diff options
Diffstat (limited to 'aps_mm_2018.html')
-rw-r--r-- | aps_mm_2018.html | 33 |
1 files changed, 25 insertions, 8 deletions
diff --git a/aps_mm_2018.html b/aps_mm_2018.html index a3f6d91..3be9597 100644 --- a/aps_mm_2018.html +++ b/aps_mm_2018.html @@ -39,14 +39,14 @@ class: center, middle Described by Hamiltonians whose degrees of freedom are spins `\(s\in X\)` -$$\mathcal H=-\sum_{\langle ij\rangle}Z(s_i,s_j)-\sum_iH(s_i)$$ +$$\mathcal H=-\sum_{\langle ij\rangle}Z(s_i,s_j)-\sum_iB(s_i)$$ for \\(Z\\) invariant under the action of rotations \\(r\in R\\), or \\(Z(r\cdot s,r\cdot t)=Z(s,t)\\). <table style="border-collapse: collapse; width: 100%; margin: auto;"> <thead style="border-bottom: 2px solid #000;"> <tr> - <td class="first"></td><td><i>X</i><td><i>R</i></td><td>Group Action</td><td>\(Z(s,t)\)</td><td>\(H(s)\)</td> + <td class="first"></td><td><i>X</i><td><i>R</i></td><td>Group Action</td><td>\(Z(s,t)\)</td><td>\(B(s)\)</td> </tr> </thead> <tbody> @@ -54,13 +54,13 @@ for \\(Z\\) invariant under the action of rotations \\(r\in R\\), or \\(Z(r\cdot <td class="first">Ising model</td><td>\(\{-1,1\}\)</td><td>ℤ/2ℤ</td><td>\(0\cdot s\mapsto s\)<br>\(1\cdot s\mapsto-s\)</td><td>\(s\times t\)</td><td>\(Hs\)</td> </tr> <tr> - <td class="first">Order-\(n\) model</td><td>\(S^n\)</td><td>\(\mathop{\mathrm{O}}(n)\)</td><td>\(O\cdot s\mapsto Os\)</td><td>\(s^{\mathrm T}t\)</td><td>\(H\cdot s\)</td> + <td class="first">Order-\(n\) model</td><td>\(S^n\)</td><td>\(\mathop{\mathrm{O}}(n)\)</td><td>\(O\cdot s\mapsto Os\)</td><td>\(s^{\mathrm T}t\)</td><td>\(H^{\mathrm T}s\)</td> </tr> <tr> - <td class="first">Potts model</td><td>ℤ/<i>q</i>ℤ</td><td>ℤ/<i>q</i>ℤ</td><td>\(m\cdot s\mapsto{(s+m)}\pmod q\)</td><td>\(\delta(s,t)\)</td><td>\(\sum_mH_m\delta(m,s)\)</td> + <td class="first">Potts model</td><td>{0,…,<i>q</i> – 1}</td><td><i>D<sub>q</sub></i></td><td>Rotation & reflection<br> of polygon vertices</td><td>\(\delta(s,t)\)</td><td>\(\sum_mH_m\delta(m,s)\)</td> </tr> <tr> - <td class="first">Clock model</td><td>ℤ/<i>q</i>ℤ</td><td>ℤ/<i>q</i>ℤ</td><td>\(m\cdot s\mapsto{(s+m)}\pmod q\)</td><td>\(\cos(2\pi\frac{s-t}q)\)</td><td>\(\sum_mH_m\cos(2\pi\frac{s-m}q)\)</td> + <td class="first">Clock model</td><td>{0,…,<i>q</i> – 1}</td><td><i>D<sub>q</sub></i></td><td>Rotation & reflection<br> of polygon vertices</td><td>\(\cos(2\pi\frac{s-t}q)\)</td><td>\(\sum_mH_m\cos(2\pi\frac{s-m}q)\)</td> </tr> </tbody> </table> @@ -188,9 +188,9 @@ class: split-40 Consider the clock Potts model with field `\[ H(m)=0.01\times\begin{cases} -0 & \text{if $m=0$ (black)}\\ -\cos(2\pi/6) & \text{if $m=1$ (grey}\\ --\cos(2\pi/6) & \text{if $m=2$ (white)} +0 & \text{if $m=0$ (blue)}\\ +\cos(2\pi/6) & \text{if $m=1$ (green}\\ +-\cos(2\pi/6) & \text{if $m=2$ (yellow)} \end{cases} \]` @@ -204,6 +204,23 @@ No rotation `\(r\in\mathbb Z/3\mathbb Z\)` that takes field to the identity! --- +class: split-40 + +.column[ + +# Correlation time comparison + +The correlation time of this algorithm beats metropolis and hybrid Wolff/metropolis in whole phase space! + +Pictured: 2D Ising (`\(128\times128\)`) correlation time as a function of field for three algorithms in high-temperature phase (top), at `\(T_c\)` (middle), and in the low temperature phase (bottom). +] + +.column[ +<img src="time_compare.png" style="float: right; width: 32%" /> +] + +--- + # Correlation time scaling Correlation time scales consistently in the whole phase space! |