summaryrefslogtreecommitdiff
path: root/ictp-saifr_colloquium.tex
diff options
context:
space:
mode:
authorJaron Kent-Dobias <jaron@kent-dobias.com>2025-02-11 15:26:41 -0300
committerJaron Kent-Dobias <jaron@kent-dobias.com>2025-02-11 15:26:41 -0300
commit8331cf653f6ac80ebb9c96c9c844803ce0278d43 (patch)
tree7a92c9e0cce3eec16c2c05008921a9cc64c5aa5b /ictp-saifr_colloquium.tex
parent01a22225f2d207f04df595290e0e5c742a29ccee (diff)
downloadictp-saifr_colloquium-8331cf653f6ac80ebb9c96c9c844803ce0278d43.tar.gz
ictp-saifr_colloquium-8331cf653f6ac80ebb9c96c9c844803ce0278d43.tar.bz2
ictp-saifr_colloquium-8331cf653f6ac80ebb9c96c9c844803ce0278d43.zip
Split up code, worked on presentation slides.
Diffstat (limited to 'ictp-saifr_colloquium.tex')
-rw-r--r--ictp-saifr_colloquium.tex41
1 files changed, 38 insertions, 3 deletions
diff --git a/ictp-saifr_colloquium.tex b/ictp-saifr_colloquium.tex
index dc152f8..1fa3a0b 100644
--- a/ictp-saifr_colloquium.tex
+++ b/ictp-saifr_colloquium.tex
@@ -377,11 +377,11 @@
\medskip
- Overparameterized fits are not unique: $M$ constraints
+ Overparameterized fits are not unique: $\chi^2=0$ gives $M$ constraints
\[
0=y_i-\hat f(x_i\mid\pmb a)\qquad\text{for all $1\leq i\leq M$}
\]
- plus $N$ unknowns $\pmb a=[a_1,\ldots, a_N]$ gives a manifold of $N-M$ dimensions
+ with $N$ unknowns $\pmb a=[a_1,\ldots, a_N]$ gives a manifold of $N-M$ dimensions
\medskip
@@ -393,12 +393,47 @@
\bigskip
- \includegraphics[width=\columnwidth]{figs/fit_overparamfit_poly.pdf}
+ \begin{overprint}
+ \onslide<1>\includegraphics[width=\columnwidth]{figs/fit_overparamfit_poly.pdf}
+ \onslide<2>\includegraphics[width=\columnwidth]{figs/fit_overparamfit_poly_1.pdf}
+ \onslide<3>\includegraphics[width=\columnwidth]{figs/fit_overparamfit_poly_2.pdf}
+ \onslide<4>\includegraphics[width=\columnwidth]{figs/fit_overparamfit_poly_3.pdf}
+ \onslide<5>\includegraphics[width=\columnwidth]{figs/fit_overparamfit_poly_6.pdf}
+ \onslide<6>\includegraphics[width=\columnwidth]{figs/fit_overparamfit_poly_7.pdf}
+ \onslide<7>\includegraphics[width=\columnwidth]{figs/fit_overparamfit_poly_8.pdf}
+ \onslide<8>\includegraphics[width=\columnwidth]{figs/fit_overparamfit_poly_9.pdf}
+ \end{overprint}
\end{column}
\end{columns}
\end{frame}
\begin{frame}
+ \frametitle{Overparamaterized curve fitting and algorithms}
+ \begin{columns}
+ \begin{column}{0.5\textwidth}
+ Overparameterized fits found with gradient descent algorithm: take small
+ steps in the direction $\nabla\chi^2$ until $\|\nabla\chi^2\|<\epsilon$
+
+ \medskip
+
+ Result of descent depends on initial condition: what $\pmb a$ to start with?
+
+ \medskip
+
+ \textbf{Unexpected fact:} gradient descent with small initialization equivalent to unique optimum in \emph{regularized} problem:
+ \[
+ \chi^2_\text{eff}(\pmb a\mid\text{data})=\chi^2(\pmb a\mid\text{data})+\lambda\|\pmb a\|^2
+ \]
+ \end{column}
+ \begin{column}{0.5\textwidth}
+ \end{column}
+ \end{columns}
+\end{frame}
+
+\begin{frame}
+\end{frame}
+
+\begin{frame}
\frametitle{The Euler characteristic \boldmath{$\chi$}}
\begin{columns}
\begin{column}{0.5\textwidth}