diff options
Diffstat (limited to 'lib')
-rw-r--r-- | lib/wolff.h | 15 | ||||
-rw-r--r-- | lib/wolff_tools.c | 135 |
2 files changed, 104 insertions, 46 deletions
diff --git a/lib/wolff.h b/lib/wolff.h index 84b3d22..cf24427 100644 --- a/lib/wolff.h +++ b/lib/wolff.h @@ -50,7 +50,16 @@ typedef struct { double dc; } meas_t; -int32_t sign(double x); +typedef struct { + uint64_t n; + uint64_t W; + double *OO; + double *Op; + double O; + double O2; +} autocorr_t; + +int8_t sign(double x); cluster_t *flip_cluster(const graph_t *g, const double *ps, bool *x, bool stop_on_ghost, gsl_rng *r); @@ -62,5 +71,9 @@ uint32_t wolff_step(double T, double H, ising_state_t *s, sim_t sim, gsl_rng *r, void update_meas(meas_t *m, double x); +void update_autocorr(autocorr_t *OO, double O); + double add_to_avg(double mx, double x, uint64_t n); +double rho(autocorr_t *o, uint64_t i); + diff --git a/lib/wolff_tools.c b/lib/wolff_tools.c index bab0908..92e8302 100644 --- a/lib/wolff_tools.c +++ b/lib/wolff_tools.c @@ -2,7 +2,11 @@ #include "queue.h" #include "wolff.h" -int32_t spin_to_sign(bool spin) { +int8_t spin_to_sign(bool spin) { + /* takes a spin (represented by a bool) and converts it to an integer (plus + * or minus one). our convention takes true to be negative spin and false to + * be positive spin + */ if (spin) { return -1; } else { @@ -10,55 +14,63 @@ int32_t spin_to_sign(bool spin) { } } -int32_t sign(double x) { - return x > 0 ? 1 : -1; +int8_t sign(double x) { + // the sign function. zero returns positive sign. + return x >= 0 ? 1 : -1; } -graph_t *graph_add_ext(const graph_t *g) { - graph_t *h = (graph_t *)calloc(1, sizeof(graph_t)); +graph_t *graph_add_ext(const graph_t *G) { + /* takes a graph object G and returns tG, the same graph with an extra vertex + * that is connected to every other vertex. + */ + graph_t *tG = (graph_t *)calloc(1, sizeof(graph_t)); - h->nv = g->nv + 1; - h->ne = g->ne + g->nv; + tG->nv = G->nv + 1; + tG->ne = G->ne + G->nv; - h->ev = (uint32_t *)malloc(2 * h->ne * sizeof(uint32_t)); - h->vei = (uint32_t *)malloc((h->nv + 1) * sizeof(uint32_t)); - h->ve = (uint32_t *)malloc(2 * h->ne * sizeof(uint32_t)); - h->vx = (double *)malloc(2 * h->nv * sizeof(double)); - h->bq = (bool *)malloc(h->nv * sizeof(bool)); + tG->ev = (uint32_t *)malloc(2 * tG->ne * sizeof(uint32_t)); + tG->vei = (uint32_t *)malloc((tG->nv + 1) * sizeof(uint32_t)); + tG->ve = (uint32_t *)malloc(2 * tG->ne * sizeof(uint32_t)); + tG->vx = (double *)malloc(2 * tG->nv * sizeof(double)); + tG->bq = (bool *)malloc(tG->nv * sizeof(bool)); - memcpy(h->ev, g->ev, 2 * g->ne * sizeof(uint32_t)); - memcpy(h->vx, g->vx, 2 * g->nv * sizeof(double)); - memcpy(h->bq, g->bq, g->nv * sizeof(bool)); - h->vx[2 * g->nv] = -1; - h->vx[2 * g->nv + 1] = -0.5; - h->bq[g->nv] = false; + memcpy(tG->ev, G->ev, 2 * G->ne * sizeof(uint32_t)); + memcpy(tG->vx, G->vx, 2 * G->nv * sizeof(double)); + memcpy(tG->bq, G->bq, G->nv * sizeof(bool)); - for (uint32_t i = 0; i < g->nv; i++) { - h->ev[2 * g->ne + 2 * i] = i; - h->ev[2 * g->ne + 2 * i + 1] = g->nv; + tG->vx[2 * G->nv] = -1; + tG->vx[2 * G->nv + 1] = -0.5; + tG->bq[G->nv] = false; + + for (uint32_t i = 0; i < G->nv; i++) { + tG->ev[2 * G->ne + 2 * i] = i; + tG->ev[2 * G->ne + 2 * i + 1] = G->nv; } - for (uint32_t i = 0; i < g->nv; i++) { - h->vei[i] = g->vei[i] + i; + for (uint32_t i = 0; i < G->nv; i++) { + tG->vei[i] = G->vei[i] + i; - for (uint32_t j = 0; j < g->vei[i + 1] - g->vei[i]; j++) { - h->ve[h->vei[i] + j] = g->ve[g->vei[i] + j]; + for (uint32_t j = 0; j < G->vei[i + 1] - G->vei[i]; j++) { + tG->ve[tG->vei[i] + j] = G->ve[G->vei[i] + j]; } - h->ve[h->vei[i] + g->vei[i + 1] - g->vei[i]] = g->ne + i; + tG->ve[tG->vei[i] + G->vei[i + 1] - G->vei[i]] = G->ne + i; } - h->vei[g->nv] = g->vei[g->nv] + g->nv; - h->vei[g->nv + 1] = h->vei[g->nv] + g->nv; + tG->vei[G->nv] = G->vei[G->nv] + G->nv; + tG->vei[G->nv + 1] = tG->vei[G->nv] + G->nv; - for (uint32_t i = 0; i < g->nv; i++) { - h->ve[h->vei[g->nv] + i] = g->ne + i; + for (uint32_t i = 0; i < G->nv; i++) { + tG->ve[tG->vei[G->nv] + i] = G->ne + i; } - return h; + return tG; } uint32_t get_neighbor(const graph_t *g, uint32_t v, uint32_t i) { + // returns the index of the ith neighbor of vertex v on graph g. + assert(i < g->vei[v + 1] - g->vei[v]); // don't request a neighbor over the total number of neighbors! + uint32_t e, v1, v2; e = g->ve[g->vei[v] + i]; // select the ith bond connected to site @@ -68,15 +80,23 @@ uint32_t get_neighbor(const graph_t *g, uint32_t v, uint32_t i) { return v == v1 ? v2 : v1; // distinguish neighboring site from site itself } -cluster_t *flip_cluster(const graph_t *g, const double *ps, bool *x, bool stop_on_ghost, +cluster_t *flip_cluster(const graph_t *g, const double *ps, bool *s, bool stop_on_ghost, gsl_rng *r) { + /* flips a wolff cluster on the graph g with initial state s. s is always + * changed by the routine. the probability of adding a normal bond to the + * cluster is passed by ps[0], and the probability of adding a bond with the + * external field spin to the cluster is passed by ps[1]. if stop_on_ghost is + * true, adding the external field spin to the cluster stops execution of the + * routine. flip_cluster returns an object of type cluster_t, which encodes + * information about the flipped cluster. + */ uint32_t v0; int32_t n_h_bonds, n_bonds; - bool x0; + bool s0; cluster_t *c; v0 = gsl_rng_uniform_int(r, g->nv); // pick a random vertex - x0 = x[v0]; // record its orientation + s0 = s[v0]; // record its orientation ll_t *stack = NULL; // create a new stack stack_push(&stack, v0); // push the initial vertex to the stack @@ -91,8 +111,8 @@ cluster_t *flip_cluster(const graph_t *g, const double *ps, bool *x, bool stop_o v = stack_pop(&stack); nn = g->vei[v + 1] - g->vei[v]; - if (x[v] == x0 && !(c->hit_ghost && stop_on_ghost)) { // if the vertex hasn't already been flipped - x[v] = !x[v]; // flip the vertex + if (s[v] == s0 && !(c->hit_ghost && stop_on_ghost)) { // if the vertex hasn't already been flipped + s[v] = !s[v]; // flip the vertex if (stop_on_ghost) { stack_push(&(c->spins), v); } @@ -110,8 +130,8 @@ cluster_t *flip_cluster(const graph_t *g, const double *ps, bool *x, bool stop_o bond_counter = is_ext ? &(c->dHb) : &(c->dJb); prob = is_ext ? ps[1] : ps[0]; - if (x[vn] == - x0) { // if the neighboring site matches the flipping cluster... + if (s[vn] == + s0) { // if the neighboring site matches the flipping cluster... (*bond_counter)++; if (gsl_rng_uniform(r) < prob) { // and with probability ps[e]... @@ -147,7 +167,7 @@ uint32_t wolff_step(double T, double H, ising_state_t *s, sim_t sim, gsl_rng *r, gsl_rng_set(r, jst_rand_seed()); } - if (ps == NULL) { + if (ps == NULL) { // computing exponentials is relatively expensive, so calling functions are given the option to supply values calculated once in the entire runtime no_ps = true; ps = (double *)malloc(2 * sizeof(double)); ps[0] = 1 - exp(-2 / T); @@ -185,8 +205,7 @@ uint32_t wolff_step(double T, double H, ising_state_t *s, sim_t sim, gsl_rng *r, } n_flips = 1; - } - break; + } break; case WOLFF: { cluster_t *c = flip_cluster(s->g, ps, s->spins, false, r); @@ -195,8 +214,7 @@ uint32_t wolff_step(double T, double H, ising_state_t *s, sim_t sim, gsl_rng *r, n_flips = c->nv; free(c); - } - break; + } break; case WOLFF_GHOST: { cluster_t *c = flip_cluster(s->g, ps, s->spins, true, r); @@ -204,10 +222,12 @@ uint32_t wolff_step(double T, double H, ising_state_t *s, sim_t sim, gsl_rng *r, while (c->spins != NULL) { uint32_t v = stack_pop(&(c->spins)); s->spins[v] = !s->spins[v]; + // if we hit the external spin, undo the cluster flip } } else { while (c->spins != NULL) { stack_pop(&(c->spins)); + // we have to clear the memory on the stack anyway... } s->M += - sign(H) * 2 * c->dHb; s->H += 2 * (c->dJb + sign (H) * H * c->dHb); @@ -216,8 +236,7 @@ uint32_t wolff_step(double T, double H, ising_state_t *s, sim_t sim, gsl_rng *r, n_flips = c->nv; free(c); - } - break; + } break; } if (no_ps) { @@ -235,6 +254,32 @@ double add_to_avg(double mx, double x, uint64_t n) { return mx * (n / (n + 1.)) + x * 1. / (n + 1.); } +void update_autocorr(autocorr_t *OO, double O) { + OO->O = add_to_avg(OO->O, O, OO->n); + OO->O2 = add_to_avg(OO->O2, pow(O, 2), OO->n); + + uint64_t lim = OO->W; + + if (OO->n < OO->W) { + lim = OO->n; + } + + for (uint64_t t = 0; t < lim; t++) { + OO->OO[t] = add_to_avg(OO->OO[t], O * OO->Op[t], OO->n - t - 1); + } + + for (uint64_t t = 0; t < OO->W - 1; t++) { + OO->Op[OO->W - 1 - t] = OO->Op[OO->W - 2 - t]; + } + + OO->Op[0] = O; + OO->n++; +} + +double rho(autocorr_t *o, uint64_t i) { + return (o->OO[i] - pow(o->O, 2)) / (o->O2 - pow(o->O, 2)); +} + void update_meas(meas_t *m, double x) { uint64_t n = m->n; |