diff options
Diffstat (limited to 'src')
| -rw-r--r-- | src/wolff_dgm.c | 247 | ||||
| -rw-r--r-- | src/wolff_potts.c | 2 | 
2 files changed, 248 insertions, 1 deletions
diff --git a/src/wolff_dgm.c b/src/wolff_dgm.c new file mode 100644 index 0000000..a9287f1 --- /dev/null +++ b/src/wolff_dgm.c @@ -0,0 +1,247 @@ + +#include <getopt.h> + +#include <cluster.h> + +double identity(h_t x) { +  return -pow(x, 2); +} + +double basic_H(double *H, h_t x) { +  return -H[0] * pow(x, 2); +} + +int main(int argc, char *argv[]) { + +  L_t L = 128; +  count_t N = (count_t)1e7; +  count_t min_runs = 10; +  count_t n = 3; +  D_t D = 2; +  double T = 2.26918531421; +  double *H = (double *)calloc(MAX_Q, sizeof(double)); +  double eps = 0; +  bool silent = false; +  bool record_autocorrelation = false; +  count_t ac_skip = 1; +  count_t W = 10; + +  int opt; +  q_t H_ind = 0; + +  while ((opt = getopt(argc, argv, "N:n:D:L:T:H:m:e:saS:W:")) != -1) { +    switch (opt) { +    case 'N': +      N = (count_t)atof(optarg); +      break; +    case 'n': +      n = (count_t)atof(optarg); +      break; +    case 'D': +      D = atoi(optarg); +      break; +    case 'L': +      L = atoi(optarg); +      break; +    case 'T': +      T = atof(optarg); +      break; +    case 'H': +      H[H_ind] = atof(optarg); +      H_ind++; +      break; +    case 'm': +      min_runs = atoi(optarg); +      break; +    case 'e': +      eps = atof(optarg); +      break; +    case 's': +      silent = true; +      break; +    case 'a': +      record_autocorrelation = true; +      break; +    case 'S': +      ac_skip = (count_t)atof(optarg); +      break; +    case 'W': +      W = (count_t)atof(optarg); +      break; +    default: +      exit(EXIT_FAILURE); +    } +  } + +  gsl_rng *r = gsl_rng_alloc(gsl_rng_mt19937); +  gsl_rng_set(r, rand_seed()); + +  dgm_state_t *s = (dgm_state_t *)calloc(1, sizeof(dgm_state_t)); + +  graph_t *h = graph_create_square(D, L); +  s->g = graph_add_ext(h); + +  s->spins = (h_t *)calloc(h->nv, sizeof(h_t)); + +  s->H_info = H; +  s->T = T; +  s->H = basic_H; +  s->J = identity; + +  s->R = (dihinf_t *)calloc(1, sizeof(dihinf_t)); + +  s->M = 0; +  s->E = 0; + +  double diff = 1e31; +  count_t n_runs = 0; +  count_t n_steps = 0; + +  meas_t *E, *clust, *M, *dM; + +  M = (meas_t *)calloc(1, sizeof(meas_t )); +  dM = (meas_t *)calloc(1, sizeof(meas_t )); + +  E = calloc(1, sizeof(meas_t)); +  clust = calloc(1, sizeof(meas_t)); + +  autocorr_t *autocorr; +  if (record_autocorrelation) { +    autocorr = (autocorr_t *)calloc(1, sizeof(autocorr_t)); +    autocorr->W = 2 * W + 1; +    autocorr->OO = (double *)calloc(2 * W + 1, sizeof(double)); +  } + +  if (!silent) printf("\n"); +  while (((diff > eps || diff != diff) && n_runs < N) || n_runs < min_runs) { +    if (!silent) printf("\033[F\033[JWOLFF: sweep %" PRIu64 +           ", dH/H = %.4f, dM/M = %.4f, dC/C = %.4f, dX/X = %.4f, cps: %.1f\n", +           n_runs, fabs(E->dx / E->x), M->dx / M->x, E->dc / E->c, M->dc / M->c, h->nv / clust->x); + +    count_t n_flips = 0; + +    while (n_flips / h->nv < n) { +      v_t v0 = gsl_rng_uniform_int(r, h->nv); +      h_t step = round((((double)s->M) / h->nv) + gsl_ran_gaussian(r, 5)); + +      v_t tmp_flips = flip_cluster_dgm(s, v0, step, r); +      n_flips += tmp_flips; + +      if (n_runs > 0) { +        n_steps++; +        update_meas(clust, tmp_flips); +      } + +      if (record_autocorrelation && n_runs > 0) { +        if (n_steps % ac_skip == 0) { +          update_autocorr(autocorr, s->E); +        } +      } +    } + +    update_meas(M, s->M); +    h_t min_h, max_h; +    min_h = MAX_H; +    max_h = MIN_H; +    for (v_t i = 0; i < h->nv; i++) { +      if (s->spins[i] < min_h) { +        min_h = s->spins[i]; +      } else if (s->spins[i] > max_h) { +        max_h = s->spins[i]; +      } +    } +    update_meas(dM, max_h - min_h); +    update_meas(E, s->E); + +    diff = fabs(E->dc / E->c); + +    n_runs++; +  } +  if (!silent) { +    printf("\033[F\033[J"); +  } +  printf("WOLFF: sweep %" PRIu64 +         ", dH/H = %.4f, dM/M = %.4f, dC/C = %.4f, dX/X = %.4f, cps: %.1f\n", +         n_runs, fabs(E->dx / E->x), M->dx / M->x, E->dc / E->c, M->dc / M->c, h->nv / clust->x); + +  double tau = 0; +  bool tau_failed = false; + +  if (record_autocorrelation) { +    double *Gammas = (double *)malloc((W + 1) * sizeof(double)); + +    Gammas[0] = 1 + rho(autocorr, 0); +    for (uint64_t i = 0; i < W; i++) { +      Gammas[1 + i] = rho(autocorr, 2 * i + 1) + rho(autocorr, 2 * i + 2); +    }  + +    uint64_t n; +    for (n = 0; n < W + 1; n++) { +      if (Gammas[n] <= 0) { +        break; +      } +    } + +    if (n == W + 1) { +      printf("WARNING: correlation function never hit the noise floor.\n"); +      tau_failed = true; +    } + +    if (n < 2) { +      printf("WARNING: correlation function only has one nonnegative term.\n"); +      tau_failed = true; +    } + +    double *conv_Gamma = get_convex_minorant(n, Gammas); + +    double ttau = - 0.5; + +    for (uint64_t i = 0; i < n + 1; i++) { +      ttau += conv_Gamma[i]; +    } +     +    free(Gammas); +    free(autocorr->OO); +    while (autocorr->Op != NULL) { +      stack_pop_d(&(autocorr->Op)); +    } +    free(autocorr); +     +    tau = ttau * ac_skip * clust->x / h->nv; +  } + +  if (tau_failed) { +    tau = 0; +  } + +  FILE *outfile = fopen("out.m", "a"); + +  fprintf(outfile, "<|D->%" PRID ",L->%" PRIL ",T->%.15f", D, L, T); +  fprintf(outfile, ",E->%.15f,\\[Delta]E->%.15f,C->%.15f,\\[Delta]C->%.15f,M->%.15f", E->x / h->nv, E->dx / h->nv, E->c / h->nv, E->dc / h->nv, M->x / h->nv); +  fprintf(outfile, ",\\[Delta]M->%.15f", M->dx / h->nv); +  fprintf(outfile, ",\\[Chi]->%.15f", M->c / h->nv); +  fprintf(outfile, ",\\[Delta]\\[Chi]->%.15f", M->dc / h->nv); +  fprintf(outfile, ",w->%.15f,\\[Delta]w->%.15f,wc->%.15f,\\[Delta]wc->%.15f,Subscript[n,\"clust\"]->%.15f,Subscript[\\[Delta]n,\"clust\"]->%.15f,Subscript[m,\"clust\"]->%.15f,Subscript[\\[Delta]m,\"clust\"]->%.15f,\\[Tau]->%.15f|>\n", dM->x, dM->dx, dM->c, dM->dc, clust->x / h->nv, clust->dx / h->nv, clust->c / h->nv, clust->dc / h->nv,tau); + +  fclose(outfile); + +  FILE *image = fopen("out.dat", "a"); +  for (v_t i = 0; i < h->nv; i++) { +    fprintf(image, "%" PRIh " ", s->spins[i]); +  } +  fprintf(image, "\n"); +  fclose(image); + +  free(E); +  free(clust); +  free(H); +  free(s->R); +  free(s->spins); +  graph_free(s->g); +  free(s); +  graph_free(h); +  gsl_rng_free(r); + +  return 0; +} + diff --git a/src/wolff_potts.c b/src/wolff_potts.c index 845eeca..eea9ed7 100644 --- a/src/wolff_potts.c +++ b/src/wolff_potts.c @@ -424,7 +424,7 @@ int main(int argc, char *argv[]) {    for (q_t i = 0; i < q; i++) {      fprintf(outfile, ",Subscript[t,%" PRIq "]->%.15f,Subscript[\\[Delta]t,%" PRIq "]->%.15f", i, lifetimes[i]->x, i, lifetimes[i]->dx);    } -  fprintf(outfile, ",Subscript[n,\"clust\"]->%.15f,Subscript[\\[Delta]n,\"clust\"]->%.15f,Subscript[m,\"clust\"]->%.15f,Subscript[\\[Delta]m,\"clust\"]->%.15f,\\[tau]->%.15f|>\n", clust->x / h->nv, clust->dx / h->nv, clust->c / h->nv, clust->dc / h->nv,tau); +  fprintf(outfile, ",Subscript[n,\"clust\"]->%.15f,Subscript[\\[Delta]n,\"clust\"]->%.15f,Subscript[m,\"clust\"]->%.15f,Subscript[\\[Delta]m,\"clust\"]->%.15f,\\[Tau]->%.15f|>\n", clust->x / h->nv, clust->dx / h->nv, clust->c / h->nv, clust->dc / h->nv,tau);    fclose(outfile);  | 
