diff options
author | Jaron Kent-Dobias <jaron@kent-dobias.com> | 2025-02-11 15:26:41 -0300 |
---|---|---|
committer | Jaron Kent-Dobias <jaron@kent-dobias.com> | 2025-02-11 15:26:41 -0300 |
commit | 8331cf653f6ac80ebb9c96c9c844803ce0278d43 (patch) | |
tree | 7a92c9e0cce3eec16c2c05008921a9cc64c5aa5b /ictp-saifr_colloquium.tex | |
parent | 01a22225f2d207f04df595290e0e5c742a29ccee (diff) | |
download | ictp-saifr_colloquium-8331cf653f6ac80ebb9c96c9c844803ce0278d43.tar.gz ictp-saifr_colloquium-8331cf653f6ac80ebb9c96c9c844803ce0278d43.tar.bz2 ictp-saifr_colloquium-8331cf653f6ac80ebb9c96c9c844803ce0278d43.zip |
Split up code, worked on presentation slides.
Diffstat (limited to 'ictp-saifr_colloquium.tex')
-rw-r--r-- | ictp-saifr_colloquium.tex | 41 |
1 files changed, 38 insertions, 3 deletions
diff --git a/ictp-saifr_colloquium.tex b/ictp-saifr_colloquium.tex index dc152f8..1fa3a0b 100644 --- a/ictp-saifr_colloquium.tex +++ b/ictp-saifr_colloquium.tex @@ -377,11 +377,11 @@ \medskip - Overparameterized fits are not unique: $M$ constraints + Overparameterized fits are not unique: $\chi^2=0$ gives $M$ constraints \[ 0=y_i-\hat f(x_i\mid\pmb a)\qquad\text{for all $1\leq i\leq M$} \] - plus $N$ unknowns $\pmb a=[a_1,\ldots, a_N]$ gives a manifold of $N-M$ dimensions + with $N$ unknowns $\pmb a=[a_1,\ldots, a_N]$ gives a manifold of $N-M$ dimensions \medskip @@ -393,12 +393,47 @@ \bigskip - \includegraphics[width=\columnwidth]{figs/fit_overparamfit_poly.pdf} + \begin{overprint} + \onslide<1>\includegraphics[width=\columnwidth]{figs/fit_overparamfit_poly.pdf} + \onslide<2>\includegraphics[width=\columnwidth]{figs/fit_overparamfit_poly_1.pdf} + \onslide<3>\includegraphics[width=\columnwidth]{figs/fit_overparamfit_poly_2.pdf} + \onslide<4>\includegraphics[width=\columnwidth]{figs/fit_overparamfit_poly_3.pdf} + \onslide<5>\includegraphics[width=\columnwidth]{figs/fit_overparamfit_poly_6.pdf} + \onslide<6>\includegraphics[width=\columnwidth]{figs/fit_overparamfit_poly_7.pdf} + \onslide<7>\includegraphics[width=\columnwidth]{figs/fit_overparamfit_poly_8.pdf} + \onslide<8>\includegraphics[width=\columnwidth]{figs/fit_overparamfit_poly_9.pdf} + \end{overprint} \end{column} \end{columns} \end{frame} \begin{frame} + \frametitle{Overparamaterized curve fitting and algorithms} + \begin{columns} + \begin{column}{0.5\textwidth} + Overparameterized fits found with gradient descent algorithm: take small + steps in the direction $\nabla\chi^2$ until $\|\nabla\chi^2\|<\epsilon$ + + \medskip + + Result of descent depends on initial condition: what $\pmb a$ to start with? + + \medskip + + \textbf{Unexpected fact:} gradient descent with small initialization equivalent to unique optimum in \emph{regularized} problem: + \[ + \chi^2_\text{eff}(\pmb a\mid\text{data})=\chi^2(\pmb a\mid\text{data})+\lambda\|\pmb a\|^2 + \] + \end{column} + \begin{column}{0.5\textwidth} + \end{column} + \end{columns} +\end{frame} + +\begin{frame} +\end{frame} + +\begin{frame} \frametitle{The Euler characteristic \boldmath{$\chi$}} \begin{columns} \begin{column}{0.5\textwidth} |