diff options
Diffstat (limited to 'shear.hpp')
-rw-r--r-- | shear.hpp | 426 |
1 files changed, 426 insertions, 0 deletions
diff --git a/shear.hpp b/shear.hpp new file mode 100644 index 0000000..5e1f73f --- /dev/null +++ b/shear.hpp @@ -0,0 +1,426 @@ +#pragma once + +#include <assert.h> +#include <set> +#include <vector> +#include <queue> + +#include <eigen3/Eigen/Dense> + +#include "pcg-cpp/include/pcg_random.hpp" +#include "randutils/randutils.hpp" + +using Rng = randutils::random_generator<pcg32>; + +template <int D> using Vector = Eigen::Matrix<double, D, 1>; +template <int D> using Matrix = Eigen::Matrix<double, D, D>; + +template <int D> class Position : public Vector<D> { +private: + + void recenter() { + for (unsigned i = 0; i < D; i++) { + double& vi = Vector<D>::operator()(i); + signed n = floor(vi); + vi -= n; + if (i == D - 2) { + Vector<D>::operator()(D - 1) += γ * n; + } + } + } + +public: + const double& γ; + Position(const double& γ) : γ(γ) {} + + Position(const Position<D>& p) : Vector<D>(p), γ(p.γ) {} + Position(const Vector<D>& v, const double& γ) : Vector<D>(v), γ(γ) {} + + Position<D>& operator=(const Position<D>& p) { + Vector<D>::operator=(p); + return *this; + } + + Position<D>& operator+=(const Vector<D>& u) { + Vector<D>::operator+=(u); + recenter(); + return *this; + } + + friend Position<D> operator+(Position<D> v, const Vector<D>& u) { + v += u; + return v; + } + + Position<D>& operator-=(const Vector<D>& u) { + Vector<D>::operator-=(u); + recenter(); + return *this; + } + + friend Vector<D> operator-(const Position<D>& v, const Position<D>& u) { + std::vector<Vector<2>> ds; + ds.reserve(9); + + unsigned iCur = 0; + unsigned iMin; + double dMin = std::numeric_limits<double>::infinity(); + + Position<2> v2(v.γ); + v2(0) = v(D - 2); + v2(1) = v(D - 1); + + for (signed i : {-1, 0, 1}) { + for (signed j : {-1, 0, 1}) { + Vector<2> u2; + u2(0) = u(0) + i; + u2(1) = u(1) + j + v.γ * i; + + ds.push_back(v2 - u2); + + double d = ds.back().squaredNorm(); + + if (d < dMin) { + iMin = iCur; + dMin = d; + } + + iCur++; + } + } + + Vector<D> w = v - (Vector<D>)u; + + for (unsigned i = 0; i < D - 2; i++) { + double& wi = w(i); + if (wi > 0.5) { + wi = 1 - wi; + } + } + + w(D - 2) = ds[iMin](0); + w(D - 1) = ds[iMin](1); + + return (Vector<D>)w; + } +}; + +template <int D> class Euclidean { +public: + Vector<D> t; + Matrix<D> r; + + Euclidean() { + t.setZero(); + r.setIdentity(); + } + + Euclidean(const Vector<D>& t0, const Matrix<D>& r0) : t(t0), r(r0) {} + + Euclidean inverse() const { return Euclidean(-r.transpose() * t, r.transpose()); } + + Vector<D> act(const Vector<D>& x) const { return r * x + t; } + Position<D> act(const Position<D>& x) const { return Position<D>(r * x, x.γ) + t; } + Euclidean<D> act(const Euclidean<D>& R) const { return {act(R.t), r * R.r}; } +}; + +template <typename T, int D> concept Particle = requires(T v, const Position<D>& x, double r) { + { v.x } -> std::same_as<Position<D>>; + { v.r } -> std::same_as<double>; + { v.m } -> std::same_as<bool>; + { v.U(x, r) } -> std::same_as<double>; +}; + +template <int D, Particle<D> T> class NeighborLists { +private: + unsigned n; + const double& γ; + std::vector<std::set<T*>> lists; + + unsigned mod(signed a, unsigned b) const { + if (a >= 0) { + return a % b; + } else { + return (a + b * ((b - a) / b)) % b; + } + } + + int iPow(int x, unsigned p) const { + if (p == 0) + return 1; + if (p == 1) + return x; + + int tmp = iPow(x, p / 2); + if (p % 2 == 0) { + return tmp * tmp; + } else { + return x * tmp * tmp; + } + } + + unsigned index(Position<D> x) const { + unsigned ind = 0; + for (unsigned i = 0; i < D; i++) { + ind += pow(n, i) * std::floor(n * x(i)); + } + assert(ind < lists.size()); + return ind; + } + + std::pair<typename std::set<T*>::iterator, bool> insert(T& p, unsigned ind) { + return lists[ind].insert(&p); + } + + size_t erase(T& p, unsigned ind) { + return lists[ind].erase(&p); + } + + void neighborsOfHelper(signed i0, unsigned d, std::set<T*>& ns, signed overEdge = 0) const { + if (d == 0) { + const std::set<T*>& a = lists[i0]; + ns.insert(a.begin(), a.end()); + } else { + for (signed j : {-1, 0, 1}) { + signed i1 = iPow(n, d) * (i0 / iPow(n, d)) + mod(i0 + (signed)round(overEdge * n * γ) + j * iPow(n, d-1), iPow(n, d)); + signed newEdge = 0; + if (d == 2) { + if (i0 - i1 == n) + newEdge = -1; + if (i1 - i0 == n) { + newEdge = 1; + } + } + neighborsOfHelper(i1, d - 1, ns, newEdge); + } + } + } + +public: + NeighborLists(const double& γ, unsigned m) : n(m), γ(γ), lists(pow(n, D)) {} + NeighborLists(const double& γ, double l) : NeighborLists(γ, (unsigned)floor(1 / l)) {} + + std::pair<typename std::set<T*>::iterator, bool> insert(T& p, const Position<D>& x) { + return insert(p, index(x)); + } + + std::pair<typename std::set<T*>::iterator, bool> insert(T& p) { + return insert(p, p.x); + } + + size_t erase(T& p, const Position<D>& x) { + return erase(p, index(x)); + } + + size_t erase(T& p) { + return erase(p, p.x); + } + + void move(T& p, const Position<D>& xNew) { + unsigned iOld = index(p.x); + unsigned iNew = index(xNew); + if (iNew != iOld) { + erase(p, iOld); + insert(p, iNew); + } + } + + std::set<T*> neighborsOf(const Position<D>& x) const { + std::set<T*> neighbors; + neighborsOfHelper(index(x), D, neighbors); + return neighbors; + } +}; + +template <int D, Particle<D> T> class Model { +private: + bool metropolisAccept(double β, double ΔE, Rng& r) const { + return ΔE < 0 || exp(-β * ΔE) > r.uniform(0.0, 1.0); + } + + bool swapAccept(const T& p1, const T& p2) const { + double rat = p1.r / p2.r; + return (rat < 1.2 && rat > 0.83); + } + +public: + double γ; + NeighborLists<D, T> nl; + std::vector<T> particles; + Euclidean<D> orientation; + + Model(unsigned N, double l, std::function<double(Rng& r)> g, Rng& r) : γ(0), nl(γ, l) { + particles.reserve(N); + for (unsigned i = 0; i < N; i++) { + Position<D> x(γ); + for (double& xi : x) { + xi = r.uniform(0.0, 1.0); + } + particles.push_back(T(x, g(r))); + nl.insert(particles.back()); + } + }; + + void shear(double Δγ) { + γ += Δγ; + } + + void move(T& p, const Position<D>& x) { + nl.move(p, x); + p.x = x; + } + + bool move(double β, T& p, const Vector<D>& Δx, Rng& r) { + Position<D> xNew = p.x + Δx; + double ΔE = 0; + + for (const T* neighbor : nl.neighborsOf(p.x)) { + if (neighbor != &p) { + ΔE -= neighbor->U(p.x, p.r); + } + } + + for (const T* neighbor : nl.neighborsOf(xNew)) { + if (neighbor != &p) { + ΔE += neighbor->U(xNew, p.r); + } + } + + if (metropolisAccept(β, ΔE, r)) { + move(p, xNew); + return true; + } else { + return false; + } + } + + bool swap(double β, T& p1, T& p2, Rng& r) { + if (!swapAccept(p1, p2)) + return false; + + double ΔE = 0; + + for (const T* neighbor : nl.neighborsOf(p1.x)) { + if (neighbor != &p1 && neighbor != &p2) { + ΔE += neighbor->U(p1.x, p2.r) - neighbor->U(p1.x, p1.r); + } + } + + for (const T* neighbor : nl.neighborsOf(p2.x)) { + if (neighbor != &p1 && neighbor != &p2) { + ΔE += neighbor->U(p2.x, p1.r) - neighbor->U(p2.x, p2.r); + } + } + + if (metropolisAccept(β, ΔE, r)) { + std::swap(p1.r, p2.r); + return true; + } else { + return false; + } + } + + bool randomSwap(double β, Rng& r) { + return swap(β, r.pick(particles), r.pick(particles), r); + } + + bool randomMove(double β, double δ, Rng& r) { + Vector<D> Δx; + for (double& Δxi : Δx) { + Δxi = r.variate<double, std::normal_distribution>(0, δ); + } + return move(β, r.pick(particles), Δx, r); + } + + unsigned clusterFlip(double β, const Euclidean<D>& R, T& p0, Rng& r) { + unsigned n = 0; + std::queue<T*> q; + q.push(&p0); + + while (!q.empty()) { + T* p = q.front(); + q.pop(); + + if (!p->m) { + p->m = true; + Position<D> xNew = R.act(p->x); + + for (T* neighbor : nl.neighborsOf(xNew)) { + if (!neighbor->m) { + double ΔE = neighbor->U(xNew, p->r) - neighbor->U(p->x, p->r); + if (1 - exp(-β * ΔE) > r.uniform(0.0, 1.0)) { + q.push(neighbor); + } + } + } + + move(*p, xNew); + n++; + } + } + + for (T& p : particles) { + p.m = false; + } + + if (n > particles.size() / 2) { + orientation = R.act(orientation); + } + + return n; + } + + unsigned clusterSwap(double β, T& s1, T& s2, Rng& r) { + if (!swapAccept(s1, s2)) + return 0; + + Vector<2> t1 = s1.x; + Vector<2> t2 = s2.x; + Vector<2> t = (t1 + t2) / 2; + + Matrix<2> mat; + + mat(0, 0) = -1; + mat(1, 1) = -1; + mat(0, 1) = 0; + mat(1, 0) = 0; + + Euclidean<2> g(t - mat * t, mat); + + return clusterFlip(β, g, s1, r); + } + + unsigned randomClusterSwap(double β, Rng& r) { + return clusterSwap(β, r.pick(particles), r.pick(particles), r); + } +}; + +template <int D> class Sphere { +public: + Position<D> x; + bool m; + double r; + + Sphere() : m(false) {}; + + Sphere(const Position<D>& x, double r) : x(x), m(false), r(r) {}; + + double regularizedDistanceSquared(const Position<D>& y, double ry) const { + return (x - y).squaredNorm() / pow(r + ry, 2); + } + + bool intersectsBoundary() const { + for (double xi : x) { + if (xi < r || 1 - xi < r) { + return true; + } + } + return false; + } +}; + +std::function<double(Rng&)> gContinuousPolydisperse(double Rmax) { + return [Rmax] (Rng& r) -> double { + return pow(r.uniform(pow(2.219, -2), 1.0), -0.5) * Rmax / 2.219; + }; +} |