summaryrefslogtreecommitdiff
path: root/src/wolff_finite.c
diff options
context:
space:
mode:
Diffstat (limited to 'src/wolff_finite.c')
-rw-r--r--src/wolff_finite.c188
1 files changed, 0 insertions, 188 deletions
diff --git a/src/wolff_finite.c b/src/wolff_finite.c
deleted file mode 100644
index 9b3e21e..0000000
--- a/src/wolff_finite.c
+++ /dev/null
@@ -1,188 +0,0 @@
-
-#include <time.h>
-#include <getopt.h>
-
-#include <initial_finite.h>
-
-int main(int argc, char *argv[]) {
-
- count_t N = (count_t)1e7;
-
- finite_model_t model = ISING;
-
- q_t q = 2;
- D_t D = 2;
- L_t L = 128;
- double T = 2.26918531421;
- double *J = (double *)calloc(MAX_Q, sizeof(double));
- J[0] = 1.0;
- double *H = (double *)calloc(MAX_Q, sizeof(double));
-
- bool silent = false;
-
- int opt;
- q_t J_ind = 0;
- q_t H_ind = 0;
-
- while ((opt = getopt(argc, argv, "N:t:q:D:L:T:J:H:s")) != -1) {
- switch (opt) {
- case 'N': // number of steps
- N = (count_t)atof(optarg);
- break;
- case 't': // type of simulation
- model = (finite_model_t)atoi(optarg);
- break;
- case 'q': // number of states, if relevant
- q = atoi(optarg);
- break;
- case 'D': // dimension
- D = atoi(optarg);
- break;
- case 'L': // linear size
- L = atoi(optarg);
- break;
- case 'T': // temperature
- T = atof(optarg);
- break;
- case 'J': // couplings, if relevant. nth call couples states i and i + n
- J[J_ind] = atof(optarg);
- J_ind++;
- break;
- case 'H': // external field. nth call couples to state n
- H[H_ind] = atof(optarg);
- H_ind++;
- break;
- case 's': // don't print anything during simulation. speeds up slightly
- silent = true;
- break;
- default:
- exit(EXIT_FAILURE);
- }
- }
-
- state_finite_t *s;
-
- switch (model) {
- case ISING:
- s = initial_finite_prepare_ising(D, L, T, H);
- break;
- case POTTS:
- s = initial_finite_prepare_potts(D, L, q, T, H);
- break;
- case CLOCK:
- s = initial_finite_prepare_clock(D, L, q, T, H);
- break;
- case DGM:
- s = initial_finite_prepare_dgm(D, L, q, T, H);
- break;
- default:
- printf("Not a valid model!\n");
- free(J);
- free(H);
- exit(EXIT_FAILURE);
- }
-
- free(J);
- free(H);
-
- // initialize random number generator
- gsl_rng *r = gsl_rng_alloc(gsl_rng_mt19937);
- gsl_rng_set(r, rand_seed());
-
- unsigned long timestamp;
-
- {
- struct timespec spec;
- clock_gettime(CLOCK_REALTIME, &spec);
- timestamp = spec.tv_sec*1000000000LL + spec.tv_nsec;
- }
-
- FILE *outfile_info = fopen("wolff_metadata.txt", "a");
-
- fprintf(outfile_info, "<| \"ID\" -> %lu, \"MODEL\" -> \"%s\", \"q\" -> %" PRIq ", \"D\" -> %" PRID ", \"L\" -> %" PRIL ", \"NV\" -> %" PRIv ", \"NE\" -> %" PRIv ", \"NB\" -> %" PRIq ", \"T\" -> %.15f, \"J\" -> {", timestamp, finite_model_t_strings[model], s->q, D, L, s->nv, s->ne, s->n_bond_types, T);
-
- for (q_t i = 0; i < s->n_bond_types; i++) {
- fprintf(outfile_info, "%.15f", s->J[i]);
- if (i < s->n_bond_types - 1) {
- fprintf(outfile_info, ", ");
- }
- }
-
- fprintf(outfile_info, "}, \"H\" -> {");
-
- for (q_t i = 0; i < s->q; i++) {
- fprintf(outfile_info, "%.15f", s->H[i]);
- if (i < s->q - 1) {
- fprintf(outfile_info, ", ");
- }
- }
-
- fprintf(outfile_info, "} |>\n");
-
- fclose(outfile_info);
-
- char *filename_M = (char *)malloc(255 * sizeof(char));
- char *filename_B = (char *)malloc(255 * sizeof(char));
- char *filename_S = (char *)malloc(255 * sizeof(char));
-
- sprintf(filename_M, "wolff_%lu_M.dat", timestamp);
- sprintf(filename_B, "wolff_%lu_B.dat", timestamp);
- sprintf(filename_S, "wolff_%lu_S.dat", timestamp);
-
- FILE *outfile_M = fopen(filename_M, "wb");
- FILE *outfile_B = fopen(filename_B, "wb");
- FILE *outfile_S = fopen(filename_S, "wb");
-
- free(filename_M);
- free(filename_B);
- free(filename_S);
-
- v_t cluster_size = 0;
-
- if (!silent) printf("\n");
- for (count_t steps = 0; steps < N; steps++) {
- if (!silent) printf("\033[F\033[JWOLFF: sweep %" PRIu64 " / %" PRIu64 ": E = %.2f, B_0 = %" PRIv ", M_0 = %" PRIv ", S = %" PRIv "\n", steps, N, state_finite_energy(s), s->B[0], s->M[0], cluster_size);
-
- v_t v0 = gsl_rng_uniform_int(r, s->nv);
- R_t step;
-
- bool changed = false;
- while (!changed) {
- step = gsl_rng_uniform_int(r, s->n_involutions);
- if (symmetric_act(s->transformations + s->q * s->involutions[step], s->spins[v0]) != s->spins[v0]) {
- changed = true;
- }
- }
-
- cluster_size = flip_cluster_finite(s, v0, step, r);
-
- // v_t is never going to be bigger than 32 bits, but since it's specified
- // as a fast time many machines will actually have it be 64 bits. we cast
- // it down here to halve space.
-
- for (q_t i = 0; i < s->n_bond_types - 1; i++) { // if we know the occupation of all but one state we know the occupation of the last
- fwrite(&(s->B[i]), sizeof(uint32_t), 1, outfile_B);
- }
-
- for (q_t i = 0; i < s->q - 1; i++) { // if we know the occupation of all but one state we know the occupation of the last
- fwrite(&(s->M[i]), sizeof(uint32_t), 1, outfile_M);
- }
-
- fwrite(&cluster_size, sizeof(uint32_t), 1, outfile_S);
-
- }
- if (!silent) {
- printf("\033[F\033[J");
- }
- printf("WOLFF: sweep %" PRIu64 " / %" PRIu64 ": E = %.2f, B_0 = %" PRIv ", M_0 = %" PRIv ", S = %" PRIv "\n", N, N, state_finite_energy(s), s->B[0], s->M[0], cluster_size);
-
- fclose(outfile_M);
- fclose(outfile_B);
- fclose(outfile_S);
-
- state_finite_free(s);
- gsl_rng_free(r);
-
- return 0;
-}
-