diff options
| -rw-r--r-- | .gitignore | 2 | ||||
| -rw-r--r-- | figs/timescales.png | bin | 0 -> 122732 bytes | |||
| -rw-r--r-- | statphys27.tex | 52 | 
3 files changed, 42 insertions, 12 deletions
| @@ -5,4 +5,6 @@  *.snm  *.synctex.gz  *.toc +*.fdb_latexmk +*.fls  statphys27.pdf diff --git a/figs/timescales.png b/figs/timescales.pngBinary files differ new file mode 100644 index 0000000..c8af389 --- /dev/null +++ b/figs/timescales.png diff --git a/statphys27.tex b/statphys27.tex index 6230887..4c2387b 100644 --- a/statphys27.tex +++ b/statphys27.tex @@ -1,7 +1,6 @@  \documentclass[fleqn,aspectratio=169]{beamer} -  \setbeamerfont{frametitle}{family=\bf}  \setbeamerfont{normal text}{family=\rm}  \setbeamertemplate{navigation symbols}{} @@ -24,16 +23,20 @@  \begin{frame}    \frametitle{Monte Carlo is too slow} +\end{frame} + +\begin{frame} +  \frametitle{Monte Carlo is too slow} -  Critical phenomena are often studied on lattice models using Monte Carlo, but near critical points it suffers from \emph{critical slowing down}, power-law divergence of timescales. +  Monte Carlo useful for lattice models, but near critical points suffers from \emph{critical slowing down}, power-law divergence of timescales.    \vspace{1em} -  Slowing down has been alleviated in many models using cluster algorithms and their derivatives, but many applications lack a clean solution. +  Often alleviated with cluster algorithms, but many applications lack a clean solution.    \vspace{1em} -  We introduce a generic, natural, and efficient way to extend models with existing cluster algorithms to operate in arbitrary external fields. +  We introduce a generic, natural, efficient way to extend models with existing cluster algorithms to operate in arbitrary external fields.    \vspace{1em} @@ -58,14 +61,18 @@    \framesubtitle{The Fortuin--Kasteleyn representation}    The Ising model -  \[ +  $      \mathcal H=-\sum_{\langle ij\rangle}J_{ij}s_is_j -  \] -  for $s_i=\pm1$ on the lattice sites has a representation +  $ +  for $s_i=\pm1$ can be written    \[      Z=\tr_se^{-\beta\mathcal H}\propto\tr_f\tr_s\prod_{\langle ij\rangle}\big[\delta_{f_{ij},0}(1-p_{ij})+\delta_{f_{ij},1}\delta_{s_i,s_j}p_{ij}\big]    \] -  for $f_{ij}\in\{0,1\}$ on the lattice bonds and $p_{ij}=1-e^{-2\beta J_{ij}}$. This gives joint probability distributions +  for $f_{ij}\in\{0,1\}$ on the bonds and $p_{ij}=1-e^{-2\beta J_{ij}}$. + +  \vspace{1em} + +  This gives conditional probabilities     \begin{align*}      P(f_{ij}=1\mid s_i,s_j)=\begin{cases}p_{ij} & s_i=s_j \\ 0 & s_i\neq s_j\end{cases}      && @@ -271,6 +278,7 @@        \end{overprint}      \end{column}      \begin{column}{0.45\textwidth} +      Example: 5-spin clock model with a field favoring the two states to the bottom right.        \begin{enumerate}          \item\alert<2>{Take a spin configuration.}          \item\alert<3>{Draw a self-inverse $r\in G$.} @@ -284,17 +292,37 @@  \end{frame}  \begin{frame} -  \frametitle{Summary} +  \frametitle{Other lattice models} +  \framesubtitle{The method is good} + +  Results generalize to arbitrary bond and site dependence. + +  \vspace{0.5em} + +  Models already efficient at zero field are more efficient with a field. + +  \vspace{0.5em} + +  Extension appears natural in the scaling sense. + +  \centering + +  \includegraphics[width=0.85\textwidth]{figs/timescales} +   +\end{frame} + +\begin{frame} +  \frametitle{Summary \& Extensions}    Introduced a generic method for running cluster Monte Carlo on lattice systems with any external field. - +s-    \vspace{1em} -  Results generalize to arbitrary bond, site dependence. +  Already used to efficiently show relevance/irrelevance of various harmonic perturbations to the XY model.    \vspace{1em} -  Dynamic scaling works as expected with Wolff or Swendsen--Wang exponents: models efficient at zero field are more efficient with a field, extension appears natural in the scaling sense. +  Presently being used to model novel lattice models with coupled spins on sites and bonds which act as effective fields for each other.    \vspace{1em} | 
