summaryrefslogtreecommitdiff
path: root/src/wolff_finite.c
diff options
context:
space:
mode:
Diffstat (limited to 'src/wolff_finite.c')
-rw-r--r--src/wolff_finite.c188
1 files changed, 188 insertions, 0 deletions
diff --git a/src/wolff_finite.c b/src/wolff_finite.c
new file mode 100644
index 0000000..9b3e21e
--- /dev/null
+++ b/src/wolff_finite.c
@@ -0,0 +1,188 @@
+
+#include <time.h>
+#include <getopt.h>
+
+#include <initial_finite.h>
+
+int main(int argc, char *argv[]) {
+
+ count_t N = (count_t)1e7;
+
+ finite_model_t model = ISING;
+
+ q_t q = 2;
+ D_t D = 2;
+ L_t L = 128;
+ double T = 2.26918531421;
+ double *J = (double *)calloc(MAX_Q, sizeof(double));
+ J[0] = 1.0;
+ double *H = (double *)calloc(MAX_Q, sizeof(double));
+
+ bool silent = false;
+
+ int opt;
+ q_t J_ind = 0;
+ q_t H_ind = 0;
+
+ while ((opt = getopt(argc, argv, "N:t:q:D:L:T:J:H:s")) != -1) {
+ switch (opt) {
+ case 'N': // number of steps
+ N = (count_t)atof(optarg);
+ break;
+ case 't': // type of simulation
+ model = (finite_model_t)atoi(optarg);
+ break;
+ case 'q': // number of states, if relevant
+ q = atoi(optarg);
+ break;
+ case 'D': // dimension
+ D = atoi(optarg);
+ break;
+ case 'L': // linear size
+ L = atoi(optarg);
+ break;
+ case 'T': // temperature
+ T = atof(optarg);
+ break;
+ case 'J': // couplings, if relevant. nth call couples states i and i + n
+ J[J_ind] = atof(optarg);
+ J_ind++;
+ break;
+ case 'H': // external field. nth call couples to state n
+ H[H_ind] = atof(optarg);
+ H_ind++;
+ break;
+ case 's': // don't print anything during simulation. speeds up slightly
+ silent = true;
+ break;
+ default:
+ exit(EXIT_FAILURE);
+ }
+ }
+
+ state_finite_t *s;
+
+ switch (model) {
+ case ISING:
+ s = initial_finite_prepare_ising(D, L, T, H);
+ break;
+ case POTTS:
+ s = initial_finite_prepare_potts(D, L, q, T, H);
+ break;
+ case CLOCK:
+ s = initial_finite_prepare_clock(D, L, q, T, H);
+ break;
+ case DGM:
+ s = initial_finite_prepare_dgm(D, L, q, T, H);
+ break;
+ default:
+ printf("Not a valid model!\n");
+ free(J);
+ free(H);
+ exit(EXIT_FAILURE);
+ }
+
+ free(J);
+ free(H);
+
+ // initialize random number generator
+ gsl_rng *r = gsl_rng_alloc(gsl_rng_mt19937);
+ gsl_rng_set(r, rand_seed());
+
+ unsigned long timestamp;
+
+ {
+ struct timespec spec;
+ clock_gettime(CLOCK_REALTIME, &spec);
+ timestamp = spec.tv_sec*1000000000LL + spec.tv_nsec;
+ }
+
+ FILE *outfile_info = fopen("wolff_metadata.txt", "a");
+
+ fprintf(outfile_info, "<| \"ID\" -> %lu, \"MODEL\" -> \"%s\", \"q\" -> %" PRIq ", \"D\" -> %" PRID ", \"L\" -> %" PRIL ", \"NV\" -> %" PRIv ", \"NE\" -> %" PRIv ", \"NB\" -> %" PRIq ", \"T\" -> %.15f, \"J\" -> {", timestamp, finite_model_t_strings[model], s->q, D, L, s->nv, s->ne, s->n_bond_types, T);
+
+ for (q_t i = 0; i < s->n_bond_types; i++) {
+ fprintf(outfile_info, "%.15f", s->J[i]);
+ if (i < s->n_bond_types - 1) {
+ fprintf(outfile_info, ", ");
+ }
+ }
+
+ fprintf(outfile_info, "}, \"H\" -> {");
+
+ for (q_t i = 0; i < s->q; i++) {
+ fprintf(outfile_info, "%.15f", s->H[i]);
+ if (i < s->q - 1) {
+ fprintf(outfile_info, ", ");
+ }
+ }
+
+ fprintf(outfile_info, "} |>\n");
+
+ fclose(outfile_info);
+
+ char *filename_M = (char *)malloc(255 * sizeof(char));
+ char *filename_B = (char *)malloc(255 * sizeof(char));
+ char *filename_S = (char *)malloc(255 * sizeof(char));
+
+ sprintf(filename_M, "wolff_%lu_M.dat", timestamp);
+ sprintf(filename_B, "wolff_%lu_B.dat", timestamp);
+ sprintf(filename_S, "wolff_%lu_S.dat", timestamp);
+
+ FILE *outfile_M = fopen(filename_M, "wb");
+ FILE *outfile_B = fopen(filename_B, "wb");
+ FILE *outfile_S = fopen(filename_S, "wb");
+
+ free(filename_M);
+ free(filename_B);
+ free(filename_S);
+
+ v_t cluster_size = 0;
+
+ if (!silent) printf("\n");
+ for (count_t steps = 0; steps < N; steps++) {
+ if (!silent) printf("\033[F\033[JWOLFF: sweep %" PRIu64 " / %" PRIu64 ": E = %.2f, B_0 = %" PRIv ", M_0 = %" PRIv ", S = %" PRIv "\n", steps, N, state_finite_energy(s), s->B[0], s->M[0], cluster_size);
+
+ v_t v0 = gsl_rng_uniform_int(r, s->nv);
+ R_t step;
+
+ bool changed = false;
+ while (!changed) {
+ step = gsl_rng_uniform_int(r, s->n_involutions);
+ if (symmetric_act(s->transformations + s->q * s->involutions[step], s->spins[v0]) != s->spins[v0]) {
+ changed = true;
+ }
+ }
+
+ cluster_size = flip_cluster_finite(s, v0, step, r);
+
+ // v_t is never going to be bigger than 32 bits, but since it's specified
+ // as a fast time many machines will actually have it be 64 bits. we cast
+ // it down here to halve space.
+
+ for (q_t i = 0; i < s->n_bond_types - 1; i++) { // if we know the occupation of all but one state we know the occupation of the last
+ fwrite(&(s->B[i]), sizeof(uint32_t), 1, outfile_B);
+ }
+
+ for (q_t i = 0; i < s->q - 1; i++) { // if we know the occupation of all but one state we know the occupation of the last
+ fwrite(&(s->M[i]), sizeof(uint32_t), 1, outfile_M);
+ }
+
+ fwrite(&cluster_size, sizeof(uint32_t), 1, outfile_S);
+
+ }
+ if (!silent) {
+ printf("\033[F\033[J");
+ }
+ printf("WOLFF: sweep %" PRIu64 " / %" PRIu64 ": E = %.2f, B_0 = %" PRIv ", M_0 = %" PRIv ", S = %" PRIv "\n", N, N, state_finite_energy(s), s->B[0], s->M[0], cluster_size);
+
+ fclose(outfile_M);
+ fclose(outfile_B);
+ fclose(outfile_S);
+
+ state_finite_free(s);
+ gsl_rng_free(r);
+
+ return 0;
+}
+