fseek(file_S, 0, SEEK_SET); + + if (speedy_drop) { + drop = N - pow(2, floor(log(N) / log(2))); + } else { + if (N % 2 == 1 && drop % 2 == 0) { + drop++; // make sure M is even + } + } + + if (N <= drop) { + printf("\033[F%lu: Number of steps %lu is less than %" PRIcount ", nothing done.\n", id, N, drop); + } else { + int M = N - drop; + double M_f = (double)M; + + if (length > M) { + length = M; + } + + double *forward_data = (double *)fftw_malloc(M * sizeof(double)); + fftw_plan forward_plan = fftw_plan_r2r_1d(M, forward_data, forward_data, FFTW_R2HC, 0); + + double *reverse_data = (double *)fftw_malloc(M * sizeof(double)); + fftw_plan reverse_plan = fftw_plan_r2r_1d(M, reverse_data, reverse_data, FFTW_HC2R, 0); + + if (file_S != NULL) { + uint32_t *data_S = (uint32_t *)malloc(N * sizeof(uint32_t)); + + fread(data_S, sizeof(uint32_t), N, file_S); + fclose(file_S); + + for (int i = 0; i < M; i++) { + forward_data[i] = (double)data_S[drop + i]; + } + free(data_S); + + double mean_S = mean(M, forward_data); + double squaredMean_S = squared_mean(M, forward_data); + double moment2_S = central_moment(M, forward_data, mean_S, 2); + double moment4_S = central_moment(M, forward_data, mean_S, 4); + + compute_OO(M, forward_plan, forward_data, reverse_plan, reverse_data); + + sprintf(filename_S, "wolff_%lu_S_OO.dat", id); + FILE *file_S_new = fopen(filename_S, "wb"); + fwrite(&M_f, sizeof(double), 1, file_S_new); + fwrite(&mean_S, sizeof(double), 1, file_S_new); + fwrite(&squaredMean_S, sizeof(double), 1, file_S_new); + fwrite(&moment2_S, sizeof(double), 1, file_S_new); + fwrite(&moment4_S, sizeof(double), 1, file_S_new); + fwrite(reverse_data, sizeof(double), length, file_S_new); + fclose(file_S_new); + } + if (file_F != NULL) { + float *data_F = (float *)malloc(N * sizeof(float)); + + fread(data_F, sizeof(float), N, file_F); + fclose(file_F); + + for (int i = 0; i < M; i++) { + forward_data[i] = (double)data_F[drop + i]; + } + free(data_F); + + double mean_F = mean(M, forward_data); + double squaredMean_F = squared_mean(M, forward_data); + double moment2_F = central_moment(M, forward_data, mean_F, 2); + double moment4_F = central_moment(M, forward_data, mean_F, 4); + + compute_OO(M, forward_plan, forward_data, reverse_plan, reverse_data); + + sprintf(filename_F, "wolff_%lu_F_OO.dat", id); + FILE *file_F_new = fopen(filename_F, "wb"); + fwrite(&M_f, sizeof(double), 1, file_F_new); + fwrite(&mean_F, sizeof(double), 1, file_F_new); + fwrite(&squaredMean_F, sizeof(double), 1, file_F_new); + fwrite(&moment2_F, sizeof(double), 1, file_F_new); + fwrite(&moment4_F, sizeof(double), 1, file_F_new); + fwrite(reverse_data, sizeof(double), length, file_F_new); + fclose(file_F_new); + } + if (file_E != NULL) { + float *data_E = (float *)malloc(N * sizeof(float)); + + fread(data_E, sizeof(float), N, file_E); + fclose(file_E); + + for (int i = 0; i < M; i++) { + forward_data[i] = (double)data_E[drop + i]; + } + free(data_E); + + double mean_E = mean(M, forward_data); + double squaredMean_E = squared_mean(M, forward_data); + double moment2_E = central_moment(M, forward_data, mean_E, 2); + double moment4_E = central_moment(M, forward_data, mean_E, 4); + + compute_OO(M, forward_plan, forward_data, reverse_plan, reverse_data); + + sprintf(filename_E, "wolff_%lu_E_OO.dat", id); + FILE *file_E_new = fopen(filename_E, "wb"); + fwrite(&M_f, sizeof(double), 1, file_E_new); + fwrite(&mean_E, sizeof(double), 1, file_E_new); + fwrite(&squaredMean_E, sizeof(double), 1, file_E_new); + fwrite(&moment2_E, sizeof(double), 1, file_E_new); + fwrite(&moment4_E, sizeof(double), 1, file_E_new); + fwrite(reverse_data, sizeof(double), length, file_E_new); + fclose(file_E_new); + } + if (file_M != NULL) { + if (0 == strcmp(model, "PLANAR")) { + float *data_M = (float *)malloc(2 * N * sizeof(float)); + fread(data_M, sizeof(float), 2 * N, file_M); + fclose(file_M); + for (int i = 0; i < M; i++) { + forward_data[i] = (double)sqrt(pow(data_M[2 * drop + 2 * i], 2) + pow(data_M[2 * drop + 2 * i + 1], 2)); + } + free(data_M); + } else if (0 == strcmp(model, "HEISENBERG")) { + float *data_M = (float *)malloc(3 * N * sizeof(float)); + fread(data_M, sizeof(float), 3 * N, file_M); + fclose(file_M); + for (int i = 0; i < M; i++) { + forward_data[i] = sqrt(pow(data_M[3 * drop + 3 * i], 2) + pow(data_M[3 * drop + 3 * i + 1], 2) + pow(data_M[3 * drop + 3 * i + 2], 2)); + } + free(data_M); + } else if (0 == strcmp(model, "ISING")) { + int *data_M = (int *)malloc(N * sizeof(float)); + fread(data_M, sizeof(int), N, file_M); + fclose(file_M); + for (int i = 0; i < M; i++) { + forward_data[i] = (double)data_M[i]; + } + free(data_M); + } else { + printf("UNKNOWN MODEL\n"); + exit(EXIT_FAILURE); + } + + double mean_M = mean(M, forward_data); + double squaredMean_M = squared_mean(M, forward_data); + double moment2_M = central_moment(M, forward_data, mean_M, 2); + double moment4_M = central_moment(M, forward_data, mean_M, 4); + + compute_OO(M, forward_plan, forward_data, reverse_plan, reverse_data); + + sprintf(filename_M, "wolff_%lu_M_OO.dat", id); + FILE *file_M_new = fopen(filename_M, "wb"); + fwrite(&M_f, sizeof(double), 1, file_M_new); + fwrite(&mean_M, sizeof(double), 1, file_M_new); + fwrite(&squaredMean_M, sizeof(double), 1, file_M_new); + fwrite(&moment2_M, sizeof(double), 1, file_M_new); + fwrite(&moment4_M, sizeof(double), 1, file_M_new); + fwrite(reverse_data, sizeof(double), length, file_M_new); + fclose(file_M_new); + } + + printf("\033[F%lu: Correlation functions for %d steps written.\n", id, M); + fftw_destroy_plan(forward_plan); + fftw_destroy_plan(reverse_plan); + fftw_free(forward_data); + fftw_free(reverse_data); + + } + free(filename_E); + free(filename_S); + free(filename_F); + free(filename_M); + } + } + + free(model); + fclose(metadata); + fftw_cleanup(); + + return 0; +} + |