summaryrefslogtreecommitdiff
path: root/fits.nb
blob: a87a6bfa57477f7aa66bd84507a19a77234649db (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
5290
5291
5292
5293
5294
5295
5296
5297
5298
5299
5300
5301
5302
5303
5304
5305
5306
5307
5308
5309
5310
5311
5312
5313
5314
5315
5316
5317
5318
5319
5320
5321
5322
5323
5324
5325
5326
5327
5328
5329
5330
5331
5332
5333
5334
5335
5336
5337
5338
5339
5340
5341
5342
5343
5344
5345
5346
5347
5348
5349
5350
5351
5352
5353
5354
5355
5356
5357
5358
5359
5360
5361
5362
5363
5364
5365
5366
5367
5368
5369
5370
5371
5372
5373
5374
5375
5376
5377
5378
5379
5380
5381
5382
5383
5384
5385
5386
5387
5388
5389
5390
5391
5392
5393
5394
5395
5396
5397
5398
5399
5400
5401
5402
5403
5404
5405
5406
5407
5408
5409
5410
5411
5412
5413
5414
5415
5416
5417
5418
5419
5420
5421
5422
5423
5424
5425
5426
5427
5428
5429
5430
5431
5432
5433
5434
5435
5436
5437
5438
5439
5440
5441
5442
5443
5444
5445
5446
5447
5448
5449
5450
5451
5452
5453
5454
5455
5456
5457
5458
5459
5460
5461
5462
5463
5464
5465
5466
5467
5468
5469
5470
5471
5472
5473
5474
5475
5476
5477
5478
5479
5480
5481
5482
5483
5484
5485
5486
5487
5488
5489
5490
5491
5492
5493
5494
5495
5496
5497
5498
5499
5500
5501
5502
5503
5504
5505
5506
5507
5508
5509
5510
5511
5512
5513
5514
5515
5516
5517
5518
5519
5520
5521
5522
5523
5524
5525
5526
5527
5528
5529
5530
5531
5532
5533
5534
5535
5536
5537
5538
5539
5540
5541
5542
5543
5544
5545
5546
5547
5548
5549
5550
5551
5552
5553
5554
5555
5556
5557
5558
5559
5560
5561
5562
5563
5564
5565
5566
5567
5568
5569
5570
5571
5572
5573
5574
5575
5576
5577
5578
5579
5580
5581
5582
5583
5584
5585
5586
5587
5588
5589
5590
5591
5592
5593
5594
5595
5596
5597
5598
5599
5600
5601
5602
5603
5604
5605
5606
5607
5608
5609
5610
5611
5612
5613
5614
5615
5616
5617
5618
5619
5620
5621
5622
5623
5624
5625
5626
5627
5628
5629
5630
5631
5632
5633
5634
5635
5636
5637
5638
5639
5640
5641
5642
5643
5644
5645
5646
5647
5648
5649
5650
5651
5652
5653
5654
5655
5656
5657
5658
5659
5660
5661
5662
5663
5664
5665
5666
5667
5668
5669
5670
5671
5672
5673
5674
5675
5676
5677
5678
5679
5680
5681
5682
5683
5684
5685
5686
5687
5688
5689
5690
5691
5692
5693
5694
5695
5696
5697
5698
5699
5700
5701
5702
5703
5704
5705
5706
5707
5708
5709
5710
5711
5712
5713
5714
5715
5716
5717
5718
5719
5720
5721
5722
5723
5724
5725
5726
5727
5728
5729
5730
5731
5732
5733
5734
5735
5736
5737
5738
5739
5740
5741
5742
5743
5744
5745
5746
5747
5748
5749
5750
5751
5752
5753
5754
5755
5756
5757
5758
5759
5760
5761
5762
5763
5764
5765
5766
5767
5768
5769
5770
5771
5772
5773
5774
5775
5776
5777
5778
5779
5780
5781
5782
5783
5784
5785
5786
5787
5788
5789
5790
5791
5792
5793
5794
5795
5796
5797
5798
5799
5800
5801
5802
5803
5804
5805
5806
5807
5808
5809
5810
5811
5812
5813
5814
5815
5816
5817
5818
5819
5820
5821
5822
5823
5824
5825
5826
5827
5828
5829
5830
5831
5832
5833
5834
5835
5836
5837
5838
5839
5840
5841
5842
5843
5844
5845
5846
5847
5848
5849
5850
5851
5852
5853
5854
5855
5856
5857
5858
5859
5860
5861
5862
5863
5864
5865
5866
5867
5868
5869
5870
5871
5872
5873
5874
5875
5876
5877
5878
5879
5880
5881
5882
5883
5884
5885
5886
5887
5888
5889
5890
5891
5892
5893
5894
5895
5896
5897
5898
5899
5900
5901
5902
5903
5904
5905
5906
5907
5908
5909
5910
5911
5912
5913
5914
5915
5916
5917
5918
5919
5920
5921
5922
5923
5924
5925
5926
5927
5928
5929
5930
5931
5932
5933
5934
5935
5936
5937
5938
5939
5940
5941
5942
5943
5944
5945
5946
5947
5948
5949
5950
5951
5952
5953
5954
5955
5956
5957
5958
5959
5960
5961
5962
5963
5964
5965
5966
5967
5968
5969
5970
5971
5972
5973
5974
5975
5976
5977
5978
5979
5980
5981
5982
5983
5984
5985
5986
5987
5988
5989
5990
5991
5992
5993
5994
5995
5996
5997
5998
5999
6000
6001
6002
6003
6004
6005
6006
6007
6008
6009
6010
6011
6012
6013
6014
6015
6016
6017
6018
6019
6020
6021
6022
6023
6024
6025
6026
6027
6028
6029
6030
6031
6032
6033
6034
6035
6036
6037
6038
6039
6040
6041
6042
6043
6044
6045
6046
6047
6048
6049
6050
6051
6052
6053
6054
6055
6056
6057
6058
6059
6060
6061
6062
6063
6064
6065
6066
6067
6068
6069
6070
6071
6072
6073
6074
6075
6076
6077
6078
6079
6080
6081
6082
6083
6084
6085
6086
6087
6088
6089
6090
6091
6092
6093
6094
6095
6096
6097
6098
6099
6100
6101
6102
6103
6104
6105
6106
6107
6108
6109
6110
6111
6112
6113
6114
6115
6116
6117
6118
6119
6120
6121
6122
6123
6124
6125
6126
6127
6128
6129
6130
6131
6132
6133
6134
6135
6136
6137
6138
6139
6140
6141
6142
6143
6144
6145
6146
6147
6148
6149
6150
6151
6152
6153
6154
6155
6156
6157
6158
6159
6160
6161
6162
6163
6164
6165
6166
6167
6168
6169
6170
6171
6172
6173
6174
6175
6176
6177
6178
6179
6180
6181
6182
6183
6184
6185
6186
6187
6188
6189
6190
6191
6192
6193
6194
6195
6196
6197
6198
6199
6200
6201
6202
6203
6204
6205
6206
6207
6208
6209
6210
6211
6212
6213
6214
6215
6216
6217
6218
6219
6220
6221
6222
6223
6224
6225
6226
6227
6228
6229
6230
6231
6232
6233
6234
6235
6236
6237
6238
6239
6240
6241
6242
6243
6244
6245
6246
6247
6248
6249
6250
6251
6252
6253
6254
6255
6256
6257
6258
6259
6260
6261
6262
6263
6264
6265
6266
6267
6268
6269
6270
6271
6272
6273
6274
6275
6276
6277
6278
6279
6280
6281
6282
6283
6284
6285
6286
6287
6288
6289
6290
6291
6292
6293
6294
6295
6296
6297
6298
6299
6300
6301
6302
6303
6304
6305
6306
6307
6308
6309
6310
6311
6312
6313
6314
6315
6316
6317
6318
6319
6320
6321
6322
6323
6324
6325
6326
6327
6328
6329
6330
6331
6332
6333
6334
6335
6336
6337
6338
6339
6340
6341
6342
6343
6344
6345
6346
6347
6348
6349
6350
6351
6352
6353
6354
6355
6356
6357
6358
6359
6360
6361
6362
6363
6364
6365
6366
6367
6368
6369
6370
6371
6372
6373
6374
6375
6376
6377
6378
6379
6380
6381
6382
6383
6384
6385
6386
6387
6388
6389
6390
6391
6392
6393
6394
6395
6396
6397
6398
6399
6400
6401
6402
6403
6404
6405
6406
6407
6408
6409
6410
6411
6412
6413
6414
6415
6416
6417
6418
6419
6420
6421
6422
6423
6424
6425
6426
6427
6428
6429
6430
6431
6432
6433
6434
6435
6436
6437
6438
6439
6440
6441
6442
6443
6444
6445
6446
6447
6448
6449
6450
6451
6452
6453
6454
6455
6456
6457
6458
6459
6460
6461
6462
6463
6464
6465
6466
6467
6468
6469
6470
6471
6472
6473
6474
6475
6476
6477
6478
6479
6480
6481
6482
6483
6484
6485
6486
6487
6488
6489
6490
6491
6492
6493
6494
6495
6496
6497
6498
6499
6500
6501
6502
6503
6504
6505
6506
6507
6508
6509
6510
6511
6512
6513
6514
6515
6516
6517
6518
6519
6520
6521
6522
6523
6524
6525
6526
6527
6528
6529
6530
6531
6532
6533
6534
6535
6536
6537
6538
6539
6540
6541
6542
6543
6544
6545
6546
6547
6548
6549
6550
6551
6552
6553
6554
6555
6556
6557
6558
6559
6560
6561
6562
6563
6564
6565
6566
6567
6568
6569
6570
6571
6572
6573
6574
6575
6576
6577
6578
6579
6580
6581
6582
6583
6584
6585
6586
6587
6588
6589
6590
6591
6592
6593
6594
6595
6596
6597
6598
6599
6600
6601
6602
6603
6604
6605
6606
6607
6608
6609
6610
6611
6612
6613
6614
6615
6616
6617
6618
6619
6620
6621
6622
6623
6624
6625
6626
6627
6628
6629
6630
6631
6632
6633
6634
6635
6636
6637
6638
6639
6640
6641
6642
6643
6644
6645
6646
6647
6648
6649
6650
6651
6652
6653
6654
6655
6656
6657
6658
6659
6660
6661
6662
6663
6664
6665
6666
6667
6668
6669
6670
6671
6672
6673
6674
6675
6676
6677
6678
6679
6680
6681
6682
6683
6684
6685
6686
6687
6688
6689
6690
6691
6692
6693
6694
6695
6696
6697
6698
6699
6700
6701
6702
6703
6704
6705
6706
6707
6708
6709
6710
6711
6712
6713
6714
6715
6716
6717
6718
6719
6720
6721
6722
6723
6724
6725
6726
6727
6728
6729
6730
6731
6732
6733
6734
6735
6736
6737
6738
6739
6740
6741
6742
6743
6744
6745
6746
6747
6748
6749
6750
6751
6752
6753
6754
6755
6756
6757
6758
6759
6760
6761
6762
6763
6764
6765
6766
6767
6768
6769
6770
6771
6772
6773
6774
6775
6776
6777
6778
6779
6780
6781
6782
6783
6784
6785
6786
6787
6788
6789
6790
6791
6792
6793
6794
6795
6796
6797
6798
6799
6800
6801
6802
6803
6804
6805
6806
6807
6808
6809
6810
6811
6812
6813
6814
6815
6816
6817
6818
6819
6820
6821
6822
6823
6824
6825
6826
6827
6828
6829
6830
6831
6832
6833
6834
6835
6836
6837
6838
6839
6840
6841
6842
6843
6844
6845
6846
6847
6848
6849
6850
6851
6852
6853
6854
6855
6856
6857
6858
6859
6860
6861
6862
6863
6864
6865
6866
6867
6868
6869
6870
6871
6872
6873
6874
6875
6876
6877
6878
6879
6880
6881
6882
6883
6884
6885
6886
6887
6888
6889
6890
6891
6892
6893
6894
6895
6896
6897
6898
6899
6900
6901
6902
6903
6904
6905
6906
6907
6908
6909
6910
6911
6912
6913
6914
6915
6916
6917
6918
6919
6920
6921
6922
6923
6924
6925
6926
6927
6928
6929
6930
6931
6932
6933
6934
6935
6936
6937
6938
6939
6940
6941
6942
6943
6944
6945
6946
6947
6948
6949
6950
6951
6952
6953
6954
6955
6956
6957
6958
6959
6960
6961
6962
6963
6964
6965
6966
6967
6968
6969
6970
6971
6972
6973
6974
6975
6976
6977
6978
6979
6980
6981
6982
6983
6984
6985
6986
6987
6988
6989
6990
6991
6992
6993
6994
6995
6996
6997
6998
6999
7000
7001
7002
7003
7004
7005
7006
7007
7008
7009
7010
7011
7012
7013
7014
7015
7016
7017
7018
7019
7020
7021
7022
7023
7024
7025
7026
7027
7028
7029
7030
7031
7032
7033
7034
7035
7036
7037
7038
7039
7040
7041
7042
7043
7044
7045
7046
7047
7048
7049
7050
7051
7052
7053
7054
7055
7056
7057
7058
7059
7060
7061
7062
7063
7064
7065
7066
7067
7068
7069
7070
7071
7072
7073
7074
7075
7076
7077
7078
7079
7080
7081
7082
7083
7084
7085
7086
7087
7088
7089
7090
7091
7092
7093
7094
7095
7096
7097
7098
7099
7100
7101
7102
7103
7104
7105
7106
7107
7108
7109
7110
7111
7112
7113
7114
7115
7116
7117
7118
7119
7120
7121
7122
7123
7124
7125
7126
7127
7128
7129
7130
7131
7132
7133
7134
7135
7136
7137
7138
7139
7140
7141
7142
7143
7144
7145
7146
7147
7148
7149
7150
7151
7152
7153
7154
7155
7156
7157
7158
7159
7160
7161
7162
7163
7164
7165
7166
7167
7168
7169
7170
7171
7172
7173
7174
7175
7176
7177
7178
7179
7180
7181
7182
7183
7184
7185
7186
7187
7188
7189
7190
7191
7192
7193
7194
7195
7196
7197
7198
7199
7200
7201
7202
7203
7204
7205
7206
7207
7208
7209
7210
7211
7212
7213
7214
7215
7216
7217
7218
7219
7220
7221
7222
7223
7224
7225
7226
7227
7228
7229
7230
7231
7232
7233
7234
7235
7236
7237
7238
7239
7240
7241
7242
7243
7244
7245
7246
7247
7248
7249
7250
7251
7252
7253
7254
7255
7256
7257
7258
7259
7260
7261
7262
7263
7264
7265
7266
7267
7268
7269
7270
7271
7272
7273
7274
7275
7276
7277
7278
7279
7280
7281
7282
7283
7284
7285
7286
7287
7288
7289
7290
7291
7292
7293
7294
7295
7296
7297
7298
7299
7300
7301
7302
7303
7304
7305
7306
7307
7308
7309
7310
7311
7312
7313
7314
7315
7316
7317
7318
7319
7320
7321
7322
7323
7324
7325
7326
7327
7328
7329
7330
7331
7332
7333
7334
7335
7336
7337
7338
7339
7340
7341
7342
7343
7344
7345
7346
7347
7348
7349
7350
7351
7352
7353
7354
7355
7356
7357
7358
7359
7360
7361
7362
7363
7364
7365
7366
7367
7368
7369
7370
7371
7372
7373
7374
7375
7376
7377
7378
7379
7380
7381
7382
7383
7384
7385
7386
7387
7388
7389
7390
7391
7392
7393
7394
7395
7396
7397
7398
7399
7400
7401
7402
7403
7404
7405
7406
7407
7408
7409
7410
7411
7412
7413
7414
7415
7416
7417
7418
7419
7420
7421
7422
7423
7424
7425
7426
7427
7428
7429
7430
7431
7432
7433
7434
7435
7436
7437
7438
7439
7440
7441
7442
7443
7444
7445
7446
7447
7448
7449
7450
7451
7452
7453
7454
7455
7456
7457
7458
7459
7460
7461
7462
7463
7464
7465
7466
7467
7468
7469
7470
7471
7472
7473
7474
7475
7476
7477
7478
7479
7480
7481
7482
7483
7484
7485
7486
7487
7488
7489
7490
7491
7492
7493
7494
7495
7496
7497
7498
7499
7500
7501
7502
7503
7504
7505
7506
7507
7508
7509
7510
7511
7512
7513
7514
7515
7516
7517
7518
7519
7520
7521
7522
7523
7524
7525
7526
7527
7528
7529
7530
7531
7532
7533
7534
7535
7536
7537
7538
7539
7540
7541
7542
7543
7544
7545
7546
7547
7548
7549
7550
7551
7552
7553
7554
7555
7556
7557
7558
7559
7560
7561
7562
7563
7564
7565
7566
7567
7568
7569
7570
7571
7572
7573
7574
7575
7576
7577
7578
7579
7580
7581
7582
7583
7584
7585
7586
7587
7588
7589
7590
7591
7592
7593
7594
7595
7596
7597
7598
7599
7600
7601
7602
7603
7604
7605
7606
7607
7608
7609
7610
7611
7612
7613
7614
7615
7616
7617
7618
7619
7620
7621
7622
7623
7624
7625
7626
7627
7628
7629
7630
7631
7632
7633
7634
7635
7636
7637
7638
7639
7640
7641
7642
7643
7644
7645
7646
7647
7648
7649
7650
7651
7652
7653
7654
7655
7656
7657
7658
7659
7660
7661
7662
7663
7664
7665
7666
7667
7668
7669
7670
7671
7672
7673
7674
7675
7676
7677
7678
7679
7680
7681
7682
7683
7684
7685
7686
7687
7688
7689
7690
7691
7692
7693
7694
7695
7696
7697
7698
7699
7700
7701
7702
7703
7704
7705
7706
7707
7708
7709
7710
7711
7712
7713
7714
7715
7716
7717
7718
7719
7720
7721
7722
7723
7724
7725
7726
7727
7728
7729
7730
7731
7732
7733
7734
7735
7736
7737
7738
7739
7740
7741
7742
7743
7744
7745
7746
7747
7748
7749
7750
7751
7752
7753
7754
7755
7756
7757
7758
7759
7760
7761
7762
7763
7764
7765
7766
7767
7768
7769
7770
7771
7772
7773
7774
7775
7776
7777
7778
7779
7780
7781
7782
7783
7784
7785
7786
7787
7788
7789
7790
7791
7792
7793
7794
7795
7796
7797
7798
7799
7800
7801
7802
7803
7804
7805
7806
7807
7808
7809
7810
7811
7812
7813
7814
7815
7816
7817
7818
7819
7820
7821
7822
7823
7824
7825
7826
7827
7828
7829
7830
7831
7832
7833
7834
7835
7836
7837
7838
7839
7840
7841
7842
7843
7844
7845
7846
7847
7848
7849
7850
7851
7852
7853
7854
7855
7856
7857
7858
7859
7860
7861
7862
7863
7864
7865
7866
7867
7868
7869
7870
7871
7872
7873
7874
7875
7876
7877
7878
7879
7880
7881
7882
7883
7884
7885
7886
7887
7888
7889
7890
7891
7892
7893
7894
7895
7896
7897
7898
7899
7900
7901
7902
7903
7904
7905
7906
7907
7908
7909
7910
7911
7912
7913
7914
7915
7916
7917
7918
7919
7920
7921
7922
7923
7924
7925
7926
7927
7928
7929
7930
7931
7932
7933
7934
7935
7936
7937
7938
7939
7940
7941
7942
7943
7944
7945
7946
7947
7948
7949
7950
7951
7952
7953
7954
7955
7956
7957
7958
7959
7960
7961
7962
7963
7964
7965
7966
7967
7968
7969
7970
7971
7972
7973
7974
7975
7976
7977
7978
7979
7980
7981
7982
7983
7984
7985
7986
7987
7988
7989
7990
7991
7992
7993
7994
7995
7996
7997
7998
7999
8000
8001
8002
8003
8004
8005
8006
8007
8008
8009
8010
8011
8012
8013
8014
8015
8016
8017
8018
8019
8020
8021
8022
8023
8024
8025
8026
8027
8028
8029
8030
8031
8032
8033
8034
8035
8036
8037
8038
8039
8040
8041
8042
8043
8044
8045
8046
8047
8048
8049
8050
8051
8052
8053
8054
8055
8056
8057
8058
8059
8060
8061
8062
8063
8064
8065
8066
8067
8068
8069
8070
8071
8072
8073
8074
8075
8076
8077
8078
8079
8080
8081
8082
8083
8084
8085
8086
8087
8088
8089
8090
8091
8092
8093
8094
8095
8096
8097
8098
8099
8100
8101
8102
8103
8104
8105
8106
8107
8108
8109
8110
8111
8112
8113
8114
8115
8116
8117
8118
8119
8120
8121
8122
8123
8124
8125
8126
8127
8128
8129
8130
8131
8132
8133
8134
8135
8136
8137
8138
8139
8140
8141
8142
8143
8144
8145
8146
8147
8148
8149
8150
8151
8152
8153
8154
8155
8156
8157
8158
8159
8160
8161
8162
8163
8164
8165
8166
8167
8168
8169
8170
8171
8172
8173
8174
8175
8176
8177
8178
8179
8180
8181
8182
8183
8184
8185
8186
8187
8188
8189
8190
8191
8192
8193
8194
8195
8196
8197
8198
8199
8200
8201
8202
8203
8204
8205
8206
8207
8208
8209
8210
8211
8212
8213
8214
8215
8216
8217
8218
8219
8220
8221
8222
8223
8224
8225
8226
8227
8228
8229
8230
8231
8232
8233
8234
8235
8236
8237
8238
8239
8240
8241
8242
8243
8244
8245
8246
8247
8248
8249
8250
8251
8252
8253
8254
8255
8256
8257
8258
8259
8260
8261
8262
8263
8264
8265
8266
8267
8268
8269
8270
8271
8272
8273
8274
8275
8276
8277
8278
8279
8280
8281
8282
8283
8284
8285
8286
8287
8288
8289
8290
8291
8292
8293
8294
8295
8296
8297
8298
8299
8300
8301
8302
8303
8304
8305
8306
8307
8308
8309
8310
8311
8312
8313
8314
8315
8316
8317
8318
8319
8320
8321
8322
8323
8324
8325
8326
8327
8328
8329
8330
8331
8332
8333
8334
8335
8336
8337
8338
8339
8340
8341
8342
8343
8344
8345
8346
8347
8348
8349
8350
8351
8352
8353
8354
8355
8356
8357
8358
8359
8360
8361
8362
8363
8364
8365
8366
8367
8368
8369
8370
8371
8372
8373
8374
8375
8376
8377
8378
8379
8380
8381
8382
8383
8384
8385
8386
8387
8388
8389
8390
8391
8392
8393
8394
8395
8396
8397
8398
8399
8400
8401
8402
8403
8404
8405
8406
8407
8408
8409
8410
8411
8412
8413
8414
8415
8416
8417
8418
8419
8420
8421
8422
8423
8424
8425
8426
8427
8428
8429
8430
8431
8432
8433
8434
8435
8436
8437
8438
8439
8440
8441
8442
8443
8444
8445
8446
8447
8448
8449
8450
8451
8452
8453
8454
8455
8456
8457
8458
8459
8460
8461
8462
8463
8464
8465
8466
8467
8468
8469
8470
8471
8472
8473
8474
8475
8476
8477
8478
8479
8480
8481
8482
8483
8484
8485
8486
8487
8488
8489
8490
8491
8492
8493
8494
8495
8496
8497
8498
8499
8500
8501
8502
8503
8504
8505
8506
8507
8508
8509
8510
8511
8512
8513
8514
8515
8516
8517
8518
8519
8520
8521
8522
8523
8524
8525
8526
8527
8528
8529
8530
8531
8532
8533
8534
8535
8536
8537
8538
8539
8540
8541
8542
8543
8544
8545
8546
8547
8548
8549
8550
8551
8552
8553
8554
8555
8556
8557
8558
8559
8560
8561
8562
8563
8564
8565
8566
8567
8568
8569
8570
8571
8572
8573
8574
8575
8576
8577
8578
8579
8580
8581
8582
8583
8584
8585
8586
8587
8588
8589
8590
8591
8592
8593
8594
8595
8596
8597
8598
8599
8600
8601
8602
8603
8604
8605
8606
8607
8608
8609
8610
8611
8612
8613
8614
8615
8616
8617
8618
8619
8620
8621
8622
8623
8624
8625
8626
8627
8628
8629
8630
8631
8632
8633
8634
8635
8636
8637
8638
8639
8640
8641
8642
8643
8644
8645
8646
8647
8648
8649
8650
8651
8652
8653
8654
8655
8656
8657
8658
8659
8660
8661
8662
8663
8664
8665
8666
8667
8668
8669
8670
8671
8672
8673
8674
8675
8676
8677
8678
8679
8680
8681
8682
8683
8684
8685
8686
8687
8688
8689
8690
8691
8692
8693
8694
8695
8696
8697
8698
8699
8700
8701
8702
8703
8704
8705
8706
8707
8708
8709
8710
8711
8712
8713
8714
8715
8716
8717
8718
8719
8720
8721
8722
8723
8724
8725
8726
8727
8728
8729
8730
8731
8732
8733
8734
8735
8736
8737
8738
8739
8740
8741
8742
8743
8744
8745
8746
8747
8748
8749
8750
8751
8752
8753
8754
8755
8756
8757
8758
8759
8760
8761
8762
8763
8764
8765
8766
8767
8768
8769
8770
8771
8772
8773
8774
8775
8776
8777
8778
8779
8780
8781
8782
8783
8784
8785
8786
8787
8788
8789
8790
8791
8792
8793
8794
8795
8796
8797
8798
8799
8800
8801
8802
8803
8804
8805
8806
8807
8808
8809
8810
8811
8812
8813
8814
8815
8816
8817
8818
8819
8820
8821
8822
8823
8824
8825
8826
8827
8828
8829
8830
8831
8832
8833
8834
8835
8836
8837
8838
8839
8840
8841
8842
8843
8844
8845
8846
8847
8848
8849
8850
8851
8852
8853
8854
8855
8856
8857
8858
8859
8860
8861
8862
8863
8864
8865
8866
8867
8868
8869
8870
8871
8872
8873
8874
8875
8876
8877
8878
8879
8880
8881
8882
8883
8884
8885
8886
8887
8888
8889
8890
8891
8892
8893
8894
8895
8896
8897
8898
8899
8900
8901
8902
8903
8904
8905
8906
8907
8908
8909
8910
8911
8912
8913
8914
8915
8916
8917
8918
8919
8920
8921
8922
8923
8924
8925
8926
8927
8928
8929
8930
8931
8932
8933
8934
8935
8936
8937
8938
8939
8940
8941
8942
8943
8944
8945
8946
8947
8948
8949
8950
8951
8952
8953
8954
8955
8956
8957
8958
8959
8960
8961
8962
8963
8964
8965
8966
8967
8968
8969
8970
8971
8972
8973
8974
8975
8976
8977
8978
8979
8980
8981
8982
8983
8984
8985
8986
8987
8988
8989
8990
8991
8992
8993
8994
8995
8996
8997
8998
8999
9000
9001
9002
9003
9004
9005
9006
9007
9008
9009
9010
9011
9012
9013
9014
9015
9016
9017
9018
9019
9020
9021
9022
9023
9024
9025
9026
9027
9028
9029
9030
9031
9032
9033
9034
9035
9036
9037
9038
9039
9040
9041
9042
9043
9044
9045
9046
9047
9048
9049
9050
9051
9052
9053
9054
9055
9056
9057
9058
9059
9060
9061
9062
9063
9064
9065
9066
9067
9068
9069
9070
9071
9072
9073
9074
9075
9076
9077
9078
9079
9080
9081
9082
9083
9084
9085
9086
9087
9088
9089
9090
9091
9092
9093
9094
9095
9096
9097
9098
9099
9100
9101
9102
9103
9104
9105
9106
9107
9108
9109
9110
9111
9112
9113
9114
9115
9116
9117
9118
9119
9120
9121
9122
9123
9124
9125
9126
9127
9128
9129
9130
9131
9132
9133
9134
9135
9136
9137
9138
9139
9140
9141
9142
9143
9144
9145
9146
9147
9148
9149
9150
9151
9152
9153
9154
9155
9156
9157
9158
9159
9160
9161
9162
9163
9164
9165
9166
9167
9168
9169
9170
9171
9172
9173
9174
9175
9176
9177
9178
9179
9180
9181
9182
9183
9184
9185
9186
9187
9188
9189
9190
9191
9192
9193
9194
9195
9196
9197
9198
9199
9200
9201
9202
9203
9204
9205
9206
9207
9208
9209
9210
9211
9212
9213
9214
9215
9216
9217
9218
9219
9220
9221
9222
9223
9224
9225
9226
9227
9228
9229
9230
9231
9232
9233
9234
9235
9236
9237
9238
9239
9240
9241
9242
9243
9244
9245
9246
9247
9248
9249
9250
9251
9252
9253
9254
9255
9256
9257
9258
9259
9260
9261
9262
9263
9264
9265
9266
9267
9268
9269
9270
9271
9272
9273
9274
9275
9276
9277
9278
9279
9280
9281
9282
9283
9284
9285
9286
9287
9288
9289
9290
9291
9292
9293
9294
9295
9296
9297
9298
9299
9300
9301
9302
9303
9304
9305
9306
9307
9308
9309
9310
9311
9312
9313
9314
9315
9316
9317
9318
9319
9320
9321
9322
9323
9324
9325
9326
9327
9328
9329
9330
9331
9332
9333
9334
9335
9336
9337
9338
9339
9340
9341
9342
9343
9344
9345
9346
9347
9348
9349
9350
9351
9352
9353
9354
9355
9356
9357
9358
9359
9360
9361
9362
9363
9364
9365
9366
9367
9368
9369
9370
9371
9372
9373
9374
9375
9376
9377
9378
9379
9380
9381
9382
9383
9384
9385
9386
9387
9388
9389
9390
9391
9392
9393
9394
9395
9396
9397
9398
9399
9400
9401
9402
9403
9404
9405
9406
9407
9408
9409
9410
9411
9412
9413
9414
9415
9416
9417
9418
9419
9420
9421
9422
9423
9424
9425
9426
9427
9428
9429
9430
9431
9432
9433
9434
9435
9436
9437
9438
9439
9440
9441
9442
9443
9444
9445
9446
9447
9448
9449
9450
9451
9452
9453
9454
9455
9456
9457
9458
9459
9460
9461
9462
9463
9464
9465
9466
9467
9468
9469
9470
9471
9472
9473
9474
9475
9476
9477
9478
9479
9480
9481
9482
9483
9484
9485
9486
9487
9488
9489
9490
9491
9492
9493
9494
9495
9496
9497
9498
9499
9500
9501
9502
9503
9504
9505
9506
9507
9508
9509
9510
9511
9512
9513
9514
9515
9516
9517
9518
9519
9520
9521
9522
9523
9524
9525
9526
9527
9528
9529
9530
9531
9532
9533
9534
9535
9536
9537
9538
9539
9540
9541
9542
9543
9544
9545
9546
9547
9548
9549
9550
9551
9552
9553
9554
9555
9556
9557
9558
9559
9560
9561
9562
9563
9564
9565
9566
9567
9568
9569
9570
9571
9572
9573
9574
9575
9576
9577
9578
9579
9580
9581
9582
9583
9584
9585
9586
9587
9588
9589
9590
9591
9592
9593
9594
9595
9596
9597
9598
9599
9600
9601
9602
9603
9604
9605
9606
9607
9608
9609
9610
9611
9612
9613
9614
9615
9616
9617
9618
9619
9620
9621
9622
9623
9624
9625
9626
9627
9628
9629
9630
9631
9632
9633
9634
9635
9636
9637
9638
9639
9640
9641
9642
9643
9644
9645
9646
9647
9648
9649
9650
9651
9652
9653
9654
9655
9656
9657
9658
9659
9660
9661
9662
9663
9664
9665
9666
9667
9668
9669
9670
9671
9672
9673
9674
9675
9676
9677
9678
9679
9680
9681
9682
9683
9684
9685
9686
9687
9688
9689
9690
9691
9692
9693
9694
9695
9696
9697
9698
9699
9700
9701
9702
9703
9704
9705
9706
9707
9708
9709
9710
9711
9712
9713
9714
9715
9716
9717
9718
9719
9720
9721
9722
9723
9724
9725
9726
9727
9728
9729
9730
9731
9732
9733
9734
9735
9736
9737
9738
9739
9740
9741
9742
9743
9744
9745
9746
9747
9748
9749
9750
9751
9752
9753
9754
9755
9756
9757
9758
9759
9760
9761
9762
9763
9764
9765
9766
9767
9768
9769
9770
9771
9772
9773
9774
9775
9776
9777
9778
9779
9780
9781
9782
9783
9784
9785
9786
9787
9788
9789
9790
9791
9792
9793
9794
9795
9796
9797
9798
9799
9800
9801
9802
9803
9804
9805
9806
9807
9808
9809
9810
9811
9812
9813
9814
9815
9816
9817
9818
9819
9820
9821
9822
9823
9824
9825
9826
9827
9828
9829
9830
9831
9832
9833
9834
9835
9836
9837
9838
9839
9840
9841
9842
9843
9844
9845
9846
9847
9848
9849
9850
9851
9852
9853
9854
9855
9856
9857
9858
9859
9860
9861
9862
9863
9864
9865
9866
9867
9868
9869
9870
9871
9872
9873
9874
9875
9876
9877
9878
9879
9880
9881
9882
9883
9884
9885
9886
9887
9888
(* Content-type: application/vnd.wolfram.mathematica *)

(*** Wolfram Notebook File ***)
(* http://www.wolfram.com/nb *)

(* CreatedBy='Wolfram 14.2' *)

(*CacheID: 234*)
(* Internal cache information:
NotebookFileLineBreakTest
NotebookFileLineBreakTest
NotebookDataPosition[       154,          7]
NotebookDataLength[    549603,       9880]
NotebookOptionsPosition[    544961,       9802]
NotebookOutlinePosition[    545356,       9818]
CellTagsIndexPosition[    545313,       9815]
WindowFrame->Normal*)

(* Beginning of Notebook Content *)
Notebook[{
Cell[BoxData[
 RowBox[{
  RowBox[{"generateData", "[", 
   RowBox[{"y_", ",", "m_", ",", "\[Sigma]_", ",", 
    RowBox[{"domain_", ":", 
     RowBox[{"{", 
      RowBox[{"0", ",", "1"}], "}"}]}]}], "]"}], ":=", 
  RowBox[{"Map", "[", 
   RowBox[{
    RowBox[{"x", "\[Function]", 
     RowBox[{"{", 
      RowBox[{"x", ",", 
       RowBox[{
        RowBox[{"y", "[", "x", "]"}], "+", 
        RowBox[{"RandomVariate", "[", 
         RowBox[{"NormalDistribution", "[", 
          RowBox[{"0", ",", "\[Sigma]"}], "]"}], "]"}]}]}], "}"}]}], ",", 
    RowBox[{"Range", "[", 
     RowBox[{"0", ",", "1", ",", 
      RowBox[{"1", "/", 
       RowBox[{"(", 
        RowBox[{"m", "-", "1"}], ")"}]}]}], "]"}]}], "]"}]}]], "Input",
 CellChangeTimes->{{3.948114696478565*^9, 3.9481148271627007`*^9}, {
  3.948114875117189*^9, 3.9481148817889967`*^9}, {3.948114934919499*^9, 
  3.9481149379113903`*^9}, {3.948119416254571*^9, 3.948119431654923*^9}},
 CellLabel->
  "In[183]:=",ExpressionUUID->"8a6144b2-4825-430e-8735-470868f9d585"],

Cell[CellGroupData[{

Cell[BoxData[
 RowBox[{"Show", "[", 
  RowBox[{
   RowBox[{"ListPlot", "[", 
    RowBox[{"generateData", "[", 
     RowBox[{"Sin", ",", "20", ",", "0.1"}], "]"}], "]"}], ",", 
   RowBox[{"Plot", "[", 
    RowBox[{
     RowBox[{"Sin", "[", "x", "]"}], ",", 
     RowBox[{"{", 
      RowBox[{"x", ",", "0", ",", "1"}], "}"}]}], "]"}]}], "]"}]], "Input",
 CellChangeTimes->{{3.948114828854376*^9, 3.948114901333522*^9}},
 CellLabel->
  "In[184]:=",ExpressionUUID->"bdf3d894-e06b-445f-a47d-201455db00a7"],

Cell[BoxData[
 GraphicsBox[{{{}, 
    InterpretationBox[{
      TagBox[
       TagBox[
        {RGBColor[0.24, 0.6, 0.8], PointSize[0.012833333333333334`], 
         AbsoluteThickness[2], PointBox[CompressedData["
1:eJxTTMoPSmViYGAQAWIQDQPztzuuk9dcYK+xfuGetk+r7Ff9vxubrHERyt9l
b9OQuE+R5Yx9nHMl71PTI/bL1A4zG+3eD5U/ZS+dHiK05fBWe5DslOsX7K/d
qVfzTd8MVX/F/rzbpmNOJy/bO0MU2Ltd8kjKUb4B1X/Lvityv3Q89x17sGzA
PftfZ+5yFTHcgJr3wP60/QUlPtHH9jlgDY/sV+SpipZEPoCa/8Q+0/uszIW8
e/aBYIGn9skd5Z/U17+E2vfcXku3wv7h1Uf2ZkDT45xf2pdffLmk8ehLqP2v
7Jfo1Z447/PCXvpUNlDojT2H+OkXf369h7rnnf2FH/++fM18aw8JrQ/2ry4e
SVrD+MoeAJ5mnOw=
          "]]},
        Annotation[#, "Charting`Private`Tag#1"]& ],
       {"WolframDynamicHighlight", <|
        "Label" -> {"XYLabel"}, "Ball" -> {"IndicatedBall"}|>}], 
      StyleBox[
       DynamicBox[(Charting`HighlightActionBox["DynamicHighlight", {}, 
         Slot["HighlightElements"], 
         Slot["LayoutOptions"], 
         Slot["Meta"], 
         Charting`HighlightActionFunction["DynamicHighlight", {{
            Annotation[{
              Directive[
               PointSize[0.012833333333333334`], 
               RGBColor[0.24, 0.6, 0.8], 
               AbsoluteThickness[2]], 
              Point[CompressedData["
1:eJxTTMoPSmViYGAQAWIQDQPztzuuk9dcYK+xfuGetk+r7Ff9vxubrHERyt9l
b9OQuE+R5Yx9nHMl71PTI/bL1A4zG+3eD5U/ZS+dHiK05fBWe5DslOsX7K/d
qVfzTd8MVX/F/rzbpmNOJy/bO0MU2Ltd8kjKUb4B1X/Lvityv3Q89x17sGzA
PftfZ+5yFTHcgJr3wP60/QUlPtHH9jlgDY/sV+SpipZEPoCa/8Q+0/uszIW8
e/aBYIGn9skd5Z/U17+E2vfcXku3wv7h1Uf2ZkDT45xf2pdffLmk8ehLqP2v
7Jfo1Z447/PCXvpUNlDojT2H+OkXf369h7rnnf2FH/++fM18aw8JrQ/2ry4e
SVrD+MoeAJ5mnOw=
               "]]}, "Charting`Private`Tag#1"]}}, <|
          "HighlightElements" -> <|
            "Label" -> {"XYLabel"}, "Ball" -> {"IndicatedBall"}|>, 
           "LayoutOptions" -> <|
            "PanelPlotLayout" -> <||>, 
             "PlotRange" -> {{0, 1.}, {0, 0.9993881747002158}}, 
             "Frame" -> {{False, False}, {False, False}}, 
             "AxesOrigin" -> {0, 0}, "ImageSize" -> {360, 360/GoldenRatio}, 
             "Axes" -> {True, True}, "LabelStyle" -> {}, "AspectRatio" -> 
             GoldenRatio^(-1), "DefaultStyle" -> {
               Directive[
                PointSize[0.012833333333333334`], 
                RGBColor[0.24, 0.6, 0.8], 
                AbsoluteThickness[2]]}, 
             "HighlightLabelingFunctions" -> <|"CoordinatesToolOptions" -> ({
                 (Identity[#]& )[
                  Part[#, 1]], 
                 (Identity[#]& )[
                  Part[#, 2]]}& ), 
               "ScalingFunctions" -> {{Identity, Identity}, {
                 Identity, Identity}}|>, "Primitives" -> {}, "GCFlag" -> 
             False|>, 
           "Meta" -> <|
            "DefaultHighlight" -> {"Dynamic", None}, "Index" -> {}, 
             "Function" -> ListPlot, "GroupHighlight" -> False|>|>]]& )[<|
         "HighlightElements" -> <|
           "Label" -> {"XYLabel"}, "Ball" -> {"IndicatedBall"}|>, 
          "LayoutOptions" -> <|
           "PanelPlotLayout" -> <||>, 
            "PlotRange" -> {{0, 1.}, {0, 0.9993881747002158}}, 
            "Frame" -> {{False, False}, {False, False}}, 
            "AxesOrigin" -> {0, 0}, "ImageSize" -> {360, 360/GoldenRatio}, 
            "Axes" -> {True, True}, "LabelStyle" -> {}, "AspectRatio" -> 
            GoldenRatio^(-1), "DefaultStyle" -> {
              Directive[
               PointSize[0.012833333333333334`], 
               RGBColor[0.24, 0.6, 0.8], 
               AbsoluteThickness[2]]}, 
            "HighlightLabelingFunctions" -> <|"CoordinatesToolOptions" -> ({
                (Identity[#]& )[
                 Part[#, 1]], 
                (Identity[#]& )[
                 Part[#, 2]]}& ), 
              "ScalingFunctions" -> {{Identity, Identity}, {
                Identity, Identity}}|>, "Primitives" -> {}, "GCFlag" -> 
            False|>, 
          "Meta" -> <|
           "DefaultHighlight" -> {"Dynamic", None}, "Index" -> {}, "Function" -> 
            ListPlot, "GroupHighlight" -> False|>|>]],
       Selectable->False]},
     Annotation[{{
        Annotation[{
          Directive[
           PointSize[0.012833333333333334`], 
           RGBColor[0.24, 0.6, 0.8], 
           AbsoluteThickness[2]], 
          Point[CompressedData["
1:eJxTTMoPSmViYGAQAWIQDQPztzuuk9dcYK+xfuGetk+r7Ff9vxubrHERyt9l
b9OQuE+R5Yx9nHMl71PTI/bL1A4zG+3eD5U/ZS+dHiK05fBWe5DslOsX7K/d
qVfzTd8MVX/F/rzbpmNOJy/bO0MU2Ltd8kjKUb4B1X/Lvityv3Q89x17sGzA
PftfZ+5yFTHcgJr3wP60/QUlPtHH9jlgDY/sV+SpipZEPoCa/8Q+0/uszIW8
e/aBYIGn9skd5Z/U17+E2vfcXku3wv7h1Uf2ZkDT45xf2pdffLmk8ehLqP2v
7Jfo1Z447/PCXvpUNlDojT2H+OkXf369h7rnnf2FH/++fM18aw8JrQ/2ry4e
SVrD+MoeAJ5mnOw=
           "]]}, "Charting`Private`Tag#1"]}}, <|
      "HighlightElements" -> <|
        "Label" -> {"XYLabel"}, "Ball" -> {"IndicatedBall"}|>, 
       "LayoutOptions" -> <|
        "PanelPlotLayout" -> <||>, 
         "PlotRange" -> {{0, 1.}, {0, 0.9993881747002158}}, 
         "Frame" -> {{False, False}, {False, False}}, "AxesOrigin" -> {0, 0}, 
         "ImageSize" -> {360, 360/GoldenRatio}, "Axes" -> {True, True}, 
         "LabelStyle" -> {}, "AspectRatio" -> GoldenRatio^(-1), 
         "DefaultStyle" -> {
           Directive[
            PointSize[0.012833333333333334`], 
            RGBColor[0.24, 0.6, 0.8], 
            AbsoluteThickness[2]]}, 
         "HighlightLabelingFunctions" -> <|"CoordinatesToolOptions" -> ({
             (Identity[#]& )[
              Part[#, 1]], 
             (Identity[#]& )[
              Part[#, 2]]}& ), 
           "ScalingFunctions" -> {{Identity, Identity}, {
             Identity, Identity}}|>, "Primitives" -> {}, "GCFlag" -> False|>, 
       "Meta" -> <|
        "DefaultHighlight" -> {"Dynamic", None}, "Index" -> {}, "Function" -> 
         ListPlot, "GroupHighlight" -> False|>|>, 
      "DynamicHighlight"]], {{}, {}}}, 
   InterpretationBox[{
     TagBox[{{{}, {}, 
        TagBox[
         {RGBColor[0.24, 0.6, 0.8], AbsoluteThickness[2], Opacity[1.], 
          LineBox[CompressedData["
1:eJw10H840wkAx/EpRXQruqsW8qi4i0lJKd31cSLFJNJJh5bohy7lVy6XK5df
iXCPJ3OZ0tZPT1bXeJSV0q6OZ/m1lR+tzWbN9h2+UyEVbv64Pz7P6/n8+7aL
OhocM41CoQQYNqVfjKbtsXbnxv813rTomJzmhsGy1tgpV19ild2jeWNdUUL2
lP4vOv5m00IQdsszcsrQ6NGHf9KioZzJPlxk8I1L9qZ8WhKehC/5lG3w8jeB
Wbm0DPQdbWQmG0w3vfftWVoxcsTjRW4Gd4VV8PRDXPyU3C2N13NhPpke7ruY
B4WHpRmTxoN90KDm6Tk+Gm35HYuz+EhpXg/Wh/tgjnDj3bX3sYBvITMyqkdM
WG5i+cAj1Cg3iVq+b0Dydu9BE+cGNMSyrcL6hVDMza3Nkggx7PDDnNtHnkNs
5RG4kfEc08Yq51rZNyFoLOf0zZFGrJ1k1uyoEoEzyyffLF4EUYZb8zPHFrzz
KJ9wlDbDtlA3dnOwFVkV89p8BK3QjcplL1e2I/DRxzdR79rAJeqaqOfFWBhn
7ZDtKQbV5jqpUklQtXCsb2+WBHmHqvdfXvYK1S7Lh9z4LzHiWak6eKoDikZ0
O429QpKrkD//aSdsWYoYa4dOyKuE59rsusHy9vY9cagLn2MlF5envoZ46G7d
bG43nH40mdhfJ4XV740bmp+9hu8VuwN3F8igzimjfpiQIsVmzxJFuByMXbJz
kbYy0Pt3mncE9IAyo/AA3V2OeXP0psJPPVA5X7t/dVUPjOsv8paWKfB5zdUH
xoIeHHar65rlr0SSvx/farsClVujLj8aUYLezmJlyxUY1i2aq77QC1/XM81p
+5So3uE7vdhbhVCvG6aFeiVObcm8xFerYBdyZPrWhF7YvfHr5GS+hW1GV14B
2QsP94ximqsa9jtmsoOTVQhf3DJmJFZjtSbugKleheGmfOWx9D5soygjaxPe
gmUcmRS8TIN/9jNK0om3mCervjJNqMG4RHi+KUKNGWnpIevjtWDK6U57O9Wg
3IzkKS0JVBwvcT26pQ8Jf/HyLRsIuEuPm2+s78NDpxxTizgdHEjZ5hWrNLDw
S6D/Qe3Hk6gzHKNSDaTOreITgn7ol77nds/U4k45lqkiB2CdGv5eFKtFBG+t
hc2E4evJBkaTFqczK9Kltwbxxaekb74Lgdsam4tUBon2Ijo7MZdADjuTKdtG
IlUUyJ6RRyA6eMC+KoiEE/3LwZJ8AtYCwZ2AUBJN73qjHhQSyC34+VleFIk2
Katn/AKBg2tLh8xOkKCl9FJ+4xBYkvH1FpNrJL5UHa4PEBCYWHfyq44bJESa
WseuhwS6Bnrbr1WSsGyh742uJ1AYei9i810SrkdOuqQaOkw6BidmCkjMLosJ
4vxLQNpWUD5dTCIirea6TkKgNmt0n/glCRMfI2HiKwLFG/Ys53SS2EXzqvzc
QcD/6gq+l4wEo7m02+w1gQe/vmhM15IYFzEEDgoCF5zXFAT1kzi1+73LbSWB
eGVZiB1JwkyUErdaReA7xi/yxx9IVG+jMtBHwNhIwi0cJVG6e5FOqCHQU70h
lvmJBNXzY4gfQUAQy3FZOU4ibZx7tkVHoMTWfHhykkRNkc3ZkAEC/wE4VX0d

           "]]},
         Annotation[#, "Charting`Private`Tag#1"]& ]}, {}},
      {"WolframDynamicHighlight", <|
       "Label" -> {"XYLabel"}, "Ball" -> {"InterpolatedBall"}|>}], 
     StyleBox[
      DynamicBox[(Charting`HighlightActionBox["DynamicHighlight", {}, 
        Slot["HighlightElements"], 
        Slot["LayoutOptions"], 
        Slot["Meta"], 
        Charting`HighlightActionFunction["DynamicHighlight", {{{{}, {}, 
            Annotation[{
              Directive[
               Opacity[1.], 
               RGBColor[0.24, 0.6, 0.8], 
               AbsoluteThickness[2]], 
              Line[CompressedData["
1:eJw10H840wkAx/EpRXQruqsW8qi4i0lJKd31cSLFJNJJh5bohy7lVy6XK5df
iXCPJ3OZ0tZPT1bXeJSV0q6OZ/m1lR+tzWbN9h2+UyEVbv64Pz7P6/n8+7aL
OhocM41CoQQYNqVfjKbtsXbnxv813rTomJzmhsGy1tgpV19ild2jeWNdUUL2
lP4vOv5m00IQdsszcsrQ6NGHf9KioZzJPlxk8I1L9qZ8WhKehC/5lG3w8jeB
Wbm0DPQdbWQmG0w3vfftWVoxcsTjRW4Gd4VV8PRDXPyU3C2N13NhPpke7ruY
B4WHpRmTxoN90KDm6Tk+Gm35HYuz+EhpXg/Wh/tgjnDj3bX3sYBvITMyqkdM
WG5i+cAj1Cg3iVq+b0Dydu9BE+cGNMSyrcL6hVDMza3Nkggx7PDDnNtHnkNs
5RG4kfEc08Yq51rZNyFoLOf0zZFGrJ1k1uyoEoEzyyffLF4EUYZb8zPHFrzz
KJ9wlDbDtlA3dnOwFVkV89p8BK3QjcplL1e2I/DRxzdR79rAJeqaqOfFWBhn
7ZDtKQbV5jqpUklQtXCsb2+WBHmHqvdfXvYK1S7Lh9z4LzHiWak6eKoDikZ0
O429QpKrkD//aSdsWYoYa4dOyKuE59rsusHy9vY9cagLn2MlF5envoZ46G7d
bG43nH40mdhfJ4XV740bmp+9hu8VuwN3F8igzimjfpiQIsVmzxJFuByMXbJz
kbYy0Pt3mncE9IAyo/AA3V2OeXP0psJPPVA5X7t/dVUPjOsv8paWKfB5zdUH
xoIeHHar65rlr0SSvx/farsClVujLj8aUYLezmJlyxUY1i2aq77QC1/XM81p
+5So3uE7vdhbhVCvG6aFeiVObcm8xFerYBdyZPrWhF7YvfHr5GS+hW1GV14B
2QsP94ximqsa9jtmsoOTVQhf3DJmJFZjtSbugKleheGmfOWx9D5soygjaxPe
gmUcmRS8TIN/9jNK0om3mCervjJNqMG4RHi+KUKNGWnpIevjtWDK6U57O9Wg
3IzkKS0JVBwvcT26pQ8Jf/HyLRsIuEuPm2+s78NDpxxTizgdHEjZ5hWrNLDw
S6D/Qe3Hk6gzHKNSDaTOreITgn7ol77nds/U4k45lqkiB2CdGv5eFKtFBG+t
hc2E4evJBkaTFqczK9Kltwbxxaekb74Lgdsam4tUBon2Ijo7MZdADjuTKdtG
IlUUyJ6RRyA6eMC+KoiEE/3LwZJ8AtYCwZ2AUBJN73qjHhQSyC34+VleFIk2
Katn/AKBg2tLh8xOkKCl9FJ+4xBYkvH1FpNrJL5UHa4PEBCYWHfyq44bJESa
WseuhwS6Bnrbr1WSsGyh742uJ1AYei9i810SrkdOuqQaOkw6BidmCkjMLosJ
4vxLQNpWUD5dTCIirea6TkKgNmt0n/glCRMfI2HiKwLFG/Ys53SS2EXzqvzc
QcD/6gq+l4wEo7m02+w1gQe/vmhM15IYFzEEDgoCF5zXFAT1kzi1+73LbSWB
eGVZiB1JwkyUErdaReA7xi/yxx9IVG+jMtBHwNhIwi0cJVG6e5FOqCHQU70h
lvmJBNXzY4gfQUAQy3FZOU4ibZx7tkVHoMTWfHhykkRNkc3ZkAEC/wE4VX0d

               "]]}, "Charting`Private`Tag#1"]}}, {}}, <|
         "HighlightElements" -> <|
           "Label" -> {"XYLabel"}, "Ball" -> {"InterpolatedBall"}|>, 
          "LayoutOptions" -> <|
           "PanelPlotLayout" -> <||>, 
            "PlotRange" -> {{0, 1}, {0., 0.8414709737813186}}, 
            "Frame" -> {{False, False}, {False, False}}, 
            "AxesOrigin" -> {0, 0}, "ImageSize" -> {360, 360/GoldenRatio}, 
            "Axes" -> {True, True}, "LabelStyle" -> {}, "AspectRatio" -> 
            GoldenRatio^(-1), "DefaultStyle" -> {
              Directive[
               Opacity[1.], 
               RGBColor[0.24, 0.6, 0.8], 
               AbsoluteThickness[2]]}, 
            "HighlightLabelingFunctions" -> <|"CoordinatesToolOptions" -> ({
                (Identity[#]& )[
                 Part[#, 1]], 
                (Identity[#]& )[
                 Part[#, 2]]}& ), 
              "ScalingFunctions" -> {{Identity, Identity}, {
                Identity, Identity}}|>, "Primitives" -> {}, "GCFlag" -> 
            False|>, 
          "Meta" -> <|
           "DefaultHighlight" -> {"Dynamic", None}, "Index" -> {}, "Function" -> 
            Plot, "GroupHighlight" -> False|>|>]]& )[<|
        "HighlightElements" -> <|
          "Label" -> {"XYLabel"}, "Ball" -> {"InterpolatedBall"}|>, 
         "LayoutOptions" -> <|
          "PanelPlotLayout" -> <||>, 
           "PlotRange" -> {{0, 1}, {0., 0.8414709737813186}}, 
           "Frame" -> {{False, False}, {False, False}}, 
           "AxesOrigin" -> {0, 0}, "ImageSize" -> {360, 360/GoldenRatio}, 
           "Axes" -> {True, True}, "LabelStyle" -> {}, "AspectRatio" -> 
           GoldenRatio^(-1), "DefaultStyle" -> {
             Directive[
              Opacity[1.], 
              RGBColor[0.24, 0.6, 0.8], 
              AbsoluteThickness[2]]}, 
           "HighlightLabelingFunctions" -> <|"CoordinatesToolOptions" -> ({
               (Identity[#]& )[
                Part[#, 1]], 
               (Identity[#]& )[
                Part[#, 2]]}& ), 
             "ScalingFunctions" -> {{Identity, Identity}, {
               Identity, Identity}}|>, "Primitives" -> {}, "GCFlag" -> 
           False|>, 
         "Meta" -> <|
          "DefaultHighlight" -> {"Dynamic", None}, "Index" -> {}, "Function" -> 
           Plot, "GroupHighlight" -> False|>|>]],
      Selectable->False]},
    Annotation[{{{{}, {}, 
        Annotation[{
          Directive[
           Opacity[1.], 
           RGBColor[0.24, 0.6, 0.8], 
           AbsoluteThickness[2]], 
          Line[CompressedData["
1:eJw10H840wkAx/EpRXQruqsW8qi4i0lJKd31cSLFJNJJh5bohy7lVy6XK5df
iXCPJ3OZ0tZPT1bXeJSV0q6OZ/m1lR+tzWbN9h2+UyEVbv64Pz7P6/n8+7aL
OhocM41CoQQYNqVfjKbtsXbnxv813rTomJzmhsGy1tgpV19ild2jeWNdUUL2
lP4vOv5m00IQdsszcsrQ6NGHf9KioZzJPlxk8I1L9qZ8WhKehC/5lG3w8jeB
Wbm0DPQdbWQmG0w3vfftWVoxcsTjRW4Gd4VV8PRDXPyU3C2N13NhPpke7ruY
B4WHpRmTxoN90KDm6Tk+Gm35HYuz+EhpXg/Wh/tgjnDj3bX3sYBvITMyqkdM
WG5i+cAj1Cg3iVq+b0Dydu9BE+cGNMSyrcL6hVDMza3Nkggx7PDDnNtHnkNs
5RG4kfEc08Yq51rZNyFoLOf0zZFGrJ1k1uyoEoEzyyffLF4EUYZb8zPHFrzz
KJ9wlDbDtlA3dnOwFVkV89p8BK3QjcplL1e2I/DRxzdR79rAJeqaqOfFWBhn
7ZDtKQbV5jqpUklQtXCsb2+WBHmHqvdfXvYK1S7Lh9z4LzHiWak6eKoDikZ0
O429QpKrkD//aSdsWYoYa4dOyKuE59rsusHy9vY9cagLn2MlF5envoZ46G7d
bG43nH40mdhfJ4XV740bmp+9hu8VuwN3F8igzimjfpiQIsVmzxJFuByMXbJz
kbYy0Pt3mncE9IAyo/AA3V2OeXP0psJPPVA5X7t/dVUPjOsv8paWKfB5zdUH
xoIeHHar65rlr0SSvx/farsClVujLj8aUYLezmJlyxUY1i2aq77QC1/XM81p
+5So3uE7vdhbhVCvG6aFeiVObcm8xFerYBdyZPrWhF7YvfHr5GS+hW1GV14B
2QsP94ximqsa9jtmsoOTVQhf3DJmJFZjtSbugKleheGmfOWx9D5soygjaxPe
gmUcmRS8TIN/9jNK0om3mCervjJNqMG4RHi+KUKNGWnpIevjtWDK6U57O9Wg
3IzkKS0JVBwvcT26pQ8Jf/HyLRsIuEuPm2+s78NDpxxTizgdHEjZ5hWrNLDw
S6D/Qe3Hk6gzHKNSDaTOreITgn7ol77nds/U4k45lqkiB2CdGv5eFKtFBG+t
hc2E4evJBkaTFqczK9Kltwbxxaekb74Lgdsam4tUBon2Ijo7MZdADjuTKdtG
IlUUyJ6RRyA6eMC+KoiEE/3LwZJ8AtYCwZ2AUBJN73qjHhQSyC34+VleFIk2
Katn/AKBg2tLh8xOkKCl9FJ+4xBYkvH1FpNrJL5UHa4PEBCYWHfyq44bJESa
WseuhwS6Bnrbr1WSsGyh742uJ1AYei9i810SrkdOuqQaOkw6BidmCkjMLosJ
4vxLQNpWUD5dTCIirea6TkKgNmt0n/glCRMfI2HiKwLFG/Ys53SS2EXzqvzc
QcD/6gq+l4wEo7m02+w1gQe/vmhM15IYFzEEDgoCF5zXFAT1kzi1+73LbSWB
eGVZiB1JwkyUErdaReA7xi/yxx9IVG+jMtBHwNhIwi0cJVG6e5FOqCHQU70h
lvmJBNXzY4gfQUAQy3FZOU4ibZx7tkVHoMTWfHhykkRNkc3ZkAEC/wE4VX0d

           "]]}, "Charting`Private`Tag#1"]}}, {}}, <|
     "HighlightElements" -> <|
       "Label" -> {"XYLabel"}, "Ball" -> {"InterpolatedBall"}|>, 
      "LayoutOptions" -> <|
       "PanelPlotLayout" -> <||>, 
        "PlotRange" -> {{0, 1}, {0., 0.8414709737813186}}, 
        "Frame" -> {{False, False}, {False, False}}, "AxesOrigin" -> {0, 0}, 
        "ImageSize" -> {360, 360/GoldenRatio}, "Axes" -> {True, True}, 
        "LabelStyle" -> {}, "AspectRatio" -> GoldenRatio^(-1), "DefaultStyle" -> {
          Directive[
           Opacity[1.], 
           RGBColor[0.24, 0.6, 0.8], 
           AbsoluteThickness[2]]}, 
        "HighlightLabelingFunctions" -> <|"CoordinatesToolOptions" -> ({
            (Identity[#]& )[
             Part[#, 1]], 
            (Identity[#]& )[
             Part[#, 2]]}& ), 
          "ScalingFunctions" -> {{Identity, Identity}, {
            Identity, Identity}}|>, "Primitives" -> {}, "GCFlag" -> False|>, 
      "Meta" -> <|
       "DefaultHighlight" -> {"Dynamic", None}, "Index" -> {}, "Function" -> 
        Plot, "GroupHighlight" -> False|>|>, "DynamicHighlight"]]},
  AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948],
  Axes->{True, True},
  AxesLabel->{None, None},
  AxesOrigin->{0, 0},
  DisplayFunction->Identity,
  Frame->{{False, False}, {False, False}},
  FrameLabel->{{None, None}, {None, None}},
  FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}},
  GridLines->{None, None},
  GridLinesStyle->Directive[
    GrayLevel[0.5, 0.4]],
  Method->{
   "AxisPadding" -> Scaled[0.02], "DefaultBoundaryStyle" -> Automatic, 
    "DefaultGraphicsInteraction" -> {
     "Version" -> 1.2, "TrackMousePosition" -> {True, False}, 
      "Effects" -> {
       "Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2}, 
        "Droplines" -> {
         "freeformCursorMode" -> True, 
          "placement" -> {"x" -> "All", "y" -> "None"}}}}, "DefaultMeshStyle" -> 
    AbsolutePointSize[6], "DefaultPlotStyle" -> {
      Directive[
       RGBColor[0.24, 0.6, 0.8], 
       AbsoluteThickness[2]], 
      Directive[
       RGBColor[0.95, 0.627, 0.1425], 
       AbsoluteThickness[2]], 
      Directive[
       RGBColor[0.455, 0.7, 0.21], 
       AbsoluteThickness[2]], 
      Directive[
       RGBColor[0.922526, 0.385626, 0.209179], 
       AbsoluteThickness[2]], 
      Directive[
       RGBColor[0.578, 0.51, 0.85], 
       AbsoluteThickness[2]], 
      Directive[
       RGBColor[0.772079, 0.431554, 0.102387], 
       AbsoluteThickness[2]], 
      Directive[
       RGBColor[0.4, 0.64, 1.], 
       AbsoluteThickness[2]], 
      Directive[
       RGBColor[1., 0.75, 0.], 
       AbsoluteThickness[2]], 
      Directive[
       RGBColor[0.8, 0.4, 0.76], 
       AbsoluteThickness[2]], 
      Directive[
       RGBColor[0.637, 0.65, 0.], 
       AbsoluteThickness[2]], 
      Directive[
       RGBColor[0.915, 0.3325, 0.2125], 
       AbsoluteThickness[2]], 
      Directive[
       RGBColor[0.40082222609352647`, 0.5220066643438841, 0.85], 
       AbsoluteThickness[2]], 
      Directive[
       RGBColor[0.9728288904374106, 0.621644452187053, 0.07336199581899142], 
       AbsoluteThickness[2]], 
      Directive[
       RGBColor[0.736782672705901, 0.358, 0.5030266573755369], 
       AbsoluteThickness[2]], 
      Directive[
       RGBColor[0.28026441037696703`, 0.715, 0.4292089322474965], 
       AbsoluteThickness[2]]}, "DomainPadding" -> Scaled[0.02], 
    "PointSizeFunction" -> "SmallPointSize", "RangePadding" -> Scaled[0.05], 
    "OptimizePlotMarkers" -> True, "IncludeHighlighting" -> "CurrentPoint", 
    "HighlightStyle" -> Automatic, "OptimizePlotMarkers" -> True, 
    "CoordinatesToolOptions" -> {"DisplayFunction" -> ({
        (Identity[#]& )[
         Part[#, 1]], 
        (Identity[#]& )[
         Part[#, 2]]}& ), "CopiedValueFunction" -> ({
        (Identity[#]& )[
         Part[#, 1]], 
        (Identity[#]& )[
         Part[#, 2]]}& )}},
  PlotRange->{{0, 1.}, {0, 0.9993881747002158}},
  PlotRangeClipping->True,
  PlotRangePadding->{{
     Scaled[0.02], 
     Scaled[0.02]}, {
     Scaled[0.02], 
     Scaled[0.05]}},
  Ticks->{Automatic, Automatic}]], "Output",
 CellChangeTimes->{{3.948114839001459*^9, 3.948114901655436*^9}, 
   3.948114939391678*^9, 3.948116826378652*^9, 3.948116913553625*^9, 
   3.948119433490168*^9},
 CellLabel->
  "Out[184]=",ExpressionUUID->"967c071c-4eae-4105-9feb-985162975a4e"]
}, Open  ]],

Cell[BoxData[
 RowBox[{
  RowBox[{"cost", "[", 
   RowBox[{"basis_", ",", "data_"}], "]"}], ":=", 
  RowBox[{
   RowBox[{"Evaluate", "[", 
    RowBox[{"Map", "[", 
     RowBox[{
      RowBox[{"dat", "\[Function]", 
       SuperscriptBox[
        RowBox[{"(", 
         RowBox[{
          RowBox[{"Total", "[", 
           RowBox[{"MapIndexed", "[", 
            RowBox[{
             RowBox[{
              RowBox[{"{", 
               RowBox[{"f", ",", "i"}], "}"}], "\[Function]", 
              RowBox[{
               RowBox[{"Slot", "[", 
                RowBox[{"First", "[", "i", "]"}], "]"}], 
               RowBox[{"f", "[", 
                RowBox[{"dat", "[", 
                 RowBox[{"[", "1", "]"}], "]"}], "]"}]}]}], ",", "basis"}], 
            "]"}], "]"}], "-", 
          RowBox[{"dat", "[", 
           RowBox[{"[", "2", "]"}], "]"}]}], ")"}], "2"]}], ",", "data"}], 
     "]"}], "]"}], "&"}]}]], "Input",
 CellChangeTimes->{{3.9481146507550297`*^9, 3.948114694517828*^9}, {
  3.948114911613784*^9, 3.948115120006487*^9}, {3.948115220931177*^9, 
  3.948115247355875*^9}, {3.9481160066355257`*^9, 3.94811600696346*^9}, {
  3.948116213121961*^9, 3.9481162477815857`*^9}, {3.948116331824791*^9, 
  3.948116376834261*^9}, {3.9481208471533947`*^9, 3.94812085444923*^9}},
 CellLabel->
  "In[299]:=",ExpressionUUID->"ebcff5a2-5e76-49f1-974f-f698316f393b"],

Cell[BoxData[
 RowBox[{
  RowBox[{"dCost", "[", 
   RowBox[{"basis_", ",", "data_"}], "]"}], ":=", 
  RowBox[{
   RowBox[{"Evaluate", "[", 
    RowBox[{"2", 
     RowBox[{"MapIndexed", "[", 
      RowBox[{
       RowBox[{
        RowBox[{"{", 
         RowBox[{"g", ",", "j"}], "}"}], "\[Function]", 
        RowBox[{"Map", "[", 
         RowBox[{
          RowBox[{"dat", "\[Function]", 
           RowBox[{
            RowBox[{"(", 
             RowBox[{
              RowBox[{"Total", "[", 
               RowBox[{"MapIndexed", "[", 
                RowBox[{
                 RowBox[{
                  RowBox[{"{", 
                   RowBox[{"f", ",", "i"}], "}"}], "\[Function]", 
                  RowBox[{
                   RowBox[{"Slot", "[", 
                    RowBox[{"First", "[", "i", "]"}], "]"}], 
                   RowBox[{"f", "[", 
                    RowBox[{"dat", "[", 
                    RowBox[{"[", "1", "]"}], "]"}], "]"}]}]}], ",", "basis"}],
                 "]"}], "]"}], "-", 
              RowBox[{"dat", "[", 
               RowBox[{"[", "2", "]"}], "]"}]}], ")"}], 
            RowBox[{"g", "[", 
             RowBox[{"dat", "[", 
              RowBox[{"[", "1", "]"}], "]"}], "]"}]}]}], ",", "data"}], 
         "]"}]}], ",", "basis"}], "]"}]}], "]"}], "&"}]}]], "Input",
 CellChangeTimes->{{3.948115437620953*^9, 3.948115462277137*^9}, {
  3.94811549743038*^9, 3.948115538808263*^9}, {3.9481156457327147`*^9, 
  3.948115693454411*^9}, {3.9481158115876617`*^9, 3.948115827677*^9}, {
  3.948115867016262*^9, 3.948115887054863*^9}, {3.9481160125721827`*^9, 
  3.948116014267969*^9}, {3.9481162205968657`*^9, 3.94811622169214*^9}, {
  3.948116384891034*^9, 3.9481163886508923`*^9}, {3.948120885650681*^9, 
  3.948120888442535*^9}, {3.948120969862526*^9, 3.948120971702037*^9}},
 CellLabel->
  "In[300]:=",ExpressionUUID->"ea7cb2c9-e52d-4b28-a789-25e067a66acf"],

Cell[BoxData[
 RowBox[{"ClearAll", "[", "gradientDescent", "]"}]], "Input",
 CellChangeTimes->{{3.948121363351396*^9, 3.9481213671171227`*^9}},
 CellLabel->
  "In[301]:=",ExpressionUUID->"bb0fd94f-bd94-4931-9ceb-b1c843b6ffed"],

Cell[BoxData[
 RowBox[{
  RowBox[{
   RowBox[{"gradientDescent", "[", 
    RowBox[{"basis_", ",", "data_", ",", "N_", ",", 
     RowBox[{"batchSize_", ":", "1"}]}], "]"}], "[", "a0__", "]"}], ":=", 
  RowBox[{"Module", "[", 
   RowBox[{
    RowBox[{"{", 
     RowBox[{
      RowBox[{"as", "=", 
       RowBox[{"{", "a0", "}"}]}], ",", 
      RowBox[{"dC", "=", 
       RowBox[{"Compile", "[", 
        RowBox[{
         RowBox[{"Evaluate", "[", 
          RowBox[{
           RowBox[{
            RowBox[{"{", 
             RowBox[{
              RowBox[{"a", "[", "#", "]"}], ",", "_Real"}], "}"}], "&"}], "/@", 
           RowBox[{"Range", "[", 
            RowBox[{"Length", "[", "basis", "]"}], "]"}]}], "]"}], ",", 
         RowBox[{"Evaluate", "[", 
          RowBox[{
           RowBox[{"dCost", "[", 
            RowBox[{"basis", ",", "data"}], "]"}], "@@", 
           RowBox[{"Array", "[", 
            RowBox[{"a", ",", 
             RowBox[{"Length", "[", "basis", "]"}]}], "]"}]}], "]"}]}], 
        "]"}]}], ",", 
      RowBox[{"c", "=", 
       RowBox[{"Compile", "[", 
        RowBox[{
         RowBox[{"Evaluate", "[", 
          RowBox[{
           RowBox[{
            RowBox[{"{", 
             RowBox[{
              RowBox[{"a", "[", "#", "]"}], ",", "_Real"}], "}"}], "&"}], "/@", 
           RowBox[{"Range", "[", 
            RowBox[{"Length", "[", "basis", "]"}], "]"}]}], "]"}], ",", 
         RowBox[{"Evaluate", "[", 
          RowBox[{
           RowBox[{"cost", "[", 
            RowBox[{"basis", ",", "data"}], "]"}], "@@", 
           RowBox[{"Array", "[", 
            RowBox[{"a", ",", 
             RowBox[{"Length", "[", "basis", "]"}]}], "]"}]}], "]"}]}], 
        "]"}]}], ",", 
      RowBox[{"\[Alpha]", "=", 
       RowBox[{"1.", "/", "1000"}]}], ",", "gC", ",", "ds"}], "}"}], ",", 
    "\[IndentingNewLine]", 
    RowBox[{
     RowBox[{"Do", "[", "\[IndentingNewLine]", 
      RowBox[{
       RowBox[{
        RowBox[{"ds", "=", 
         RowBox[{"RandomSample", "[", 
          RowBox[{
           RowBox[{"Range", "[", 
            RowBox[{"Length", "[", "data", "]"}], "]"}], ",", 
           RowBox[{"Ceiling", "[", 
            RowBox[{"batchSize", " ", 
             RowBox[{"Length", "[", "data", "]"}]}], "]"}]}], "]"}]}], ";", 
        "\[IndentingNewLine]", 
        RowBox[{"gC", "=", 
         RowBox[{"Total", "[", 
          RowBox[{
           RowBox[{"Transpose", "[", 
            RowBox[{"dC", "@@", "as"}], "]"}], "[", 
           RowBox[{"[", "ds", "]"}], "]"}], "]"}]}], ";", 
        "\[IndentingNewLine]", 
        RowBox[{"While", "[", 
         RowBox[{
          RowBox[{
           RowBox[{
            RowBox[{"(", 
             RowBox[{"Total", "[", 
              RowBox[{
               RowBox[{"(", 
                RowBox[{"c", "@@", "as"}], ")"}], "[", 
               RowBox[{"[", "ds", "]"}], "]"}], "]"}], ")"}], "-", 
            RowBox[{"(", 
             RowBox[{"Total", "[", 
              RowBox[{
               RowBox[{"(", 
                RowBox[{"c", "@@", 
                 RowBox[{"(", 
                  RowBox[{"as", "-", 
                   RowBox[{"\[Alpha]", " ", "gC"}]}], ")"}]}], ")"}], "[", 
               RowBox[{"[", "ds", "]"}], "]"}], "]"}], ")"}]}], "<=", 
           RowBox[{
            FractionBox["1", "2"], "\[Alpha]", " ", 
            SuperscriptBox[
             RowBox[{"Norm", "[", "gC", "]"}], "2"]}]}], ",", 
          "\[IndentingNewLine]", 
          RowBox[{"\[Alpha]", "/=", "2"}]}], "]"}], ";", 
        "\[IndentingNewLine]", 
        RowBox[{"as", "-=", 
         RowBox[{"\[Alpha]", " ", "gC"}]}], ";", "\[IndentingNewLine]", 
        RowBox[{"\[Alpha]", "*=", "1.5"}], ";"}], "\[IndentingNewLine]", ",", 
       "N"}], "]"}], ";", "\[IndentingNewLine]", "as"}]}], 
   "\[IndentingNewLine]", "]"}]}]], "Input",
 CellChangeTimes->{{3.948117233526268*^9, 3.948117603852785*^9}, {
   3.9481176659671373`*^9, 3.9481176719591713`*^9}, 3.948117735041892*^9, {
   3.948117805692868*^9, 3.9481178357418127`*^9}, {3.948117937610026*^9, 
   3.94811793789774*^9}, {3.948118111668573*^9, 3.9481181166207647`*^9}, 
   3.948118193932486*^9, {3.948118273183552*^9, 3.948118279959346*^9}, {
   3.9481184892486267`*^9, 3.948118507753124*^9}, {3.948118555059259*^9, 
   3.9481186949930067`*^9}, {3.948118745259131*^9, 3.9481187773723097`*^9}, 
   3.948119143004342*^9, 3.94811918666159*^9, 3.948119633761348*^9, {
   3.948120810376543*^9, 3.9481208175284843`*^9}, {3.948120901435948*^9, 
   3.9481209201279697`*^9}, {3.94812102608088*^9, 3.948121029457165*^9}, {
   3.948121408520773*^9, 3.948121428465313*^9}, {3.948121468978998*^9, 
   3.948121528102345*^9}, {3.948122702389986*^9, 3.948122705597598*^9}, {
   3.948124909199629*^9, 3.948124909775044*^9}},
 CellLabel->
  "In[551]:=",ExpressionUUID->"50ff86b5-737b-41c1-94ff-2145f7b2e4d1"],

Cell[BoxData[
 RowBox[{
  RowBox[{
   RowBox[{"gradientDescent2", "[", 
    RowBox[{"basis_", ",", "data_", ",", "N_", ",", 
     RowBox[{"\[Gamma]_", ":", "0"}]}], "]"}], "[", "a0__", "]"}], ":=", 
  RowBox[{"Module", "[", 
   RowBox[{
    RowBox[{"{", 
     RowBox[{
      RowBox[{"as", "=", 
       RowBox[{"{", "a0", "}"}]}], ",", 
      RowBox[{"dC", "=", 
       RowBox[{"Compile", "[", 
        RowBox[{
         RowBox[{"Evaluate", "[", 
          RowBox[{
           RowBox[{
            RowBox[{"{", 
             RowBox[{
              RowBox[{"a", "[", "#", "]"}], ",", "_Real"}], "}"}], "&"}], "/@", 
           RowBox[{"Range", "[", 
            RowBox[{"Length", "[", "basis", "]"}], "]"}]}], "]"}], ",", 
         RowBox[{"Evaluate", "[", 
          RowBox[{"Total", "[", 
           RowBox[{"Transpose", "[", 
            RowBox[{
             RowBox[{"dCost", "[", 
              RowBox[{"basis", ",", "data"}], "]"}], "@@", 
             RowBox[{"Array", "[", 
              RowBox[{"a", ",", 
               RowBox[{"Length", "[", "basis", "]"}]}], "]"}]}], "]"}], "]"}],
           "]"}]}], "]"}]}], ",", 
      RowBox[{"c", "=", 
       RowBox[{"Compile", "[", 
        RowBox[{
         RowBox[{"Evaluate", "[", 
          RowBox[{
           RowBox[{
            RowBox[{"{", 
             RowBox[{
              RowBox[{"a", "[", "#", "]"}], ",", "_Real"}], "}"}], "&"}], "/@", 
           RowBox[{"Range", "[", 
            RowBox[{"Length", "[", "basis", "]"}], "]"}]}], "]"}], ",", 
         RowBox[{"Evaluate", "[", 
          RowBox[{"Total", "[", 
           RowBox[{
            RowBox[{"cost", "[", 
             RowBox[{"basis", ",", "data"}], "]"}], "@@", 
            RowBox[{"Array", "[", 
             RowBox[{"a", ",", 
              RowBox[{"Length", "[", "basis", "]"}]}], "]"}]}], "]"}], 
          "]"}]}], "]"}]}], ",", 
      RowBox[{"\[Alpha]", "=", 
       RowBox[{"1.", "/", "1000"}]}], ",", "gC", ",", "ds"}], "}"}], ",", 
    "\[IndentingNewLine]", 
    RowBox[{
     RowBox[{"Do", "[", "\[IndentingNewLine]", 
      RowBox[{
       RowBox[{
        RowBox[{"gC", "=", 
         RowBox[{"dC", "@@", "as"}]}], ";", "\[IndentingNewLine]", 
        RowBox[{"as", "-=", 
         RowBox[{
          RowBox[{"\[Alpha]", " ", "gC"}], "+", 
          RowBox[{"\[Gamma]", " ", 
           RowBox[{"RandomVariate", "[", 
            RowBox[{
             RowBox[{"NormalDistribution", "[", "]"}], ",", 
             RowBox[{"Length", "[", "as", "]"}]}], "]"}]}]}]}], ";"}], 
       "\[IndentingNewLine]", ",", "N"}], "]"}], ";", "\[IndentingNewLine]", 
     "as"}]}], "\[IndentingNewLine]", "]"}]}]], "Input",
 CellChangeTimes->{{3.9481238367824097`*^9, 3.948123884509636*^9}, {
   3.948123924305654*^9, 3.948123933543521*^9}, 3.948123967984892*^9, {
   3.948125127504175*^9, 3.948125203394734*^9}},
 CellLabel->
  "In[559]:=",ExpressionUUID->"e23ecac0-2ba7-4f6f-af3e-48836159571d"],

Cell[BoxData[
 RowBox[{
  RowBox[{"polynomialBasis", "[", "m_", "]"}], ":=", 
  RowBox[{"Prepend", "[", 
   RowBox[{
    RowBox[{
     RowBox[{
      RowBox[{"(", 
       RowBox[{"x", "\[Function]", 
        SuperscriptBox["x", "#"]}], ")"}], "&"}], "/@", 
     RowBox[{"Range", "[", 
      RowBox[{"1", ",", 
       RowBox[{"m", "-", "1"}]}], "]"}]}], ",", 
    RowBox[{"1", "&"}]}], "]"}]}]], "Input",
 CellChangeTimes->{{3.948116462294406*^9, 3.9481164893104753`*^9}, {
  3.9481194510477343`*^9, 3.948119460559915*^9}},
 CellLabel->
  "In[188]:=",ExpressionUUID->"a4305efd-2d5e-45f6-868d-8e07fb522f0e"],

Cell[BoxData[
 RowBox[{
  RowBox[{"edgeBasis", "[", "m_", "]"}], ":=", 
  RowBox[{"Prepend", "[", 
   RowBox[{
    RowBox[{"Map", "[", 
     RowBox[{
      RowBox[{
       RowBox[{"(", 
        RowBox[{"x", "\[Function]", 
         RowBox[{"Abs", "[", 
          RowBox[{"x", "-", 
           RowBox[{"#", "/", 
            RowBox[{"(", 
             RowBox[{"m", "-", "1"}], ")"}]}]}], "]"}]}], ")"}], "&"}], ",", 
      RowBox[{"Range", "[", 
       RowBox[{"0", ",", 
        RowBox[{"m", "-", "2"}]}], "]"}]}], "]"}], ",", 
    RowBox[{"1", "&"}]}], "]"}]}]], "Input",
 CellChangeTimes->{{3.948119521796258*^9, 3.948119527674906*^9}, {
  3.9481195633012466`*^9, 3.9481195659801826`*^9}, {3.948119914147265*^9, 
  3.948120012039339*^9}, {3.948120104674686*^9, 3.948120112218534*^9}, {
  3.948120146260414*^9, 3.948120149652207*^9}, {3.9481203905183697`*^9, 
  3.9481204000139303`*^9}, {3.9481243585199614`*^9, 3.9481243588162127`*^9}},
 CellLabel->
  "In[516]:=",ExpressionUUID->"5af352c6-8896-4a1b-b393-d7f34eecf643"],

Cell[BoxData[
 RowBox[{
  RowBox[{"edgeBasis", "[", "m_", "]"}], ":=", 
  RowBox[{"Map", "[", 
   RowBox[{
    RowBox[{
     RowBox[{"(", 
      RowBox[{"x", "\[Function]", 
       RowBox[{"UnitStep", "[", 
        RowBox[{
         RowBox[{"(", 
          RowBox[{"x", "-", 
           RowBox[{"#", "/", 
            RowBox[{"(", 
             RowBox[{"m", "-", "1"}], ")"}]}]}], ")"}], 
         RowBox[{"(", 
          RowBox[{"m", "-", "1"}], ")"}]}], "]"}]}], ")"}], "&"}], ",", 
    RowBox[{"Range", "[", 
     RowBox[{"0", ",", 
      RowBox[{"m", "-", "1"}]}], "]"}]}], "]"}]}]], "Input",
 CellChangeTimes->{{3.948123281274746*^9, 3.9481233203014507`*^9}, {
  3.948123420961874*^9, 3.948123423809853*^9}},
 CellLabel->
  "In[415]:=",ExpressionUUID->"8ba63f81-4994-40a7-b866-6e34144d0207"],

Cell[BoxData[
 RowBox[{
  RowBox[{
   RowBox[{"trialFunction", "[", "basis_", "]"}], "[", "as__", "]"}], ":=", 
  RowBox[{
   RowBox[{"Total", "[", 
    RowBox[{"MapIndexed", "[", 
     RowBox[{
      RowBox[{
       RowBox[{"{", 
        RowBox[{"f", ",", "i"}], "}"}], "\[Function]", 
       RowBox[{
        RowBox[{
         RowBox[{"{", "as", "}"}], "[", 
         RowBox[{"[", 
          RowBox[{"First", "[", "i", "]"}], "]"}], "]"}], 
        RowBox[{"f", "[", "#", "]"}]}]}], ",", "basis"}], "]"}], "]"}], 
   "&"}]}]], "Input",
 CellChangeTimes->{{3.948116940034223*^9, 3.948117016419715*^9}, {
  3.94811710860789*^9, 3.9481171110325108`*^9}},
 CellLabel->"In[13]:=",ExpressionUUID->"81c87f69-631d-4c87-9a94-4038f7ee3d75"],

Cell[BoxData[
 RowBox[{
  RowBox[{"testdat", "=", 
   RowBox[{"generateData", "[", 
    RowBox[{
     RowBox[{
      RowBox[{"Sin", "[", 
       RowBox[{"2", "\[Pi]", "#"}], "]"}], "&"}], ",", "100", ",", "0.2"}], 
    "]"}]}], ";"}]], "Input",
 CellChangeTimes->{{3.9481168508702173`*^9, 3.948116899454852*^9}, 
   3.9481171447782393`*^9, {3.948117180762624*^9, 3.948117214019606*^9}, {
   3.94811837277113*^9, 3.948118383699266*^9}, {3.948118899312563*^9, 
   3.948118899447995*^9}, 3.948119050950959*^9, {3.948119293465208*^9, 
   3.948119293552874*^9}, {3.9481203068749104`*^9, 3.9481203145627117`*^9}, {
   3.948121823993528*^9, 3.9481218474731483`*^9}, {3.948122734317855*^9, 
   3.948122734405447*^9}, {3.9481241265745087`*^9, 3.948124128286194*^9}, {
   3.948125429403038*^9, 3.9481254296907167`*^9}},
 CellLabel->
  "In[573]:=",ExpressionUUID->"8b2c7f0e-f6fa-4dcd-a222-e419e5bac57f"],

Cell[BoxData[
 RowBox[{
  RowBox[{"testini", "=", 
   RowBox[{"RandomVariate", "[", 
    RowBox[{
     RowBox[{"NormalDistribution", "[", "]"}], ",", "10"}], "]"}]}], 
  ";"}]], "Input",
 CellChangeTimes->{{3.948117958635509*^9, 3.948117961737759*^9}, 
   3.948118009196693*^9, {3.948119243510982*^9, 3.9481192435827293`*^9}, {
   3.948119319522298*^9, 3.948119319625621*^9}, {3.948120201798565*^9, 
   3.948120228031189*^9}},
 CellLabel->
  "In[574]:=",ExpressionUUID->"234f897f-aaa8-4394-81a2-948744438d34"],

Cell[CellGroupData[{

Cell[BoxData[
 RowBox[{"Norm", "[", 
  RowBox[{"Total", "[", 
   RowBox[{"Transpose", "[", 
    RowBox[{
     RowBox[{"dCost", "[", 
      RowBox[{
       RowBox[{"edgeBasis", "[", "10", "]"}], ",", "testdat"}], "]"}], "@@", 
     RowBox[{"(", 
      RowBox[{"testresult", "=", 
       RowBox[{
        RowBox[{"gradientDescent", "[", 
         RowBox[{
          RowBox[{"edgeBasis", "[", "10", "]"}], ",", "testdat", ",", 
          "60000"}], "]"}], "@@", "testini"}]}], ")"}]}], "]"}], "]"}], 
  "]"}]], "Input",
 CellChangeTimes->{{3.948116443805812*^9, 3.948116595874456*^9}, 
   3.94811663448494*^9, {3.948116675111467*^9, 3.94811669012147*^9}, {
   3.9481170279593077`*^9, 3.948117034948435*^9}, {3.948117139185307*^9, 
   3.948117139416718*^9}, {3.948117619301654*^9, 3.948117644869664*^9}, {
   3.948117701129861*^9, 3.948117725424323*^9}, 3.9481177976042557`*^9, {
   3.948117949234351*^9, 3.948118005251853*^9}, {3.9481181222490892`*^9, 
   3.948118131658963*^9}, {3.948118183420438*^9, 3.948118183730976*^9}, {
   3.948118290031867*^9, 3.948118300008397*^9}, {3.948118391012185*^9, 
   3.9481183956216516`*^9}, {3.948118651465261*^9, 3.9481186519421597`*^9}, {
   3.948118782923333*^9, 3.948118793932273*^9}, 3.948118905648818*^9, {
   3.948119076145598*^9, 3.948119102008594*^9}, {3.9481191951971827`*^9, 
   3.948119248246908*^9}, {3.948119314874256*^9, 3.94811936783634*^9}, {
   3.9481194690246973`*^9, 3.948119485561571*^9}, {3.948119589261383*^9, 
   3.9481196477516117`*^9}, {3.948119679469735*^9, 3.948119689161141*^9}, {
   3.9481200324083853`*^9, 3.9481200368079777`*^9}, {3.9481201730465384`*^9, 
   3.9481202343674183`*^9}, {3.9481203633966293`*^9, 3.948120371429234*^9}, {
   3.9481204224315767`*^9, 3.948120494522078*^9}, {3.948120930197262*^9, 
   3.948120931685192*^9}, {3.9481213776067333`*^9, 3.9481213788862867`*^9}, 
   3.948121538590053*^9, {3.948121870162993*^9, 3.948121871410328*^9}, {
   3.94812275751991*^9, 3.948122766831901*^9}, {3.9481228662998743`*^9, 
   3.948122877747407*^9}, {3.948123336406896*^9, 3.948123353258017*^9}, {
   3.94812343127054*^9, 3.948123446330563*^9}, {3.9481243179996367`*^9, 
   3.9481243264310627`*^9}, {3.9481243644242563`*^9, 3.948124380784541*^9}, {
   3.94812544819646*^9, 3.9481254615569973`*^9}},
 CellLabel->
  "In[578]:=",ExpressionUUID->"56984f37-ab18-406a-b6c4-61b6a859e4b1"],

Cell[BoxData["0.000022340104493946678`"], "Output",
 CellChangeTimes->{
  3.948116920781104*^9, {3.948117036764943*^9, 3.948117051224715*^9}, {
   3.948117143594776*^9, 3.948117150513681*^9}, 3.94811718447971*^9, 
   3.9481172182141438`*^9, {3.948117638498147*^9, 3.9481177376918983`*^9}, {
   3.948117798579523*^9, 3.948117841103928*^9}, {3.948117941742052*^9, 
   3.94811801037414*^9}, {3.9481181194825706`*^9, 3.948118132143605*^9}, 
   3.948118184196604*^9, {3.9481182858143787`*^9, 3.948118292728421*^9}, 
   3.948118322966217*^9, {3.948118392460451*^9, 3.948118404573513*^9}, {
   3.948118653119342*^9, 3.948118698646429*^9}, {3.948118766073882*^9, 
   3.948118794596593*^9}, {3.948118903300827*^9, 3.948118909133889*^9}, {
   3.9481190572606773`*^9, 3.948119081170752*^9}, 3.948119111637991*^9, {
   3.948119166557391*^9, 3.948119265285523*^9}, {3.948119305677433*^9, 
   3.9481193498353577`*^9}, 3.94811938690238*^9, {3.948119442465448*^9, 
   3.948119488768084*^9}, {3.948119601064068*^9, 3.94811965103616*^9}, {
   3.9481196820036488`*^9, 3.948119689423168*^9}, 3.9481199378971252`*^9, 
   3.94811996818202*^9, {3.9481200239541616`*^9, 3.948120037451919*^9}, 
   3.948120124437718*^9, {3.94812016545816*^9, 3.948120182462428*^9}, {
   3.948120213371776*^9, 3.9481202375587273`*^9}, {3.948120347649246*^9, 
   3.948120375297764*^9}, 3.948120423026642*^9, {3.948120453235249*^9, 
   3.948120502281745*^9}, 3.948120933029711*^9, 3.948120980517907*^9, 
   3.948121033986322*^9, {3.9481213707851553`*^9, 3.948121384234291*^9}, 
   3.948121539500517*^9, {3.94812186005191*^9, 3.948121878155533*^9}, 
   3.948122744627069*^9, {3.9481228647789917`*^9, 3.948122892044383*^9}, 
   3.948123301430662*^9, {3.948123334216116*^9, 3.948123353618032*^9}, {
   3.948123427082261*^9, 3.948123446662758*^9}, 3.9481241304086237`*^9, {
   3.948124312952623*^9, 3.948124385437797*^9}, {3.9481254397972193`*^9, 
   3.94812546942111*^9}},
 CellLabel->
  "Out[578]=",ExpressionUUID->"919b4663-4a6a-4083-b40d-cf6c6b427a33"]
}, Open  ]],

Cell[CellGroupData[{

Cell[BoxData[
 RowBox[{"Show", "[", 
  RowBox[{
   RowBox[{"ListPlot", "[", "testdat", "]"}], ",", 
   RowBox[{"Plot", "[", 
    RowBox[{
     RowBox[{"{", 
      RowBox[{
       RowBox[{"Sin", "[", 
        RowBox[{"2", "\[Pi]", " ", "x"}], "]"}], ",", 
       RowBox[{
        RowBox[{"(", 
         RowBox[{
          RowBox[{"trialFunction", "[", 
           RowBox[{"edgeBasis", "[", "10", "]"}], "]"}], "@@", "testresult"}],
          ")"}], "[", "x", "]"}]}], "}"}], ",", 
     RowBox[{"{", 
      RowBox[{"x", ",", "0", ",", "1"}], "}"}]}], "]"}]}], "]"}]], "Input",
 CellChangeTimes->{{3.9481229332378893`*^9, 3.948122934349903*^9}},
 CellLabel->
  "In[579]:=",ExpressionUUID->"5945f6d0-c38c-4966-b262-8c714abbd4ad"],

Cell[BoxData[
 GraphicsBox[{{{}, 
    InterpretationBox[{
      TagBox[
       TagBox[
        {RGBColor[0.24, 0.6, 0.8], PointSize[0.009166666666666668], 
         AbsoluteThickness[2], PointBox[CompressedData["
1:eJw1lQlQE1ccxtHKSNNaI2NF8EC5FGFUGEWpx6f1qANNxQsx4IUwAgMFQS2C
igqm0ip1GlQUChQPcAZRsV6Y8kBAsKASkCNgOHKQkxxEqvXsZnfd2Z2dnX3v
/77/9/3e7vTw+PWRI21sbCKoy3r/dCwtkp6ar2kioWR9Yfv1DCz2mLisNOER
mOds2I17+L7hdhWxcz5oqh5dgIUdZfcz/s1j319CfNzHHV4RUvjE717T1H0V
ptmhic8+iMGMv44LLe07vQNkoF87lqNU8u4Mv6GXnf8XBGkbVtS3K7HaYete
8aq74G3RhXotVLD17iPzrt717wX9mFy/hzpF4BZNuyYJ0LD1CbKy/CvqLxmR
smhFeM/TKjybGsIXij+t9xBi30KNo50UkUKenySiBq4PCrnVejW7fi0iXd5y
kv0VCNJt5jx/Uwe3ZeLt29rUrJ56bFrr15DM1YMuf7oBH51T3l9RDLH6HiPt
XZXHrLyXmJEbW/7YoxHzorzMURwtq7cJuZ0nRiV7GGBv2S+oFT1Bq+fMR9wH
Q6z+Z/heWn7aJ8yCtMvLrm33bEaN8WFJ+Fgz208zzqxzuegoGgYlxqoIMZK1
4YeIke2vBfICu0b7LWbEvA84yictuCe+F506V8/224qWJRyf1zeGsMOT7hDL
K0v28F6a2P6fI0rw58Zgjh6b6KMNNc1zjMJKHetHG6bsrLTw/DQIpKpTM/A2
ZpZn5DQd608HtmXXG11rZFhOqQ/SdaBYkhT7dImS9asTlhGuB7o+DoASY1UE
10e+R7fvlrH+SRDGGR+2S6CCt621gy5sTvXyGO0rYf3sxhGHxRePcS7DhZkA
czr3jgu/l/X3BTJucHc9f9IKWo6DFEE5+3u+kxQQxm8pNS+44sdz9RiTecAq
CSHFW9Qdt/JZ/3sR2HhWc6yzFp/dPkwl0IsySVyY0442No8+iPiSCYKJScQ6
2vlgHyom5fmccKhg8+nDB1l7QvStOvITtdof0/uR7pd0cF11A2Hy6sf5BOFu
s6gVibTgfvD6VSvXOXQQJj8ZMuZec3QobCVxVLe5sTKUZ2wV+cjUhMlThmm2
ZPXnq5WEHm4vh++c7KepFVrC5CtHYuLlw6oLKmJ1O+euHOKoNN0XAjlh8lag
PSXfU/R7N6Ht2apAV3xm8a7OPna/K+Bkc+fblGoTCaHSPjNSiX/SZ7u7izSE
4UGJ0uOvJBtfK8kGavT4EiX8N06VndNrCcOHEsdlTjz3Wj35gQ54AJMnjf9l
TYKZMLwMwCbv8JGUShOh5VsGcMx+zIx9/CHC8KPChL62VbneFkLjkqNC4Mz9
0aZQC2F4UmFuwtlUQ7aRLH3dlz52qRqcJBcSFqolDF9qDJwqutesNBD/LPnC
LLkabou8BB8WDxGGNw1kexVLhov1ZJ7bwOCXmRr8Jm8qGrqqIQxOGtwsPOnJ
TTWTORXqol9nayFMtDP39KgIw6MWyeu/yU33MxBm+2iReKX1+HCdiTB86rDz
ps70s1BN6PIHdHgzaiLPMaKfMLzqEF62aH70aBWhcXPWI2e6zVevNmsIw68e
ew/95z2uQ0acaGD1UOavGKkPVhCG50G0O7s72o7Tkq9Lhr1sYwaxrdEUN7mw
i+V7EMGWqNRzK7sIlzbIAE7E+X0j6qSE4d2AjOIpCwLSXhA63tsGZBcUhYjk
EvZ7bkRswsmsI91lhG6Xb0RV6fB5YWkJYfaDEfkbcsNjJxHC/C1M0CY5Bwkf
tOB/IhAvzw==
          "]]},
        Annotation[#, "Charting`Private`Tag#1"]& ],
       {"WolframDynamicHighlight", <|
        "Label" -> {"XYLabel"}, "Ball" -> {"IndicatedBall"}|>}], 
      StyleBox[
       DynamicBox[(Charting`HighlightActionBox["DynamicHighlight", {}, 
         Slot["HighlightElements"], 
         Slot["LayoutOptions"], 
         Slot["Meta"], 
         Charting`HighlightActionFunction["DynamicHighlight", {{
            Annotation[{
              Directive[
               PointSize[0.009166666666666668], 
               RGBColor[0.24, 0.6, 0.8], 
               AbsoluteThickness[2]], 
              Point[CompressedData["
1:eJw1lQlQE1ccxtHKSNNaI2NF8EC5FGFUGEWpx6f1qANNxQsx4IUwAgMFQS2C
igqm0ip1GlQUChQPcAZRsV6Y8kBAsKASkCNgOHKQkxxEqvXsZnfd2Z2dnX3v
/77/9/3e7vTw+PWRI21sbCKoy3r/dCwtkp6ar2kioWR9Yfv1DCz2mLisNOER
mOds2I17+L7hdhWxcz5oqh5dgIUdZfcz/s1j319CfNzHHV4RUvjE717T1H0V
ptmhic8+iMGMv44LLe07vQNkoF87lqNU8u4Mv6GXnf8XBGkbVtS3K7HaYete
8aq74G3RhXotVLD17iPzrt717wX9mFy/hzpF4BZNuyYJ0LD1CbKy/CvqLxmR
smhFeM/TKjybGsIXij+t9xBi30KNo50UkUKenySiBq4PCrnVejW7fi0iXd5y
kv0VCNJt5jx/Uwe3ZeLt29rUrJ56bFrr15DM1YMuf7oBH51T3l9RDLH6HiPt
XZXHrLyXmJEbW/7YoxHzorzMURwtq7cJuZ0nRiV7GGBv2S+oFT1Bq+fMR9wH
Q6z+Z/heWn7aJ8yCtMvLrm33bEaN8WFJ+Fgz208zzqxzuegoGgYlxqoIMZK1
4YeIke2vBfICu0b7LWbEvA84yictuCe+F506V8/224qWJRyf1zeGsMOT7hDL
K0v28F6a2P6fI0rw58Zgjh6b6KMNNc1zjMJKHetHG6bsrLTw/DQIpKpTM/A2
ZpZn5DQd608HtmXXG11rZFhOqQ/SdaBYkhT7dImS9asTlhGuB7o+DoASY1UE
10e+R7fvlrH+SRDGGR+2S6CCt621gy5sTvXyGO0rYf3sxhGHxRePcS7DhZkA
czr3jgu/l/X3BTJucHc9f9IKWo6DFEE5+3u+kxQQxm8pNS+44sdz9RiTecAq
CSHFW9Qdt/JZ/3sR2HhWc6yzFp/dPkwl0IsySVyY0442No8+iPiSCYKJScQ6
2vlgHyom5fmccKhg8+nDB1l7QvStOvITtdof0/uR7pd0cF11A2Hy6sf5BOFu
s6gVibTgfvD6VSvXOXQQJj8ZMuZec3QobCVxVLe5sTKUZ2wV+cjUhMlThmm2
ZPXnq5WEHm4vh++c7KepFVrC5CtHYuLlw6oLKmJ1O+euHOKoNN0XAjlh8lag
PSXfU/R7N6Ht2apAV3xm8a7OPna/K+Bkc+fblGoTCaHSPjNSiX/SZ7u7izSE
4UGJ0uOvJBtfK8kGavT4EiX8N06VndNrCcOHEsdlTjz3Wj35gQ54AJMnjf9l
TYKZMLwMwCbv8JGUShOh5VsGcMx+zIx9/CHC8KPChL62VbneFkLjkqNC4Mz9
0aZQC2F4UmFuwtlUQ7aRLH3dlz52qRqcJBcSFqolDF9qDJwqutesNBD/LPnC
LLkabou8BB8WDxGGNw1kexVLhov1ZJ7bwOCXmRr8Jm8qGrqqIQxOGtwsPOnJ
TTWTORXqol9nayFMtDP39KgIw6MWyeu/yU33MxBm+2iReKX1+HCdiTB86rDz
ps70s1BN6PIHdHgzaiLPMaKfMLzqEF62aH70aBWhcXPWI2e6zVevNmsIw68e
ew/95z2uQ0acaGD1UOavGKkPVhCG50G0O7s72o7Tkq9Lhr1sYwaxrdEUN7mw
i+V7EMGWqNRzK7sIlzbIAE7E+X0j6qSE4d2AjOIpCwLSXhA63tsGZBcUhYjk
EvZ7bkRswsmsI91lhG6Xb0RV6fB5YWkJYfaDEfkbcsNjJxHC/C1M0CY5Bwkf
tOB/IhAvzw==
               "]]}, "Charting`Private`Tag#1"]}}, <|
          "HighlightElements" -> <|
            "Label" -> {"XYLabel"}, "Ball" -> {"IndicatedBall"}|>, 
           "LayoutOptions" -> <|
            "PanelPlotLayout" -> <||>, 
             "PlotRange" -> {{0, 1.}, {-1.2099460715858352`, 
               1.3584228870796313`}}, 
             "Frame" -> {{False, False}, {False, False}}, 
             "AxesOrigin" -> {0, 0}, "ImageSize" -> {360, 360/GoldenRatio}, 
             "Axes" -> {True, True}, "LabelStyle" -> {}, "AspectRatio" -> 
             GoldenRatio^(-1), "DefaultStyle" -> {
               Directive[
                PointSize[0.009166666666666668], 
                RGBColor[0.24, 0.6, 0.8], 
                AbsoluteThickness[2]]}, 
             "HighlightLabelingFunctions" -> <|"CoordinatesToolOptions" -> ({
                 (Identity[#]& )[
                  Part[#, 1]], 
                 (Identity[#]& )[
                  Part[#, 2]]}& ), 
               "ScalingFunctions" -> {{Identity, Identity}, {
                 Identity, Identity}}|>, "Primitives" -> {}, "GCFlag" -> 
             False|>, 
           "Meta" -> <|
            "DefaultHighlight" -> {"Dynamic", None}, "Index" -> {}, 
             "Function" -> ListPlot, "GroupHighlight" -> False|>|>]]& )[<|
         "HighlightElements" -> <|
           "Label" -> {"XYLabel"}, "Ball" -> {"IndicatedBall"}|>, 
          "LayoutOptions" -> <|
           "PanelPlotLayout" -> <||>, 
            "PlotRange" -> {{0, 1.}, {-1.2099460715858352`, 
              1.3584228870796313`}}, 
            "Frame" -> {{False, False}, {False, False}}, 
            "AxesOrigin" -> {0, 0}, "ImageSize" -> {360, 360/GoldenRatio}, 
            "Axes" -> {True, True}, "LabelStyle" -> {}, "AspectRatio" -> 
            GoldenRatio^(-1), "DefaultStyle" -> {
              Directive[
               PointSize[0.009166666666666668], 
               RGBColor[0.24, 0.6, 0.8], 
               AbsoluteThickness[2]]}, 
            "HighlightLabelingFunctions" -> <|"CoordinatesToolOptions" -> ({
                (Identity[#]& )[
                 Part[#, 1]], 
                (Identity[#]& )[
                 Part[#, 2]]}& ), 
              "ScalingFunctions" -> {{Identity, Identity}, {
                Identity, Identity}}|>, "Primitives" -> {}, "GCFlag" -> 
            False|>, 
          "Meta" -> <|
           "DefaultHighlight" -> {"Dynamic", None}, "Index" -> {}, "Function" -> 
            ListPlot, "GroupHighlight" -> False|>|>]],
       Selectable->False]},
     Annotation[{{
        Annotation[{
          Directive[
           PointSize[0.009166666666666668], 
           RGBColor[0.24, 0.6, 0.8], 
           AbsoluteThickness[2]], 
          Point[CompressedData["
1:eJw1lQlQE1ccxtHKSNNaI2NF8EC5FGFUGEWpx6f1qANNxQsx4IUwAgMFQS2C
igqm0ip1GlQUChQPcAZRsV6Y8kBAsKASkCNgOHKQkxxEqvXsZnfd2Z2dnX3v
/77/9/3e7vTw+PWRI21sbCKoy3r/dCwtkp6ar2kioWR9Yfv1DCz2mLisNOER
mOds2I17+L7hdhWxcz5oqh5dgIUdZfcz/s1j319CfNzHHV4RUvjE717T1H0V
ptmhic8+iMGMv44LLe07vQNkoF87lqNU8u4Mv6GXnf8XBGkbVtS3K7HaYete
8aq74G3RhXotVLD17iPzrt717wX9mFy/hzpF4BZNuyYJ0LD1CbKy/CvqLxmR
smhFeM/TKjybGsIXij+t9xBi30KNo50UkUKenySiBq4PCrnVejW7fi0iXd5y
kv0VCNJt5jx/Uwe3ZeLt29rUrJ56bFrr15DM1YMuf7oBH51T3l9RDLH6HiPt
XZXHrLyXmJEbW/7YoxHzorzMURwtq7cJuZ0nRiV7GGBv2S+oFT1Bq+fMR9wH
Q6z+Z/heWn7aJ8yCtMvLrm33bEaN8WFJ+Fgz208zzqxzuegoGgYlxqoIMZK1
4YeIke2vBfICu0b7LWbEvA84yictuCe+F506V8/224qWJRyf1zeGsMOT7hDL
K0v28F6a2P6fI0rw58Zgjh6b6KMNNc1zjMJKHetHG6bsrLTw/DQIpKpTM/A2
ZpZn5DQd608HtmXXG11rZFhOqQ/SdaBYkhT7dImS9asTlhGuB7o+DoASY1UE
10e+R7fvlrH+SRDGGR+2S6CCt621gy5sTvXyGO0rYf3sxhGHxRePcS7DhZkA
czr3jgu/l/X3BTJucHc9f9IKWo6DFEE5+3u+kxQQxm8pNS+44sdz9RiTecAq
CSHFW9Qdt/JZ/3sR2HhWc6yzFp/dPkwl0IsySVyY0442No8+iPiSCYKJScQ6
2vlgHyom5fmccKhg8+nDB1l7QvStOvITtdof0/uR7pd0cF11A2Hy6sf5BOFu
s6gVibTgfvD6VSvXOXQQJj8ZMuZec3QobCVxVLe5sTKUZ2wV+cjUhMlThmm2
ZPXnq5WEHm4vh++c7KepFVrC5CtHYuLlw6oLKmJ1O+euHOKoNN0XAjlh8lag
PSXfU/R7N6Ht2apAV3xm8a7OPna/K+Bkc+fblGoTCaHSPjNSiX/SZ7u7izSE
4UGJ0uOvJBtfK8kGavT4EiX8N06VndNrCcOHEsdlTjz3Wj35gQ54AJMnjf9l
TYKZMLwMwCbv8JGUShOh5VsGcMx+zIx9/CHC8KPChL62VbneFkLjkqNC4Mz9
0aZQC2F4UmFuwtlUQ7aRLH3dlz52qRqcJBcSFqolDF9qDJwqutesNBD/LPnC
LLkabou8BB8WDxGGNw1kexVLhov1ZJ7bwOCXmRr8Jm8qGrqqIQxOGtwsPOnJ
TTWTORXqol9nayFMtDP39KgIw6MWyeu/yU33MxBm+2iReKX1+HCdiTB86rDz
ps70s1BN6PIHdHgzaiLPMaKfMLzqEF62aH70aBWhcXPWI2e6zVevNmsIw68e
ew/95z2uQ0acaGD1UOavGKkPVhCG50G0O7s72o7Tkq9Lhr1sYwaxrdEUN7mw
i+V7EMGWqNRzK7sIlzbIAE7E+X0j6qSE4d2AjOIpCwLSXhA63tsGZBcUhYjk
EvZ7bkRswsmsI91lhG6Xb0RV6fB5YWkJYfaDEfkbcsNjJxHC/C1M0CY5Bwkf
tOB/IhAvzw==
           "]]}, "Charting`Private`Tag#1"]}}, <|
      "HighlightElements" -> <|
        "Label" -> {"XYLabel"}, "Ball" -> {"IndicatedBall"}|>, 
       "LayoutOptions" -> <|
        "PanelPlotLayout" -> <||>, 
         "PlotRange" -> {{0, 1.}, {-1.2099460715858352`, 
           1.3584228870796313`}}, "Frame" -> {{False, False}, {False, False}},
          "AxesOrigin" -> {0, 0}, "ImageSize" -> {360, 360/GoldenRatio}, 
         "Axes" -> {True, True}, "LabelStyle" -> {}, "AspectRatio" -> 
         GoldenRatio^(-1), "DefaultStyle" -> {
           Directive[
            PointSize[0.009166666666666668], 
            RGBColor[0.24, 0.6, 0.8], 
            AbsoluteThickness[2]]}, 
         "HighlightLabelingFunctions" -> <|"CoordinatesToolOptions" -> ({
             (Identity[#]& )[
              Part[#, 1]], 
             (Identity[#]& )[
              Part[#, 2]]}& ), 
           "ScalingFunctions" -> {{Identity, Identity}, {
             Identity, Identity}}|>, "Primitives" -> {}, "GCFlag" -> False|>, 
       "Meta" -> <|
        "DefaultHighlight" -> {"Dynamic", None}, "Index" -> {}, "Function" -> 
         ListPlot, "GroupHighlight" -> False|>|>, 
      "DynamicHighlight"]], {{}, {}}}, 
   InterpretationBox[{
     TagBox[{{{}, {}, 
        TagBox[
         {RGBColor[0.24, 0.6, 0.8], AbsoluteThickness[2], Opacity[1.], 
          LineBox[CompressedData["
1:eJwVmXc81d8fxykaEhFCFEnRoCGK6i1kVxRakpBCISOaIkoisioZ0TLKykpy
7M29drLKusO995AtX/3O76/7eP5xPvdz3u/X6z3ulbVxOXl5CRcXVwY3F9f/
Pw0v05tLGOaHp4v5mgb3+R7m0ZZ07ZdQgZe5nRNSERdhb8LL2C8SOnAjKken
LdwFjBo7s+MkzOBBSuntpHAfOG038z1cwg42+L5pOBUeCr3Kj7VDJDxA7ehq
M/PnCfBG9MSjIAl/UEXz32+FZIDvii9bn0hEwn7RFB3p+wjOnE3MGBt/BwFF
34/yHaXCqn++lnobMiDfq1ylqKsT5E059PKnOaCQtoGiz+oDr6YD8HLyKwyN
dJ2tXDEI63KE+ri5EcguT+U2FBqBvAHtBsrBMvjrXr0vbZYOHfq+4yF6ZeB2
s0Bu31IGTKcXixmfLIPMB6ulC1YzQO3OgUs1V8qg1VplS8omBhSsVZ4uCS8D
HYbYETVjBnzVkZTJppeB7ZUkEe54BhR9GHOPjCyHE12dnmoHmVDmGLf+LKsC
PonRm17YjMIXhpOT1XQFfPt3fuNXx1F4d1X9my1XJUTaRTS2uo1CgH3nOWeR
Sig0uqkx5TcK+jZCMQ8PVoLq8aAt9KRRoJwNEE8ProRsW/mnwb9HoUf/uujS
nVUgGW12vewsCxqrNS6vUKuCD6VLalddYkGxLl/u6iNVcKznp+7xqyxI0Plo
Jm5eBR6tS5OKb7LARvN3xM57VRCW7fbeOIIFdDVz4TONVVCvI2AtVc+CqS2H
BD9fr4bH5mj6/j42HB7Qqg7yrgb3abkg94NseBSn73P1YTXc3rSr4aI2G8RE
zLDcq2pQSrQ222jKBlVuJ0pMRTWoJT0/rH6NDd7dL0MD19dAyf67jb1v2LAQ
OiloV1sDwk7q7KalHNAxmq8+0lYDF4c6s3NXciB4GdeDjf01EGSXz4oQ5ID0
vVVjPydrgHn+eZ7qeg4cdtxENZWphbM5Tz1E93DAR8ckDLxqYaDcdZeqFQeW
zKWtWS9fBw5+Dv1zGRxY36g1Acp10J8tZXs7hwMqiV3tdgfqwEut0WCigAOX
DZa/Tj9WB89iCzSaSjlQ88pGXutmHfzSk4tQaOVAqLqEukN1Haz8r1nWeZID
yQKZUs+a60A65pqZxywHSgZ0/2V310FFgWKX2wIH/gR5VCzgOgiBde1neDBY
dFOOh4nXA4TdvVOzFoPU3Ue2+Q71oJYWm75vN4Z9JtK6Pe718Kv+S1iJCobj
m3MUuO/Xw0Pu+Vzt/Rh8Gn6zDcPr4Sv1VdUewDAgdci7r7AeuIMO0b8YY0j5
PhHMy98AmCXuccQeQ9nzIJdtYg1Q69m22cQBw8/LsidPyDQAuzRv1elrGPgF
Tqx7pdIAY7zj3sfcMLhapSbuuNAAr+Syi3ruYVD9Z513Kr0Bziu7GPlHYDA+
VuJ3tKAB/hgkbV8ZjcH29cYTamUNYMDiCnj0EkOYWh9NsqMBOGsH3zjGYWC4
nJcY+K8Bph4IXv/xAQNXceFw6/JGONVnv0w2BYMYv2R2pVAjrF5xQcQmDYNW
8g/DFPlG6A7gDm7MwBD7y/yu67FGqDYM7zYowJCtlKtvc7oRlKLVV1kUYqi5
KyJqdqkRirmupp0rwjAl3vpZzbMRWsKvaBwrIfEzNelfjG0EO7XJ4M5qDNxl
hlohrEbYt3Fp5IN2DOJrUgV8phth+1X16LWdGJSsVna7cjVBfoT0koQfGM7N
V7ubiTRB5m1X0YRuDDl7jr5ff7AJShSvyej8xlD34N2N1bpN8N5Xwj5mAMOv
pqWH/51ogl1RX4QZgxhWO5V1DNg2AavYNcFlBIP9W1iR+rQJclRr7suOYrg7
Ht/2OqoJHnY9nlBnYYiAxTchCU0gNkZvMGZjKOkuOnDjSxNkawV/OosxdChK
LbP93gQy10yzzcYwsLzutJhVN4H60Pf1+uMYJETUnfZ3N0FXyAdx8QkMu2xe
qW0bboIxpZy0ScK6mbNLpXATTP73NLF2EoObcX7svyUUaJqj5lhOYwiMEXMY
56fAKsm+ZskZDAl0z32DYhQQOzFl0ky4wV+lqWobBUzbozy2zmFQF6xf8nwf
BYJ5fpu0EU5+dUntvCYFepM7VbznSX43zzrJG1HgeY2RzNq/GB6mP3uDzSmg
zBFa+57w2H759q/WFHikwL1aaQGDVfm3lf5OFMjlm1idTlj9B91N3JcC/yWb
bo74jzzfxufjwFMKHJe9f2CWsBhbtOdTNAUWvu4wN1vE4O/1aY1XIgVOx2p7
fSQ8zq199MgnCqjeTEsYJ2wV3HVrVT4F/t060bTnH7mPmGt6eykFPltJL3Ui
rJ64bDChgQKtF3kPxxBO3h63zrGTAu8Pzd8vISyWt9dYZYACMwfHK3sJ+2vW
PVhkUUB764DwH8J/6qxza2YokGpYffk/wpmpfz0MuKkweSuu+B9hGtYNTV9G
hSh+O+k5whv2haes5adCWp+UH4Ow2e3ecm8hKiyYNLCohJ8ihb5eMSpM69+6
kEG4jMdjVkuKChm7drb5E541QMLJslTon54wMSWsHMq3c/VWwgI9rSKE7dvM
9dx2UOGt67Qlhdw/TiLxUuduKnx9acF6QLjNinXnoBoVDgcK+ykSXvVOLTrx
IBV6KrQ21JL4ajH8MpdpUaHszJLSi4RvKTXVOelRIb7F2ZFN8pPpLjFMNaZC
6NFkSTfCtAK7f/tOUkHOoLmZTfK7YTFD4vVpKhjNCYRZEzbX/ruX6wIVjKcD
zeuIPoIDdY9ftqHCdzuHTdsJzwn3+ilfp4LHd+HW5lmi3zMKcZFu5P4BB/PX
EbaPc8+f86KC5t1nb82IHtu28rHK/ajgcz4w6ssUeZ+DauZnXlJhZ6LzMO8f
8j6+fi7f40h8Z2yEeIg/NlQ3Ptn0lgrW2Xf05oifgk3tilmfqYBV9FtriN+u
2j/f6ltOhSaj9W4LdKL/tJ4jIzVUkFmBZ7JpxH9jWy2NmqigdMg/yJr4WedO
cZhoFxWWmN3ofEP8vjFsdC6FQ4UTkRbr83oxFF/yScmeoALzupuyZg/R3961
Z7/NUiEu4u6dsp+kvnWoFzQsaYas5y1FGaT+iEsH3cRizXDukjLe0YwhnyO9
ZXZ9M6yxONfoTSH9oySrnUu2GbZGh48UNWKIsu1SEd7eDOwnffU76zAIpypM
qEAzjN5Qc84uw5B1pyjpkE4zeKYK7y4h9dDkmMlJXYNmaIyP2FNVjCF0zCvr
9Klm+Dl5c6KQ1FN+tWqX21eagXe8+LZeNgbeisssFNoM+fOXRdkJGN5Fzb2u
iWwG6v10Lh9S33WuhBg1v2qGBr4De1e+xuDHl5s68LYZSu3vuS4j/WHRhMeB
t6AZ6sb4L7x7SvTamzRs+KsZ4qfLnjl7Yhid6e9r39UClYH8Gke0MeRdCS0z
VG2BvPWe8pGkvz3oPPwBabRA/NFd4n0axH/5cddTdFvIPDkoeZr0R62b5xfu
WrZAj3/Wl97NGGImOyQ2B7ZAypMZpcOk3+qPN5q59bfA/ejBbLMiDqy9dG8/
bagFDmUGMILyOdBH3SFlyWyB0tP+JwqyOeCR+XTw6FQLLOOTy5hN5kCCi4Gb
xKpW+BJydEgwigPT7IrQEtVWcEi75PDKiQPvmN/qBJ61AuIduCsnzAHnFyfk
HCNaIchXf50VPwfUdAbvVL5shfyPijZhyzhQF8e38+7bVrgyWCvYM8+GcZOz
oYyCVlBU5pkVHCTzVf70qYrBVhgfmHAZzWJD18PdvbcOtEGS94zQPQM2CEh/
xENDbWAu8kve3ZoFmhYPewcZbWCZGZusROY/t9CL9QOcNrBOjTk7aMqCDm7x
j79m22Cj9KVj+7VZED8SaNXD3w5rrr35HCbPAqVMx8ZWlXbIbnk0sEAfhWPa
Smll/u3g2cnFRSXzabBDrv2bzR1Q/TjwbOM5JjA1Pweu2tYBlP7yEVlTJuiJ
v0+9qdwBp+YCuF30mLCkOpJjrN4BnX9jmH/2MuHWZo+bcyc6oKbg8o9EfibY
9+95dPJOB3gU60bGFzHgiHnme56WDvAJ1w3cuo7M35ppQ1d9OsFUbWJIOp8G
HnsqcsTKfwDX9HKKa/8Q9KdXPG2W/QkNJy8rPnT+DX8d214r3u6GM1S9yL33
u2H7keWL9t964NOIcWKNUhvoJcleyVrXByWrbim4tVWDl/TFTb8t++FPO7/9
Ilcm7GCZr+o89gv2t1htyAhOR2sFx1ZUzP8CKxGZg++9ahAPep0hF/sb3mzN
3qw73IqcVL51rTQaAOO6hBSVn90ozcDmTfH0AHy9tSu3PPo3mhqVXDMSPQgm
YW/PWH4bQrmn9JZG6gzByRChwS21NBRoVBAgpTcEDgnlhbWtNGSprbjivcEQ
MPGpz/Z9NLRk76rVeccJL4T+eDZBQ8eFKWI/zgyBZbjx4gtpOqJTLbZJXR8C
nW02Wk9d6UjyuL3pu6ghUhftOgeFGMhHPyAhZ2QIFGst/FqPMFGL1VXLXYwh
sMhbGvPNkIk2expJfBodAuM++xtxp5ioLlEo4u3YEBR291kcv8xEIn/jHoXP
D0HkaHOpXSATJX/Ou+4qMAyvj4fp2jQyEVWYrrFDdRiCLi1Qn58cRZsU62c/
7h8Gwyeiw5/PjSJPSM+V0xiGV9EHvcttRpHkNQ/l9ZrDMJfFK9LtNorsKrnk
+AyH4QNtLetb+Cia9ZLgo18YBhal0EureRTJ9hr+eBswDEZHj0hZGLBQUJlG
hnngMBR876YcNGWhPx93PFr+dBiWCwpGk8UKlbkJqDiFDYOKhZtp6VUWslvR
Errn9TA8zF+m9/kxCyXvPatXmjkM5dYRRrwVLKQUdCWvr3sYHFYEy35UZaNo
lzMhYX3D0HmlRSD4EBv9MzOw0/o9DNYKQQ1XddiIunG78IeRYTjJfJO18iQb
3cjlXL8+Pgxd1N1s+jU2yvnlKb+wbARUZZIer09kI3U1/0iJPSMwI2ecpbOU
gzpsJFTjVEbgdFHkxLcVHOT+LL1TRm0EQp7LDG0X4KBPwz8kFQ6OQGd/Xt2U
OAdtiNyZqKo7AgLPVZ7sVuKgJeMdn0+dG4HfO1d80jvNQfWpitUhfiPQnSDI
Gn7LQVc7iq8KBYyAZqZuoGsyB/EsMeOLejwCOR7taROfOOjw2fvHYoNHoHg4
yn8wl4Myl7e2pkaPgMYaIyuHag6KtLv7qzp1BHhzaiv5GRxkuYEyx906AlZJ
NhfTtmAkIOGW+619BIxqdy0L34ZR6VrRG54/RsCVtaTERQmjLSvP0+m9IxAx
qnd1jSpGeGKkg0IfAZb71LURHYz8ahe/xC2OQKSDseWQNUYqFYkup7lpoDQj
lqNhhxGtWGe7EA8NTtAuCQRdwcg4JyjJfyUNJKezqlY5YySaIPbcSYQGk0bn
dry9jVGyh5LzgW00sjcAr2w4RudcmhUndtAAvxCVoEditNrRY/iTMg3O/3dH
9sMLjNwuFlrK7KNBzJcO/uVxGGkY6hot16SBYrDDfsuPGHF0GMtKtWjw3u9k
988UjN5AcNntozQ4cqf+msknjHj2tRzgGNLAvSP+jEwWRk0brRTazWmw1z1P
81QhRg8kuYeenaHBs+BZnSdFGO0VfZegf57cj/fGnrxijF7yMcWKrGmwK/NJ
1WQZRjZTnrxvnWjgvDK4jKceo6m6kAFXXxocXj/x1KULo55V7VcXHtJAl/+1
yexPjMqMpfDjRzTQnOqWudWDUVhT6t/4pzTwMk4dsOnHaFtLtUhjFLnPe/ff
HUMYrVkr+PrMSxqML6XObhzBaOaUhexQDA1stRbEL9Ewqmgf2vk3gQbfXwW4
1TMwsuri1lNMJfFEa/00ORjpSBo05nyiwZjGq04DjNH282GnNDNoINL4bq/R
GEazPRusT+fQ4KPEicV9fzDqk7YfGcijgbeu+7WNExhVWn2+5vyVsKPCL65J
jMJ/adwKKKbBGzv7zrQpjLxlH/5bU0oDi1j/c57TGF20qQuILafBjWdWA6oz
GO0YOhP+pYYGG0wf/UucxUhY/o041NNgreetSKM5jOYu0+LrGmlgMO+2k024
iuaZ9ruFBle/dzmK/8Xok8L33dfbiV6OLAgkEY5w4CmY7aSBaG5ontwCRrdT
jQ77/6SBS577pTjC1qPhFYK9NFAdeiIo+B9Gujt+Gr7upwF055Z4E955XbZ5
ywANeNR6PX4SFkm/ejp7iAbJz2nbVRYxmudk9B6i0WDxYfFwAOFfyjO2tQwa
RLw/lkTmbVTtephpxqLBp2C/S0L/MErPCnD9xaHBqSZjOSPCkX8app3GaWCy
GEe7S/jOXpF7MxM0UM9wSP9A2Mbj/NKH0zS47ka6EWH93KQnAnM0WPdDX3uA
sPI0QzDmL9GjyzGhScJiaruj5RdpEFaZ/pvsH2jBy1sqi4sOTVccc8j+gQYL
UNLBpXSw/u3zhOwfqG5umWINLx2Ci8asRwlnqh/POLWCDtf8StTbCb+4E7Wv
n48O7MJJsXzC94t6vjmupkMtK3IqjLDdf3Ja04LkfFxqhw1hw8NONb7CdAgx
PVK4g/Bun+zjq0XpwHpq/4ZD4iFeMtf2ch0dwpsUnyQTXuQ6cn6zJB22xMR6
nCM8dCTwd4YUHdY4t9jwEK73o1zR2EgH15pfpz6Q+L/ksfI4uZk8fwntcAvJ
36Ltun3NW+jgaMMVZ0XYrpw6dUKRDh2VRccGSf53+Wl7HVOiw7/m6I/t8xhF
/15Qa9hFB929UybahBc082YN99Jh40rvYylETzX/FG7r76eDd/UDTSuiP6WL
A+rV6nQ4KW+h9pnoM7L49d+jh+hwcYDjO0n0a31P4J62Fh1WfpRee43oe2Z+
wuewMR1WZH/f9m8cI8tznzW/H6fD6bucijWEy77acx80pcNUr3eOJPHTM+8u
vwMWdEi7Exi5jvhvy3RxgIo1HTzy7l7MJf4MNvfW/WJDhyqORdoTOkZ/cnYv
33OZDrGF0cctiJ+L3d8FKjuS8/MusT+I/y3Gnzzd5kGHzwECVr6kPhSZaBun
3KQDcyjkungfRpsyF/gVbtHhqfdkx0dSTzjOLs/k79NB/c/PggxSfwJYZs9l
AumQw9hZbtuKEdNI4GRCEB2G6+fTvjdjZJJWLbwhhA73uT+MC1IxknJUj1wf
Tgf9pn1RcQ0Y5dA2vhCLpYOY1bT+hUqMJPW6TkfF0yHT027z7XJSLz+Ei4sk
0sHERNo6tJTU+8u8MUIfyPkT+vNJ30n+B5ix/Jl0kBv+UeWci9HavtykJRV0
eC4ZuvvVWxIv/nv38qvoZE7My1+RiBGfhs6Za7Uk3qBzwiUeoyUvW1Z3NNHB
h/UoV/YViZcp9k7posNeq1b39c8wolYqnDDBdNhkquRge5N8/yRW5P1DB8XG
c7Y67iT/m/J5CifpcI76846UK0bI52ih3DzJx5Orq7IdiH8P2MjP8DDg5qhx
sZslyc/n13/jJBmweim3vpEmRit6bDpOSjOg/XjLi/iDGPnzbctaLsOAqs7L
ooz9xN9XCuxvyDNgPn1ZvO1ujBxl25t1djHAZ4/MUixL/B0lkDx6lAF9rIsi
1twY8d7zNTtwgwG1jUHhX75yUM44aw65M6AwK9VXk/RzO/szCbo3GWB7nXew
MpODKk4oM0/dYUDd/Xauwo8c5L+p18c5gAGD95Rq9KLIfFCzP+3tKwa8zTB6
NO9M5ou1Y9wCZQz4+slcvlKKg7Ifn/8YWcGA/Q0bkmzWcZDNQpXx+moGlAnP
5s8KcVDZcNwLhQYGhIbvyhFYzkF+BUY7tTsYEBvvKTIwxkbcVh/PeDMZ0Fsj
n7y1nI24UqwyBoSZ0EOLkdhvw0ZVrE7nBFEmdDR9UbY7z0bBu0yVLMWZkDrW
UvfYjI3WFWh/bpdmAk/r2pe5umykVK2QVqPABOrDgqq0bWxkOfznQ/phJnjx
mB7iGWehr7KP4287MoFSIGru4cVCbjEZIcJlTDC+yN5LcRpF+Qsxj8sqmOBu
cHv3OttRtGD1yNetmgmjc7+fnSbz6mO5C54tDUxoV17iXqo/imI/8V0I72RC
2zpNeXX5UVRZfHmHMJsJMOlsVdrDROKD6+uFxEchiHp+Zr8uE33fHrhCyHkU
ym0rZG2WMpCQodsOPwEWXD7KZ9h4cQT17KS23ipiwWTRTsci2UGUGQ+bh6zY
4OhWWFn+oh9dyFAVkl5kg2y+WWF1xA/0ICDRtyeVA5y+H9Uyz6joM136tYAx
htc3LZOlY0tRYFyAdd9xDEW81krSFqXI7iRbPt0UwydGvdO6NaVIqqgo89hp
DBO8GjYLD0tQUOj5qmAbDE88KraIdhajq6qvxvluYWili92Mci9Em/xF9Jd/
wNByLX71rw9ZaHH/3dWdyRgO/Ojs7pfIQl3swZYPaRjkHra7/wzORGGnv1zQ
zcIw6Cd8znc4Hf3bdtI9oIjs2XeUxtLupqKe5tD4pa0YplOitkSkJKKCRzO2
re0Ybjq5GIuEvkGRGhcV3/7A0B2W0yDDiEdG75VytPowUPVfxU3dj0GF3o21
vgwMv3QSCrVTn6PonftCTVkY7LYYaqxhPkM3BmLNZDGGPRM2UaE+QUjB+Fp/
ySSG5nbaFa9UX8TD3fYubAbDZuH+TZU+t9GvXA1H63kMX5M8bSJSb6Aix7fK
u/7DoBZ73acg9RJ6sXHV1P9/l9u8O+T//28V/w8dyY1x
           "]]},
         Annotation[#, "Charting`Private`Tag#1"]& ], 
        TagBox[
         {RGBColor[0.95, 0.627, 0.1425], AbsoluteThickness[2], Opacity[1.], 
          LineBox[CompressedData["
1:eJwVV3k4ld0XNZVCQuqL9GUsJClUJNuUKUOoSEjGkspUnwyhkKgIKZHMIUUR
Mh0JFdc8lDJ13eG97nvvfW+pJOV3f3+dZz377POsvc5z9l5HweuCo68AHx+f
BT8f3/9Xa19ssI1x1DD2pJx42FgpEjKVDZqW0QG+xVcrHr8vQdqP7ufWyJgB
313nP+PNxehQ74cXD2WOQOz7dByKCpGzz8+WdBkf4POXyvpnJhdN7rxueksm
DPgUP265vTUJ5a+3T0yWiQe+PM+l44l3IW5VzbYbMpnQdsVwhb9mHbgcL6gi
uMUQW3xxrsu2F0SX49ws/q0C+UtN96q2fQAVBzb2JqUW5FvoV95FT4NsjIW+
f0EtePZZnJ4vmAaJp/kpIvW1kDb92EG+axoWVzlpOpBrQYhfR8pAeAYG2upD
p/a9hECleUqG/QxEaMX9XaC+hMOnw5JNZ2agb620tKZRPUh8DRst5CfDmwPn
fAeP1kPlonJ3wzoyNJztqgs7Ww9mgqOtfSpkKHobfrwpqx7CpXXLFq3IEB4z
mWfJqgdiz/cIx3QyKHJK1bwfNMBA5EV5AaVZ+K9PD+7Pv4LMFZfOnjKjgLjm
S+r7VY3Apyfoa3KUAsW3tG7+lmuE+MA0DyU/CgzabBv3ONgIScMVDtTrFNje
Ix2qktUIsQXTe8/0UGD6Laf0xd4mCD9gJRTsSIVL287aUg41ARE09sfBmwpi
12nf1ns2QVCx98/dYVTQM580upzEw6JX5ubvUiGjo/sTjDeBz/iLgfBxKqgr
m8cFs5oAEzPqPj5HhbZrr7cV8TeDj1HvG/3fVGCZNIStVG8Gl8f0uiU5GsQX
am/aZ9gMM5/Cqid30EBWoOr1Gcdm8BQXqGg1pEH1KfXTOX7NQDFOLXpkTwOL
1yXivRHNcP/OXJKUOw2m5BVe/r3dDHIVHifN/WgQFpt7QquoGarbh3QjLtCg
ADLKMnqagfStkfwljga/W2JNXOVaYNWxFIPnpTSoajxxid7SAkmyGoQ9QYN/
aiWn+PkRhBWdc751jQ5uN38foWxAMOF1ICDxFh0Kfag9XRoI9imuiY65RweN
9a9epbggWMivLAx+QgeTS55311cjiM1jso4O02FPrnNp5s42uJ99Jv5fJQxO
eZS6l021QXWq7/OqdgzqyKakfoN2mI90Fx3in4P2gIebjuMdUBwl/iEkDIfv
Ww+sfXruLViexPV/NLNB4NcTiU0q3eDye9zVJ4eATb0m32BnN1hSljsE8wnQ
KRgf9dHrBoNelZ1FxQT4WgnnPLPtBsVHwYLkpwS8y/ZSMbnUDXMmqytPthGQ
qi+jf+ZtN0Qk7/vjSiWgTLxa7vZgN4SEevgvMghoI5svv/jcDX5u8YPZbAK+
Jod1LHG6wVpzoOTjTwKOfe63S9vYAxuG/O2OiXBBLirRu/5MD1TI3HvksJML
uoc3m0+E9kCuQMtqrjYX7JRrVfmv9EAakxyato8LMaQvLOv0Hghr0bTsN+YC
We5A+FRjDxie6iJsjnDhNzHsKtjZA5rWuCvuwgXpzoADqv09oKwt1ZnizgXz
c/cFQmZ7YOUKj+xuPy6Ut3y7uUKMBENl340tL3Oh/U7yBfUNJOi6s6mSHs2F
T74KjvbyJGiIMN5w/SoXxMTt/8nWIUGeza25zhQuqJCpv1oMSZCuW3PEN40L
hnVRE2RLElz9d7xV6C4XgjwqCjTcSRBIKGeY5nHhxm7jeAd/EniMW/8hF3Kh
cOVHv0vBJLBrD/K/+pgLjZ/OW+VEkiAzTzJ8ooQLw89WaLQlkOBToKuIYDEX
8Ku54tRUEmzdX5SrxssXctbmrn5AgoDVuObhfC7sWfasc3pGgoWSaKeHuVyw
sW27erCBBGx7oT29D7jgnbPFfm87Cci/kjf+uc+FtL1TdNkxEgzY3p904/Fl
XDghQ/5DgtLvL/zlbnMhd+ZoVBCvLx4+iEXmxHCBv93a5BbeC88ojsXZXlwg
xev0dan3g5eS6ve7qlzYksb8Vc4egPv3+IueVxDA/Dk9Nao1BCPc71/0dAko
nmvqFr89DG0Ju127z3Lg/D17pYCMYSh2Fj5K9ufAXrPZyM77w5CmNmG/6M2B
7ociO6KKhuFYb8JBdTcOcA8fT2U0DAMmPa6VbMMBw/ofTh2zw7ChOEbYegcH
xq/tmrysNwIB7aTa92w2FGp16o4ajoBdZkHVlzk2BE663NYyGwEtv0sVv2hs
4NsbC3S7EVhaLZ+vNs2GrXN9BUd8RiDTITTlRj8bwg4H+u1MHYG6GRkvq2o2
iG9+zKFQRkBi2W/t+2A2GB27NjnLGIGtZR3nlc+zIST1ZA+ZPQIGDop9MQFs
GOPf+HhmYQS8iiZv7vFmQx4tyWNCbBSaLY6IFB9hw8AWX5vPkqMwRDw/s3yY
916PG+t/2jAKWPba9662bPDr+bX+o/woSOHd1yXN2aBZHdA7rDMKPmnGK2L2
ssGTYd40pDcKEXqPfD5psyFdUal80HAUkslLb3S12NBxYjlrwHQUylJcle5o
sOFH5uf4fstRaNRpuIqrskG1rz6kz3YUSJPryRYqbHAVzvTsdRyFmcRQ4yIF
Ntw0CrIjOY+C9LRQucdGNrRetjHocRsFVc/xY06r2UC8UFXvPjUKBl+eClku
skARF9r43m8UHL2uvjBgsiDRo+VbVxCPn8928a29LLA11XzSHj8KA6ejOxfS
WHAlSiT79Y1RIDMcQllxLKh+SUtsuz0KCwFbFcghLJBWfeTVen8U5M/1R/Uc
YcGEmIRsY+UoBAUr6ORtZEHgGDfp+cgoSER0Fprm43DzzEu/fOUxOJKyJvZ2
FRPmjJ4miaqPAZ719tiBR0yw2FhScWnnGNwsjNuB32aCwNtMto3+GLS/+v7J
6jwTLiuHXfplPwYa2KTuih1M8JvenegYOQZ8B58xIyvmwPhodYnQ0BhU/7Vz
PlPCgB9GTyinYz6ASEiaplkOHcJ2d9RuePMRlkIcNt8izcL0s46UQYVPoLF9
LrnNZRp+B4zkqEV8hoHyoMoJww+w3Vj4r1/TBCz03dknIzgAFoUK/s//mQJs
RFaQqGmH/zafVPziNg2xIx51D9aWgwZ+VPSD7QzwqQxGXKh7jNatJVZ1LM4A
oetntLTtDRJCOVVKuV/A5XL6DaXYfnRWp2l89SEyLAVKk/oLPqAnVl75rT/I
oFEtuM6pbRp9Z8pK0LJmIWm3Zk9M+Sx66WQhmMnzCV91/grUdNBR0qGGBDkL
CnywOKa4aoSO3EzVVpVYUaDb9Zmx+ywdCWiLrqmzo0BBrEessACG7KT6N3x0
oYATqfXPCcAQNnBMXe4cBVq9YxaEGjEka+fnUHyXAtfT+djHqhiIdfDDsMZ9
CoSXuKypbGWgtgOWx14+oIB7Q7UGfx8D+e1QP9H1iAJ7pjzPPsEZqEaM7YOV
U4Cj9hpbVptDNj0XwzVaKXD4ddxsWfEcirFMeFRLo4A8ITC+mM1EQx6n3bQY
FLghbfVEoJyJlC8ekqlkUoC7LzVapIGJugskM4oICjTGbVKUHWMi6d8PE9MX
KXBonc5ZPSkclT2tOxckToWze3z//JeMo8U32eq4BBX6XJ/0x2TjyPZTFN1/
HRU0Y7gF18tw9HWl6amTG6nw9220+b0uHBl49h+xU6RC4vGs1DoBFhqQwvZr
7KFCVdRbhe8RLKSo1rPweB8VVhesmV+6wUIX4dlLpf1UCOl06hLKZiHZwLCd
m4yoYCg+EyBdz0KBV53xLBMq5O7eekCui4XQff1yqYNUWOkcuFZ5lIV8OvmU
RKyp8P7RQo32Nxaq+zw7nWBDhR0dhon7Bdho9deuXH57KmRh8S6mkmzktqri
eLQDFRbFetQPybPRs39vbfjlRAX3XZJ/HHeyEZ9u0HDYMSrMe9S5RexjI6dD
TmmECxWw9Ece1/TZqPTUHtvAE1QY6UryvGnARgv/yYhg7lRoXwz2umvIRta3
l7q8PalQqXnCJ8+IjR4WT1+b9uLx9zLze2zCRiaDJX/G/KkQ3L0h4JU5G91U
383tDOb5wgdNwZN2bKQwaf2xKIEKaXor4lROslFy+/6qo0lUGNh5Zdz1FBt9
fayRKJxChXVbf+5K82aj9hBxnbNpVEiRYpAX/dnIZ9VQ6u4cKsQzSWYDQWxU
pn3c4nU1FcIfZq6KvMpGmsn+dVOfqeDJr5w2UMJG+nvjM2V200D1vcmjSJyn
z7/9v/iHaRC+SmmTaxAHfe++RQ6Ko8PmiW/6dsscdF/II8xRGYOWKm03XxMC
/fX+R3dwKwaSEudlzpoSyOfNwHd7NQz8gsrGgswIpHXV9D9bTQzEd212iDIn
0Ltl1QjLfRi4vVhpnmFNoJ+L32IMbTD4Uzu+87UjgY5xb6Soh2Fg2BgjuNmb
QM2HTW3KL2GQLtvYpuhDIMXqJTHVyxhQI+ajVX0JxD5/4bbKFQxu7D+zoO1P
oAT8yB35JAymmh1Z1mcJVEvfcm9DLgbhSOVDeCiBZC3Gne/mYdC3xTPzShiB
YkvTN0oXYKAS+8Ah/iKBbHxXPJAsxaDbaC0p9T8CUchzuWLVGMi0L7SVRhJo
3dTLQoEODF519FSMXCPQbbHo6PouDHRW2mUQ8QQS2W/mEvgeg+cWA5FiiQQS
uD+0ZqwPg4ruERuzJAJd6crGkgcx2CrmrOt5g0CL855vYASDQtvxzVHJBPrq
wAkvH8cgd2CSXXOTQOdj65w8JjCQk/L80H+LQHPPojXXTWOQ5URGzNsE8ps0
W/3uCwbSd33KhNMI9EVUjBJFwcBOMjTcN5VAbvrDrbvoGPQK7nIPSSHQx9MP
smkMDKx/sI1jrhNooFPV/jAHA/PPAaLZMbz65zlqK75i8KZXlSjh1ftOsV6o
cR4D0zbayAueHijmYKPSIgYmJV55pAsEeqbnpfJTiAF6F1x38XkS6ObTnN8P
ZRmgJmjt7G9EoFUTXmOOmxk8fyVsEGZAoHgR9efC8gxQxTrl4/YRKNK/wS9Y
hQHKvcZzD7QIFKAwOmimxYB/7+lF98kTyPKueBnzIAPEt6sV6fITaEV03BG9
YAbMlkhMCcdzUC0X/4VCGZAdlZhQFsVBPn4uj8wvMcDKaUnD6iIHddjvnHOK
ZEAJHxaZ7MdB8YqTMecTGOB/AsmsseIgoXf7nhRlM4Ahcf6olDgHCawj+MXb
GcCM7CHJ3ef1g3KPKrLUHPxwSGzaVclCIQ+qbkm1z0HbyfVPvlQyUcv2pFWS
vDmqoHHUeraOgfaM/NObHsQE0c0kzXRev6+OenxHOpQ3l9eYrjMuY6DC3i7Z
jeFMqONoTeRlM1DShRU7tlxlgmWN2HnXKAZyrLnqsCOLN5f1O+4MGjMQXT/6
gVUrEz5aao8jEoY8Z8VO9rQxoVGvouV8J4Y+peQq2b5hQra6QuHmVgyRJpoq
D79jgo/Y2rORVRh6cWWx1XmICX/755b2pGMoqv2/WV8aE3Y6F8o/c8aQpHWI
xlVxHBJ9JU/nkuko//VaUX1JHLhNAz5PP9GRlt5TBncdDo5Saadah+jIThUr
PSWDgxYSPzHTTkfJKz0UjJVxmN0oZqdcREdCb6w28OnjYEdaqVPpTUcZ+vT5
egMcGhW7tFpO0JHii/jhC4CD0uWEHX1OdGRUgNKmzXD4pSK0jTClo+gYXVFk
j0NFDL+sjjIdif0cYlxyxGH9WNuGg3J0lHs+6J3mUR5fjdh1x6TpqNH9SUKe
Kw4nxv+KhQvR0Y/9CnxXfHFYqb203EShoYSa1ind0zhcvtG0RJqgIentbi2s
ABwo0xG/JkdoqLjwV07JORxs9+j/YJNoSFv2XoR7EA5tN399Xe6gofY7OsfX
h+Ig8UY5nFVPQ46rh/b2XsTBZqtc7aESGgpaEPtuEIlDOy6isSqWhpYvVAzP
R+Pwx17gtN85GrpNt3hRGYvDvppfRR2uNFQ5dvWCXCLO85XYpjhdGmLULjB+
p+FQtLJLdHGOisI1st7VZOBAO9Ni4fKRilYVaz8+m4WDVG/ttbpOKtqacd7n
cw4OSRlFv0PyqcgrmDLVWIrDNfk4JvMoFU3sGBi+3IyDs75Bz2QbBT1iSkYL
Ihw4NLv28CoK8ip32nrrNU+PjFOv1uVREEP5Q3h+F89H4omPrSIp6Memqc1v
B3B4mzd47aUuBUmK4P7SVN59Cfob3KqYReY04aVna1hA77nz1CCTjKrzQJni
wYJwd3pqjv8Mcq/aI7n5LwuSyldLhVt+RLEJBXETFWw4HedokSvRh55im3PE
ef8Ygq9OVPjBK5T0MMFzyo4DErJp5p+WG5CPI0vlmQMHPHcHxD31bUByzc3V
ts4ckPf+96fTrnqUnHqi66YXB/I7E8n572rR6T3ZXJHLvPi6qpCL7CqkGC9t
KVzKASNLSs4rh2z0d1/Umg9lHGh7YnN9JSMLjbNmh0qfcIBP/GWIU2wmSnOu
cTd/zsMlohmf3FPRsrpjaEIzDwc+nLimFY4mBlPzBIc5ELtt+wlOSDI0JP70
Hh7lxb1c44+apULm/pNqRR95eKBjbFIkHQ6VaNaaTPGw6Pyy6UQWNIb3vo9j
8PKN1dSSIB+yduimOuA8PhIXa76EFkAwOfeIAofHf7rtwP6yQlC1CZxum+fx
j3ZxZEuUgBD/SHHaT17cpnjC4mApzLzcH+C5yNNnE+FXcPkxNAcU7dT6wzuP
sZ+7+LQM7m0R/b68zNv/6nrkEXI5/A8YAMAT
           "]]},
         Annotation[#, "Charting`Private`Tag#2"]& ]}, {}},
      {"WolframDynamicHighlight", <|
       "Label" -> {"XYLabel"}, "Ball" -> {"InterpolatedBall"}|>}], 
     StyleBox[
      DynamicBox[(Charting`HighlightActionBox["DynamicHighlight", {}, 
        Slot["HighlightElements"], 
        Slot["LayoutOptions"], 
        Slot["Meta"], 
        Charting`HighlightActionFunction["DynamicHighlight", {{{{}, {}, 
            Annotation[{
              Directive[
               Opacity[1.], 
               RGBColor[0.24, 0.6, 0.8], 
               AbsoluteThickness[2]], 
              Line[CompressedData["
1:eJwVmXc81d8fxykaEhFCFEnRoCGK6i1kVxRakpBCISOaIkoisioZ0TLKykpy
7M29drLKusO995AtX/3O76/7eP5xPvdz3u/X6z3ulbVxOXl5CRcXVwY3F9f/
Pw0v05tLGOaHp4v5mgb3+R7m0ZZ07ZdQgZe5nRNSERdhb8LL2C8SOnAjKken
LdwFjBo7s+MkzOBBSuntpHAfOG038z1cwg42+L5pOBUeCr3Kj7VDJDxA7ehq
M/PnCfBG9MSjIAl/UEXz32+FZIDvii9bn0hEwn7RFB3p+wjOnE3MGBt/BwFF
34/yHaXCqn++lnobMiDfq1ylqKsT5E059PKnOaCQtoGiz+oDr6YD8HLyKwyN
dJ2tXDEI63KE+ri5EcguT+U2FBqBvAHtBsrBMvjrXr0vbZYOHfq+4yF6ZeB2
s0Bu31IGTKcXixmfLIPMB6ulC1YzQO3OgUs1V8qg1VplS8omBhSsVZ4uCS8D
HYbYETVjBnzVkZTJppeB7ZUkEe54BhR9GHOPjCyHE12dnmoHmVDmGLf+LKsC
PonRm17YjMIXhpOT1XQFfPt3fuNXx1F4d1X9my1XJUTaRTS2uo1CgH3nOWeR
Sig0uqkx5TcK+jZCMQ8PVoLq8aAt9KRRoJwNEE8ProRsW/mnwb9HoUf/uujS
nVUgGW12vewsCxqrNS6vUKuCD6VLalddYkGxLl/u6iNVcKznp+7xqyxI0Plo
Jm5eBR6tS5OKb7LARvN3xM57VRCW7fbeOIIFdDVz4TONVVCvI2AtVc+CqS2H
BD9fr4bH5mj6/j42HB7Qqg7yrgb3abkg94NseBSn73P1YTXc3rSr4aI2G8RE
zLDcq2pQSrQ222jKBlVuJ0pMRTWoJT0/rH6NDd7dL0MD19dAyf67jb1v2LAQ
OiloV1sDwk7q7KalHNAxmq8+0lYDF4c6s3NXciB4GdeDjf01EGSXz4oQ5ID0
vVVjPydrgHn+eZ7qeg4cdtxENZWphbM5Tz1E93DAR8ckDLxqYaDcdZeqFQeW
zKWtWS9fBw5+Dv1zGRxY36g1Acp10J8tZXs7hwMqiV3tdgfqwEut0WCigAOX
DZa/Tj9WB89iCzSaSjlQ88pGXutmHfzSk4tQaOVAqLqEukN1Haz8r1nWeZID
yQKZUs+a60A65pqZxywHSgZ0/2V310FFgWKX2wIH/gR5VCzgOgiBde1neDBY
dFOOh4nXA4TdvVOzFoPU3Ue2+Q71oJYWm75vN4Z9JtK6Pe718Kv+S1iJCobj
m3MUuO/Xw0Pu+Vzt/Rh8Gn6zDcPr4Sv1VdUewDAgdci7r7AeuIMO0b8YY0j5
PhHMy98AmCXuccQeQ9nzIJdtYg1Q69m22cQBw8/LsidPyDQAuzRv1elrGPgF
Tqx7pdIAY7zj3sfcMLhapSbuuNAAr+Syi3ruYVD9Z513Kr0Bziu7GPlHYDA+
VuJ3tKAB/hgkbV8ZjcH29cYTamUNYMDiCnj0EkOYWh9NsqMBOGsH3zjGYWC4
nJcY+K8Bph4IXv/xAQNXceFw6/JGONVnv0w2BYMYv2R2pVAjrF5xQcQmDYNW
8g/DFPlG6A7gDm7MwBD7y/yu67FGqDYM7zYowJCtlKtvc7oRlKLVV1kUYqi5
KyJqdqkRirmupp0rwjAl3vpZzbMRWsKvaBwrIfEzNelfjG0EO7XJ4M5qDNxl
hlohrEbYt3Fp5IN2DOJrUgV8phth+1X16LWdGJSsVna7cjVBfoT0koQfGM7N
V7ubiTRB5m1X0YRuDDl7jr5ff7AJShSvyej8xlD34N2N1bpN8N5Xwj5mAMOv
pqWH/51ogl1RX4QZgxhWO5V1DNg2AavYNcFlBIP9W1iR+rQJclRr7suOYrg7
Ht/2OqoJHnY9nlBnYYiAxTchCU0gNkZvMGZjKOkuOnDjSxNkawV/OosxdChK
LbP93gQy10yzzcYwsLzutJhVN4H60Pf1+uMYJETUnfZ3N0FXyAdx8QkMu2xe
qW0bboIxpZy0ScK6mbNLpXATTP73NLF2EoObcX7svyUUaJqj5lhOYwiMEXMY
56fAKsm+ZskZDAl0z32DYhQQOzFl0ky4wV+lqWobBUzbozy2zmFQF6xf8nwf
BYJ5fpu0EU5+dUntvCYFepM7VbznSX43zzrJG1HgeY2RzNq/GB6mP3uDzSmg
zBFa+57w2H759q/WFHikwL1aaQGDVfm3lf5OFMjlm1idTlj9B91N3JcC/yWb
bo74jzzfxufjwFMKHJe9f2CWsBhbtOdTNAUWvu4wN1vE4O/1aY1XIgVOx2p7
fSQ8zq199MgnCqjeTEsYJ2wV3HVrVT4F/t060bTnH7mPmGt6eykFPltJL3Ui
rJ64bDChgQKtF3kPxxBO3h63zrGTAu8Pzd8vISyWt9dYZYACMwfHK3sJ+2vW
PVhkUUB764DwH8J/6qxza2YokGpYffk/wpmpfz0MuKkweSuu+B9hGtYNTV9G
hSh+O+k5whv2haes5adCWp+UH4Ow2e3ecm8hKiyYNLCohJ8ihb5eMSpM69+6
kEG4jMdjVkuKChm7drb5E541QMLJslTon54wMSWsHMq3c/VWwgI9rSKE7dvM
9dx2UOGt67Qlhdw/TiLxUuduKnx9acF6QLjNinXnoBoVDgcK+ykSXvVOLTrx
IBV6KrQ21JL4ajH8MpdpUaHszJLSi4RvKTXVOelRIb7F2ZFN8pPpLjFMNaZC
6NFkSTfCtAK7f/tOUkHOoLmZTfK7YTFD4vVpKhjNCYRZEzbX/ruX6wIVjKcD
zeuIPoIDdY9ftqHCdzuHTdsJzwn3+ilfp4LHd+HW5lmi3zMKcZFu5P4BB/PX
EbaPc8+f86KC5t1nb82IHtu28rHK/ajgcz4w6ssUeZ+DauZnXlJhZ6LzMO8f
8j6+fi7f40h8Z2yEeIg/NlQ3Ptn0lgrW2Xf05oifgk3tilmfqYBV9FtriN+u
2j/f6ltOhSaj9W4LdKL/tJ4jIzVUkFmBZ7JpxH9jWy2NmqigdMg/yJr4WedO
cZhoFxWWmN3ofEP8vjFsdC6FQ4UTkRbr83oxFF/yScmeoALzupuyZg/R3961
Z7/NUiEu4u6dsp+kvnWoFzQsaYas5y1FGaT+iEsH3cRizXDukjLe0YwhnyO9
ZXZ9M6yxONfoTSH9oySrnUu2GbZGh48UNWKIsu1SEd7eDOwnffU76zAIpypM
qEAzjN5Qc84uw5B1pyjpkE4zeKYK7y4h9dDkmMlJXYNmaIyP2FNVjCF0zCvr
9Klm+Dl5c6KQ1FN+tWqX21eagXe8+LZeNgbeisssFNoM+fOXRdkJGN5Fzb2u
iWwG6v10Lh9S33WuhBg1v2qGBr4De1e+xuDHl5s68LYZSu3vuS4j/WHRhMeB
t6AZ6sb4L7x7SvTamzRs+KsZ4qfLnjl7Yhid6e9r39UClYH8Gke0MeRdCS0z
VG2BvPWe8pGkvz3oPPwBabRA/NFd4n0axH/5cddTdFvIPDkoeZr0R62b5xfu
WrZAj3/Wl97NGGImOyQ2B7ZAypMZpcOk3+qPN5q59bfA/ejBbLMiDqy9dG8/
bagFDmUGMILyOdBH3SFlyWyB0tP+JwqyOeCR+XTw6FQLLOOTy5hN5kCCi4Gb
xKpW+BJydEgwigPT7IrQEtVWcEi75PDKiQPvmN/qBJ61AuIduCsnzAHnFyfk
HCNaIchXf50VPwfUdAbvVL5shfyPijZhyzhQF8e38+7bVrgyWCvYM8+GcZOz
oYyCVlBU5pkVHCTzVf70qYrBVhgfmHAZzWJD18PdvbcOtEGS94zQPQM2CEh/
xENDbWAu8kve3ZoFmhYPewcZbWCZGZusROY/t9CL9QOcNrBOjTk7aMqCDm7x
j79m22Cj9KVj+7VZED8SaNXD3w5rrr35HCbPAqVMx8ZWlXbIbnk0sEAfhWPa
Smll/u3g2cnFRSXzabBDrv2bzR1Q/TjwbOM5JjA1Pweu2tYBlP7yEVlTJuiJ
v0+9qdwBp+YCuF30mLCkOpJjrN4BnX9jmH/2MuHWZo+bcyc6oKbg8o9EfibY
9+95dPJOB3gU60bGFzHgiHnme56WDvAJ1w3cuo7M35ppQ1d9OsFUbWJIOp8G
HnsqcsTKfwDX9HKKa/8Q9KdXPG2W/QkNJy8rPnT+DX8d214r3u6GM1S9yL33
u2H7keWL9t964NOIcWKNUhvoJcleyVrXByWrbim4tVWDl/TFTb8t++FPO7/9
Ilcm7GCZr+o89gv2t1htyAhOR2sFx1ZUzP8CKxGZg++9ahAPep0hF/sb3mzN
3qw73IqcVL51rTQaAOO6hBSVn90ozcDmTfH0AHy9tSu3PPo3mhqVXDMSPQgm
YW/PWH4bQrmn9JZG6gzByRChwS21NBRoVBAgpTcEDgnlhbWtNGSprbjivcEQ
MPGpz/Z9NLRk76rVeccJL4T+eDZBQ8eFKWI/zgyBZbjx4gtpOqJTLbZJXR8C
nW02Wk9d6UjyuL3pu6ghUhftOgeFGMhHPyAhZ2QIFGst/FqPMFGL1VXLXYwh
sMhbGvPNkIk2expJfBodAuM++xtxp5ioLlEo4u3YEBR291kcv8xEIn/jHoXP
D0HkaHOpXSATJX/Ou+4qMAyvj4fp2jQyEVWYrrFDdRiCLi1Qn58cRZsU62c/
7h8Gwyeiw5/PjSJPSM+V0xiGV9EHvcttRpHkNQ/l9ZrDMJfFK9LtNorsKrnk
+AyH4QNtLetb+Cia9ZLgo18YBhal0EureRTJ9hr+eBswDEZHj0hZGLBQUJlG
hnngMBR876YcNGWhPx93PFr+dBiWCwpGk8UKlbkJqDiFDYOKhZtp6VUWslvR
Errn9TA8zF+m9/kxCyXvPatXmjkM5dYRRrwVLKQUdCWvr3sYHFYEy35UZaNo
lzMhYX3D0HmlRSD4EBv9MzOw0/o9DNYKQQ1XddiIunG78IeRYTjJfJO18iQb
3cjlXL8+Pgxd1N1s+jU2yvnlKb+wbARUZZIer09kI3U1/0iJPSMwI2ecpbOU
gzpsJFTjVEbgdFHkxLcVHOT+LL1TRm0EQp7LDG0X4KBPwz8kFQ6OQGd/Xt2U
OAdtiNyZqKo7AgLPVZ7sVuKgJeMdn0+dG4HfO1d80jvNQfWpitUhfiPQnSDI
Gn7LQVc7iq8KBYyAZqZuoGsyB/EsMeOLejwCOR7taROfOOjw2fvHYoNHoHg4
yn8wl4Myl7e2pkaPgMYaIyuHag6KtLv7qzp1BHhzaiv5GRxkuYEyx906AlZJ
NhfTtmAkIOGW+619BIxqdy0L34ZR6VrRG54/RsCVtaTERQmjLSvP0+m9IxAx
qnd1jSpGeGKkg0IfAZb71LURHYz8ahe/xC2OQKSDseWQNUYqFYkup7lpoDQj
lqNhhxGtWGe7EA8NTtAuCQRdwcg4JyjJfyUNJKezqlY5YySaIPbcSYQGk0bn
dry9jVGyh5LzgW00sjcAr2w4RudcmhUndtAAvxCVoEditNrRY/iTMg3O/3dH
9sMLjNwuFlrK7KNBzJcO/uVxGGkY6hot16SBYrDDfsuPGHF0GMtKtWjw3u9k
988UjN5AcNntozQ4cqf+msknjHj2tRzgGNLAvSP+jEwWRk0brRTazWmw1z1P
81QhRg8kuYeenaHBs+BZnSdFGO0VfZegf57cj/fGnrxijF7yMcWKrGmwK/NJ
1WQZRjZTnrxvnWjgvDK4jKceo6m6kAFXXxocXj/x1KULo55V7VcXHtJAl/+1
yexPjMqMpfDjRzTQnOqWudWDUVhT6t/4pzTwMk4dsOnHaFtLtUhjFLnPe/ff
HUMYrVkr+PrMSxqML6XObhzBaOaUhexQDA1stRbEL9Ewqmgf2vk3gQbfXwW4
1TMwsuri1lNMJfFEa/00ORjpSBo05nyiwZjGq04DjNH282GnNDNoINL4bq/R
GEazPRusT+fQ4KPEicV9fzDqk7YfGcijgbeu+7WNExhVWn2+5vyVsKPCL65J
jMJ/adwKKKbBGzv7zrQpjLxlH/5bU0oDi1j/c57TGF20qQuILafBjWdWA6oz
GO0YOhP+pYYGG0wf/UucxUhY/o041NNgreetSKM5jOYu0+LrGmlgMO+2k024
iuaZ9ruFBle/dzmK/8Xok8L33dfbiV6OLAgkEY5w4CmY7aSBaG5ontwCRrdT
jQ77/6SBS577pTjC1qPhFYK9NFAdeiIo+B9Gujt+Gr7upwF055Z4E955XbZ5
ywANeNR6PX4SFkm/ejp7iAbJz2nbVRYxmudk9B6i0WDxYfFwAOFfyjO2tQwa
RLw/lkTmbVTtephpxqLBp2C/S0L/MErPCnD9xaHBqSZjOSPCkX8app3GaWCy
GEe7S/jOXpF7MxM0UM9wSP9A2Mbj/NKH0zS47ka6EWH93KQnAnM0WPdDX3uA
sPI0QzDmL9GjyzGhScJiaruj5RdpEFaZ/pvsH2jBy1sqi4sOTVccc8j+gQYL
UNLBpXSw/u3zhOwfqG5umWINLx2Ci8asRwlnqh/POLWCDtf8StTbCb+4E7Wv
n48O7MJJsXzC94t6vjmupkMtK3IqjLDdf3Ja04LkfFxqhw1hw8NONb7CdAgx
PVK4g/Bun+zjq0XpwHpq/4ZD4iFeMtf2ch0dwpsUnyQTXuQ6cn6zJB22xMR6
nCM8dCTwd4YUHdY4t9jwEK73o1zR2EgH15pfpz6Q+L/ksfI4uZk8fwntcAvJ
36Ltun3NW+jgaMMVZ0XYrpw6dUKRDh2VRccGSf53+Wl7HVOiw7/m6I/t8xhF
/15Qa9hFB929UybahBc082YN99Jh40rvYylETzX/FG7r76eDd/UDTSuiP6WL
A+rV6nQ4KW+h9pnoM7L49d+jh+hwcYDjO0n0a31P4J62Fh1WfpRee43oe2Z+
wuewMR1WZH/f9m8cI8tznzW/H6fD6bucijWEy77acx80pcNUr3eOJPHTM+8u
vwMWdEi7Exi5jvhvy3RxgIo1HTzy7l7MJf4MNvfW/WJDhyqORdoTOkZ/cnYv
33OZDrGF0cctiJ+L3d8FKjuS8/MusT+I/y3Gnzzd5kGHzwECVr6kPhSZaBun
3KQDcyjkungfRpsyF/gVbtHhqfdkx0dSTzjOLs/k79NB/c/PggxSfwJYZs9l
AumQw9hZbtuKEdNI4GRCEB2G6+fTvjdjZJJWLbwhhA73uT+MC1IxknJUj1wf
Tgf9pn1RcQ0Y5dA2vhCLpYOY1bT+hUqMJPW6TkfF0yHT027z7XJSLz+Ei4sk
0sHERNo6tJTU+8u8MUIfyPkT+vNJ30n+B5ix/Jl0kBv+UeWci9HavtykJRV0
eC4ZuvvVWxIv/nv38qvoZE7My1+RiBGfhs6Za7Uk3qBzwiUeoyUvW1Z3NNHB
h/UoV/YViZcp9k7posNeq1b39c8wolYqnDDBdNhkquRge5N8/yRW5P1DB8XG
c7Y67iT/m/J5CifpcI76846UK0bI52ih3DzJx5Orq7IdiH8P2MjP8DDg5qhx
sZslyc/n13/jJBmweim3vpEmRit6bDpOSjOg/XjLi/iDGPnzbctaLsOAqs7L
ooz9xN9XCuxvyDNgPn1ZvO1ujBxl25t1djHAZ4/MUixL/B0lkDx6lAF9rIsi
1twY8d7zNTtwgwG1jUHhX75yUM44aw65M6AwK9VXk/RzO/szCbo3GWB7nXew
MpODKk4oM0/dYUDd/Xauwo8c5L+p18c5gAGD95Rq9KLIfFCzP+3tKwa8zTB6
NO9M5ou1Y9wCZQz4+slcvlKKg7Ifn/8YWcGA/Q0bkmzWcZDNQpXx+moGlAnP
5s8KcVDZcNwLhQYGhIbvyhFYzkF+BUY7tTsYEBvvKTIwxkbcVh/PeDMZ0Fsj
n7y1nI24UqwyBoSZ0EOLkdhvw0ZVrE7nBFEmdDR9UbY7z0bBu0yVLMWZkDrW
UvfYjI3WFWh/bpdmAk/r2pe5umykVK2QVqPABOrDgqq0bWxkOfznQ/phJnjx
mB7iGWehr7KP4287MoFSIGru4cVCbjEZIcJlTDC+yN5LcRpF+Qsxj8sqmOBu
cHv3OttRtGD1yNetmgmjc7+fnSbz6mO5C54tDUxoV17iXqo/imI/8V0I72RC
2zpNeXX5UVRZfHmHMJsJMOlsVdrDROKD6+uFxEchiHp+Zr8uE33fHrhCyHkU
ym0rZG2WMpCQodsOPwEWXD7KZ9h4cQT17KS23ipiwWTRTsci2UGUGQ+bh6zY
4OhWWFn+oh9dyFAVkl5kg2y+WWF1xA/0ICDRtyeVA5y+H9Uyz6joM136tYAx
htc3LZOlY0tRYFyAdd9xDEW81krSFqXI7iRbPt0UwydGvdO6NaVIqqgo89hp
DBO8GjYLD0tQUOj5qmAbDE88KraIdhajq6qvxvluYWili92Mci9Em/xF9Jd/
wNByLX71rw9ZaHH/3dWdyRgO/Ojs7pfIQl3swZYPaRjkHra7/wzORGGnv1zQ
zcIw6Cd8znc4Hf3bdtI9oIjs2XeUxtLupqKe5tD4pa0YplOitkSkJKKCRzO2
re0Ybjq5GIuEvkGRGhcV3/7A0B2W0yDDiEdG75VytPowUPVfxU3dj0GF3o21
vgwMv3QSCrVTn6PonftCTVkY7LYYaqxhPkM3BmLNZDGGPRM2UaE+QUjB+Fp/
ySSG5nbaFa9UX8TD3fYubAbDZuH+TZU+t9GvXA1H63kMX5M8bSJSb6Aix7fK
u/7DoBZ73acg9RJ6sXHV1P9/l9u8O+T//28V/w8dyY1x
               "]]}, "Charting`Private`Tag#1"], 
            Annotation[{
              Directive[
               Opacity[1.], 
               RGBColor[0.95, 0.627, 0.1425], 
               AbsoluteThickness[2]], 
              Line[CompressedData["
1:eJwVV3k4ld0XNZVCQuqL9GUsJClUJNuUKUOoSEjGkspUnwyhkKgIKZHMIUUR
Mh0JFdc8lDJ13eG97nvvfW+pJOV3f3+dZz377POsvc5z9l5HweuCo68AHx+f
BT8f3/9Xa19ssI1x1DD2pJx42FgpEjKVDZqW0QG+xVcrHr8vQdqP7ufWyJgB
313nP+PNxehQ74cXD2WOQOz7dByKCpGzz8+WdBkf4POXyvpnJhdN7rxueksm
DPgUP265vTUJ5a+3T0yWiQe+PM+l44l3IW5VzbYbMpnQdsVwhb9mHbgcL6gi
uMUQW3xxrsu2F0SX49ws/q0C+UtN96q2fQAVBzb2JqUW5FvoV95FT4NsjIW+
f0EtePZZnJ4vmAaJp/kpIvW1kDb92EG+axoWVzlpOpBrQYhfR8pAeAYG2upD
p/a9hECleUqG/QxEaMX9XaC+hMOnw5JNZ2agb620tKZRPUh8DRst5CfDmwPn
fAeP1kPlonJ3wzoyNJztqgs7Ww9mgqOtfSpkKHobfrwpqx7CpXXLFq3IEB4z
mWfJqgdiz/cIx3QyKHJK1bwfNMBA5EV5AaVZ+K9PD+7Pv4LMFZfOnjKjgLjm
S+r7VY3Apyfoa3KUAsW3tG7+lmuE+MA0DyU/CgzabBv3ONgIScMVDtTrFNje
Ix2qktUIsQXTe8/0UGD6Laf0xd4mCD9gJRTsSIVL287aUg41ARE09sfBmwpi
12nf1ns2QVCx98/dYVTQM580upzEw6JX5ubvUiGjo/sTjDeBz/iLgfBxKqgr
m8cFs5oAEzPqPj5HhbZrr7cV8TeDj1HvG/3fVGCZNIStVG8Gl8f0uiU5GsQX
am/aZ9gMM5/Cqid30EBWoOr1Gcdm8BQXqGg1pEH1KfXTOX7NQDFOLXpkTwOL
1yXivRHNcP/OXJKUOw2m5BVe/r3dDHIVHifN/WgQFpt7QquoGarbh3QjLtCg
ADLKMnqagfStkfwljga/W2JNXOVaYNWxFIPnpTSoajxxid7SAkmyGoQ9QYN/
aiWn+PkRhBWdc751jQ5uN38foWxAMOF1ICDxFh0Kfag9XRoI9imuiY65RweN
9a9epbggWMivLAx+QgeTS55311cjiM1jso4O02FPrnNp5s42uJ99Jv5fJQxO
eZS6l021QXWq7/OqdgzqyKakfoN2mI90Fx3in4P2gIebjuMdUBwl/iEkDIfv
Ww+sfXruLViexPV/NLNB4NcTiU0q3eDye9zVJ4eATb0m32BnN1hSljsE8wnQ
KRgf9dHrBoNelZ1FxQT4WgnnPLPtBsVHwYLkpwS8y/ZSMbnUDXMmqytPthGQ
qi+jf+ZtN0Qk7/vjSiWgTLxa7vZgN4SEevgvMghoI5svv/jcDX5u8YPZbAK+
Jod1LHG6wVpzoOTjTwKOfe63S9vYAxuG/O2OiXBBLirRu/5MD1TI3HvksJML
uoc3m0+E9kCuQMtqrjYX7JRrVfmv9EAakxyato8LMaQvLOv0Hghr0bTsN+YC
We5A+FRjDxie6iJsjnDhNzHsKtjZA5rWuCvuwgXpzoADqv09oKwt1ZnizgXz
c/cFQmZ7YOUKj+xuPy6Ut3y7uUKMBENl340tL3Oh/U7yBfUNJOi6s6mSHs2F
T74KjvbyJGiIMN5w/SoXxMTt/8nWIUGeza25zhQuqJCpv1oMSZCuW3PEN40L
hnVRE2RLElz9d7xV6C4XgjwqCjTcSRBIKGeY5nHhxm7jeAd/EniMW/8hF3Kh
cOVHv0vBJLBrD/K/+pgLjZ/OW+VEkiAzTzJ8ooQLw89WaLQlkOBToKuIYDEX
8Ku54tRUEmzdX5SrxssXctbmrn5AgoDVuObhfC7sWfasc3pGgoWSaKeHuVyw
sW27erCBBGx7oT29D7jgnbPFfm87Cci/kjf+uc+FtL1TdNkxEgzY3p904/Fl
XDghQ/5DgtLvL/zlbnMhd+ZoVBCvLx4+iEXmxHCBv93a5BbeC88ojsXZXlwg
xev0dan3g5eS6ve7qlzYksb8Vc4egPv3+IueVxDA/Dk9Nao1BCPc71/0dAko
nmvqFr89DG0Ju127z3Lg/D17pYCMYSh2Fj5K9ufAXrPZyM77w5CmNmG/6M2B
7ociO6KKhuFYb8JBdTcOcA8fT2U0DAMmPa6VbMMBw/ofTh2zw7ChOEbYegcH
xq/tmrysNwIB7aTa92w2FGp16o4ajoBdZkHVlzk2BE663NYyGwEtv0sVv2hs
4NsbC3S7EVhaLZ+vNs2GrXN9BUd8RiDTITTlRj8bwg4H+u1MHYG6GRkvq2o2
iG9+zKFQRkBi2W/t+2A2GB27NjnLGIGtZR3nlc+zIST1ZA+ZPQIGDop9MQFs
GOPf+HhmYQS8iiZv7vFmQx4tyWNCbBSaLY6IFB9hw8AWX5vPkqMwRDw/s3yY
916PG+t/2jAKWPba9662bPDr+bX+o/woSOHd1yXN2aBZHdA7rDMKPmnGK2L2
ssGTYd40pDcKEXqPfD5psyFdUal80HAUkslLb3S12NBxYjlrwHQUylJcle5o
sOFH5uf4fstRaNRpuIqrskG1rz6kz3YUSJPryRYqbHAVzvTsdRyFmcRQ4yIF
Ntw0CrIjOY+C9LRQucdGNrRetjHocRsFVc/xY06r2UC8UFXvPjUKBl+eClku
skARF9r43m8UHL2uvjBgsiDRo+VbVxCPn8928a29LLA11XzSHj8KA6ejOxfS
WHAlSiT79Y1RIDMcQllxLKh+SUtsuz0KCwFbFcghLJBWfeTVen8U5M/1R/Uc
YcGEmIRsY+UoBAUr6ORtZEHgGDfp+cgoSER0Fprm43DzzEu/fOUxOJKyJvZ2
FRPmjJ4miaqPAZ719tiBR0yw2FhScWnnGNwsjNuB32aCwNtMto3+GLS/+v7J
6jwTLiuHXfplPwYa2KTuih1M8JvenegYOQZ8B58xIyvmwPhodYnQ0BhU/7Vz
PlPCgB9GTyinYz6ASEiaplkOHcJ2d9RuePMRlkIcNt8izcL0s46UQYVPoLF9
LrnNZRp+B4zkqEV8hoHyoMoJww+w3Vj4r1/TBCz03dknIzgAFoUK/s//mQJs
RFaQqGmH/zafVPziNg2xIx51D9aWgwZ+VPSD7QzwqQxGXKh7jNatJVZ1LM4A
oetntLTtDRJCOVVKuV/A5XL6DaXYfnRWp2l89SEyLAVKk/oLPqAnVl75rT/I
oFEtuM6pbRp9Z8pK0LJmIWm3Zk9M+Sx66WQhmMnzCV91/grUdNBR0qGGBDkL
CnywOKa4aoSO3EzVVpVYUaDb9Zmx+ywdCWiLrqmzo0BBrEessACG7KT6N3x0
oYATqfXPCcAQNnBMXe4cBVq9YxaEGjEka+fnUHyXAtfT+djHqhiIdfDDsMZ9
CoSXuKypbGWgtgOWx14+oIB7Q7UGfx8D+e1QP9H1iAJ7pjzPPsEZqEaM7YOV
U4Cj9hpbVptDNj0XwzVaKXD4ddxsWfEcirFMeFRLo4A8ITC+mM1EQx6n3bQY
FLghbfVEoJyJlC8ekqlkUoC7LzVapIGJugskM4oICjTGbVKUHWMi6d8PE9MX
KXBonc5ZPSkclT2tOxckToWze3z//JeMo8U32eq4BBX6XJ/0x2TjyPZTFN1/
HRU0Y7gF18tw9HWl6amTG6nw9220+b0uHBl49h+xU6RC4vGs1DoBFhqQwvZr
7KFCVdRbhe8RLKSo1rPweB8VVhesmV+6wUIX4dlLpf1UCOl06hLKZiHZwLCd
m4yoYCg+EyBdz0KBV53xLBMq5O7eekCui4XQff1yqYNUWOkcuFZ5lIV8OvmU
RKyp8P7RQo32Nxaq+zw7nWBDhR0dhon7Bdho9deuXH57KmRh8S6mkmzktqri
eLQDFRbFetQPybPRs39vbfjlRAX3XZJ/HHeyEZ9u0HDYMSrMe9S5RexjI6dD
TmmECxWw9Ece1/TZqPTUHtvAE1QY6UryvGnARgv/yYhg7lRoXwz2umvIRta3
l7q8PalQqXnCJ8+IjR4WT1+b9uLx9zLze2zCRiaDJX/G/KkQ3L0h4JU5G91U
383tDOb5wgdNwZN2bKQwaf2xKIEKaXor4lROslFy+/6qo0lUGNh5Zdz1FBt9
fayRKJxChXVbf+5K82aj9hBxnbNpVEiRYpAX/dnIZ9VQ6u4cKsQzSWYDQWxU
pn3c4nU1FcIfZq6KvMpGmsn+dVOfqeDJr5w2UMJG+nvjM2V200D1vcmjSJyn
z7/9v/iHaRC+SmmTaxAHfe++RQ6Ko8PmiW/6dsscdF/II8xRGYOWKm03XxMC
/fX+R3dwKwaSEudlzpoSyOfNwHd7NQz8gsrGgswIpHXV9D9bTQzEd212iDIn
0Ltl1QjLfRi4vVhpnmFNoJ+L32IMbTD4Uzu+87UjgY5xb6Soh2Fg2BgjuNmb
QM2HTW3KL2GQLtvYpuhDIMXqJTHVyxhQI+ajVX0JxD5/4bbKFQxu7D+zoO1P
oAT8yB35JAymmh1Z1mcJVEvfcm9DLgbhSOVDeCiBZC3Gne/mYdC3xTPzShiB
YkvTN0oXYKAS+8Ah/iKBbHxXPJAsxaDbaC0p9T8CUchzuWLVGMi0L7SVRhJo
3dTLQoEODF519FSMXCPQbbHo6PouDHRW2mUQ8QQS2W/mEvgeg+cWA5FiiQQS
uD+0ZqwPg4ruERuzJAJd6crGkgcx2CrmrOt5g0CL855vYASDQtvxzVHJBPrq
wAkvH8cgd2CSXXOTQOdj65w8JjCQk/L80H+LQHPPojXXTWOQ5URGzNsE8ps0
W/3uCwbSd33KhNMI9EVUjBJFwcBOMjTcN5VAbvrDrbvoGPQK7nIPSSHQx9MP
smkMDKx/sI1jrhNooFPV/jAHA/PPAaLZMbz65zlqK75i8KZXlSjh1ftOsV6o
cR4D0zbayAueHijmYKPSIgYmJV55pAsEeqbnpfJTiAF6F1x38XkS6ObTnN8P
ZRmgJmjt7G9EoFUTXmOOmxk8fyVsEGZAoHgR9efC8gxQxTrl4/YRKNK/wS9Y
hQHKvcZzD7QIFKAwOmimxYB/7+lF98kTyPKueBnzIAPEt6sV6fITaEV03BG9
YAbMlkhMCcdzUC0X/4VCGZAdlZhQFsVBPn4uj8wvMcDKaUnD6iIHddjvnHOK
ZEAJHxaZ7MdB8YqTMecTGOB/AsmsseIgoXf7nhRlM4Ahcf6olDgHCawj+MXb
GcCM7CHJ3ef1g3KPKrLUHPxwSGzaVclCIQ+qbkm1z0HbyfVPvlQyUcv2pFWS
vDmqoHHUeraOgfaM/NObHsQE0c0kzXRev6+OenxHOpQ3l9eYrjMuY6DC3i7Z
jeFMqONoTeRlM1DShRU7tlxlgmWN2HnXKAZyrLnqsCOLN5f1O+4MGjMQXT/6
gVUrEz5aao8jEoY8Z8VO9rQxoVGvouV8J4Y+peQq2b5hQra6QuHmVgyRJpoq
D79jgo/Y2rORVRh6cWWx1XmICX/755b2pGMoqv2/WV8aE3Y6F8o/c8aQpHWI
xlVxHBJ9JU/nkuko//VaUX1JHLhNAz5PP9GRlt5TBncdDo5Saadah+jIThUr
PSWDgxYSPzHTTkfJKz0UjJVxmN0oZqdcREdCb6w28OnjYEdaqVPpTUcZ+vT5
egMcGhW7tFpO0JHii/jhC4CD0uWEHX1OdGRUgNKmzXD4pSK0jTClo+gYXVFk
j0NFDL+sjjIdif0cYlxyxGH9WNuGg3J0lHs+6J3mUR5fjdh1x6TpqNH9SUKe
Kw4nxv+KhQvR0Y/9CnxXfHFYqb203EShoYSa1ind0zhcvtG0RJqgIentbi2s
ABwo0xG/JkdoqLjwV07JORxs9+j/YJNoSFv2XoR7EA5tN399Xe6gofY7OsfX
h+Ig8UY5nFVPQ46rh/b2XsTBZqtc7aESGgpaEPtuEIlDOy6isSqWhpYvVAzP
R+Pwx17gtN85GrpNt3hRGYvDvppfRR2uNFQ5dvWCXCLO85XYpjhdGmLULjB+
p+FQtLJLdHGOisI1st7VZOBAO9Ni4fKRilYVaz8+m4WDVG/ttbpOKtqacd7n
cw4OSRlFv0PyqcgrmDLVWIrDNfk4JvMoFU3sGBi+3IyDs75Bz2QbBT1iSkYL
Ihw4NLv28CoK8ip32nrrNU+PjFOv1uVREEP5Q3h+F89H4omPrSIp6Memqc1v
B3B4mzd47aUuBUmK4P7SVN59Cfob3KqYReY04aVna1hA77nz1CCTjKrzQJni
wYJwd3pqjv8Mcq/aI7n5LwuSyldLhVt+RLEJBXETFWw4HedokSvRh55im3PE
ef8Ygq9OVPjBK5T0MMFzyo4DErJp5p+WG5CPI0vlmQMHPHcHxD31bUByzc3V
ts4ckPf+96fTrnqUnHqi66YXB/I7E8n572rR6T3ZXJHLvPi6qpCL7CqkGC9t
KVzKASNLSs4rh2z0d1/Umg9lHGh7YnN9JSMLjbNmh0qfcIBP/GWIU2wmSnOu
cTd/zsMlohmf3FPRsrpjaEIzDwc+nLimFY4mBlPzBIc5ELtt+wlOSDI0JP70
Hh7lxb1c44+apULm/pNqRR95eKBjbFIkHQ6VaNaaTPGw6Pyy6UQWNIb3vo9j
8PKN1dSSIB+yduimOuA8PhIXa76EFkAwOfeIAofHf7rtwP6yQlC1CZxum+fx
j3ZxZEuUgBD/SHHaT17cpnjC4mApzLzcH+C5yNNnE+FXcPkxNAcU7dT6wzuP
sZ+7+LQM7m0R/b68zNv/6nrkEXI5/A8YAMAT
               "]]}, "Charting`Private`Tag#2"]}}, {}}, <|
         "HighlightElements" -> <|
           "Label" -> {"XYLabel"}, "Ball" -> {"InterpolatedBall"}|>, 
          "LayoutOptions" -> <|
           "PanelPlotLayout" -> <||>, 
            "PlotRange" -> {{0, 1}, {-1.0351635530326506`, 
              1.103395847381893}}, 
            "Frame" -> {{False, False}, {False, False}}, 
            "AxesOrigin" -> {0, 0}, "ImageSize" -> {360, 360/GoldenRatio}, 
            "Axes" -> {True, True}, "LabelStyle" -> {}, "AspectRatio" -> 
            GoldenRatio^(-1), "DefaultStyle" -> {
              Directive[
               Opacity[1.], 
               RGBColor[0.95, 0.627, 0.1425], 
               AbsoluteThickness[2]], 
              Directive[
               Opacity[1.], 
               RGBColor[0.24, 0.6, 0.8], 
               AbsoluteThickness[2]]}, 
            "HighlightLabelingFunctions" -> <|"CoordinatesToolOptions" -> ({
                (Identity[#]& )[
                 Part[#, 1]], 
                (Identity[#]& )[
                 Part[#, 2]]}& ), 
              "ScalingFunctions" -> {{Identity, Identity}, {
                Identity, Identity}}|>, "Primitives" -> {}, "GCFlag" -> 
            False|>, 
          "Meta" -> <|
           "DefaultHighlight" -> {"Dynamic", None}, "Index" -> {}, "Function" -> 
            Plot, "GroupHighlight" -> False|>|>]]& )[<|
        "HighlightElements" -> <|
          "Label" -> {"XYLabel"}, "Ball" -> {"InterpolatedBall"}|>, 
         "LayoutOptions" -> <|
          "PanelPlotLayout" -> <||>, 
           "PlotRange" -> {{0, 1}, {-1.0351635530326506`, 1.103395847381893}},
            "Frame" -> {{False, False}, {False, False}}, 
           "AxesOrigin" -> {0, 0}, "ImageSize" -> {360, 360/GoldenRatio}, 
           "Axes" -> {True, True}, "LabelStyle" -> {}, "AspectRatio" -> 
           GoldenRatio^(-1), "DefaultStyle" -> {
             Directive[
              Opacity[1.], 
              RGBColor[0.95, 0.627, 0.1425], 
              AbsoluteThickness[2]], 
             Directive[
              Opacity[1.], 
              RGBColor[0.24, 0.6, 0.8], 
              AbsoluteThickness[2]]}, 
           "HighlightLabelingFunctions" -> <|"CoordinatesToolOptions" -> ({
               (Identity[#]& )[
                Part[#, 1]], 
               (Identity[#]& )[
                Part[#, 2]]}& ), 
             "ScalingFunctions" -> {{Identity, Identity}, {
               Identity, Identity}}|>, "Primitives" -> {}, "GCFlag" -> 
           False|>, 
         "Meta" -> <|
          "DefaultHighlight" -> {"Dynamic", None}, "Index" -> {}, "Function" -> 
           Plot, "GroupHighlight" -> False|>|>]],
      Selectable->False]},
    Annotation[{{{{}, {}, 
        Annotation[{
          Directive[
           Opacity[1.], 
           RGBColor[0.24, 0.6, 0.8], 
           AbsoluteThickness[2]], 
          Line[CompressedData["
1:eJwVmXc81d8fxykaEhFCFEnRoCGK6i1kVxRakpBCISOaIkoisioZ0TLKykpy
7M29drLKusO995AtX/3O76/7eP5xPvdz3u/X6z3ulbVxOXl5CRcXVwY3F9f/
Pw0v05tLGOaHp4v5mgb3+R7m0ZZ07ZdQgZe5nRNSERdhb8LL2C8SOnAjKken
LdwFjBo7s+MkzOBBSuntpHAfOG038z1cwg42+L5pOBUeCr3Kj7VDJDxA7ehq
M/PnCfBG9MSjIAl/UEXz32+FZIDvii9bn0hEwn7RFB3p+wjOnE3MGBt/BwFF
34/yHaXCqn++lnobMiDfq1ylqKsT5E059PKnOaCQtoGiz+oDr6YD8HLyKwyN
dJ2tXDEI63KE+ri5EcguT+U2FBqBvAHtBsrBMvjrXr0vbZYOHfq+4yF6ZeB2
s0Bu31IGTKcXixmfLIPMB6ulC1YzQO3OgUs1V8qg1VplS8omBhSsVZ4uCS8D
HYbYETVjBnzVkZTJppeB7ZUkEe54BhR9GHOPjCyHE12dnmoHmVDmGLf+LKsC
PonRm17YjMIXhpOT1XQFfPt3fuNXx1F4d1X9my1XJUTaRTS2uo1CgH3nOWeR
Sig0uqkx5TcK+jZCMQ8PVoLq8aAt9KRRoJwNEE8ProRsW/mnwb9HoUf/uujS
nVUgGW12vewsCxqrNS6vUKuCD6VLalddYkGxLl/u6iNVcKznp+7xqyxI0Plo
Jm5eBR6tS5OKb7LARvN3xM57VRCW7fbeOIIFdDVz4TONVVCvI2AtVc+CqS2H
BD9fr4bH5mj6/j42HB7Qqg7yrgb3abkg94NseBSn73P1YTXc3rSr4aI2G8RE
zLDcq2pQSrQ222jKBlVuJ0pMRTWoJT0/rH6NDd7dL0MD19dAyf67jb1v2LAQ
OiloV1sDwk7q7KalHNAxmq8+0lYDF4c6s3NXciB4GdeDjf01EGSXz4oQ5ID0
vVVjPydrgHn+eZ7qeg4cdtxENZWphbM5Tz1E93DAR8ckDLxqYaDcdZeqFQeW
zKWtWS9fBw5+Dv1zGRxY36g1Acp10J8tZXs7hwMqiV3tdgfqwEut0WCigAOX
DZa/Tj9WB89iCzSaSjlQ88pGXutmHfzSk4tQaOVAqLqEukN1Haz8r1nWeZID
yQKZUs+a60A65pqZxywHSgZ0/2V310FFgWKX2wIH/gR5VCzgOgiBde1neDBY
dFOOh4nXA4TdvVOzFoPU3Ue2+Q71oJYWm75vN4Z9JtK6Pe718Kv+S1iJCobj
m3MUuO/Xw0Pu+Vzt/Rh8Gn6zDcPr4Sv1VdUewDAgdci7r7AeuIMO0b8YY0j5
PhHMy98AmCXuccQeQ9nzIJdtYg1Q69m22cQBw8/LsidPyDQAuzRv1elrGPgF
Tqx7pdIAY7zj3sfcMLhapSbuuNAAr+Syi3ruYVD9Z513Kr0Bziu7GPlHYDA+
VuJ3tKAB/hgkbV8ZjcH29cYTamUNYMDiCnj0EkOYWh9NsqMBOGsH3zjGYWC4
nJcY+K8Bph4IXv/xAQNXceFw6/JGONVnv0w2BYMYv2R2pVAjrF5xQcQmDYNW
8g/DFPlG6A7gDm7MwBD7y/yu67FGqDYM7zYowJCtlKtvc7oRlKLVV1kUYqi5
KyJqdqkRirmupp0rwjAl3vpZzbMRWsKvaBwrIfEzNelfjG0EO7XJ4M5qDNxl
hlohrEbYt3Fp5IN2DOJrUgV8phth+1X16LWdGJSsVna7cjVBfoT0koQfGM7N
V7ubiTRB5m1X0YRuDDl7jr5ff7AJShSvyej8xlD34N2N1bpN8N5Xwj5mAMOv
pqWH/51ogl1RX4QZgxhWO5V1DNg2AavYNcFlBIP9W1iR+rQJclRr7suOYrg7
Ht/2OqoJHnY9nlBnYYiAxTchCU0gNkZvMGZjKOkuOnDjSxNkawV/OosxdChK
LbP93gQy10yzzcYwsLzutJhVN4H60Pf1+uMYJETUnfZ3N0FXyAdx8QkMu2xe
qW0bboIxpZy0ScK6mbNLpXATTP73NLF2EoObcX7svyUUaJqj5lhOYwiMEXMY
56fAKsm+ZskZDAl0z32DYhQQOzFl0ky4wV+lqWobBUzbozy2zmFQF6xf8nwf
BYJ5fpu0EU5+dUntvCYFepM7VbznSX43zzrJG1HgeY2RzNq/GB6mP3uDzSmg
zBFa+57w2H759q/WFHikwL1aaQGDVfm3lf5OFMjlm1idTlj9B91N3JcC/yWb
bo74jzzfxufjwFMKHJe9f2CWsBhbtOdTNAUWvu4wN1vE4O/1aY1XIgVOx2p7
fSQ8zq199MgnCqjeTEsYJ2wV3HVrVT4F/t060bTnH7mPmGt6eykFPltJL3Ui
rJ64bDChgQKtF3kPxxBO3h63zrGTAu8Pzd8vISyWt9dYZYACMwfHK3sJ+2vW
PVhkUUB764DwH8J/6qxza2YokGpYffk/wpmpfz0MuKkweSuu+B9hGtYNTV9G
hSh+O+k5whv2haes5adCWp+UH4Ow2e3ecm8hKiyYNLCohJ8ihb5eMSpM69+6
kEG4jMdjVkuKChm7drb5E541QMLJslTon54wMSWsHMq3c/VWwgI9rSKE7dvM
9dx2UOGt67Qlhdw/TiLxUuduKnx9acF6QLjNinXnoBoVDgcK+ykSXvVOLTrx
IBV6KrQ21JL4ajH8MpdpUaHszJLSi4RvKTXVOelRIb7F2ZFN8pPpLjFMNaZC
6NFkSTfCtAK7f/tOUkHOoLmZTfK7YTFD4vVpKhjNCYRZEzbX/ruX6wIVjKcD
zeuIPoIDdY9ftqHCdzuHTdsJzwn3+ilfp4LHd+HW5lmi3zMKcZFu5P4BB/PX
EbaPc8+f86KC5t1nb82IHtu28rHK/ajgcz4w6ssUeZ+DauZnXlJhZ6LzMO8f
8j6+fi7f40h8Z2yEeIg/NlQ3Ptn0lgrW2Xf05oifgk3tilmfqYBV9FtriN+u
2j/f6ltOhSaj9W4LdKL/tJ4jIzVUkFmBZ7JpxH9jWy2NmqigdMg/yJr4WedO
cZhoFxWWmN3ofEP8vjFsdC6FQ4UTkRbr83oxFF/yScmeoALzupuyZg/R3961
Z7/NUiEu4u6dsp+kvnWoFzQsaYas5y1FGaT+iEsH3cRizXDukjLe0YwhnyO9
ZXZ9M6yxONfoTSH9oySrnUu2GbZGh48UNWKIsu1SEd7eDOwnffU76zAIpypM
qEAzjN5Qc84uw5B1pyjpkE4zeKYK7y4h9dDkmMlJXYNmaIyP2FNVjCF0zCvr
9Klm+Dl5c6KQ1FN+tWqX21eagXe8+LZeNgbeisssFNoM+fOXRdkJGN5Fzb2u
iWwG6v10Lh9S33WuhBg1v2qGBr4De1e+xuDHl5s68LYZSu3vuS4j/WHRhMeB
t6AZ6sb4L7x7SvTamzRs+KsZ4qfLnjl7Yhid6e9r39UClYH8Gke0MeRdCS0z
VG2BvPWe8pGkvz3oPPwBabRA/NFd4n0axH/5cddTdFvIPDkoeZr0R62b5xfu
WrZAj3/Wl97NGGImOyQ2B7ZAypMZpcOk3+qPN5q59bfA/ejBbLMiDqy9dG8/
bagFDmUGMILyOdBH3SFlyWyB0tP+JwqyOeCR+XTw6FQLLOOTy5hN5kCCi4Gb
xKpW+BJydEgwigPT7IrQEtVWcEi75PDKiQPvmN/qBJ61AuIduCsnzAHnFyfk
HCNaIchXf50VPwfUdAbvVL5shfyPijZhyzhQF8e38+7bVrgyWCvYM8+GcZOz
oYyCVlBU5pkVHCTzVf70qYrBVhgfmHAZzWJD18PdvbcOtEGS94zQPQM2CEh/
xENDbWAu8kve3ZoFmhYPewcZbWCZGZusROY/t9CL9QOcNrBOjTk7aMqCDm7x
j79m22Cj9KVj+7VZED8SaNXD3w5rrr35HCbPAqVMx8ZWlXbIbnk0sEAfhWPa
Smll/u3g2cnFRSXzabBDrv2bzR1Q/TjwbOM5JjA1Pweu2tYBlP7yEVlTJuiJ
v0+9qdwBp+YCuF30mLCkOpJjrN4BnX9jmH/2MuHWZo+bcyc6oKbg8o9EfibY
9+95dPJOB3gU60bGFzHgiHnme56WDvAJ1w3cuo7M35ppQ1d9OsFUbWJIOp8G
HnsqcsTKfwDX9HKKa/8Q9KdXPG2W/QkNJy8rPnT+DX8d214r3u6GM1S9yL33
u2H7keWL9t964NOIcWKNUhvoJcleyVrXByWrbim4tVWDl/TFTb8t++FPO7/9
Ilcm7GCZr+o89gv2t1htyAhOR2sFx1ZUzP8CKxGZg++9ahAPep0hF/sb3mzN
3qw73IqcVL51rTQaAOO6hBSVn90ozcDmTfH0AHy9tSu3PPo3mhqVXDMSPQgm
YW/PWH4bQrmn9JZG6gzByRChwS21NBRoVBAgpTcEDgnlhbWtNGSprbjivcEQ
MPGpz/Z9NLRk76rVeccJL4T+eDZBQ8eFKWI/zgyBZbjx4gtpOqJTLbZJXR8C
nW02Wk9d6UjyuL3pu6ghUhftOgeFGMhHPyAhZ2QIFGst/FqPMFGL1VXLXYwh
sMhbGvPNkIk2expJfBodAuM++xtxp5ioLlEo4u3YEBR291kcv8xEIn/jHoXP
D0HkaHOpXSATJX/Ou+4qMAyvj4fp2jQyEVWYrrFDdRiCLi1Qn58cRZsU62c/
7h8Gwyeiw5/PjSJPSM+V0xiGV9EHvcttRpHkNQ/l9ZrDMJfFK9LtNorsKrnk
+AyH4QNtLetb+Cia9ZLgo18YBhal0EureRTJ9hr+eBswDEZHj0hZGLBQUJlG
hnngMBR876YcNGWhPx93PFr+dBiWCwpGk8UKlbkJqDiFDYOKhZtp6VUWslvR
Errn9TA8zF+m9/kxCyXvPatXmjkM5dYRRrwVLKQUdCWvr3sYHFYEy35UZaNo
lzMhYX3D0HmlRSD4EBv9MzOw0/o9DNYKQQ1XddiIunG78IeRYTjJfJO18iQb
3cjlXL8+Pgxd1N1s+jU2yvnlKb+wbARUZZIer09kI3U1/0iJPSMwI2ecpbOU
gzpsJFTjVEbgdFHkxLcVHOT+LL1TRm0EQp7LDG0X4KBPwz8kFQ6OQGd/Xt2U
OAdtiNyZqKo7AgLPVZ7sVuKgJeMdn0+dG4HfO1d80jvNQfWpitUhfiPQnSDI
Gn7LQVc7iq8KBYyAZqZuoGsyB/EsMeOLejwCOR7taROfOOjw2fvHYoNHoHg4
yn8wl4Myl7e2pkaPgMYaIyuHag6KtLv7qzp1BHhzaiv5GRxkuYEyx906AlZJ
NhfTtmAkIOGW+619BIxqdy0L34ZR6VrRG54/RsCVtaTERQmjLSvP0+m9IxAx
qnd1jSpGeGKkg0IfAZb71LURHYz8ahe/xC2OQKSDseWQNUYqFYkup7lpoDQj
lqNhhxGtWGe7EA8NTtAuCQRdwcg4JyjJfyUNJKezqlY5YySaIPbcSYQGk0bn
dry9jVGyh5LzgW00sjcAr2w4RudcmhUndtAAvxCVoEditNrRY/iTMg3O/3dH
9sMLjNwuFlrK7KNBzJcO/uVxGGkY6hot16SBYrDDfsuPGHF0GMtKtWjw3u9k
988UjN5AcNntozQ4cqf+msknjHj2tRzgGNLAvSP+jEwWRk0brRTazWmw1z1P
81QhRg8kuYeenaHBs+BZnSdFGO0VfZegf57cj/fGnrxijF7yMcWKrGmwK/NJ
1WQZRjZTnrxvnWjgvDK4jKceo6m6kAFXXxocXj/x1KULo55V7VcXHtJAl/+1
yexPjMqMpfDjRzTQnOqWudWDUVhT6t/4pzTwMk4dsOnHaFtLtUhjFLnPe/ff
HUMYrVkr+PrMSxqML6XObhzBaOaUhexQDA1stRbEL9Ewqmgf2vk3gQbfXwW4
1TMwsuri1lNMJfFEa/00ORjpSBo05nyiwZjGq04DjNH282GnNDNoINL4bq/R
GEazPRusT+fQ4KPEicV9fzDqk7YfGcijgbeu+7WNExhVWn2+5vyVsKPCL65J
jMJ/adwKKKbBGzv7zrQpjLxlH/5bU0oDi1j/c57TGF20qQuILafBjWdWA6oz
GO0YOhP+pYYGG0wf/UucxUhY/o041NNgreetSKM5jOYu0+LrGmlgMO+2k024
iuaZ9ruFBle/dzmK/8Xok8L33dfbiV6OLAgkEY5w4CmY7aSBaG5ontwCRrdT
jQ77/6SBS577pTjC1qPhFYK9NFAdeiIo+B9Gujt+Gr7upwF055Z4E955XbZ5
ywANeNR6PX4SFkm/ejp7iAbJz2nbVRYxmudk9B6i0WDxYfFwAOFfyjO2tQwa
RLw/lkTmbVTtephpxqLBp2C/S0L/MErPCnD9xaHBqSZjOSPCkX8app3GaWCy
GEe7S/jOXpF7MxM0UM9wSP9A2Mbj/NKH0zS47ka6EWH93KQnAnM0WPdDX3uA
sPI0QzDmL9GjyzGhScJiaruj5RdpEFaZ/pvsH2jBy1sqi4sOTVccc8j+gQYL
UNLBpXSw/u3zhOwfqG5umWINLx2Ci8asRwlnqh/POLWCDtf8StTbCb+4E7Wv
n48O7MJJsXzC94t6vjmupkMtK3IqjLDdf3Ja04LkfFxqhw1hw8NONb7CdAgx
PVK4g/Bun+zjq0XpwHpq/4ZD4iFeMtf2ch0dwpsUnyQTXuQ6cn6zJB22xMR6
nCM8dCTwd4YUHdY4t9jwEK73o1zR2EgH15pfpz6Q+L/ksfI4uZk8fwntcAvJ
36Ltun3NW+jgaMMVZ0XYrpw6dUKRDh2VRccGSf53+Wl7HVOiw7/m6I/t8xhF
/15Qa9hFB929UybahBc082YN99Jh40rvYylETzX/FG7r76eDd/UDTSuiP6WL
A+rV6nQ4KW+h9pnoM7L49d+jh+hwcYDjO0n0a31P4J62Fh1WfpRee43oe2Z+
wuewMR1WZH/f9m8cI8tznzW/H6fD6bucijWEy77acx80pcNUr3eOJPHTM+8u
vwMWdEi7Exi5jvhvy3RxgIo1HTzy7l7MJf4MNvfW/WJDhyqORdoTOkZ/cnYv
33OZDrGF0cctiJ+L3d8FKjuS8/MusT+I/y3Gnzzd5kGHzwECVr6kPhSZaBun
3KQDcyjkungfRpsyF/gVbtHhqfdkx0dSTzjOLs/k79NB/c/PggxSfwJYZs9l
AumQw9hZbtuKEdNI4GRCEB2G6+fTvjdjZJJWLbwhhA73uT+MC1IxknJUj1wf
Tgf9pn1RcQ0Y5dA2vhCLpYOY1bT+hUqMJPW6TkfF0yHT027z7XJSLz+Ei4sk
0sHERNo6tJTU+8u8MUIfyPkT+vNJ30n+B5ix/Jl0kBv+UeWci9HavtykJRV0
eC4ZuvvVWxIv/nv38qvoZE7My1+RiBGfhs6Za7Uk3qBzwiUeoyUvW1Z3NNHB
h/UoV/YViZcp9k7posNeq1b39c8wolYqnDDBdNhkquRge5N8/yRW5P1DB8XG
c7Y67iT/m/J5CifpcI76846UK0bI52ih3DzJx5Orq7IdiH8P2MjP8DDg5qhx
sZslyc/n13/jJBmweim3vpEmRit6bDpOSjOg/XjLi/iDGPnzbctaLsOAqs7L
ooz9xN9XCuxvyDNgPn1ZvO1ujBxl25t1djHAZ4/MUixL/B0lkDx6lAF9rIsi
1twY8d7zNTtwgwG1jUHhX75yUM44aw65M6AwK9VXk/RzO/szCbo3GWB7nXew
MpODKk4oM0/dYUDd/Xauwo8c5L+p18c5gAGD95Rq9KLIfFCzP+3tKwa8zTB6
NO9M5ou1Y9wCZQz4+slcvlKKg7Ifn/8YWcGA/Q0bkmzWcZDNQpXx+moGlAnP
5s8KcVDZcNwLhQYGhIbvyhFYzkF+BUY7tTsYEBvvKTIwxkbcVh/PeDMZ0Fsj
n7y1nI24UqwyBoSZ0EOLkdhvw0ZVrE7nBFEmdDR9UbY7z0bBu0yVLMWZkDrW
UvfYjI3WFWh/bpdmAk/r2pe5umykVK2QVqPABOrDgqq0bWxkOfznQ/phJnjx
mB7iGWehr7KP4287MoFSIGru4cVCbjEZIcJlTDC+yN5LcRpF+Qsxj8sqmOBu
cHv3OttRtGD1yNetmgmjc7+fnSbz6mO5C54tDUxoV17iXqo/imI/8V0I72RC
2zpNeXX5UVRZfHmHMJsJMOlsVdrDROKD6+uFxEchiHp+Zr8uE33fHrhCyHkU
ym0rZG2WMpCQodsOPwEWXD7KZ9h4cQT17KS23ipiwWTRTsci2UGUGQ+bh6zY
4OhWWFn+oh9dyFAVkl5kg2y+WWF1xA/0ICDRtyeVA5y+H9Uyz6joM136tYAx
htc3LZOlY0tRYFyAdd9xDEW81krSFqXI7iRbPt0UwydGvdO6NaVIqqgo89hp
DBO8GjYLD0tQUOj5qmAbDE88KraIdhajq6qvxvluYWili92Mci9Em/xF9Jd/
wNByLX71rw9ZaHH/3dWdyRgO/Ojs7pfIQl3swZYPaRjkHra7/wzORGGnv1zQ
zcIw6Cd8znc4Hf3bdtI9oIjs2XeUxtLupqKe5tD4pa0YplOitkSkJKKCRzO2
re0Ybjq5GIuEvkGRGhcV3/7A0B2W0yDDiEdG75VytPowUPVfxU3dj0GF3o21
vgwMv3QSCrVTn6PonftCTVkY7LYYaqxhPkM3BmLNZDGGPRM2UaE+QUjB+Fp/
ySSG5nbaFa9UX8TD3fYubAbDZuH+TZU+t9GvXA1H63kMX5M8bSJSb6Aix7fK
u/7DoBZ73acg9RJ6sXHV1P9/l9u8O+T//28V/w8dyY1x
           "]]}, "Charting`Private`Tag#1"], 
        Annotation[{
          Directive[
           Opacity[1.], 
           RGBColor[0.95, 0.627, 0.1425], 
           AbsoluteThickness[2]], 
          Line[CompressedData["
1:eJwVV3k4ld0XNZVCQuqL9GUsJClUJNuUKUOoSEjGkspUnwyhkKgIKZHMIUUR
Mh0JFdc8lDJ13eG97nvvfW+pJOV3f3+dZz377POsvc5z9l5HweuCo68AHx+f
BT8f3/9Xa19ssI1x1DD2pJx42FgpEjKVDZqW0QG+xVcrHr8vQdqP7ufWyJgB
313nP+PNxehQ74cXD2WOQOz7dByKCpGzz8+WdBkf4POXyvpnJhdN7rxueksm
DPgUP265vTUJ5a+3T0yWiQe+PM+l44l3IW5VzbYbMpnQdsVwhb9mHbgcL6gi
uMUQW3xxrsu2F0SX49ws/q0C+UtN96q2fQAVBzb2JqUW5FvoV95FT4NsjIW+
f0EtePZZnJ4vmAaJp/kpIvW1kDb92EG+axoWVzlpOpBrQYhfR8pAeAYG2upD
p/a9hECleUqG/QxEaMX9XaC+hMOnw5JNZ2agb620tKZRPUh8DRst5CfDmwPn
fAeP1kPlonJ3wzoyNJztqgs7Ww9mgqOtfSpkKHobfrwpqx7CpXXLFq3IEB4z
mWfJqgdiz/cIx3QyKHJK1bwfNMBA5EV5AaVZ+K9PD+7Pv4LMFZfOnjKjgLjm
S+r7VY3Apyfoa3KUAsW3tG7+lmuE+MA0DyU/CgzabBv3ONgIScMVDtTrFNje
Ix2qktUIsQXTe8/0UGD6Laf0xd4mCD9gJRTsSIVL287aUg41ARE09sfBmwpi
12nf1ns2QVCx98/dYVTQM580upzEw6JX5ubvUiGjo/sTjDeBz/iLgfBxKqgr
m8cFs5oAEzPqPj5HhbZrr7cV8TeDj1HvG/3fVGCZNIStVG8Gl8f0uiU5GsQX
am/aZ9gMM5/Cqid30EBWoOr1Gcdm8BQXqGg1pEH1KfXTOX7NQDFOLXpkTwOL
1yXivRHNcP/OXJKUOw2m5BVe/r3dDHIVHifN/WgQFpt7QquoGarbh3QjLtCg
ADLKMnqagfStkfwljga/W2JNXOVaYNWxFIPnpTSoajxxid7SAkmyGoQ9QYN/
aiWn+PkRhBWdc751jQ5uN38foWxAMOF1ICDxFh0Kfag9XRoI9imuiY65RweN
9a9epbggWMivLAx+QgeTS55311cjiM1jso4O02FPrnNp5s42uJ99Jv5fJQxO
eZS6l021QXWq7/OqdgzqyKakfoN2mI90Fx3in4P2gIebjuMdUBwl/iEkDIfv
Ww+sfXruLViexPV/NLNB4NcTiU0q3eDye9zVJ4eATb0m32BnN1hSljsE8wnQ
KRgf9dHrBoNelZ1FxQT4WgnnPLPtBsVHwYLkpwS8y/ZSMbnUDXMmqytPthGQ
qi+jf+ZtN0Qk7/vjSiWgTLxa7vZgN4SEevgvMghoI5svv/jcDX5u8YPZbAK+
Jod1LHG6wVpzoOTjTwKOfe63S9vYAxuG/O2OiXBBLirRu/5MD1TI3HvksJML
uoc3m0+E9kCuQMtqrjYX7JRrVfmv9EAakxyato8LMaQvLOv0Hghr0bTsN+YC
We5A+FRjDxie6iJsjnDhNzHsKtjZA5rWuCvuwgXpzoADqv09oKwt1ZnizgXz
c/cFQmZ7YOUKj+xuPy6Ut3y7uUKMBENl340tL3Oh/U7yBfUNJOi6s6mSHs2F
T74KjvbyJGiIMN5w/SoXxMTt/8nWIUGeza25zhQuqJCpv1oMSZCuW3PEN40L
hnVRE2RLElz9d7xV6C4XgjwqCjTcSRBIKGeY5nHhxm7jeAd/EniMW/8hF3Kh
cOVHv0vBJLBrD/K/+pgLjZ/OW+VEkiAzTzJ8ooQLw89WaLQlkOBToKuIYDEX
8Ku54tRUEmzdX5SrxssXctbmrn5AgoDVuObhfC7sWfasc3pGgoWSaKeHuVyw
sW27erCBBGx7oT29D7jgnbPFfm87Cci/kjf+uc+FtL1TdNkxEgzY3p904/Fl
XDghQ/5DgtLvL/zlbnMhd+ZoVBCvLx4+iEXmxHCBv93a5BbeC88ojsXZXlwg
xev0dan3g5eS6ve7qlzYksb8Vc4egPv3+IueVxDA/Dk9Nao1BCPc71/0dAko
nmvqFr89DG0Ju127z3Lg/D17pYCMYSh2Fj5K9ufAXrPZyM77w5CmNmG/6M2B
7ociO6KKhuFYb8JBdTcOcA8fT2U0DAMmPa6VbMMBw/ofTh2zw7ChOEbYegcH
xq/tmrysNwIB7aTa92w2FGp16o4ajoBdZkHVlzk2BE663NYyGwEtv0sVv2hs
4NsbC3S7EVhaLZ+vNs2GrXN9BUd8RiDTITTlRj8bwg4H+u1MHYG6GRkvq2o2
iG9+zKFQRkBi2W/t+2A2GB27NjnLGIGtZR3nlc+zIST1ZA+ZPQIGDop9MQFs
GOPf+HhmYQS8iiZv7vFmQx4tyWNCbBSaLY6IFB9hw8AWX5vPkqMwRDw/s3yY
916PG+t/2jAKWPba9662bPDr+bX+o/woSOHd1yXN2aBZHdA7rDMKPmnGK2L2
ssGTYd40pDcKEXqPfD5psyFdUal80HAUkslLb3S12NBxYjlrwHQUylJcle5o
sOFH5uf4fstRaNRpuIqrskG1rz6kz3YUSJPryRYqbHAVzvTsdRyFmcRQ4yIF
Ntw0CrIjOY+C9LRQucdGNrRetjHocRsFVc/xY06r2UC8UFXvPjUKBl+eClku
skARF9r43m8UHL2uvjBgsiDRo+VbVxCPn8928a29LLA11XzSHj8KA6ejOxfS
WHAlSiT79Y1RIDMcQllxLKh+SUtsuz0KCwFbFcghLJBWfeTVen8U5M/1R/Uc
YcGEmIRsY+UoBAUr6ORtZEHgGDfp+cgoSER0Fprm43DzzEu/fOUxOJKyJvZ2
FRPmjJ4miaqPAZ719tiBR0yw2FhScWnnGNwsjNuB32aCwNtMto3+GLS/+v7J
6jwTLiuHXfplPwYa2KTuih1M8JvenegYOQZ8B58xIyvmwPhodYnQ0BhU/7Vz
PlPCgB9GTyinYz6ASEiaplkOHcJ2d9RuePMRlkIcNt8izcL0s46UQYVPoLF9
LrnNZRp+B4zkqEV8hoHyoMoJww+w3Vj4r1/TBCz03dknIzgAFoUK/s//mQJs
RFaQqGmH/zafVPziNg2xIx51D9aWgwZ+VPSD7QzwqQxGXKh7jNatJVZ1LM4A
oetntLTtDRJCOVVKuV/A5XL6DaXYfnRWp2l89SEyLAVKk/oLPqAnVl75rT/I
oFEtuM6pbRp9Z8pK0LJmIWm3Zk9M+Sx66WQhmMnzCV91/grUdNBR0qGGBDkL
CnywOKa4aoSO3EzVVpVYUaDb9Zmx+ywdCWiLrqmzo0BBrEessACG7KT6N3x0
oYATqfXPCcAQNnBMXe4cBVq9YxaEGjEka+fnUHyXAtfT+djHqhiIdfDDsMZ9
CoSXuKypbGWgtgOWx14+oIB7Q7UGfx8D+e1QP9H1iAJ7pjzPPsEZqEaM7YOV
U4Cj9hpbVptDNj0XwzVaKXD4ddxsWfEcirFMeFRLo4A8ITC+mM1EQx6n3bQY
FLghbfVEoJyJlC8ekqlkUoC7LzVapIGJugskM4oICjTGbVKUHWMi6d8PE9MX
KXBonc5ZPSkclT2tOxckToWze3z//JeMo8U32eq4BBX6XJ/0x2TjyPZTFN1/
HRU0Y7gF18tw9HWl6amTG6nw9220+b0uHBl49h+xU6RC4vGs1DoBFhqQwvZr
7KFCVdRbhe8RLKSo1rPweB8VVhesmV+6wUIX4dlLpf1UCOl06hLKZiHZwLCd
m4yoYCg+EyBdz0KBV53xLBMq5O7eekCui4XQff1yqYNUWOkcuFZ5lIV8OvmU
RKyp8P7RQo32Nxaq+zw7nWBDhR0dhon7Bdho9deuXH57KmRh8S6mkmzktqri
eLQDFRbFetQPybPRs39vbfjlRAX3XZJ/HHeyEZ9u0HDYMSrMe9S5RexjI6dD
TmmECxWw9Ece1/TZqPTUHtvAE1QY6UryvGnARgv/yYhg7lRoXwz2umvIRta3
l7q8PalQqXnCJ8+IjR4WT1+b9uLx9zLze2zCRiaDJX/G/KkQ3L0h4JU5G91U
383tDOb5wgdNwZN2bKQwaf2xKIEKaXor4lROslFy+/6qo0lUGNh5Zdz1FBt9
fayRKJxChXVbf+5K82aj9hBxnbNpVEiRYpAX/dnIZ9VQ6u4cKsQzSWYDQWxU
pn3c4nU1FcIfZq6KvMpGmsn+dVOfqeDJr5w2UMJG+nvjM2V200D1vcmjSJyn
z7/9v/iHaRC+SmmTaxAHfe++RQ6Ko8PmiW/6dsscdF/II8xRGYOWKm03XxMC
/fX+R3dwKwaSEudlzpoSyOfNwHd7NQz8gsrGgswIpHXV9D9bTQzEd212iDIn
0Ltl1QjLfRi4vVhpnmFNoJ+L32IMbTD4Uzu+87UjgY5xb6Soh2Fg2BgjuNmb
QM2HTW3KL2GQLtvYpuhDIMXqJTHVyxhQI+ajVX0JxD5/4bbKFQxu7D+zoO1P
oAT8yB35JAymmh1Z1mcJVEvfcm9DLgbhSOVDeCiBZC3Gne/mYdC3xTPzShiB
YkvTN0oXYKAS+8Ah/iKBbHxXPJAsxaDbaC0p9T8CUchzuWLVGMi0L7SVRhJo
3dTLQoEODF519FSMXCPQbbHo6PouDHRW2mUQ8QQS2W/mEvgeg+cWA5FiiQQS
uD+0ZqwPg4ruERuzJAJd6crGkgcx2CrmrOt5g0CL855vYASDQtvxzVHJBPrq
wAkvH8cgd2CSXXOTQOdj65w8JjCQk/L80H+LQHPPojXXTWOQ5URGzNsE8ps0
W/3uCwbSd33KhNMI9EVUjBJFwcBOMjTcN5VAbvrDrbvoGPQK7nIPSSHQx9MP
smkMDKx/sI1jrhNooFPV/jAHA/PPAaLZMbz65zlqK75i8KZXlSjh1ftOsV6o
cR4D0zbayAueHijmYKPSIgYmJV55pAsEeqbnpfJTiAF6F1x38XkS6ObTnN8P
ZRmgJmjt7G9EoFUTXmOOmxk8fyVsEGZAoHgR9efC8gxQxTrl4/YRKNK/wS9Y
hQHKvcZzD7QIFKAwOmimxYB/7+lF98kTyPKueBnzIAPEt6sV6fITaEV03BG9
YAbMlkhMCcdzUC0X/4VCGZAdlZhQFsVBPn4uj8wvMcDKaUnD6iIHddjvnHOK
ZEAJHxaZ7MdB8YqTMecTGOB/AsmsseIgoXf7nhRlM4Ahcf6olDgHCawj+MXb
GcCM7CHJ3ef1g3KPKrLUHPxwSGzaVclCIQ+qbkm1z0HbyfVPvlQyUcv2pFWS
vDmqoHHUeraOgfaM/NObHsQE0c0kzXRev6+OenxHOpQ3l9eYrjMuY6DC3i7Z
jeFMqONoTeRlM1DShRU7tlxlgmWN2HnXKAZyrLnqsCOLN5f1O+4MGjMQXT/6
gVUrEz5aao8jEoY8Z8VO9rQxoVGvouV8J4Y+peQq2b5hQra6QuHmVgyRJpoq
D79jgo/Y2rORVRh6cWWx1XmICX/755b2pGMoqv2/WV8aE3Y6F8o/c8aQpHWI
xlVxHBJ9JU/nkuko//VaUX1JHLhNAz5PP9GRlt5TBncdDo5Saadah+jIThUr
PSWDgxYSPzHTTkfJKz0UjJVxmN0oZqdcREdCb6w28OnjYEdaqVPpTUcZ+vT5
egMcGhW7tFpO0JHii/jhC4CD0uWEHX1OdGRUgNKmzXD4pSK0jTClo+gYXVFk
j0NFDL+sjjIdif0cYlxyxGH9WNuGg3J0lHs+6J3mUR5fjdh1x6TpqNH9SUKe
Kw4nxv+KhQvR0Y/9CnxXfHFYqb203EShoYSa1ind0zhcvtG0RJqgIentbi2s
ABwo0xG/JkdoqLjwV07JORxs9+j/YJNoSFv2XoR7EA5tN399Xe6gofY7OsfX
h+Ig8UY5nFVPQ46rh/b2XsTBZqtc7aESGgpaEPtuEIlDOy6isSqWhpYvVAzP
R+Pwx17gtN85GrpNt3hRGYvDvppfRR2uNFQ5dvWCXCLO85XYpjhdGmLULjB+
p+FQtLJLdHGOisI1st7VZOBAO9Ni4fKRilYVaz8+m4WDVG/ttbpOKtqacd7n
cw4OSRlFv0PyqcgrmDLVWIrDNfk4JvMoFU3sGBi+3IyDs75Bz2QbBT1iSkYL
Ihw4NLv28CoK8ip32nrrNU+PjFOv1uVREEP5Q3h+F89H4omPrSIp6Memqc1v
B3B4mzd47aUuBUmK4P7SVN59Cfob3KqYReY04aVna1hA77nz1CCTjKrzQJni
wYJwd3pqjv8Mcq/aI7n5LwuSyldLhVt+RLEJBXETFWw4HedokSvRh55im3PE
ef8Ygq9OVPjBK5T0MMFzyo4DErJp5p+WG5CPI0vlmQMHPHcHxD31bUByzc3V
ts4ckPf+96fTrnqUnHqi66YXB/I7E8n572rR6T3ZXJHLvPi6qpCL7CqkGC9t
KVzKASNLSs4rh2z0d1/Umg9lHGh7YnN9JSMLjbNmh0qfcIBP/GWIU2wmSnOu
cTd/zsMlohmf3FPRsrpjaEIzDwc+nLimFY4mBlPzBIc5ELtt+wlOSDI0JP70
Hh7lxb1c44+apULm/pNqRR95eKBjbFIkHQ6VaNaaTPGw6Pyy6UQWNIb3vo9j
8PKN1dSSIB+yduimOuA8PhIXa76EFkAwOfeIAofHf7rtwP6yQlC1CZxum+fx
j3ZxZEuUgBD/SHHaT17cpnjC4mApzLzcH+C5yNNnE+FXcPkxNAcU7dT6wzuP
sZ+7+LQM7m0R/b68zNv/6nrkEXI5/A8YAMAT
           "]]}, "Charting`Private`Tag#2"]}}, {}}, <|
     "HighlightElements" -> <|
       "Label" -> {"XYLabel"}, "Ball" -> {"InterpolatedBall"}|>, 
      "LayoutOptions" -> <|
       "PanelPlotLayout" -> <||>, 
        "PlotRange" -> {{0, 1}, {-1.0351635530326506`, 1.103395847381893}}, 
        "Frame" -> {{False, False}, {False, False}}, "AxesOrigin" -> {0, 0}, 
        "ImageSize" -> {360, 360/GoldenRatio}, "Axes" -> {True, True}, 
        "LabelStyle" -> {}, "AspectRatio" -> GoldenRatio^(-1), "DefaultStyle" -> {
          Directive[
           Opacity[1.], 
           RGBColor[0.95, 0.627, 0.1425], 
           AbsoluteThickness[2]], 
          Directive[
           Opacity[1.], 
           RGBColor[0.24, 0.6, 0.8], 
           AbsoluteThickness[2]]}, 
        "HighlightLabelingFunctions" -> <|"CoordinatesToolOptions" -> ({
            (Identity[#]& )[
             Part[#, 1]], 
            (Identity[#]& )[
             Part[#, 2]]}& ), 
          "ScalingFunctions" -> {{Identity, Identity}, {
            Identity, Identity}}|>, "Primitives" -> {}, "GCFlag" -> False|>, 
      "Meta" -> <|
       "DefaultHighlight" -> {"Dynamic", None}, "Index" -> {}, "Function" -> 
        Plot, "GroupHighlight" -> False|>|>, "DynamicHighlight"]]},
  AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948],
  Axes->{True, True},
  AxesLabel->{None, None},
  AxesOrigin->{0, 0},
  DisplayFunction->Identity,
  Frame->{{False, False}, {False, False}},
  FrameLabel->{{None, None}, {None, None}},
  FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}},
  GridLines->{None, None},
  GridLinesStyle->Directive[
    GrayLevel[0.5, 0.4]],
  Method->{
   "AxisPadding" -> Scaled[0.02], "DefaultBoundaryStyle" -> Automatic, 
    "DefaultGraphicsInteraction" -> {
     "Version" -> 1.2, "TrackMousePosition" -> {True, False}, 
      "Effects" -> {
       "Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2}, 
        "Droplines" -> {
         "freeformCursorMode" -> True, 
          "placement" -> {"x" -> "All", "y" -> "None"}}}}, "DefaultMeshStyle" -> 
    AbsolutePointSize[6], "DefaultPlotStyle" -> {
      Directive[
       RGBColor[0.24, 0.6, 0.8], 
       AbsoluteThickness[2]], 
      Directive[
       RGBColor[0.95, 0.627, 0.1425], 
       AbsoluteThickness[2]], 
      Directive[
       RGBColor[0.455, 0.7, 0.21], 
       AbsoluteThickness[2]], 
      Directive[
       RGBColor[0.922526, 0.385626, 0.209179], 
       AbsoluteThickness[2]], 
      Directive[
       RGBColor[0.578, 0.51, 0.85], 
       AbsoluteThickness[2]], 
      Directive[
       RGBColor[0.772079, 0.431554, 0.102387], 
       AbsoluteThickness[2]], 
      Directive[
       RGBColor[0.4, 0.64, 1.], 
       AbsoluteThickness[2]], 
      Directive[
       RGBColor[1., 0.75, 0.], 
       AbsoluteThickness[2]], 
      Directive[
       RGBColor[0.8, 0.4, 0.76], 
       AbsoluteThickness[2]], 
      Directive[
       RGBColor[0.637, 0.65, 0.], 
       AbsoluteThickness[2]], 
      Directive[
       RGBColor[0.915, 0.3325, 0.2125], 
       AbsoluteThickness[2]], 
      Directive[
       RGBColor[0.40082222609352647`, 0.5220066643438841, 0.85], 
       AbsoluteThickness[2]], 
      Directive[
       RGBColor[0.9728288904374106, 0.621644452187053, 0.07336199581899142], 
       AbsoluteThickness[2]], 
      Directive[
       RGBColor[0.736782672705901, 0.358, 0.5030266573755369], 
       AbsoluteThickness[2]], 
      Directive[
       RGBColor[0.28026441037696703`, 0.715, 0.4292089322474965], 
       AbsoluteThickness[2]]}, "DomainPadding" -> Scaled[0.02], 
    "PointSizeFunction" -> "SmallPointSize", "RangePadding" -> Scaled[0.05], 
    "OptimizePlotMarkers" -> True, "IncludeHighlighting" -> "CurrentPoint", 
    "HighlightStyle" -> Automatic, "OptimizePlotMarkers" -> True, 
    "CoordinatesToolOptions" -> {"DisplayFunction" -> ({
        (Identity[#]& )[
         Part[#, 1]], 
        (Identity[#]& )[
         Part[#, 2]]}& ), "CopiedValueFunction" -> ({
        (Identity[#]& )[
         Part[#, 1]], 
        (Identity[#]& )[
         Part[#, 2]]}& )}},
  PlotRange->{{0, 1.}, {-1.2099460715858352`, 1.3584228870796313`}},
  PlotRangeClipping->True,
  PlotRangePadding->{{
     Scaled[0.02], 
     Scaled[0.02]}, {
     Scaled[0.05], 
     Scaled[0.05]}},
  Ticks->{Automatic, Automatic}]], "Output",
 CellChangeTimes->{
  3.948122934926648*^9, {3.9481233417433777`*^9, 3.948123354503605*^9}, {
   3.948123427863299*^9, 3.948123447354506*^9}, 3.948124131040556*^9, {
   3.948124313488406*^9, 3.948124335665526*^9}, {3.94812436689406*^9, 
   3.948124386845297*^9}, {3.948125441564465*^9, 3.9481254695737877`*^9}},
 CellLabel->
  "Out[579]=",ExpressionUUID->"0de6ebc1-d180-400d-a3ab-43318b41fb18"]
}, Open  ]],

Cell[BoxData[
 RowBox[{
  RowBox[{"testini2", "=", 
   RowBox[{"RandomVariate", "[", 
    RowBox[{
     RowBox[{"NormalDistribution", "[", "]"}], ",", "100"}], "]"}]}], 
  ";"}]], "Input",
 CellChangeTimes->{{3.948117958635509*^9, 3.948117961737759*^9}, 
   3.948118009196693*^9, {3.9481184224530888`*^9, 3.948118457550139*^9}, {
   3.948118865567238*^9, 3.948118865622703*^9}, {3.948121884827036*^9, 
   3.948121884922701*^9}, {3.9481228385695353`*^9, 3.9481228386651783`*^9}, {
   3.948124146120387*^9, 3.94812414629488*^9}, {3.9481254767329683`*^9, 
   3.948125476932557*^9}},
 CellLabel->
  "In[580]:=",ExpressionUUID->"b30c963b-73c6-45e4-8851-ebca8a51734b"],

Cell[CellGroupData[{

Cell[BoxData[
 RowBox[{"Norm", "[", 
  RowBox[{"Total", "[", 
   RowBox[{"Transpose", "[", 
    RowBox[{
     RowBox[{"dCost", "[", 
      RowBox[{
       RowBox[{"edgeBasis", "[", "100", "]"}], ",", "testdat"}], "]"}], "@@", 
     
     RowBox[{"(", 
      RowBox[{"testresult2", "=", 
       RowBox[{
        RowBox[{"gradientDescent", "[", 
         RowBox[{
          RowBox[{"edgeBasis", "[", "100", "]"}], ",", "testdat", ",", 
          "1000000"}], "]"}], "@@", "testini2"}]}], ")"}]}], "]"}], "]"}], 
  "]"}]], "Input",
 CellChangeTimes->{{3.948116443805812*^9, 3.948116595874456*^9}, 
   3.94811663448494*^9, {3.948116675111467*^9, 3.94811669012147*^9}, {
   3.9481170279593077`*^9, 3.948117034948435*^9}, {3.948117139185307*^9, 
   3.948117139416718*^9}, {3.948117619301654*^9, 3.948117644869664*^9}, {
   3.948117701129861*^9, 3.948117725424323*^9}, 3.9481177976042557`*^9, {
   3.948117949234351*^9, 3.948118005251853*^9}, {3.9481181222490892`*^9, 
   3.948118131658963*^9}, {3.948118183420438*^9, 3.948118183730976*^9}, {
   3.948118290031867*^9, 3.948118300008397*^9}, {3.948118391012185*^9, 
   3.9481183956216516`*^9}, {3.9481184306853952`*^9, 3.948118480496229*^9}, {
   3.9481187959571867`*^9, 3.948118869886958*^9}, {3.948118944962851*^9, 
   3.94811896683502*^9}, {3.948119010941477*^9, 3.948119011052844*^9}, {
   3.948120502251251*^9, 3.9481205305715523`*^9}, {3.9481205627655373`*^9, 
   3.948120562876808*^9}, {3.948120655117876*^9, 3.948120660817029*^9}, {
   3.948121887483335*^9, 3.948121890418994*^9}, {3.948122565903281*^9, 
   3.948122573199029*^9}, {3.9481226327618637`*^9, 3.948122635273507*^9}, {
   3.948122909142078*^9, 3.948122913716877*^9}, {3.948122958087236*^9, 
   3.948122958214641*^9}, {3.948122997594208*^9, 3.9481229977202806`*^9}, {
   3.948123053867231*^9, 3.948123054116344*^9}, {3.948123366064897*^9, 
   3.948123374087646*^9}, {3.948123451324266*^9, 3.94812345771636*^9}, {
   3.9481241406010933`*^9, 3.9481241723601103`*^9}, 3.948124401049839*^9, {
   3.9481244637884493`*^9, 3.948124463859868*^9}, {3.948124558697804*^9, 
   3.948124559407857*^9}, {3.948125492478352*^9, 3.948125496453656*^9}, 
   3.9481255732812*^9},
 CellLabel->
  "In[585]:=",ExpressionUUID->"836b3548-7e17-45c1-b28e-0607b57c13a5"],

Cell[BoxData["0.025435047426857774`"], "Output",
 CellChangeTimes->{
  3.948116920781104*^9, {3.948117036764943*^9, 3.948117051224715*^9}, {
   3.948117143594776*^9, 3.948117150513681*^9}, 3.94811718447971*^9, 
   3.9481172182141438`*^9, {3.948117638498147*^9, 3.9481177376918983`*^9}, {
   3.948117798579523*^9, 3.948117841103928*^9}, {3.948117941742052*^9, 
   3.94811801037414*^9}, {3.9481181194825706`*^9, 3.948118132143605*^9}, 
   3.948118184196604*^9, {3.9481182858143787`*^9, 3.948118292728421*^9}, 
   3.948118322966217*^9, {3.948118392460451*^9, 3.948118404573513*^9}, {
   3.948118446107132*^9, 3.9481184873970633`*^9}, {3.948118789974741*^9, 
   3.948118876322757*^9}, {3.9481189372969913`*^9, 3.9481189777874928`*^9}, 
   3.948119026920826*^9, 3.948120164039448*^9, 3.94812041284212*^9, {
   3.9481205240286617`*^9, 3.948120540191484*^9}, 3.948120580966222*^9, 
   3.9481207063893833`*^9, 3.94812189239913*^9, 3.9481219796615143`*^9, 
   3.948122604105332*^9, 3.948122923828226*^9, 3.948122985996348*^9, 
   3.9481230427774963`*^9, 3.948123149426978*^9, {3.948123365026877*^9, 
   3.948123374739566*^9}, {3.948123452106146*^9, 3.948123459450842*^9}, {
   3.9481241393603086`*^9, 3.948124175152656*^9}, {3.948124393225073*^9, 
   3.948124419346307*^9}, 3.948124543741746*^9, 3.948124585994644*^9, 
   3.948125491254188*^9, 3.94812555805612*^9, 3.948126067766728*^9},
 CellLabel->
  "Out[585]=",ExpressionUUID->"d015d061-dada-4c76-9547-7fb223c133b4"]
}, Open  ]],

Cell[CellGroupData[{

Cell[BoxData[
 RowBox[{"Show", "[", 
  RowBox[{
   RowBox[{"ListPlot", "[", "testdat", "]"}], ",", 
   RowBox[{"Plot", "[", 
    RowBox[{
     RowBox[{"{", 
      RowBox[{
       RowBox[{"Sin", "[", 
        RowBox[{"2", "\[Pi]", " ", "x"}], "]"}], ",", 
       RowBox[{
        RowBox[{"(", 
         RowBox[{
          RowBox[{"trialFunction", "[", 
           RowBox[{"edgeBasis", "[", "100", "]"}], "]"}], "@@", 
          "testresult2"}], ")"}], "[", "x", "]"}]}], "}"}], ",", 
     RowBox[{"{", 
      RowBox[{"x", ",", "0", ",", "1"}], "}"}]}], "]"}]}], "]"}]], "Input",
 CellChangeTimes->{{3.9481229432143373`*^9, 3.948122951894258*^9}, {
  3.9481241612173653`*^9, 3.9481241612958612`*^9}, {3.9481255641290007`*^9, 
  3.9481255647764606`*^9}},
 CellLabel->
  "In[586]:=",ExpressionUUID->"a6c9f209-5969-490c-8928-610839cf2732"],

Cell[BoxData[
 GraphicsBox[{{{}, 
    InterpretationBox[{
      TagBox[
       TagBox[
        {RGBColor[0.24, 0.6, 0.8], PointSize[0.009166666666666668], 
         AbsoluteThickness[2], PointBox[CompressedData["
1:eJw1lQlQE1ccxtHKSNNaI2NF8EC5FGFUGEWpx6f1qANNxQsx4IUwAgMFQS2C
igqm0ip1GlQUChQPcAZRsV6Y8kBAsKASkCNgOHKQkxxEqvXsZnfd2Z2dnX3v
/77/9/3e7vTw+PWRI21sbCKoy3r/dCwtkp6ar2kioWR9Yfv1DCz2mLisNOER
mOds2I17+L7hdhWxcz5oqh5dgIUdZfcz/s1j319CfNzHHV4RUvjE717T1H0V
ptmhic8+iMGMv44LLe07vQNkoF87lqNU8u4Mv6GXnf8XBGkbVtS3K7HaYete
8aq74G3RhXotVLD17iPzrt717wX9mFy/hzpF4BZNuyYJ0LD1CbKy/CvqLxmR
smhFeM/TKjybGsIXij+t9xBi30KNo50UkUKenySiBq4PCrnVejW7fi0iXd5y
kv0VCNJt5jx/Uwe3ZeLt29rUrJ56bFrr15DM1YMuf7oBH51T3l9RDLH6HiPt
XZXHrLyXmJEbW/7YoxHzorzMURwtq7cJuZ0nRiV7GGBv2S+oFT1Bq+fMR9wH
Q6z+Z/heWn7aJ8yCtMvLrm33bEaN8WFJ+Fgz208zzqxzuegoGgYlxqoIMZK1
4YeIke2vBfICu0b7LWbEvA84yictuCe+F506V8/224qWJRyf1zeGsMOT7hDL
K0v28F6a2P6fI0rw58Zgjh6b6KMNNc1zjMJKHetHG6bsrLTw/DQIpKpTM/A2
ZpZn5DQd608HtmXXG11rZFhOqQ/SdaBYkhT7dImS9asTlhGuB7o+DoASY1UE
10e+R7fvlrH+SRDGGR+2S6CCt621gy5sTvXyGO0rYf3sxhGHxRePcS7DhZkA
czr3jgu/l/X3BTJucHc9f9IKWo6DFEE5+3u+kxQQxm8pNS+44sdz9RiTecAq
CSHFW9Qdt/JZ/3sR2HhWc6yzFp/dPkwl0IsySVyY0442No8+iPiSCYKJScQ6
2vlgHyom5fmccKhg8+nDB1l7QvStOvITtdof0/uR7pd0cF11A2Hy6sf5BOFu
s6gVibTgfvD6VSvXOXQQJj8ZMuZec3QobCVxVLe5sTKUZ2wV+cjUhMlThmm2
ZPXnq5WEHm4vh++c7KepFVrC5CtHYuLlw6oLKmJ1O+euHOKoNN0XAjlh8lag
PSXfU/R7N6Ht2apAV3xm8a7OPna/K+Bkc+fblGoTCaHSPjNSiX/SZ7u7izSE
4UGJ0uOvJBtfK8kGavT4EiX8N06VndNrCcOHEsdlTjz3Wj35gQ54AJMnjf9l
TYKZMLwMwCbv8JGUShOh5VsGcMx+zIx9/CHC8KPChL62VbneFkLjkqNC4Mz9
0aZQC2F4UmFuwtlUQ7aRLH3dlz52qRqcJBcSFqolDF9qDJwqutesNBD/LPnC
LLkabou8BB8WDxGGNw1kexVLhov1ZJ7bwOCXmRr8Jm8qGrqqIQxOGtwsPOnJ
TTWTORXqol9nayFMtDP39KgIw6MWyeu/yU33MxBm+2iReKX1+HCdiTB86rDz
ps70s1BN6PIHdHgzaiLPMaKfMLzqEF62aH70aBWhcXPWI2e6zVevNmsIw68e
ew/95z2uQ0acaGD1UOavGKkPVhCG50G0O7s72o7Tkq9Lhr1sYwaxrdEUN7mw
i+V7EMGWqNRzK7sIlzbIAE7E+X0j6qSE4d2AjOIpCwLSXhA63tsGZBcUhYjk
EvZ7bkRswsmsI91lhG6Xb0RV6fB5YWkJYfaDEfkbcsNjJxHC/C1M0CY5Bwkf
tOB/IhAvzw==
          "]]},
        Annotation[#, "Charting`Private`Tag#1"]& ],
       {"WolframDynamicHighlight", <|
        "Label" -> {"XYLabel"}, "Ball" -> {"IndicatedBall"}|>}], 
      StyleBox[
       DynamicBox[(Charting`HighlightActionBox["DynamicHighlight", {}, 
         Slot["HighlightElements"], 
         Slot["LayoutOptions"], 
         Slot["Meta"], 
         Charting`HighlightActionFunction["DynamicHighlight", {{
            Annotation[{
              Directive[
               PointSize[0.009166666666666668], 
               RGBColor[0.24, 0.6, 0.8], 
               AbsoluteThickness[2]], 
              Point[CompressedData["
1:eJw1lQlQE1ccxtHKSNNaI2NF8EC5FGFUGEWpx6f1qANNxQsx4IUwAgMFQS2C
igqm0ip1GlQUChQPcAZRsV6Y8kBAsKASkCNgOHKQkxxEqvXsZnfd2Z2dnX3v
/77/9/3e7vTw+PWRI21sbCKoy3r/dCwtkp6ar2kioWR9Yfv1DCz2mLisNOER
mOds2I17+L7hdhWxcz5oqh5dgIUdZfcz/s1j319CfNzHHV4RUvjE717T1H0V
ptmhic8+iMGMv44LLe07vQNkoF87lqNU8u4Mv6GXnf8XBGkbVtS3K7HaYete
8aq74G3RhXotVLD17iPzrt717wX9mFy/hzpF4BZNuyYJ0LD1CbKy/CvqLxmR
smhFeM/TKjybGsIXij+t9xBi30KNo50UkUKenySiBq4PCrnVejW7fi0iXd5y
kv0VCNJt5jx/Uwe3ZeLt29rUrJ56bFrr15DM1YMuf7oBH51T3l9RDLH6HiPt
XZXHrLyXmJEbW/7YoxHzorzMURwtq7cJuZ0nRiV7GGBv2S+oFT1Bq+fMR9wH
Q6z+Z/heWn7aJ8yCtMvLrm33bEaN8WFJ+Fgz208zzqxzuegoGgYlxqoIMZK1
4YeIke2vBfICu0b7LWbEvA84yictuCe+F506V8/224qWJRyf1zeGsMOT7hDL
K0v28F6a2P6fI0rw58Zgjh6b6KMNNc1zjMJKHetHG6bsrLTw/DQIpKpTM/A2
ZpZn5DQd608HtmXXG11rZFhOqQ/SdaBYkhT7dImS9asTlhGuB7o+DoASY1UE
10e+R7fvlrH+SRDGGR+2S6CCt621gy5sTvXyGO0rYf3sxhGHxRePcS7DhZkA
czr3jgu/l/X3BTJucHc9f9IKWo6DFEE5+3u+kxQQxm8pNS+44sdz9RiTecAq
CSHFW9Qdt/JZ/3sR2HhWc6yzFp/dPkwl0IsySVyY0442No8+iPiSCYKJScQ6
2vlgHyom5fmccKhg8+nDB1l7QvStOvITtdof0/uR7pd0cF11A2Hy6sf5BOFu
s6gVibTgfvD6VSvXOXQQJj8ZMuZec3QobCVxVLe5sTKUZ2wV+cjUhMlThmm2
ZPXnq5WEHm4vh++c7KepFVrC5CtHYuLlw6oLKmJ1O+euHOKoNN0XAjlh8lag
PSXfU/R7N6Ht2apAV3xm8a7OPna/K+Bkc+fblGoTCaHSPjNSiX/SZ7u7izSE
4UGJ0uOvJBtfK8kGavT4EiX8N06VndNrCcOHEsdlTjz3Wj35gQ54AJMnjf9l
TYKZMLwMwCbv8JGUShOh5VsGcMx+zIx9/CHC8KPChL62VbneFkLjkqNC4Mz9
0aZQC2F4UmFuwtlUQ7aRLH3dlz52qRqcJBcSFqolDF9qDJwqutesNBD/LPnC
LLkabou8BB8WDxGGNw1kexVLhov1ZJ7bwOCXmRr8Jm8qGrqqIQxOGtwsPOnJ
TTWTORXqol9nayFMtDP39KgIw6MWyeu/yU33MxBm+2iReKX1+HCdiTB86rDz
ps70s1BN6PIHdHgzaiLPMaKfMLzqEF62aH70aBWhcXPWI2e6zVevNmsIw68e
ew/95z2uQ0acaGD1UOavGKkPVhCG50G0O7s72o7Tkq9Lhr1sYwaxrdEUN7mw
i+V7EMGWqNRzK7sIlzbIAE7E+X0j6qSE4d2AjOIpCwLSXhA63tsGZBcUhYjk
EvZ7bkRswsmsI91lhG6Xb0RV6fB5YWkJYfaDEfkbcsNjJxHC/C1M0CY5Bwkf
tOB/IhAvzw==
               "]]}, "Charting`Private`Tag#1"]}}, <|
          "HighlightElements" -> <|
            "Label" -> {"XYLabel"}, "Ball" -> {"IndicatedBall"}|>, 
           "LayoutOptions" -> <|
            "PanelPlotLayout" -> <||>, 
             "PlotRange" -> {{0, 1.}, {-1.2099460715858352`, 
               1.3584228870796313`}}, 
             "Frame" -> {{False, False}, {False, False}}, 
             "AxesOrigin" -> {0, 0}, "ImageSize" -> {360, 360/GoldenRatio}, 
             "Axes" -> {True, True}, "LabelStyle" -> {}, "AspectRatio" -> 
             GoldenRatio^(-1), "DefaultStyle" -> {
               Directive[
                PointSize[0.009166666666666668], 
                RGBColor[0.24, 0.6, 0.8], 
                AbsoluteThickness[2]]}, 
             "HighlightLabelingFunctions" -> <|"CoordinatesToolOptions" -> ({
                 (Identity[#]& )[
                  Part[#, 1]], 
                 (Identity[#]& )[
                  Part[#, 2]]}& ), 
               "ScalingFunctions" -> {{Identity, Identity}, {
                 Identity, Identity}}|>, "Primitives" -> {}, "GCFlag" -> 
             False|>, 
           "Meta" -> <|
            "DefaultHighlight" -> {"Dynamic", None}, "Index" -> {}, 
             "Function" -> ListPlot, "GroupHighlight" -> False|>|>]]& )[<|
         "HighlightElements" -> <|
           "Label" -> {"XYLabel"}, "Ball" -> {"IndicatedBall"}|>, 
          "LayoutOptions" -> <|
           "PanelPlotLayout" -> <||>, 
            "PlotRange" -> {{0, 1.}, {-1.2099460715858352`, 
              1.3584228870796313`}}, 
            "Frame" -> {{False, False}, {False, False}}, 
            "AxesOrigin" -> {0, 0}, "ImageSize" -> {360, 360/GoldenRatio}, 
            "Axes" -> {True, True}, "LabelStyle" -> {}, "AspectRatio" -> 
            GoldenRatio^(-1), "DefaultStyle" -> {
              Directive[
               PointSize[0.009166666666666668], 
               RGBColor[0.24, 0.6, 0.8], 
               AbsoluteThickness[2]]}, 
            "HighlightLabelingFunctions" -> <|"CoordinatesToolOptions" -> ({
                (Identity[#]& )[
                 Part[#, 1]], 
                (Identity[#]& )[
                 Part[#, 2]]}& ), 
              "ScalingFunctions" -> {{Identity, Identity}, {
                Identity, Identity}}|>, "Primitives" -> {}, "GCFlag" -> 
            False|>, 
          "Meta" -> <|
           "DefaultHighlight" -> {"Dynamic", None}, "Index" -> {}, "Function" -> 
            ListPlot, "GroupHighlight" -> False|>|>]],
       Selectable->False]},
     Annotation[{{
        Annotation[{
          Directive[
           PointSize[0.009166666666666668], 
           RGBColor[0.24, 0.6, 0.8], 
           AbsoluteThickness[2]], 
          Point[CompressedData["
1:eJw1lQlQE1ccxtHKSNNaI2NF8EC5FGFUGEWpx6f1qANNxQsx4IUwAgMFQS2C
igqm0ip1GlQUChQPcAZRsV6Y8kBAsKASkCNgOHKQkxxEqvXsZnfd2Z2dnX3v
/77/9/3e7vTw+PWRI21sbCKoy3r/dCwtkp6ar2kioWR9Yfv1DCz2mLisNOER
mOds2I17+L7hdhWxcz5oqh5dgIUdZfcz/s1j319CfNzHHV4RUvjE717T1H0V
ptmhic8+iMGMv44LLe07vQNkoF87lqNU8u4Mv6GXnf8XBGkbVtS3K7HaYete
8aq74G3RhXotVLD17iPzrt717wX9mFy/hzpF4BZNuyYJ0LD1CbKy/CvqLxmR
smhFeM/TKjybGsIXij+t9xBi30KNo50UkUKenySiBq4PCrnVejW7fi0iXd5y
kv0VCNJt5jx/Uwe3ZeLt29rUrJ56bFrr15DM1YMuf7oBH51T3l9RDLH6HiPt
XZXHrLyXmJEbW/7YoxHzorzMURwtq7cJuZ0nRiV7GGBv2S+oFT1Bq+fMR9wH
Q6z+Z/heWn7aJ8yCtMvLrm33bEaN8WFJ+Fgz208zzqxzuegoGgYlxqoIMZK1
4YeIke2vBfICu0b7LWbEvA84yictuCe+F506V8/224qWJRyf1zeGsMOT7hDL
K0v28F6a2P6fI0rw58Zgjh6b6KMNNc1zjMJKHetHG6bsrLTw/DQIpKpTM/A2
ZpZn5DQd608HtmXXG11rZFhOqQ/SdaBYkhT7dImS9asTlhGuB7o+DoASY1UE
10e+R7fvlrH+SRDGGR+2S6CCt621gy5sTvXyGO0rYf3sxhGHxRePcS7DhZkA
czr3jgu/l/X3BTJucHc9f9IKWo6DFEE5+3u+kxQQxm8pNS+44sdz9RiTecAq
CSHFW9Qdt/JZ/3sR2HhWc6yzFp/dPkwl0IsySVyY0442No8+iPiSCYKJScQ6
2vlgHyom5fmccKhg8+nDB1l7QvStOvITtdof0/uR7pd0cF11A2Hy6sf5BOFu
s6gVibTgfvD6VSvXOXQQJj8ZMuZec3QobCVxVLe5sTKUZ2wV+cjUhMlThmm2
ZPXnq5WEHm4vh++c7KepFVrC5CtHYuLlw6oLKmJ1O+euHOKoNN0XAjlh8lag
PSXfU/R7N6Ht2apAV3xm8a7OPna/K+Bkc+fblGoTCaHSPjNSiX/SZ7u7izSE
4UGJ0uOvJBtfK8kGavT4EiX8N06VndNrCcOHEsdlTjz3Wj35gQ54AJMnjf9l
TYKZMLwMwCbv8JGUShOh5VsGcMx+zIx9/CHC8KPChL62VbneFkLjkqNC4Mz9
0aZQC2F4UmFuwtlUQ7aRLH3dlz52qRqcJBcSFqolDF9qDJwqutesNBD/LPnC
LLkabou8BB8WDxGGNw1kexVLhov1ZJ7bwOCXmRr8Jm8qGrqqIQxOGtwsPOnJ
TTWTORXqol9nayFMtDP39KgIw6MWyeu/yU33MxBm+2iReKX1+HCdiTB86rDz
ps70s1BN6PIHdHgzaiLPMaKfMLzqEF62aH70aBWhcXPWI2e6zVevNmsIw68e
ew/95z2uQ0acaGD1UOavGKkPVhCG50G0O7s72o7Tkq9Lhr1sYwaxrdEUN7mw
i+V7EMGWqNRzK7sIlzbIAE7E+X0j6qSE4d2AjOIpCwLSXhA63tsGZBcUhYjk
EvZ7bkRswsmsI91lhG6Xb0RV6fB5YWkJYfaDEfkbcsNjJxHC/C1M0CY5Bwkf
tOB/IhAvzw==
           "]]}, "Charting`Private`Tag#1"]}}, <|
      "HighlightElements" -> <|
        "Label" -> {"XYLabel"}, "Ball" -> {"IndicatedBall"}|>, 
       "LayoutOptions" -> <|
        "PanelPlotLayout" -> <||>, 
         "PlotRange" -> {{0, 1.}, {-1.2099460715858352`, 
           1.3584228870796313`}}, "Frame" -> {{False, False}, {False, False}},
          "AxesOrigin" -> {0, 0}, "ImageSize" -> {360, 360/GoldenRatio}, 
         "Axes" -> {True, True}, "LabelStyle" -> {}, "AspectRatio" -> 
         GoldenRatio^(-1), "DefaultStyle" -> {
           Directive[
            PointSize[0.009166666666666668], 
            RGBColor[0.24, 0.6, 0.8], 
            AbsoluteThickness[2]]}, 
         "HighlightLabelingFunctions" -> <|"CoordinatesToolOptions" -> ({
             (Identity[#]& )[
              Part[#, 1]], 
             (Identity[#]& )[
              Part[#, 2]]}& ), 
           "ScalingFunctions" -> {{Identity, Identity}, {
             Identity, Identity}}|>, "Primitives" -> {}, "GCFlag" -> False|>, 
       "Meta" -> <|
        "DefaultHighlight" -> {"Dynamic", None}, "Index" -> {}, "Function" -> 
         ListPlot, "GroupHighlight" -> False|>|>, 
      "DynamicHighlight"]], {{}, {}}}, 
   InterpretationBox[{
     TagBox[{{{}, {}, 
        TagBox[
         {RGBColor[0.24, 0.6, 0.8], AbsoluteThickness[2], Opacity[1.], 
          LineBox[CompressedData["
1:eJwVmXc81d8fxykaEhFCFEnRoCGK6i1kVxRakpBCISOaIkoisioZ0TLKykpy
7M29drLKusO995AtX/3O76/7eP5xPvdz3u/X6z3ulbVxOXl5CRcXVwY3F9f/
Pw0v05tLGOaHp4v5mgb3+R7m0ZZ07ZdQgZe5nRNSERdhb8LL2C8SOnAjKken
LdwFjBo7s+MkzOBBSuntpHAfOG038z1cwg42+L5pOBUeCr3Kj7VDJDxA7ehq
M/PnCfBG9MSjIAl/UEXz32+FZIDvii9bn0hEwn7RFB3p+wjOnE3MGBt/BwFF
34/yHaXCqn++lnobMiDfq1ylqKsT5E059PKnOaCQtoGiz+oDr6YD8HLyKwyN
dJ2tXDEI63KE+ri5EcguT+U2FBqBvAHtBsrBMvjrXr0vbZYOHfq+4yF6ZeB2
s0Bu31IGTKcXixmfLIPMB6ulC1YzQO3OgUs1V8qg1VplS8omBhSsVZ4uCS8D
HYbYETVjBnzVkZTJppeB7ZUkEe54BhR9GHOPjCyHE12dnmoHmVDmGLf+LKsC
PonRm17YjMIXhpOT1XQFfPt3fuNXx1F4d1X9my1XJUTaRTS2uo1CgH3nOWeR
Sig0uqkx5TcK+jZCMQ8PVoLq8aAt9KRRoJwNEE8ProRsW/mnwb9HoUf/uujS
nVUgGW12vewsCxqrNS6vUKuCD6VLalddYkGxLl/u6iNVcKznp+7xqyxI0Plo
Jm5eBR6tS5OKb7LARvN3xM57VRCW7fbeOIIFdDVz4TONVVCvI2AtVc+CqS2H
BD9fr4bH5mj6/j42HB7Qqg7yrgb3abkg94NseBSn73P1YTXc3rSr4aI2G8RE
zLDcq2pQSrQ222jKBlVuJ0pMRTWoJT0/rH6NDd7dL0MD19dAyf67jb1v2LAQ
OiloV1sDwk7q7KalHNAxmq8+0lYDF4c6s3NXciB4GdeDjf01EGSXz4oQ5ID0
vVVjPydrgHn+eZ7qeg4cdtxENZWphbM5Tz1E93DAR8ckDLxqYaDcdZeqFQeW
zKWtWS9fBw5+Dv1zGRxY36g1Acp10J8tZXs7hwMqiV3tdgfqwEut0WCigAOX
DZa/Tj9WB89iCzSaSjlQ88pGXutmHfzSk4tQaOVAqLqEukN1Haz8r1nWeZID
yQKZUs+a60A65pqZxywHSgZ0/2V310FFgWKX2wIH/gR5VCzgOgiBde1neDBY
dFOOh4nXA4TdvVOzFoPU3Ue2+Q71oJYWm75vN4Z9JtK6Pe718Kv+S1iJCobj
m3MUuO/Xw0Pu+Vzt/Rh8Gn6zDcPr4Sv1VdUewDAgdci7r7AeuIMO0b8YY0j5
PhHMy98AmCXuccQeQ9nzIJdtYg1Q69m22cQBw8/LsidPyDQAuzRv1elrGPgF
Tqx7pdIAY7zj3sfcMLhapSbuuNAAr+Syi3ruYVD9Z513Kr0Bziu7GPlHYDA+
VuJ3tKAB/hgkbV8ZjcH29cYTamUNYMDiCnj0EkOYWh9NsqMBOGsH3zjGYWC4
nJcY+K8Bph4IXv/xAQNXceFw6/JGONVnv0w2BYMYv2R2pVAjrF5xQcQmDYNW
8g/DFPlG6A7gDm7MwBD7y/yu67FGqDYM7zYowJCtlKtvc7oRlKLVV1kUYqi5
KyJqdqkRirmupp0rwjAl3vpZzbMRWsKvaBwrIfEzNelfjG0EO7XJ4M5qDNxl
hlohrEbYt3Fp5IN2DOJrUgV8phth+1X16LWdGJSsVna7cjVBfoT0koQfGM7N
V7ubiTRB5m1X0YRuDDl7jr5ff7AJShSvyej8xlD34N2N1bpN8N5Xwj5mAMOv
pqWH/51ogl1RX4QZgxhWO5V1DNg2AavYNcFlBIP9W1iR+rQJclRr7suOYrg7
Ht/2OqoJHnY9nlBnYYiAxTchCU0gNkZvMGZjKOkuOnDjSxNkawV/OosxdChK
LbP93gQy10yzzcYwsLzutJhVN4H60Pf1+uMYJETUnfZ3N0FXyAdx8QkMu2xe
qW0bboIxpZy0ScK6mbNLpXATTP73NLF2EoObcX7svyUUaJqj5lhOYwiMEXMY
56fAKsm+ZskZDAl0z32DYhQQOzFl0ky4wV+lqWobBUzbozy2zmFQF6xf8nwf
BYJ5fpu0EU5+dUntvCYFepM7VbznSX43zzrJG1HgeY2RzNq/GB6mP3uDzSmg
zBFa+57w2H759q/WFHikwL1aaQGDVfm3lf5OFMjlm1idTlj9B91N3JcC/yWb
bo74jzzfxufjwFMKHJe9f2CWsBhbtOdTNAUWvu4wN1vE4O/1aY1XIgVOx2p7
fSQ8zq199MgnCqjeTEsYJ2wV3HVrVT4F/t060bTnH7mPmGt6eykFPltJL3Ui
rJ64bDChgQKtF3kPxxBO3h63zrGTAu8Pzd8vISyWt9dYZYACMwfHK3sJ+2vW
PVhkUUB764DwH8J/6qxza2YokGpYffk/wpmpfz0MuKkweSuu+B9hGtYNTV9G
hSh+O+k5whv2haes5adCWp+UH4Ow2e3ecm8hKiyYNLCohJ8ihb5eMSpM69+6
kEG4jMdjVkuKChm7drb5E541QMLJslTon54wMSWsHMq3c/VWwgI9rSKE7dvM
9dx2UOGt67Qlhdw/TiLxUuduKnx9acF6QLjNinXnoBoVDgcK+ykSXvVOLTrx
IBV6KrQ21JL4ajH8MpdpUaHszJLSi4RvKTXVOelRIb7F2ZFN8pPpLjFMNaZC
6NFkSTfCtAK7f/tOUkHOoLmZTfK7YTFD4vVpKhjNCYRZEzbX/ruX6wIVjKcD
zeuIPoIDdY9ftqHCdzuHTdsJzwn3+ilfp4LHd+HW5lmi3zMKcZFu5P4BB/PX
EbaPc8+f86KC5t1nb82IHtu28rHK/ajgcz4w6ssUeZ+DauZnXlJhZ6LzMO8f
8j6+fi7f40h8Z2yEeIg/NlQ3Ptn0lgrW2Xf05oifgk3tilmfqYBV9FtriN+u
2j/f6ltOhSaj9W4LdKL/tJ4jIzVUkFmBZ7JpxH9jWy2NmqigdMg/yJr4WedO
cZhoFxWWmN3ofEP8vjFsdC6FQ4UTkRbr83oxFF/yScmeoALzupuyZg/R3961
Z7/NUiEu4u6dsp+kvnWoFzQsaYas5y1FGaT+iEsH3cRizXDukjLe0YwhnyO9
ZXZ9M6yxONfoTSH9oySrnUu2GbZGh48UNWKIsu1SEd7eDOwnffU76zAIpypM
qEAzjN5Qc84uw5B1pyjpkE4zeKYK7y4h9dDkmMlJXYNmaIyP2FNVjCF0zCvr
9Klm+Dl5c6KQ1FN+tWqX21eagXe8+LZeNgbeisssFNoM+fOXRdkJGN5Fzb2u
iWwG6v10Lh9S33WuhBg1v2qGBr4De1e+xuDHl5s68LYZSu3vuS4j/WHRhMeB
t6AZ6sb4L7x7SvTamzRs+KsZ4qfLnjl7Yhid6e9r39UClYH8Gke0MeRdCS0z
VG2BvPWe8pGkvz3oPPwBabRA/NFd4n0axH/5cddTdFvIPDkoeZr0R62b5xfu
WrZAj3/Wl97NGGImOyQ2B7ZAypMZpcOk3+qPN5q59bfA/ejBbLMiDqy9dG8/
bagFDmUGMILyOdBH3SFlyWyB0tP+JwqyOeCR+XTw6FQLLOOTy5hN5kCCi4Gb
xKpW+BJydEgwigPT7IrQEtVWcEi75PDKiQPvmN/qBJ61AuIduCsnzAHnFyfk
HCNaIchXf50VPwfUdAbvVL5shfyPijZhyzhQF8e38+7bVrgyWCvYM8+GcZOz
oYyCVlBU5pkVHCTzVf70qYrBVhgfmHAZzWJD18PdvbcOtEGS94zQPQM2CEh/
xENDbWAu8kve3ZoFmhYPewcZbWCZGZusROY/t9CL9QOcNrBOjTk7aMqCDm7x
j79m22Cj9KVj+7VZED8SaNXD3w5rrr35HCbPAqVMx8ZWlXbIbnk0sEAfhWPa
Smll/u3g2cnFRSXzabBDrv2bzR1Q/TjwbOM5JjA1Pweu2tYBlP7yEVlTJuiJ
v0+9qdwBp+YCuF30mLCkOpJjrN4BnX9jmH/2MuHWZo+bcyc6oKbg8o9EfibY
9+95dPJOB3gU60bGFzHgiHnme56WDvAJ1w3cuo7M35ppQ1d9OsFUbWJIOp8G
HnsqcsTKfwDX9HKKa/8Q9KdXPG2W/QkNJy8rPnT+DX8d214r3u6GM1S9yL33
u2H7keWL9t964NOIcWKNUhvoJcleyVrXByWrbim4tVWDl/TFTb8t++FPO7/9
Ilcm7GCZr+o89gv2t1htyAhOR2sFx1ZUzP8CKxGZg++9ahAPep0hF/sb3mzN
3qw73IqcVL51rTQaAOO6hBSVn90ozcDmTfH0AHy9tSu3PPo3mhqVXDMSPQgm
YW/PWH4bQrmn9JZG6gzByRChwS21NBRoVBAgpTcEDgnlhbWtNGSprbjivcEQ
MPGpz/Z9NLRk76rVeccJL4T+eDZBQ8eFKWI/zgyBZbjx4gtpOqJTLbZJXR8C
nW02Wk9d6UjyuL3pu6ghUhftOgeFGMhHPyAhZ2QIFGst/FqPMFGL1VXLXYwh
sMhbGvPNkIk2expJfBodAuM++xtxp5ioLlEo4u3YEBR291kcv8xEIn/jHoXP
D0HkaHOpXSATJX/Ou+4qMAyvj4fp2jQyEVWYrrFDdRiCLi1Qn58cRZsU62c/
7h8Gwyeiw5/PjSJPSM+V0xiGV9EHvcttRpHkNQ/l9ZrDMJfFK9LtNorsKrnk
+AyH4QNtLetb+Cia9ZLgo18YBhal0EureRTJ9hr+eBswDEZHj0hZGLBQUJlG
hnngMBR876YcNGWhPx93PFr+dBiWCwpGk8UKlbkJqDiFDYOKhZtp6VUWslvR
Errn9TA8zF+m9/kxCyXvPatXmjkM5dYRRrwVLKQUdCWvr3sYHFYEy35UZaNo
lzMhYX3D0HmlRSD4EBv9MzOw0/o9DNYKQQ1XddiIunG78IeRYTjJfJO18iQb
3cjlXL8+Pgxd1N1s+jU2yvnlKb+wbARUZZIer09kI3U1/0iJPSMwI2ecpbOU
gzpsJFTjVEbgdFHkxLcVHOT+LL1TRm0EQp7LDG0X4KBPwz8kFQ6OQGd/Xt2U
OAdtiNyZqKo7AgLPVZ7sVuKgJeMdn0+dG4HfO1d80jvNQfWpitUhfiPQnSDI
Gn7LQVc7iq8KBYyAZqZuoGsyB/EsMeOLejwCOR7taROfOOjw2fvHYoNHoHg4
yn8wl4Myl7e2pkaPgMYaIyuHag6KtLv7qzp1BHhzaiv5GRxkuYEyx906AlZJ
NhfTtmAkIOGW+619BIxqdy0L34ZR6VrRG54/RsCVtaTERQmjLSvP0+m9IxAx
qnd1jSpGeGKkg0IfAZb71LURHYz8ahe/xC2OQKSDseWQNUYqFYkup7lpoDQj
lqNhhxGtWGe7EA8NTtAuCQRdwcg4JyjJfyUNJKezqlY5YySaIPbcSYQGk0bn
dry9jVGyh5LzgW00sjcAr2w4RudcmhUndtAAvxCVoEditNrRY/iTMg3O/3dH
9sMLjNwuFlrK7KNBzJcO/uVxGGkY6hot16SBYrDDfsuPGHF0GMtKtWjw3u9k
988UjN5AcNntozQ4cqf+msknjHj2tRzgGNLAvSP+jEwWRk0brRTazWmw1z1P
81QhRg8kuYeenaHBs+BZnSdFGO0VfZegf57cj/fGnrxijF7yMcWKrGmwK/NJ
1WQZRjZTnrxvnWjgvDK4jKceo6m6kAFXXxocXj/x1KULo55V7VcXHtJAl/+1
yexPjMqMpfDjRzTQnOqWudWDUVhT6t/4pzTwMk4dsOnHaFtLtUhjFLnPe/ff
HUMYrVkr+PrMSxqML6XObhzBaOaUhexQDA1stRbEL9Ewqmgf2vk3gQbfXwW4
1TMwsuri1lNMJfFEa/00ORjpSBo05nyiwZjGq04DjNH282GnNDNoINL4bq/R
GEazPRusT+fQ4KPEicV9fzDqk7YfGcijgbeu+7WNExhVWn2+5vyVsKPCL65J
jMJ/adwKKKbBGzv7zrQpjLxlH/5bU0oDi1j/c57TGF20qQuILafBjWdWA6oz
GO0YOhP+pYYGG0wf/UucxUhY/o041NNgreetSKM5jOYu0+LrGmlgMO+2k024
iuaZ9ruFBle/dzmK/8Xok8L33dfbiV6OLAgkEY5w4CmY7aSBaG5ontwCRrdT
jQ77/6SBS577pTjC1qPhFYK9NFAdeiIo+B9Gujt+Gr7upwF055Z4E955XbZ5
ywANeNR6PX4SFkm/ejp7iAbJz2nbVRYxmudk9B6i0WDxYfFwAOFfyjO2tQwa
RLw/lkTmbVTtephpxqLBp2C/S0L/MErPCnD9xaHBqSZjOSPCkX8app3GaWCy
GEe7S/jOXpF7MxM0UM9wSP9A2Mbj/NKH0zS47ka6EWH93KQnAnM0WPdDX3uA
sPI0QzDmL9GjyzGhScJiaruj5RdpEFaZ/pvsH2jBy1sqi4sOTVccc8j+gQYL
UNLBpXSw/u3zhOwfqG5umWINLx2Ci8asRwlnqh/POLWCDtf8StTbCb+4E7Wv
n48O7MJJsXzC94t6vjmupkMtK3IqjLDdf3Ja04LkfFxqhw1hw8NONb7CdAgx
PVK4g/Bun+zjq0XpwHpq/4ZD4iFeMtf2ch0dwpsUnyQTXuQ6cn6zJB22xMR6
nCM8dCTwd4YUHdY4t9jwEK73o1zR2EgH15pfpz6Q+L/ksfI4uZk8fwntcAvJ
36Ltun3NW+jgaMMVZ0XYrpw6dUKRDh2VRccGSf53+Wl7HVOiw7/m6I/t8xhF
/15Qa9hFB929UybahBc082YN99Jh40rvYylETzX/FG7r76eDd/UDTSuiP6WL
A+rV6nQ4KW+h9pnoM7L49d+jh+hwcYDjO0n0a31P4J62Fh1WfpRee43oe2Z+
wuewMR1WZH/f9m8cI8tznzW/H6fD6bucijWEy77acx80pcNUr3eOJPHTM+8u
vwMWdEi7Exi5jvhvy3RxgIo1HTzy7l7MJf4MNvfW/WJDhyqORdoTOkZ/cnYv
33OZDrGF0cctiJ+L3d8FKjuS8/MusT+I/y3Gnzzd5kGHzwECVr6kPhSZaBun
3KQDcyjkungfRpsyF/gVbtHhqfdkx0dSTzjOLs/k79NB/c/PggxSfwJYZs9l
AumQw9hZbtuKEdNI4GRCEB2G6+fTvjdjZJJWLbwhhA73uT+MC1IxknJUj1wf
Tgf9pn1RcQ0Y5dA2vhCLpYOY1bT+hUqMJPW6TkfF0yHT027z7XJSLz+Ei4sk
0sHERNo6tJTU+8u8MUIfyPkT+vNJ30n+B5ix/Jl0kBv+UeWci9HavtykJRV0
eC4ZuvvVWxIv/nv38qvoZE7My1+RiBGfhs6Za7Uk3qBzwiUeoyUvW1Z3NNHB
h/UoV/YViZcp9k7posNeq1b39c8wolYqnDDBdNhkquRge5N8/yRW5P1DB8XG
c7Y67iT/m/J5CifpcI76846UK0bI52ih3DzJx5Orq7IdiH8P2MjP8DDg5qhx
sZslyc/n13/jJBmweim3vpEmRit6bDpOSjOg/XjLi/iDGPnzbctaLsOAqs7L
ooz9xN9XCuxvyDNgPn1ZvO1ujBxl25t1djHAZ4/MUixL/B0lkDx6lAF9rIsi
1twY8d7zNTtwgwG1jUHhX75yUM44aw65M6AwK9VXk/RzO/szCbo3GWB7nXew
MpODKk4oM0/dYUDd/Xauwo8c5L+p18c5gAGD95Rq9KLIfFCzP+3tKwa8zTB6
NO9M5ou1Y9wCZQz4+slcvlKKg7Ifn/8YWcGA/Q0bkmzWcZDNQpXx+moGlAnP
5s8KcVDZcNwLhQYGhIbvyhFYzkF+BUY7tTsYEBvvKTIwxkbcVh/PeDMZ0Fsj
n7y1nI24UqwyBoSZ0EOLkdhvw0ZVrE7nBFEmdDR9UbY7z0bBu0yVLMWZkDrW
UvfYjI3WFWh/bpdmAk/r2pe5umykVK2QVqPABOrDgqq0bWxkOfznQ/phJnjx
mB7iGWehr7KP4287MoFSIGru4cVCbjEZIcJlTDC+yN5LcRpF+Qsxj8sqmOBu
cHv3OttRtGD1yNetmgmjc7+fnSbz6mO5C54tDUxoV17iXqo/imI/8V0I72RC
2zpNeXX5UVRZfHmHMJsJMOlsVdrDROKD6+uFxEchiHp+Zr8uE33fHrhCyHkU
ym0rZG2WMpCQodsOPwEWXD7KZ9h4cQT17KS23ipiwWTRTsci2UGUGQ+bh6zY
4OhWWFn+oh9dyFAVkl5kg2y+WWF1xA/0ICDRtyeVA5y+H9Uyz6joM136tYAx
htc3LZOlY0tRYFyAdd9xDEW81krSFqXI7iRbPt0UwydGvdO6NaVIqqgo89hp
DBO8GjYLD0tQUOj5qmAbDE88KraIdhajq6qvxvluYWili92Mci9Em/xF9Jd/
wNByLX71rw9ZaHH/3dWdyRgO/Ojs7pfIQl3swZYPaRjkHra7/wzORGGnv1zQ
zcIw6Cd8znc4Hf3bdtI9oIjs2XeUxtLupqKe5tD4pa0YplOitkSkJKKCRzO2
re0Ybjq5GIuEvkGRGhcV3/7A0B2W0yDDiEdG75VytPowUPVfxU3dj0GF3o21
vgwMv3QSCrVTn6PonftCTVkY7LYYaqxhPkM3BmLNZDGGPRM2UaE+QUjB+Fp/
ySSG5nbaFa9UX8TD3fYubAbDZuH+TZU+t9GvXA1H63kMX5M8bSJSb6Aix7fK
u/7DoBZ73acg9RJ6sXHV1P9/l9u8O+T//28V/w8dyY1x
           "]]},
         Annotation[#, "Charting`Private`Tag#1"]& ], 
        TagBox[
         {RGBColor[0.95, 0.627, 0.1425], AbsoluteThickness[2], Opacity[1.], 
          LineBox[CompressedData["
1:eJwUWXc8lu8XpiQhSRJSIZUkqZQWl5WIRJSZlIZEFF+JBiqphAopIyEk2dk8
9t578y5eMl5SIen3/P56P9fnrOuc+9zPOffnlbjkcObKMjY2tl2cbGz//z15
hdlcNHpWeSij0nTcKYfgUBd1HBRRwNDozyffN+cQ+z+EhKWLaEBFQiptrDqb
0KnvTAsXMUKRrwf36JZswvjy74LXIpdRZH04j1GbSfTvear+UsQZ4oJfxAa3
ZhCR6097Pxd5jKJhMSI67ivhXv+27FzuY6g0B2Tz/Eskzj0ZWrbV/Ak8mvlr
v9gmErw/bz3MC/MGWwc/67vqF8K1LdB1fMszsA3wH7FjxRMGb3ps9bb7oWiM
v8HuVAwhq7P1s2ilHzzGA4Z4c6IJruV2I8PX/FE0yf8jUSqauJCzlEoYBUBl
hl944s9HYv3OADmT4Ffw+ClR1mP0gVj2JONU4fArsP2WGBWVjSBYQ112Uoqv
4fFbgs98eThRGyLxhdVJYnZJk97U90T27PGac9Jv4MEpeX/js3dErL7taL4r
iVdKRplbhRCBiX5cW6vfgI1PsjJU8S3hyZW+45lIIDzWSo738gUTMide+aQ5
krihbc32+kCi5YnDaG9lINjm1tX5Bb4m3MtOnVyxJQhswVKLnLEvCKnlsl/k
XEh8QMKKJelF1Kly85rUkzjxqE86bhH/eTDtPKWCwVaUsvj+2jFU/I2Ra2sh
sfb4GtvRR+D9EXxgi+87sDWx5z9li0dIv5v6t6UIiH9aKXSLk4CqmGnMwNkP
sDLco7ggX4QxM8UVXF8/QEVWyP4opQibx+9af90diYB+WleBagkcrh/cxtYX
iRSVhykly8ohcDk5/tOhKDRxZl6oe1yDq482mx65HAX+wbCg1QdqkRf1clWj
fxSGsh7V6jFqcZlyw3ZuOAoe1w0Um4/X45ultKxOUDTEr7qsvLG8CdwP3vYN
FkUju+V61AvzJliGc750Ho8GS/m8UmJ6Ezj76BPh6jGo2qDhNGHdDLM/hhH7
HGKg/1iRjy+/GcmipXqV72PgyJL5LCfYAo4j+/6ZV8TA6trQRbHzLTAx/ZjM
mo6BCq9ifOvbFkz1GnFHiX5CgGhqe2xDC7wtua4Yqn9ClfSu5W4rWpFu7SCa
GfgJjse3WIo7tYLvptITd8VYmDxYKWiv14Zyr24zzvtxiGR1PuRc0YF9iWs5
xbgSUFTuwOHu1I1quXKrevkEOL7tfvffl25YpbrmPTBNgPx19T2OtG68zBx0
pCQkgMm7weyKYQ+YRV97Y099gY9hYfLp/b2IaNdO3fsmEQEUXnOpH304YPKX
h5aXCOl0F9bmXf2o60m5GkhPRNXjoSci1v2YH9wg9vvAVwhLZ6TwtfbDaIzh
nd/1FSoO5pzzaQP4bveOYs+ehCaV8tAfYwPwmtI9tkUmCQECe/ZOSg4iZTZ9
2tM9CdKZyyxorwdx4s413f0xSSh6ajfdXzOIgXnROHpdElJkb6jbsQ/B+V4D
e/DPJIStF/e7vmkIPP88LU5sTkbXb7bxYPkhhFw3tpTVTEb2jM9/N44NQapN
1mrtzWRYTfD/g9YQlD93WvcWJKOPKi4wemEIOZ+Dv2XJpWCxXuXQUf8hTBiO
5+s0pGA82uPx4MQQzsa/rXVanQYFfbZN0l8oCDvvpXtVIg2Batrt8lkUUAXs
600OpEHj59JV/1IKHO6rNSqdT0OMme1z3T4Knp2ZaFn5NQ1W21SbK1ZTUbCo
1hOqmw7evEnLPEcqthlMMktfZEBwWNst5iANog9PHLn2MQMKmWMOazRo4P8a
+YI7KwPMf9R1PAY0LHAZyhlQM9Bl47lL4zoNTUVZTgOHviH+SKFZ5jsa3OQ9
l+YY33BvQDHn/QINDpY9p8P+fMOcwMrjWZx0XPbd/xFrM3H5REdTqwAdp5kM
de9jmbBKcWby7qJDKvLks3VvMqHilbrhoTkdIg3RPZnxmSjK9IgOvUYH3+Li
LrPCTEh/P70n24mOeePkhsjRTIgbTWpOv6Bj8gmXuMa/TMT4FLSsDqGDnn7x
1ohgFhbzfS1lYujopuSWPJfJwuNp8zHNFDoa1ggKyqlkgWv7LhfrfDpKleyv
NJ/NQp2teLxXOR3ZNyoynW9kwSKZY3tgPR3Rla6mecFZiDxUL5HVT4frw/4I
rYkscOhYivz9S4fkVOxO6/fZaHLw4HqmzMCGTWzunCnZMMm47P1ekwFeHdO6
z+XZ4JjX4kjUY+B3LI8Di5WNY15r2RotGRhvu1z0hjMHXRU/7w9dZYC6rHCt
olgObHh6/kzfZKDO0jHj/okcZAdG/RZ8yECJb/UKifM5kO32/m/7UwayciWN
y27noGrTjR+K/gwkMt3jr/nkwPXS6VvabxmIEmqf547IgWDc/imzDwy81ZDT
SUrPQdj3DfZ2cQz43n4aZlBN+pNfHLufzIBX5NDE7EAOjF5Sv/2Xw8CdhsMI
mc3BrB1h+7yBAT65b4xqrlywNm2bP0hlIOalvO8fsVyUNTx/SvvJQLPujm7L
47lokj8Xc2zTMHbVCjptC85FzOx4/+SNYQxWTsWmKebB556ogeGqEbjsuHGK
rpMHi90eg//ERsD7dPjHeqs8OA8w7BPlR3BYs1/lrk8eTFRSn68wGcGbspoe
dOdBg0OrLCt2BDJSmp63Jkj87euZy7kjKHpUvCOaPR/SV9dR+BtGMKGW7cwp
kw+xqoG/13+O4HHU/o2HlPMhfFfDV2gVE6LLkouvnyGxTIJoqRgTKRdlbEKv
5oO/d81nB3kmThR/4qt3y0dfzTL6vBITA+IS35b88pGdqcE/rs6Es0eYuXx0
PunX+9iANhMf8Sb+TW0+DrlxB5WcZeJPgYeamVgBAnYKaL6wZyI519xlpKAA
0j4S8WLhTGiKdoqJtBRA3Nm6jS+aib67Z0pPDheAeeETG/tnJlYd1uZP4iuE
r+JOU0YGE9ZZBxOcLxRidlieO6mOiQWhNP1Yp0Jyntw+GNnCRIDL7t+dTwsR
WJhx6XUXEwUHpDSOphRCNvhQngudCaOgD2N2ZYVg83IbsRljYmxW9FVEF+nP
Pn+dOYsJD6NgxabxQtSZLuHULyY2ZKwdYGcn8Pi4ih0WmbDw/WNEFyLA9fKz
V/x3JqIuM2orZAmEbTseWtvExMixRrXPagTECofSJ78xIbs+J+eFCYGmc/fq
1oYyoeZiFbQ+hQB/zphcxB4mDoYZxwbuKULi/cofmeT5mvrUUZ4cKYKRkDVv
j9II7jmrbrpzvAhDSUtSfyVHUKy7K9DUvAi8QwfOqU8MQ/fvkufmp6S+Wkx2
o+cwLlrGno8fKMLss4zw2lQGHp/c+O7daBH6+u0iMkIZiD0Y0PZ8lsR7t30I
f0LePz43HXvuYgR0B0U6mDLgQpw6vO9gMWx23olex87Auy8lzltVi6F7f0/M
4hgd+W8VUwR1iyHbPBLDaKOD3VFix++LxRC/axKbFU+Hr/hPwfyXxciuOvzZ
XJ+OJF5b/a8hxcgXm/mscYSO5rmBFxHRxfB1TEjYLUWHUHPVMs+cYjgLb0z8
95uGwwVKyrfLimFn15rIpNBg8TntrnVjMTSKXnxtrqXho2cY6zijGGI2i0nR
H2gos18rq8gqBkd+RrLvMxqGTb2vSf8hMb99yn9ONKzS/BMlwlmCPuttqZbn
aZDd5zjAvbYETVn9qSdO0KC3mSGyuLEEQ4E5eh7kPLjFbXZ2YnsJXGWD3QuP
0hD4qyFgYG8J9Mtuxy+q0JBJVa9rPFaCcfPT7Uc0aejQ8px+eaIEs8+ZT610
aPiVVCike6YEXLmeR7z1aVB0P3yx6loJxIUzPjSb0ZC9bs+votclMGoTtrVx
oKHrrt3Gh+ElsFqeJubnTMPc4GcVpfgSWOzTaUy/S8OhRKkXOQUl8Ai4r/Dv
EQ05GqLiaUySvy51KSiEhp4E4+OOP0qQ7e6emhdOziv+IFu5JVKeIHiZEkXD
kf413xLWlWKI60S17FcazNRP9dhsLsW44pD7mTRyfn1+/m/7zlLMXr0r55pF
Q+5/K05GK5dCrPzLm9Ji0n+vmsNF7VLwzmpojlaQ/lU9ArcYlUJ+68AcXx05
P+MLcvotS6Fy5s4XhWYajvL9GQi9XgqTiaODH3vI83M+xGHmXIq51/9qHEZp
uNfz307hh6VIOVSaqTRHQ34syykwkIz/6KRf93o6+njl3p35UIqQnXxucWR/
LN6+UcifUArdxuYr/+2nQwnDXC+JUjwWNVVaa0BHYWdv+JOxUhxKvTau5UvH
gJJIqfrPUvK+7eoSCqVjKfock52tDM6Lk6X0z3QoOzbve7C+DEUnXEI9Kukg
uCorXVTKoDXw+GT2MgaGbnJMKOiUYeiR1kHvtQywtasK/DhbhsCdvJJG4gyo
fMy3cLhRBqbzm/kpJQasVi547nYpg6uoMaNAlwEPe8W47x5lkC4SbX5hzkDR
4bTpa8FkfJ6o+B13Sf8fpoS2fywDf+qVwJ/k/GLj3H2M/qUMKed2epQGMyBu
Z3sxKrMMfTt2SReT91e1Jc7bqrgMXUn5sS2tDFw6xPiyua4MZQf0ttHJeeMV
Idnc10Hi/MHonxuGUWIbvtF0nMyvZtlHYYthpI/euGH5qwyzJ71/DboPI8bm
SJ41WzkO1a7SjQsdxpOrnWY3BcuRXcv/+0DvMLQurX3/6Fg5quo2nzI0G0Gj
6RPhJN9y0BuOzL80Ib/PWvbrl++ugKOZ1ep1d8ZQX3n0CpdiBQRvXn8ZFz6G
Qk3ub6tVK7DoeXv1sbIxfNCIMxI+W0He48err6z9jksqlDe771dAZS5+ddaX
72AqnhUwqa+AVvD0avOhcXRnbr10vpP0l7DwcopzAjUHZlIvUSqQX7Cc7/Hu
CXzZ729g/7MC0oz1fF/dJnBzT3WA16ZK6Coc4fsnOImf25XWfLWvhLxE3b7q
HVNQpqpVPnetBMf7qAuXtabgHa710OZRJdoE7vr+s5mCkKDR1NZ3lbjMsX34
QMIUDrLfaHxfVomKH4SugRALD/Idn7o2VkJGfhctYjsLFXdccK6nEn52wXfH
D7JgPOmZvJZVCUuGXexTYxZce0P8fTZWYa5DhK0whIWi4IgTV7dXwWrdk2Ce
zyxwnYn5p763ChWnWbKmOSy8q0p2+KdZBZ+qCtPZbhaoj77t6DeoAotjH0t1
jAUZ5A3mWlThnGq4t/8CC7nfKk673K6CaK5TuszGaSy7VbfS6H4VHv8a0Hbd
NY2Tsi3EXp8qjO07OVR+dBqvRzrvrHlThfj/mJuuaE+jN6p/z0R4FRIId+9S
3WlIWdJGauKrELlqzZSE/jTsREY/xKdXIcQwytjDcBqL/rNrLleT/EaqpJXM
pqGhs1Cp2lYFr70Wr0LPT8OXk81jy2AVXN2n5uetprHpPg+rZ7YKN9cI1WZe
m4ayrWSTgXg1Tipa28v/Nw3vbdI+e3ZVQ83zV7uf6zQahnarrD5YDY3aZ8oT
7tOwND6cUqVTDdkLKWsSvKbxUEM/AHeqIfb0b+rWgGlU/TurtcmrGrzNAaJe
b6bBn2fO9se3GmwbpR4NBU8jcu81x8yoakwknTQKD58Gc9xOOvBrNehz/fl/
IqchH3976FZ2NYbVbm0zi5mGq7VryOnSagz4cvhlx02jaPMD/d0N1WjoePtL
6Ms0uHoecfF0V6NMfNeF/5KmoR/0rIhJq0ZHy3R/Lakfou/vWjFZjVHTxX25
ZDwKT5B8zHw1loY4feJJfjKV75meHDVYZrO2P/jZNG57RUZeWFODzVMb9z15
SJ7f/Bf+jdtqcOSvfN/FG9PYWK/2A3tq8PRZ7p0/F6eh8LG7/fLhGhSu11gX
ZDKNK9orQ5NO1cBMzvhk1XGyHu8ubVNzqYHNhfvZcuJkfPv5ldc8ahDzndOo
Smia/F4HjL14XgPmnYCpi6unITtWkNweUQOXgOjtQWQ/+R8ROXK9sgZexdWB
f9pYiOdLEfNrrkHVKUP5oFqyf6ma/9J6Sf49fbVyJSzMPHcuW5yqweuZqWWX
klngucATJ7FQg7YHdyP+fGJBan/UM02OWgjwLD8SFMaC0srDdjf4anHprW+7
3BsWzvU26gUI1yJ2q9CtqmcsOCRf3ftNshbU5A+8lzxY8Hn0d12PbC36njln
yLmzEGkc+GvpYC0yj21Ma3BlIWfXru6tqrVwmypOvunCQsu/4jwtnVpoRNl8
5XNmYazVJML+bC3Ez675knSLBbF73tZZ12tRkWsRO2nHwgH9TZp9TrUItF8e
42fLgp5UhjT7g1pYiSd8lLNh4WEdZeLk61rMPfkddtOavI9iSq4DubVQMHj9
ZtKUhT+sVrPl5WR+HIdf+ZH3XbDcVkm6sRZDmYN+cmdZ0LQPWXabVgtfsd3P
b+qz8Lngh+8K3jpUjVR6TGqyUPLquYOMUB1839984KfBQs8ViTOnxetgcWr9
PTk1Fnj5Tm94p1AHtvRLd24qsbCNypgvUK5D05VV//EdZUE5814fVasOCcIp
t5MOseBomfBR9nwd1B78tZ/cz8KzfaqPDa7VQWBvzA2/vSxEcXZddblVh2Ha
yetye8jvR89N7VD3OvSkdGd5KbLQmrRCtuhJHVQWno3LqbAw7hXGx/Cvw3v1
IxK9WixwGO+fXvW+Dj98x84+NWDh4D+rTMOkOmRs0SEGL7Gge6rI63h2Hawk
yzStbrBgHbrltGJJHbi3KTUMObEQoDgwItpRBzOZPf2UxyyMOpiLUP+S8gPr
/tBiWQgbOnvP8VQ9zE72HmSS3zv2kpNqL8frwf36hdx/ztMQ5k/ge/irHnv6
5AM0709DznJVryNbAyy3d0xv8J6G2UKlk5FgAz7nin/LfTuNjH3HP2081oCz
tG9H2fKmcTUaXAkvGhCjMKT1gn0G96Yj2kKDGlD84EmCBfcM3mAp8uWHBvyo
kuGVWzeDot78w7fSG3Dk/H+NTVIz6Ngpxmld0AC7ONG9UbtnMH7HvcWosgHP
ponXTgdnICJ45Mah3gZQn3CfE9Kagfyld4oyjAbwNSVnjejPQDNlbrnYVAOO
ip4VyTGdgcWScdPqeZL/5QW355dmcFs3K+zfskY8SPrQZ35jBj7vha5P8zbC
bYVnNHFrBh+Y/x2gCTXihYvqd+Z/M8g82M7eLt6I+BH2/QJuM6h7rNBQIdOI
DJMSt6MPZnBkTe2yVwcacWLQR5/wmkH8u4uK5iqNmLxyerv60xk8SvKLnDrb
iE1Ofc0nA0j9LuZtYc9GeL/8JW0WRepfehhHfdGIHYIFS/2xMxCaWN+XGNwI
4v2jtotfZjDNrn5cNbER43H8HtczSP1d4RtsOxtxpkSm07WC1M/cr6tAbcSs
1nTiYs0MHqvUeCyNN+J5Y5aXR+MMUhL+OGuzN6GoT0POp2sGI1Oa/kmcTbC0
5uHg7Z/B5gOvP6/jbcLUaHO3P2UGLwjpgX6hJkj9tnzydmwGJRzOc2piTSi8
v81849QM5rQJgXiJJlhwjMt/+DGDPf7cu1fvaML88zTOrXMzuNp29sRt2SZ8
PfrwhcLCDMJFPl7s3NsEx1PHMuxI3GY57n5MsQnSF+b7YkisNuqVwqnWhGQv
J7n1f2ZwV66h5sYJUj9Q3vgUiVOcRBhNuk04HDvx8AmJNy8li4QaNyGv+lrz
TxLPC/R77bEn+fFbOHcskv1gIh0eeLsJdyVFwvn+knzCnbLm7zRBQ6GjXJPE
bTu4x0u9mlBmrL8hi8QpxxTPmoQ0oTpCI/ftElkfTy+HgvAmvE5hpzWSeHNl
/TPJ6CbolhTycP2bga/B5cLxr01oZhw670ri0uDkLoN0Uv/3zycpJF7oXZjJ
zG6C/qr0JCaJba6+2uFZ2oQ22d1spmw/8OFLn+pwFamvPCb9isQdrB0WOg1N
MNKPM6gm8eqDTi4prU2I8/5nP/RzBhruhQHru5vAK3t+U8zoDNyLVn1xG2iC
V3Nu3TXy/NJWnC0fpDVh3EX43q7mGWwJ+D7/ebIJVcWtPWnZMyi8+PBz2g8y
/5isrVpfZ2C5f51p3lwTSrxD7fo/ziCs40h23bJmFOtYL618MQPhTc9dpoSa
kd8+I3H+/AyyJjdtn9vYDPXsDtsZgxmcK0ptZ5NoRvb73PSnmjMIsu5WENjV
jLQLXsfT9sxAIEH6hwKa8XV07fWVy2aQ6p4fpaTRDLm6n6lhv8h5fkr/jKZ2
MxKTuhf2fp+GP+tOqrEhae/00deijfzelPBctDJpxr5zT9qnq8h95c0H/uvn
m5F06PrmpwXT4FWsdHC71oyUv/IpqbHT+MJlvuWRXTNkhwTnNUPJfaxnsuHF
rWZ8KplT7fOfxugXrweBLs24Gie3d5z8fvncF5ILd2+G1hofuqTnNHacTuj/
5NEMmTuUt6bkPlQhrvwy6UkzVg0e0Qkg96cVZVfGCf9mlCdNpP69Po2YoPnQ
qsBmfBY6cUXhMrmfXXup0/yuGR4PIoVvWE7Di/tbAjW6GUp6hg+7zkxjSZ/j
+opssp4T2brp5H441x/FODnUjFjZxyM25H7wNvlgkCGjGa8C+99/WDmNg541
GhZjJN/Fg3od7NP4T2om2n62GZvrRjPUf5Hz79cTQ5f5ZixTULdxY7GQUSmy
/OFSM4ZCwzamkt/zGVvVSwFcLQi9cdpr8yALr461r323ugUPWuMPnCX3XXm+
68UfBVpgfXTZ6ItWFhoHFx0TNrRALdo8rKSehZupAeLpYi0YUzXcyapiYfUj
qaY8iRboF9w52lfGQqJR9sOy7S2oOhR2qqqIhe+/Bwfa5VsQsodxKzKbhcxr
/iUnD7ZAVJvVp5DBgkencixxtAURl/6cqCb3F6GscPvPmi0IC1q7eYacR2ou
5ov3LFqQ9kepRj2IjDfMPTR9sQX71msf6ApgoetsbunVay3IljOKtPMl+R0Q
eaF/uwUFF21dgh6x8H62Q0TKpwV1lcGSI+T+ceWy99+Qly3QpHx86W5P5tt2
gLL6TQuaFhLn1lwn3xPpgfG/w1vQsbu04ZAVWZ+tGr520S0wP9FwuN6cBYs3
Pxwo8S0YsuqOuUjuG9O3zyjWppP4zZTbcz0W8qnsG1VyWnDz6wJj80kWvM+k
LmUUtmCiYoVB+nEWDEqsqDvLWnDfrHehlJznYvv4KyKqW8BaS1Po0GVh5CPx
eV1jC8yqx24yyX0lba3DS582Mh+PmfgFIxa0puuNbg+24N0U+6Yt51lYd/H+
oRF6C9jjVhnvvcjCQJOsmMVYC65Yrn2lfoUF55QXtOM/W3CkXnyFDZnvBwft
2yI8raAkYCLlPgu2g3Nn/fhboXHpxI5STxYUTscfXi7UihSR0xfbn7BQI7eS
fUK8FT4+lu3zL1n4NVHmX3SwFbJX7xeoRbBQfN7Z6cCxVrzb9OS3URQLvvVb
jRNUW8l3uu/ea+T5SX712hyo24o29bBPL5JYmBDbt2zVmVYc/BM9GJ7GQrYv
hXHfuBWxaV9EUjJZ8FoMqJ6xaAWfbbphSS4Lp+xUvl671Ir/JPJethWyINw3
FdB3rRWToa07tUhM1fngbGDfCmH54OxF8v32NU/PpOJ2K7TKTE6kfiPff7uW
jh51bcVjk40dV1JZUA/9uiXlfivSxvsvi35lgY/n/PJtj1rR4xH5oyGehZix
vBo+v1Yc+7xt7aFIsp/ent5q+6YVys2huWzk/qyoQXMvDyHx/NrL1W/J+oRz
774X3QoV7aVMM3+yH/RN/UezSTzaYXH/Abnf/R0f0Sgk8dpTnJpuLDxO8FCJ
LG2F+uHSZD5yXxbmiJ8+10DGe5a8LJI8H+WsX4ZltFao7fSJL7Eg36eXnydu
GW2FqsGSwQsTcr/m37zCfZLEd53/GJL9EFaQer7jRyvwcSxGjOyXK7bHM/fO
k/bVVnoMHRbkNnTzvVxqheZ0x++vJ1iYK7W7xlzeBhWRUx9d1Mn915GtSH1V
G06olp4EyPPbFCj8ga8NvhdsTe+S7+lzNTtuLaxrw4q4rMMvZVnYciev+qxI
G1wmOUQ/SpL92UR145Vqg839Dz1VfCx0P9rbf/dwG0IOfs6Sb5hClHz5gXbl
NviUq7ua5E7Brt/ET16jDV5GA4c8YqfApuiBEb02WN5el9v4YArbxxo+Gl1u
g2zS/fybe6bgrG93dY9/GzK3nSlODJgE36a4KTq9Daz1r7Yut5+AyrlH/bTR
NnAn9N9mWUzgtv+FWupkG2SUZUr6dSfQwS4cNzTXhudXS62yZScQMexj2cfb
Dtmsn+H24+OQS7Gtb1Voh5+JmXDXjXGcUpf7UvK4HW1r30nFW3/Hg3vc74qf
tWPukqBs15nvSPk27F3k1w56uv9+LrXvEJT+cKkwpB2zZ73VbMS/o4+XXzQ3
sR3D75yspPvHYNcx7ZPa1g4OSb2w+HNj8L3+7WqkVAfsdrS1T5waxZjKVx8e
mQ6YPPp9CcdGcUL4U4LLng7oDoqyAmRGsawycFL3SAcOvb3IrbByFHelnF3m
T3dgknNK2a2IiauD+7zPuHcgeHhVPOd+JsoyZeILPDoQoLb7gIkEE5J+kjXS
3h3widAv+byGif5jAnz/Ajpge+5tn+74CIzeTwd9ie0g502a91zsCFTPpnzi
aOmAxutdqnxbRxAhG1/p0NmBuUK3uQCBESwujxzt6etA4vfq5HXLRpCd5r87
daQDwsdtNotQhiHH7/Dt/F9S/3fMn60fhuE7crWzalknQqRm02L9hjFWaDm/
n6sTRgbqtjsfDOOTvZ4S97pOZCRQuuTOD0Osdnd5pnQnXM5vzjy8cRhuUdtG
JOQ6If/c3j6fexiddzeterm/E6zMfCksMMh34Ppdc4c6EU/j6SseZeC19OpT
1sqdsOA3f6PRzQDrH4dDg3onuJQSTlZWMaDXuRhwWJuMF+QyuaWEQe4Zs2kx
ep0Y8nN7fKKYgVXe421rjDrB7fNA1KGIgavn6b/cTMn4nl4pwQQDZQp9wsOW
nbjp5q1ZWMiAB63WIv96J6rs/G6vLmDgl8oXus3DTngbRNR8yWEgP+Z76J3H
nShrLK6lZDPgxSVr6P2sE79OMeo2kJivKbE4+k0nTE7KNj7KZGD7haSIgbhO
HFPPbTVPZ2C8ZPLsRGIn7Ir7216lMZC2fc/qxdROhIG9ozKVAeXJZHeR/E5w
HNPq2p/CwLn7qSZGTZ0YUOjo4/nKgBhleo11eyd40+f7VRMZoGrsq7zV0wmN
vZsG73xhID7+9gOPwU7cS1YZ+prAwE3e9AP+dLI+uy9TaJ/J+jr+GA8fJfl+
eUoVIfFC6/6YxMlORMRXPq6MY6BI0dk870cn9Bedz8rHMuAdmiFQM9eJZfqS
29/FMKD7b7a6628nmqIbf7FHMyBgfcBzZFkXvH/fq7T9yECETOYUx+ousH3o
tDkWwcC3nKw6SHSBNeH7ZfAtA26b5h7pbe9CvuqRe1rBDKh4Hjp6flcXHING
dFMDGajTyvnsdqALfcfUJr1eMUDvzPX+pk3iF7/lt79gIOHoH6UyvS48H4xh
93/GgOOHoz9bDLugtf9My++nDCxezbdmne8i3+GJTtWPGeT+VKCy63YXsnde
yrR7wECP6dLvw3e6cPn+mqft9xiILFBO1rrXBfnmfGNld7I/JB5eNfYk40nZ
SsfdZUD2CbHpqncXYlw3zK9xZWCG+a/N+UUXrtaVVbu6MJCtq+L7KKALouK3
31OcGXiQ4qH+OqgLVRKC2pSbDGgIFi9Evu9Cgh7lUKgNA9yu7GnJH7oQ6J4k
ffYSA029qtcLY7rgF+8uvMaCAYvoks7epC6oLROa8zrNgPO+sgyh0i6MfzuZ
ZXuQ5KcgHvmqqgt1ydX2EXsYMDl47wVvQxdKPmtJtUgzcPSIwqVl3V1wDdd8
dXgjA8vUYtZMTnaB44naDS42BmbV2f7YzHZh8kGxxLF5OhjHLYZp8yRfV5Uu
hxk6qrQFC7o5uhFsp3y8k06Hv8Fj23LRbkgbHdkSW02Hh+HQWRXxbgjr5bR3
l9Bx++wx1bxt3Zg5cch3dT4dl41DZA/u6kaFapaa6jc6zpnObkiV70bK0YPz
zkl0aJnrL5c92I3AA9+S4+PoOHw+cTL2aDf4Zr/5RQTTIXOBq0dCtRuxXAMy
Rk/oELt4uTxMsxvymzgrVznTwWddlLJBtxuFe+WsiUt0sF0RC3tt0A0VzXP/
nA3ooNm03fax6MZlh1jFITk6Ehw1xJ1vdyOmWDM+c5SGsNuRPFN3unGo46aG
XRcNL50Xf12/342iseAhiUoaHF0z6i/4dIO5bkT4ZQwNih5S7joR3ZC6+vSZ
9QUapL08rlZEdyPNLXmbiB4Noo/7DFQ/k/H9O4sbjtGw9DRQWjGjG+eydywc
FqWB9Yy1Li2nG+N1p4OnuGigvND9J0t0w5lyZ9+n31SU+XN0SNZ0I4K7ypa/
nYrMV1bF4Y1kvbewOCtKqYh/k58o3E7y2y8c7Z5Gxfsg4ZA3PWQ8LRXs/UjF
i7fOj/iGumFzcOrtnDsV99413XzG6MZm62/+XAZU3AyVNeP43o0uf/enwtup
OPOBLr/wk7QfXXnnUBMFGh9VxP770w1BoYabWp8oOBAdtpLF1oMhtcCrJm4U
CMcZDTB4eqAfJn7OVYqCwaSyF80SPVA7ffhAtusQmiY4xvft6MHi7rjTAXpD
KJI9rhso24MW3vW2NlJDiEwo5zVW7EFRIEVpb+QgLsVWvOzT7QHruf7aGb0B
nGFwTiqd6YGvlqxm1EI/1KVO6H0w7gEXJ5f7mdh+SEVV8l261AMpT4Ke9rcP
w+FV/iN3eqB1Ry7bKbEXHX1cLK37PWA7wD2x1aQXlRu19RO8emDSMx79Z2Uv
ss2epfD49MDCWfb8z9IexL+r5rd/2QNXPjuhqYc9sA2qeTUT1QNHF9s/7Q7d
mPCte/O3vgdNmtfKo0+T391a3lnL1h6UDcU+COfpRAP3KaOirh50uQ0rvq3s
QJJPveAjWg+YSVcSnqMDjo8bgrjmezArdNn/1p52WJXy/bq+ROabEq1143sb
DJadPle7vBfiOjT2K3Ft2OfRKOTH1wvhh5ecTba0QZJYc2dqXS/kRaJ2n+lt
xbql0536Ir2QTqcM67xtBYdSgGLaZhKfkog8btiKWfemt+ukeqEyYmWKNa2g
5/LPOe/sRYq/qebdkRa0z+ubdMiR/n3nV1/ta0HFoVfZigq9iPR5136muQWZ
d5qF3x3uBevx4XBUtCA2c+3dBeVeOHp2X5bNa8Hbnwbd5hq96Lp/V1YkpQWu
Ti3vNp/uRZFLTt7MuxbYpAksPDQi83EyfTTo1wLT6TNmFNNexDvMn6x7RL5T
HFpFYy6T/mwO93yyb8Ef27bQnW4kf7OcORPVFhgdPP9K7mEvrA7//LNcsQWJ
7MPe+x/3wkZ4778k2RZYhvy+peTXi4CO+BUrhFtQXC6qZRBF5msYIpA62QzR
V9FK5+JI+31t6y3ozbhtIbvfnOwLj7X8Iit7miH1Q2nzlUySb+PTLefLm3G/
sGKdbR6ZT1KpJFdeMzqenV7lUNQLNr9/29JTmiF3tmvJqZzMx/7oTsvYZjwV
vzjrWtMLfd07sqvCyHf399HR+4290FInDqd6N+NQ1u1Br7ZemGi9WpC80Yyx
U49rfAdI+zMH7nEqNOOUe1xk5Ewvhq7cf1hf3oR1HRO6VaJ9EN+4kTerpRF2
H13U6rf0YUiKePk+tBFldv8UW6T6UCRnvebB5Ua4LF+7tU+uDylqXwSO/2pA
t7zC/JRaH1Rsj4q0ijRg32L+5OyJPvA7D77PpNbjeeVx+rwuiR88Env/pR7H
LI0blxuT/l/VbrmoVI+gnUNlXBZ9aAp1+KjBWY/JWZvc1RdJ/5/WbZVurMOH
F26fNtzog1WO+fYpqzrMnVseKuZI4tJ/cS0766Av6Rsg8V8fIute1fcN1eLz
hKD3djeSj8eaYi7/WizLCXff9bAPHgovMxSUanFluMgAb/rAWv7Yi/6zGrtU
Vy5dzSP1o29t1rhWiZSELzu6ikg+d/oFffkqoSCob6BdQdZHV5un7VsFjo2E
xOxq7gPbT/E5a44K6L2U0WEN9yFAs6n50ccytPxqcL44Tso3Hquq1SqDsZVT
RMs0KZ+KK1zHKoXV/vzpjEXSX8jDL///350eZrVx+7J+pNh9//idUYLrnCuO
v13ZD3FV45D9L0sw6fD5JtfqfjiuL/VzVyjB7e5TIXcF+tE0KvektLcYv9Rm
isc29GNotvSP9rNiuCcGfzff1A8Ph7Xpp68Ug03o6Pp6SdLfmKXtWdViPH44
qKwsTepfTpQw31QMrtFHNsm7+xEwON9lNV+El2ekX4vv74eV2YmAq+1FCN52
i7FMuR+s09SlWy+LkHMrcJ/vddK/Ttht9BZCufeQxd+b/WBTVaScfFOIEo3+
JzedSfnBltPndApRs2F7t/5D0p8E1277vAL0FWQ9XB/UD5XfTiPvQ/NhtcPi
s/f7fhSN852LNcwHI4Ct9fcH0h/1c1kqTz5sF2IWbT6R+p0a+wtK8zBprb29
J4HMp37wY5V7Hm7XT5zWSelHZIkbf9v+PPw++Ppu/jfSPnv9w8HvubgXeTB6
dx7J52vKxFh0Lti4e+siikh/FS8HDsTn4rHTw19rKkj9yoNBP2tzsap/q7hn
LVmfykGdb1O5EEixc7LuIPlX781RUMyD1LklEelx0r6u/c3+ijyciJK4lrph
ACotm7T30vOhEMK3vUJsAB6H9o6+WlEAcb8/9B4JUv5B49nM9gIs3G2/xCE7
gCK7G9Xp1wsw4lAiIbKX1G99cF3wRQHariQP7T44ALYjr1f9l1iArwbPLI1V
SPuVOdoHpwrw/oTLJrvjpL193WgwfyG8laz7PE4OYKht8NnvvYVw2q8fGnSa
1D/6Y6eJYSGsdiqZJRgNwOojZ022cyFObZERIUzJeFyitiLBhTiyfkNXqyUZ
z2E3t1tWIbbzcLxlWpPYpxCM0UKsY58++9eG9Kd30ZACAmy/+wUFbpL2ghzX
+oMIjI/XtG53InFPrFv3dwIVXTEG+vdJ/f2/mpg6RbibYnIq+hUZnzg6N/S7
CIMXijS0cwfg2lmh2Xy6BHVnvy63JAYQcCREv9GtBNk670tul5H64dfN6j+V
4LWis0pYwwAcrXlvVv8pwfE10semqCSeMggqjivFvhXr/yxnkvHPbP1AtJRi
8x/2XOGJAYR8m40v+FuKueFeRbXfpNz9bX6OYRkYfVW/zi2S8gGbiqwH5H1t
+fbtBvsgHFWPNH37XIbCqihnD85BBMTw9KS3leFLof/+IJ5BRM7PKr1iliEk
497MZ/5BiBN3Jjtmy/A44Xpq4fpBND1eiBBjL4dlsPoe5pZBePCzscWLlGPt
zd8yRxUGyT7nKSk8WY47my5IUiwGUWQkoTmeWI5L+vLn+i6S9v0FGrPZ5dB7
xP688+ogWFfN1BfLyrF9NHq63pHkc/eNCm9/OdoymEW5jweRErHiqOzqChSN
5Mx+ezYIeemowwoiFfgi+kI61W8QWqnKh45tq4CXx+6AuJBBZJfeOaCrVIGb
6UulUeGD4D8lqGCkXQHT4cbf4VGD0O9I2WdxtgIaIh93vYsj871wau/lixWQ
1719ITCR5Msc3WNnXwGxh+pv/FMH0fVu97MnMhVYmSZY+TyTrMdBva8ne8sx
sCFLzrOI5HfT/2fbsXL40v78tW8bxNDgWu/Rf6Vguj0JO7FI+i8RihPwLsbY
uV02H9mGkGKpWNt5sBhWrHXLtiwn97YF46mwkSLobGUcEOUaQsD+d4o7tIsg
+expOL8AucdpKwbcES5Ek1Gd3d9tpJxPtaVaKgey42d5Ok8NQfzTYrBnZTKy
jXSJ5/qk/qrTX419kqBeoOakbDiEIYePpbu1v8LMb0/vJ5Mh8r5osrprEvBM
ftUXZ+sheDT5a+9r+IRh5/yTAndJPHd8rvzzW9zuT1sqdydx6ZjU7V1B+Hv8
c9rdByQ+qdW94cdrCG4IFqU8GgKb+rYL4nIvoZ7jMJbsR+J94Y7L791B5F/J
56diSFxoGXRU8ikhe1VEmT2OxDaCUH/wgshqWDOT8ZnEa2uYJ3v8iYYPi6Zi
yWQ9UkU379YOJP6qduz8nkPKV3rfOsYeTvgk1PVH5JP8e600VfZ8IATXlb46
Q5B8usNXRyVFErL05PmcsiFYJblSP/VFEdm6sV/tK0ksMlwX9yOaUP8WdlGi
htR/ZJj1mfsT0bDpzfr2OrJ+k0Ufv0jEEmbez6p9Gkn9JvaCI79jieHJh/eP
tZDx9h+9/Iojjrhl7LKX1UbaBzvzMNfGET7S1u+Me0j5+RHTINk4IrPm2PXt
DNJ+rO7X1MU4Yt0aFlfZAumfM0T+U10c0VLw/Kn2XzKfvK15G7rjiNd22zgb
/5Hn45h8/DkjjhCoMVvew0GBSl+FmcMSqe/60/PCSgrEX51hULjjidc7AtgY
q0h8YsDBaEM8IfCk/O8UHwVDqT8fH5aPJ1r2W937by2FrK/nmsRjpD51YWFh
HYk3rX6/WTueOPMq6K6HEAVWrSFSr87GE2tV5OdWiFBQ5COVvPxSPNE0WePy
YiMFHkoph11uxhMB4Vd+8m8m5T+OljHd4gl9XTbnYHESx1fqmT+NJ/j/vJ/Z
uJXkK5LP/96YtP984NbHbaT/XglXK5J/gEnT1HZpCiIjng5u/xRHrMlcMbF3
N+lfyjApfSaW4LvlOHJCkeS3d0yn/uUngnfkeJ+TDql/QvgpW1kUURc0ZDZ/
isyX58FkhW0U4avh3v1An5TX086+XBtF8ESldDw7S/ozTJYSvfCR4D6/sfnD
BRIX+j6+NvuBqOHJPL3tEulfw8RwVvUD8TxXvyHhMolrtkp6+kcQq4S9a79d
J/U7con3MuFEVYX4yaN2pPy8t98O1zDC57+8qqKbZH4Ug/MZ5aGEltS5E5q3
SPnVTbKq60IJrlZWea0TKZ9gLtRbvSeqPF9oGLiQ8n+mT8z1Iwgf+e2lHa5k
vbx1mpXqPhIr/cyLKPdJ+VufyfOCcQSndkXu76ek3MxT8HRLCsFBhCZvDaOg
6e4fPf9LeUTPMQ2twQgKAorD9Mab8onk3PGh9x8pYHEp62mjkDDLVBIQiKOA
nD2x7H5FROrXQWe2tP/Xf1lsnm0p4b3LZ3V+BgVdD1q3jUmUERaf5WPvZFGQ
LRnzSbi7jOD65Nk5mU/mb3v8038nKogBSRnHBIICGz6hbTFLFUR6ZAvX1RIK
+NOGY1q+VRI+m90/SpRT4HM2S4rdvoqwDNt6pL+S5Gc/G/97XzWhIFrXElJD
+hfw21KzpYZYFeJ8w6ie9Je1IziMt5bIeFMeVttCARe7+SPV4TqC58W1fzn9
FPjWDCWV6zYR2Xe/lAX/oEDM8sSzNWxthN9vw/NnflEQJh9Y5urSRlj/t/hz
9TwFc8so/yjjbWT/nNrxZImCtjg3l4zuduKKzdQzp1VUVE1/tTZN7yQEjPef
1t9ChcLYgbAGu17ihkJe9yodKtS/bymx9aIQRU3tidmnqLD9pMu3ppBCrLdn
PbymT8WzC3fN0ucpBPFp2/bys1QQrS0zfxyphKCayryTCRWdL/8pRyZSiesD
ZnWS5lT8OSH7QoNJJdZtCLjtYUXF9vwnW19eoBE26QnH91hToeuS5rA3lEYU
nC4XHrhChY38YF57B40QGB/87mtDhdMYD5ebAJ245rNQePQGFX4xh4w269GJ
fKn1r8fsqdjq4jun7E4n1hbvufLOkQpmZlC/zDs6cfX8yUNaTlQU/o4oEcqi
E3nzl3l+/0dF0KH4uGXtdII/+OHAJ1cqrt5N9Z2coRNX9r1PNXKnYltu7q0e
fgax5kajcZoHFfVH64+m6TII677DMfYvqBDCTOPFMgbBQ/Ap0SOp+Hj82FxR
+jBhZb6T/000FS7ex/sTm4eJb7/VaaqxVByv1CsJmRomLsjfffbhCxVDWhd9
HXeNEBl1byz0kqjIeGZ7y0J7hFh1PWnP3xQqPGuczmldGyHSP9LazTKpkNX1
FhePHiG4lJfiV+VQMevrv4K3eIQ43yN8LzuPiqb6kLHfAyNEmsv+09cKqfjE
F9VIWxwhVq7TkxQqpiLl5MDtEF4mYZFs87OslIrnVJ01XoJMIlXnUZVTBRWO
bjlfbogxCfPH2Teba6nYlxBIV5ZlEiniraoeDWS+ass8pRWYxIqCCcE9zVSM
dTtsEjjGJJJ/Sub5dlDxbZXOOYYOk1h+7eVKLQoVStfZq17cYBJftC9FFv6i
QkP65peuBCahICuhjHkqOKSPsR1JYxKFfEO9xB8qGndwnw3NYRJNrec3FLPR
oL4jdul8FZMwzRT7prqcBt4dzoZEI5OghvSeKVlBQ/l2tXjxTiYxe97Ur5Sb
BtXtAwY0BpO4ryIsq7GahqltibEaE0yCc2tnddkaGvK3uf35NMskAlYEXzsu
QMMZkyYb3QUmIcI0WlEhSIPezzCBI0wmEVWzLlpzAw2mr6/n7+hgErJfW1Qq
RWgw2XPw6voyJqF8W/9e1WYaDK435rA+MIlKozWi2hI0XOQMsx54yST0FRuy
qreS/qJtVte5M4lLizo/aqRpuNLPfjHOmEk89T5hW7+PBgsDBS7LNWS+75VN
WjRpcDj87lztgxHC9P7fn2e0abDpuMKWYzdCUC/kv2nVoeG2076EWLMRYlbq
SGObPg13v9b+9Tw4QogkH9DsNCP1JZZiDk0OE5dKZRX6btLgr+J7Jfj4MPH9
0/dmi1s07D4/ec9j9zDh7JPg0O9EQ8Vd/UDb9cPE01PSXwZcaeBOFyxVZjCI
xM6tkhQvGny3hYuPPGYQP7+L8g8H05DEndSrWEYnAsNHKsPe0aC5o+KQSAKd
2H8646FhGA3t6gNBC/504lbaqamijzSw3efTLzAn79dl0bg7MTQEv9v+NUKV
TiSvH7GUi6NhR6Yyt8cOOjHh6tEQmkiD8dTNMrUfNMJX5pT3mWQahnmeSkh1
04hdfSLKq9JocJX+8GAFQSNqXg7/JDJoWHc8q3c4hkZcR/pXlywaoi82Hqp6
TiO4ph9e2Z1Lw5LggSaPuzQiLkp3Ez2fBobVKZevNjSCsWLY16CEhpS5+yWc
J2jE46w0Da5yMl+NYJv9B2nE1usPFwsraXAJSOKz2kYjLtYJ28nW03BEetAs
ZzmN6H+to7Oyi4ZKY5UfN4qoRPuW1FUFEzSMZS6Taj5MJZyb7xc7sWhoWbax
5q80+b17dPKuzA8a0vT2O8oIUwmDYRrz7RwN94at8x/9ohCstymRen9osNx3
71IKg0L4a983WbFEg9qDQK7+NgpRnyhUdXs5HRxC5UYH0ymEnSXt4U5OOmYv
9i9ciqIQPPwpikNcdHR9/Rnp/4pCJBTfmwrmoSNBKDbz5GsKoe2kHXeKj471
DhadaXEUgikldIFjLR0PKwXmRAsoxNMOqlDeOjooW6qFH7VQiPLD97ylRejI
bzpgZviXQlz+rqU8uJGOfTvH3fIEqMTy8PW/gjbT8dozKnQrmZ8qW/KV5VJ0
3Ni3pv/HGSpRUEHRGJCjgz+QeSEwnkp8MzyxPFCDDmPj0CvthjTCRyf7idgJ
Osr0+Fc0X6MRFuo7uT5p03FU80lMnTuNWLafZ3WmHh0iBxxopdE0ol3mnr+y
AR3esnQvIotGxEtOrK00pGNiq6lkXi2N0BNoFOoyoaNEQP1iGtk/Etwq76zM
6djLnc2WtJJOzLKnbhw9T8ffR88NoyXoRNW8RMQtKzrqxGODhLToROj0a/GF
S2Q9Coo7n92kEzdHl0d7XaFDxqxf5G8gnVCjOG/jsaGD+WvO3DGPTjCbzsmI
2dOhJi8/dI6LQeRVVSbGONAxUqcjWSPHIPyKDu3ZfZuOkOvXLiudZRAKKaIK
ynfoYEVFMLdGMQhP/wElK086ktevnmYdHSZE9a4axATRse3PKPsLhxFi4nhn
q2wIHW1vV2gsBY0QRUpa5769p+OxgoT3rfwR4upuGfOKD6Tc3oTbZBWTOLwt
tF8vio633M66tXuYBO8mXqvOGDrk4/z9lM8xiXTeycvMz3R8HKoQ2BbNJLw5
Low4JtKhf59qFFLNJMwWG6/PJ9GxWnQpmIfFJHbPqox7ptIh+P2oc9SyUYJt
PPUmdwYddr1bxKa5R4lWmuT060yy32qXl2HdKBHb+8ZpYw4du/NHbvhtHCV0
a/9zlS2kYyEsOW+X7CixpXR4IaOIDquXb6zdFEaJmVzj+0qldKTdv8NTfWyU
eJdw2Euvio6bljC/emqUGH7294VjCx1DWxoXIm+OEg+1nnzIGKZjIGrysFDq
KNFiaWMhP0qHi/iff0dyRgmp/3REEr/TMRe+suJC8ShR83Htm2gWHSveiZ/5
3DxKiGXPnt7yg44HQruFG7pHCYeGTt7Qn3RsCDw8MEMZJQT/hHu/XqBjp/8Z
22Mzo8TVtZ7qfH/pyOa9IH9xYZTI2XGZ7fk/Og49v/HrybIxglf5RMGKZQyU
rXTNT+AeIyyNZNw8ORiQ8dN9xk/iFNvVin85GWjYu1ydwTlGLPdk/XBdxcCJ
9pzFnOVjRPzXTHtHPgZMxXY4Wv8dJRZK38mM8zPQQfTvPETGO9Vzb+TaOgau
WQfSeH+T9eJUv3hBmAHPBHbjTNYoccyq0UhPkoGYQ31Kq+ijRJMA86jsQQZG
jV7xJNeMEpI7a+fiDjFwb+5E+aPKUeI/JH3bepSBNWFLD0zKRglRO+c9G1UY
WEW7McNeOErYeRmPB6sx8M5bMrEjd5QgQo58FjjOgKxM95UvWaPE5XK2rdwn
GdC6pdltRNY/s5c2+ESXgVLBv693Jo0Sq2YqwthPM6Cena67lDBKWHAlmN43
IPMxt+VsjRslkja/FJo3ZMDon3hRXAzZTwccW53PMeA/GR4aETtKGOoYBrBM
GLAeM9atJ/3FXjx4ys6cAbnhtX//ZI4Sc3dEuJnnGVik1H6VIUaJk36LFdZW
DNT2P7E0JfMLjxl8NHiJgcRurPFpHCXUmj/97bjGgEpzuiNjcJScJ/umy2+R
+RWF7o9kGyMk+k92RT9hYM+HGznr1caI5yVHk8/6kPUeik78dXKMmImT9V75
goF4ib4PnYZjRMltPoUbAQxsj9H1fndljJAx+ce96Q0DNxmP77rdHCPeKLEo
DUEMRG0vsDO/M0Zc5mrx3xfKgNTn3Yabno0RdRMlV+nh5HmPXdFcejVGHGhN
VwqOZCB2V8ThwfdjRER2jKBWNAMUuw7ZougxgjMi6Pv8JwbEk/jEPyaOETcf
eZd8iWdA7G7hrlfZY0SnzZ13578wINpdMH29cYxQ0bNxXJPEwNrDBVlqw2R/
7Tc9UZzCwHxI/v2Nf8cIfpGTm53SGWDM5anPrvtO3F068lMqk4Eek7xV9TLf
iZPVYtE+eQxUCOcGPTD5Tny3HFo6XcFAYEjWV0r6d0Lu+bXMgV6ST0haf5zt
OBHsYPIyYIA8j9+p0R6e48Q/I+3LahQGZo1Tr5uGjBNNW3YJxA4z/lexdcdT
/b1xSSkZmUkiijJTKTNPSSWpKC0rqy0iyrciMw0t2WmIVEISkeKxQkP2yMq6
+34+l2uVjN/n9+fzOp/zPO91OOePC0NLcsZEqrjok0+eOzdM5TU+S8xLhcC8
Xn+1qfl0SIgZX91CI9DYIDxm6Xo6mBtFOhaE8bDVbemmx/p02NMSzPn1iIcX
7ma3rTCgg6/P5ctT73mYSWtXWGNKh8uvzyVsHeShUoxOyqYddGgW1WQfVx1C
weHWrAP2dOr/k+fn0YtD+D1Do/pOKB3kKz+uM5UaxlOtJackI+iwJUH89dCy
YRQStBOJjaTDaU/3FS/UhtHsaNCe5Cg6lMiISYgbDWOOcFNTRhwdnI+7cH8f
G8YYj6u91Rl0sN7OdS58OYx69yVDd2fRwSzqjvGCnGGs/ZS+su4tHbSbdOWO
FA7jfOmGE615dNBy9amdqBnGgDI1YrCEDsKB4yYG7GF0VKr7O6eJDt/yBJZ+
0Oaj+FLf/E8tdOjTXt9QuJGPZdKyPv7tdBhMc7/5yYyP6gsdmMxuOszGVP0t
teFj+9yZ1Oe9dFgg9uddxVE+3pp5dsxxgA4iERpnqtz4yBuht9YxKTz+UR3f
/fj4nLwZfZNDB32iOPpnIB/tWNp7t5F02HacZ9VwnY/zB+sWTg/RYX/3irnN
9/hY2OP75cMIHVpD/wXtiefjmV+yIefHKf5MVaGfiXxc3lxoqvmXDgV7rG7u
TeZj6NeZ949n6PBcPvHhvhQ+6lemeB+ewwCloFL5+lQ+MkostCSFGHB9gPHY
Jp2P1nm3nocvZMCp7E2vbN/wUfap3IOzMgzQs2j+fCCfj6/8dL2MNBlQ4y1B
P/yVj/beDRoj2gzQbdl0tv07H8XO+NEy1zIg3dh56MhPPvoeK3JcsZHqPy9r
8mgTH1fZO8l3GDCAPNN8raOFj612As0PjRlwuv6fkEM7H02sduwW3sIA20dW
Eo7dfCQtWPPLzBlQKeAb0/Wbj88gqvzydgrPicSlTv183G+8NkjfkgH80XG3
1C4+Cm1sNCKtGHB1RUNrCdX/w1r/sZd7GCBi/caqg8JzWlP+nasNA+IuRZSM
VfPxp7LzmpaDDHjx0yhdu4iPwQpzBu8eYYDxpLSC5Xs+bpBNe2rpwIByNfKO
eyYfE0TYcp9dGNB59bl/0hM+uo35z0s9y4B/mou2Lwjj49i3O/3nQxhwJLJr
YGA3H7sWtZyaCmNAbE/LBr/tfCy3VuRFXmfAz411YULAx/s/M/49uc2AnYNl
K9XW8/GiBD9E8y4D7pt8upCvxUcnG6MFH+4zoCo6r2K7Gh8tHgTf3fqQAQLs
LOlWJT5qNlbL1MYywGjrS/cT8nxcLC3x6EgCAwITnr0fl+TjxIFDKoNJDDgr
cbVAch4fe2Iev/R+zAAn4R3p9yeGsbJlUOffU4rvrESsBJV/519zdmpkMGCg
x8BmUd4wWijsqs3LZEBD6xy4lT6MWg73D2x5y4Dcn991FiYO458uJZfDeQyI
Kjm2SDhoGKN7Tf6LKGGA9pPIKkHLYaxi+L/pa2TARac208nOIcxcU7zuXAsD
zhxM0frv5xA+PC1U+KeNAUf3nFX4UzqELpzoSoluKp+bZyfGXgzhDu0Oq0e/
GSC88SvdL2EIdc6pNKj3U/nRftgycmsIJ8m33ZsZlD6Kq98Pew9h79oJ968s
BuTJDKecdxvC6vNmbDsuA5wNLuxTPjSE2e8izveSVB40p9fG7h7CGP6P8bPD
lL+KkYsXbR3CteMsiaR/DHjEyI7ulxtCOYN1cWozDLDsMLxwRHQIpy4FKL4T
YIJQbfmBn3OG8Nvf+Ro185gw5JGl4feLhx7TK83HJZgQOTmlszKChwlCzn77
VzFhTC15U0gXiTPuSzY2qDNBxrsYW6tJ9KioH9unwQTrwh5L7fck6oVuu7RH
lwlxVioObTdJjOubMvihx4TGh+aD2v4kTm358MdqAxMGu9zPhbqQWDO75rKl
IRMsvdOv6RiQqHus37jamAnBhdULwlRJjCl59G/7Ziakz2E9aBcjcXL5wc+V
wIQYPb6yvAiJLoHigdvMmTAlkH93pTiJVV3Vm8stmHCq4dK0rhSJ2qYhM1t2
MqEzxdjTWI7EicmRa2bWTCg3L91lq0Sio33WluK9TFCRDit0pOaVfzwxx9SW
Cc8Htq8+pU7i3YBfoUaHmBAa/l3omi6J6uMlEfouTNhZ1YqZZiQeGr55W9OP
CbiL2LjgGImfbbZZv77IBB2FnDRpdxJVc6ZE1/zHhGi2r7TySRJJL++7akFM
8Lr9Z2ijN4l2P9fsSwtmQq/Dp2NbL5BYpNMvsTKMCS7aQT+tL5EYwbV7sOIG
E4xr52a6XyORvVt8/9NbTEh7XKXgHUaizZtqKaU7TBD3unnzciSJH0RCmpLv
MSHczPpPxG0SFc8YxyyLZsL7mU0fJx6Q1N/TEbukGCZ8muq/+ySJROaaLNml
8Uy4P3nXY3sqiXkM5Xi5ZCbcGqdLPMwjUWHnr8OxT5gQNRpNMyomMTg9Wl4m
hQn3+Gafer+QaH18XpJkOhNukHEndNtIHOxnJ4vmMMGGvqP4618SpXvynwtW
UnlpTT8jADy8KxoYWFDFhAzH4HY3Sx6KmFgc8fzKhPUDR3d8seWhYEKjWOtP
JpwYElW95cHDoKpE5q0GJghfot/jnuPh5KhLBTQzIXEap/de4iHflhfw+hcT
fopc+CV9i4dewR8OOHcxwfOB9c6LD3nIzg7Ulf7NhJkl6vntyTw80W2xsKaP
CfFPZlVN0nnYt0h08OogEzzu8Dq+vuSho3FTyToGEz54tIddSOJh+6mkRDqL
CcqmZdrL7/Cw/suafTY8Ks/s6KDzvjy0HuVpzOMzYUf5ldUKx3lYo1ogVDTK
hKBEj/qKwzzEa9uLVk4ywcpyk+qSzTzMNnJTmxBiQd6LX1+KhXkYlfXo32MF
FuS4rBBb9JjEBV1urfuXs2Ch4cIPefdIDBfRfCe8ggVeEnxn51ASr5wsPOGj
xgLdkoqcd1SexmOvbVVfw4K7sZlHHexJ9K3codipyYIez1jBeXtIPKPS0mCh
x4Iny07aHVlPIn1fcubf9SyQGNk3PUeNRLcg98jsjSw48s0w/c0SEnsyNd3c
DVlgZDEnvpc6T0c7h03lTVhQI5O24rwwic0LPy6p3cyCg7QdGbOzBNoYBvND
trCgI5+14d4fAi1jxV9xtrNg5tDandksAisrWkKfWbIganVj/eZ+Arfwk50O
7maB3B8/+9oOAg32aUmjDQvME4vOcb8T1H3EMijagfq+c3uMZjaB8wJD7Ix8
WDB1zLEv3Ze67w1z/+IFFrhIP/TKP0ugx4kjT3dcZEFz1dd/FR7UvH1r2Qeu
sKBUx0Cu7xCBfpVJ9zoCWaDXdy6Vt4/AVUbzN7oGsyA7Jk1vxpLA5iyfDkYo
hceys1jUnMBw1e5rXhEsiPsnuXuZCYH68ZZqY5EsEHxr2a6hT+DgorxvV26x
IOTsmU2+GwiMCVY+L3iHmjeoLnfZgECLsVuyN++xgOE0MBZC7R89PV4kEc0C
gbanLTeBwLQeV5e4GBYo2jjmP9hGoFCN4ZvURMpf8xa/lN0UP9M0G81kiv+n
B3avKbwe7yTGc55Q/fX36r87QPFLom8pSWXBP/XqkVIHAsPOxbS2Z7EgcdFH
315KD0HpoTni5Sz41px8XjmKwNxIh5cxlSwY3XPUZvV9At2mqqyXVbNAq1pW
b20MgeW0x/FrfrDg0Me7PLNkAn3tF25++5MFV9fvrtvxjEDVOr/+jQ0sKHwj
/HZvGoGhhbt1trWyYPJxsJdzJoHrdQoav7azQGnJ5r0ncgjsT1ENsOlkgc39
vzpeeQRGy91d3tbNgkHcU6SSS6D57b/lTr0Uv/O19w5S/vJnPU4N9rNAU2XP
8ZsZBD73qxc7S6P4NvwwLk4ncI7zyyMBbBaIbPhBW/WUwJxGqZkZLgteDez+
dOQRgS47g1IjeCzYFvP9flQ8gaV6B8noURaEjn0zGb1HYPDcueFZM1R+Cr4+
qAgmUOC189t+KTZMm1ZvdnMjsIrb5vVUlg2JOmrFFs4ERunZ6jrKs2GHUpjp
ansClxRuy2pZzoZbs2YmXFsCu/599oxewQb1oeSin3sovLBJe99KNnzonTR6
t4tA3eo1b2rWsGGy7IPhxa2U/yLPz0RoseFhrkzhkc0EFu1dpmmuy4YNqb4G
JkYUvugY1oweG54NBUZepNa3t4q9/rSBDTPDucqZVB5FFCJPBWxig8cIo6Bv
J4H1TgJrNhqx4ceoos0Sar4jjZ+ebcaGqInrwaGHKb80PE+c3cqGjj+f5Asd
CWR60tTWWLDBYnIoh3Al8MJoW1rKLjbITNv3HfEk8Nbc4ucxdmy4L7jWfG0I
gR9VIp9cPkPxFWub20X5EXRcwNngHBv44qLJkpS/Fq//Wz7qzYb9i7fq78yn
8Oh5Jp/zZ4Oq9BuPXCQwzo/moBnAhnCZ3ilGJYWv0HkZ4zIb6LKyscu/Ufim
2jpSA9lgvsRK50AdhQ9sk1yC2fBa/tqXG80EZod9O7o8jA1qWQfrrtVT57d6
29KOCDYkPTjn21BNve8WFbfH3WCD3MUI2ZXUvNm9mxIO3GbDE/vHhX4fCJRz
Xha3I44Nedwpi08PKb9SYg7OTWSDSYMMU/Q25RdNTLb0EbWer33bOZSg7mMC
MUYpbHgf5Ngwx4fid5X2QDuTDbWLPztZ7qX0L3W2ZWWzYdtYk0DSdorv3PbF
6e/Y8O0XJ5VjSqDD7W/3lAvY0Pt8GfuuFnV+kt7ekSpnA1P/ysWWBQQWTCVF
lleyIf9OTtI+AQKnnK+H+FazIZhOK/k6wUXzMp8rqt/YYAjLBrbxuBi50sm/
8QcblBJshEvoXPwRYekdWseG5qEILcMeLkoxN5xe38iGtF2f9uW2cPGwlbJ7
fzMb9sq9sFtAvY+TM0WcotsovQ63DFemc7FPfPyQeQcbaAnz7oVEclHdp8+G
38WG3R0btc1OcTFnY6HF/n5q3THuRIEGF7+UHNeWItig5Xa483UmB0VUbNXL
eWxwT40MOHGHgzZhpit8+ZRegwWyK7042LFTWqZxgg1nT8rbJK/lIFlf+u+B
IAeyPH9V3s1lo/zAsu+S8hyQveSQfaGQhU7bhb+UKXDgYuHt3XqJLHz+kl/i
s5wDX/5+YnL/Y6G259fcBlUOBFxVXHnChIVbxy4mPdDhQPPDMFuTWiaeEW48
LbmNAzPlBsf3CzLx7eli97LtHKixzN45xmTg6PdXTj6WHMj7uUozoY6B1+5f
s23Yw4HjHZK87mQGxizVMXpwhAMtw5yA0wYM/HVFfsNWBw50XXJzEFVioFLP
XJ1hJw6UT7dvfivEwFfPO1bY/v93NAurBMca6FisdWOBpBcHFqg8iwr2pOOm
5iW10ec54D4QFNVmR8ecqy8fyFzgQMcLpyjdzXTUUDM4FOdP8TllGhWhRsfn
tVUK8gEcGNBcFtUlRkfFi4d+J17mgNNyY9nhWRrGKtFTlwVyANX356+javFq
/1OPr3HAUO/MQd8ZGt7wnqejHMqBdKPQsdxpGs6Rjx1+Fs4BpW1JsSNTNLxc
uuqDaiQHrlvnbtSn6nOSFqAexQH7Y/3++ZM03P8+1FYnjgOj4ebjBRM0/O4g
Jfc2gQP779rH/RmnoYXQ8w69Rxz4Ee+7yYiqDQ6Wues/40BSxvOLRaM0VJyY
9TfJ4IBlveDE52Eaxj29Z1ycyYF3vxTip4doKGGpPGv2lgMKA+sNzKhaMNHs
hnkepceY2yUkacgwDkzaVUL1W1YxUcahocuA6LHvpRyYXNUZL0jVHbeTV+6p
oPDqjhhsY9PwgL428+cXDtQbLGoPY9HwR9enTJsaDvVeXBlQyaThjojdPo3f
OJBpZSI/j6pRp3OjXS0HMkZSe4Ko2rD1zGRLHQdOD+7lZlH9coMmSw43cmB9
y9+/XVwaaq2+FfarmQOzX9KERXk0TKtbaunQxoHiD/tkTSh+8SuMGpy7OLA3
4YVe4hgNr5ZfGjhO54CVg+3Jg5QfY2eEXzGYlP7WU37hAnT0ko73PM2h8mT6
MvS9IB1dPT6MeQ5xwE9p+rGkMB13zB8T9puk8tT3qrlWgo6l2eE/xqY4YN14
oH9Kko5Gh2UeXJrlgEzFDE9Lho7arzYoXBHiwts0u0W35OkoaeWrHSrOhbyT
AuY7VOj4rExikbEkF5Z+eHk+bSUd9YyyWMPSXLgutO+poDodMceq5rUcFxr3
j9e6rKHj3jXMdNelXLBPeTxVoknH7qcREUsVufCMZ6G1XIeOnktWejQocUHI
jHv0ylo6/rtban5ThQumGYsOKWvR8dZ8Z5Wtq7iQwFjkvI7qvzTo3+wfdS5M
rBI9sY3C82osoSdHgwsH3ES9DirSsXqw6dGKtVyQ7BYN+k+KjkIVu+QEjLkQ
1Cj2pIzS76ExY7TAlAtNEuLpTX9pqJob3uQNXNizRzybRuVtSwre/23Bhfpq
8ZKFVD4Cr21chPu4cKhYose2jYaiE42si/u58HJSgu7eSMNkr/M1uge5IGa4
mPSvpWGR05uIJ/ZcqMhdPJNYQcNxExWBoONc0HglqdT/loYR70t6Np7iQhpN
Un00g4YyWo7FxBkujKtK6c5Pp/Lw/O+jF+e4sNVFapN8Cg03KMRfdjrPhdTH
UmaayTQsf6B/VPYCF9rSlzRzE6jztbDRoNafC9ZaazzD4mnYF+wtFxHAhaK3
hkIKcTQ8/0d0zPQKF5bo70rOiaHhrHdG02ggF24UHtXf+ZCGdxk7czODubBg
85kf3Q9omNka6q14nQvt229PidyjISvvD+vffS5EH651PH6ThgHacTXvH3KB
19k9+i+ShgvSNrw8G8eFoy5kVPR1Gqo/9PLofMSFw6clijGMhm4+gz1F6VwY
uWy7XCGIhsPMkGLf11zwnHXNz7lKw2AX5WTNTC70hfnu2XmFhk/32R9NeseF
x1EPA/0CaNT9ZsJgfx4X1kumyS66RMMSs1g5kQIuXI3Ny0rxp2GXTn3Tf5+5
4PukpfunL7WfIxk4F7lw90GMf6APNf/1AfU7ZVyoCz8gpn2ewncytk6ukgvz
AqRedHhR/Fa1BTyr4oKDdcqH/aco/v3yqppfuSA4YdOU70Lp98z++/vvFJ4U
gSH5o5Sfy3qWV9dzYXb8mMbvXZTfv5SrbZooP1MkdpibU3mJdz3f0ULxt0a3
F8Y0FJKmlRMdXMhMUUo+q0VDSRHuSRkaF5ysu8X/iNKwuVpH8gmDC9ITUVoO
82iYEOFdtJpN5SfF1LJkehCV5oyImvC4ID/xKCScHETtP3/fuf7lQmmK/eji
+kHk5Zs4cP5xwdlaRNKvZhBzLwQK+c9wQW7io05b6SAa8QQO35hLUPOWnnz8
bhB30IWnssUIEJpo+6XxcBAXpu16YbiYgJaUyPGo24P4w/X23nIpAi5aG0gP
hQ3ifeXaid2yBIWPvvbA1UE80C2e0rKEAA6HF6NyfhDlHtlYHVMgYL7TpX+N
Bwax40j0CFORgJHaGddwg0F0aZbdMaVCgEaO2FrGzACuij7Mi1hFgJJKbGxC
/wAy9iUmSKwmwDRacWpX1QB6fVfkqGoTsMNP62vmnQG8Ur7y/q5NBPgY7nL3
VRxAs+DjRk2GBNx4Xf91pcAACpq97Hc0IeC5whG9loF+vPFRc+P5LQRkTp2Y
NnjTj3E56zrirAjoKA2Pnzbqx6NeF8JW7CFgYJ3oTPbyflTUztfO2EcA6/lD
D5c5/Zj60vBasR0BghHP11XU9GHOE1g16EzA4V2l328c7sORyyPCrq4EnMi2
elVj0oebDr/kdLsTECrdEr5gRR8GbHCosz9BzQ845mop1IefJCTet50ioKKb
tfkGsxdnOOVxdmcJuGW0q3S8sRe31Fy83HCOgKM7M4pHynuxKrhn63dfAvTd
PQuJ5724wClazdKfAHmf2nx2dC/uNtqx8MslAoaDdN8zQnuxfjirvuQqAb1J
Q1l9br3Y6RZ4LPc6Ad6Nfqktqr2oBOu2rb1JgE1vy7NGqV50WUZTz7xNwBZy
05M6wV6kN1mTL+4TMCnNX/fwy28cslAMTEwiYE3YpOKV7b9xg0q9i9xjAhSe
fl7ir/YbL06HWTx8SkB9UZCU97zf+C+fs+hOGtWPL7jA/UsPzl/9KSk4m4An
rotGrLb34K653kHTOQT4BdYSFmo9GPVb1e3yewJ0E+8xzeb14M9Prdsn8glo
zLMdMKR1o2TCLQ2/QgI+1Ev3rP/SjXZ+ZmLDRQTEcVvatV90Y5wNf+hcMQG5
Wld7793uxl/a6c1sJGBvWaV8alg3Ki60LzxZTkDlITHbD1e68RhNLHmwkgA9
7sGbXy904/Oysmuu1QS8CnlS1nW2G1df1tjp8IOA8My16+c6duN6zp+Wva0E
JAvul7Yx7Ub/6syP39sJ0ExI2u2u342FqS6PLTsJyNMZCLuo3Y2bHWs8zHsJ
uHzEbzRZsRsta+NHNrKpPGbHtbCmutDp7SbJ5TMEJNh3xocVd+EH+z/i9QIk
nJD57z92XheKzy8SDZtLgvZPOQfbzC48+e6KyKb5JORF5pkWpnZhqePmBawF
JFzful9J+VEXyi+YnZe8iITF/3izEdFd6PO+dO4+cZLS704f92YXfnMOnSMo
ScIZ+TQpTlAXqopYzOZJk1B0Uqtu3KcLL+fPmz4pR4J5Qe5tweNd2ORSPamw
lISY+caW4ke6MLzAajxYiYTzLyzL1My6kO5hS1hrkJDQf/y9nUgXmi2W5sxq
keC4nvB2me7E+E/NzFxdEu6H+Gl7DnWipdSRQXl9EgxXhL0Ia+3EDHTuHDQj
YdDpWXzu804UPLviV/xWEoyzVtuVxHaig1x/q5UFCblT2Yu/3ehE0XPHG3N2
keDxqPhmn1cneil4fr1qR0J9e8eVxSadWPVFp3rtYWr/GjdDRd1OVPbhVfYf
JcH6Emt0tUonBii+K491JKGj6vy7DTKdWF/tW2p5jAQLuT/nQLgT11zQL/nn
SkLJ8Wuauyc7MERp/FO2BwnNxXHXi+o6sONrwUfXkyTI6/YoY0oHrvf/r0Dm
DAlBT9Q+VlzowFsrTPKrPUnqfXpuf832Dhz4PpV72ZuE+dfyOD+WdGCManB2
rx8JQi7blFo//cKJuusvMq+RYKbiGsac+wttrlimHgul+D54pUi0tOMrdZEU
qQgSuHOG8odftqN94J3kgFskXO0PYk7ubsfPmjEPLWIpv9OS94jFtKFM68EH
E/EkRMsM0iVPtOG5kCX3MpJI+BCuFSxn2IZK7Um3Fj+j9h8vylXuasXgiJSQ
rgwS5Fa3L1m/qhXFLglbuWaRoDd9rXfX3xZMOnVOiv6WylvT6teuP1tQ3b6p
40wulceMOp//Ulvw/W6jVF4eCTbBl4wfBLTgls1Pz/oVkLBq7/RY1aoW/KE7
T//vRxJUK5Lrsa4Z6ZINlYJIgmhWZ8Q7tWb0nWtwJ7KMhB2qV1wy6ptwdjT5
oGgl1S9ewST1ShPKt5+iy34lYX/I0aGYhkbc/URggUYThfdgm31AYAO23ztR
n9VCgum3ixt91jSgR8iPhPXtJBwBucVnmuoxyCNBw7SbhL0aB784aNRjjqbe
7n0Mys/JF8eCMmpRruDYXf9/JERZPV4oal+Dqa++HJqcJsFOv6tk+m016iVp
KV8T4EGC0jI/3rxq/Hz7AWPuXB6sWWiv0edQhbsCJ97emMcDG35CT+O7L9jq
5RQgtoAHOVfFO7eKfUE3l4ot0SI8+PMtdkoiuhKvbrvX8EiCB56n0yDzUQUu
3DiWuEKKB1cLtFwvr6jAOHUHtxcyPFgg/D7U8kU5vl24eiR7KQ/0XpR9Gcwu
w/66EpnylVT/iuJ443DELObyR+LWPHj24mXNzPIcvPE4wqVnLw96rR1e02Wz
0WM/oZZty4P7NifL6nhvUPHz55w9h3mweP+14ZTUl3jrnkNVlBsPXMZTHRJk
nuGpTYnDIv/xQGAoeUD9kSdacAQKOq5QtUCp6krPLyXKz05dzQii6oeLGs/f
94TWhYbCVuFUvZBQEfSOgO3drYo37/FgyyuXmROCiaAaLmMpnE7huZjkufRH
BswYXhVre0V9/3mn5sXYTPhFDDSmv6H0ExxjNDpnw/3D7512vONB+3CRyEhB
Dsxq7r8Q8ZnSv/nZa8/Y99DVcO/J3CYeBCR6Mo7ZfITC6xPuTS08KJVS31ci
XAQxJsc0Utup/bd+f1DEItj9QjfPvIfiH7j/+i+dz1AUUPs1hMWDmmOGagcW
IcTpbLxny+XBjbbhqHflCD79yXYqPGr91cFJ4c2lsMba83fpKA/0VSTcToyW
gtCc5rT7Ezw40s2JlbUpg958kzMukzzIS6z5WvmmDD6fSV2rN03l49CL6QvC
5RCvvGhsdpb6Xip03Ur3cvgf8Xkl3Q==
           "]]},
         Annotation[#, "Charting`Private`Tag#2"]& ]}, {}},
      {"WolframDynamicHighlight", <|
       "Label" -> {"XYLabel"}, "Ball" -> {"InterpolatedBall"}|>}], 
     StyleBox[
      DynamicBox[(Charting`HighlightActionBox["DynamicHighlight", {}, 
        Slot["HighlightElements"], 
        Slot["LayoutOptions"], 
        Slot["Meta"], 
        Charting`HighlightActionFunction["DynamicHighlight", {{{{}, {}, 
            Annotation[{
              Directive[
               Opacity[1.], 
               RGBColor[0.24, 0.6, 0.8], 
               AbsoluteThickness[2]], 
              Line[CompressedData["
1:eJwVmXc81d8fxykaEhFCFEnRoCGK6i1kVxRakpBCISOaIkoisioZ0TLKykpy
7M29drLKusO995AtX/3O76/7eP5xPvdz3u/X6z3ulbVxOXl5CRcXVwY3F9f/
Pw0v05tLGOaHp4v5mgb3+R7m0ZZ07ZdQgZe5nRNSERdhb8LL2C8SOnAjKken
LdwFjBo7s+MkzOBBSuntpHAfOG038z1cwg42+L5pOBUeCr3Kj7VDJDxA7ehq
M/PnCfBG9MSjIAl/UEXz32+FZIDvii9bn0hEwn7RFB3p+wjOnE3MGBt/BwFF
34/yHaXCqn++lnobMiDfq1ylqKsT5E059PKnOaCQtoGiz+oDr6YD8HLyKwyN
dJ2tXDEI63KE+ri5EcguT+U2FBqBvAHtBsrBMvjrXr0vbZYOHfq+4yF6ZeB2
s0Bu31IGTKcXixmfLIPMB6ulC1YzQO3OgUs1V8qg1VplS8omBhSsVZ4uCS8D
HYbYETVjBnzVkZTJppeB7ZUkEe54BhR9GHOPjCyHE12dnmoHmVDmGLf+LKsC
PonRm17YjMIXhpOT1XQFfPt3fuNXx1F4d1X9my1XJUTaRTS2uo1CgH3nOWeR
Sig0uqkx5TcK+jZCMQ8PVoLq8aAt9KRRoJwNEE8ProRsW/mnwb9HoUf/uujS
nVUgGW12vewsCxqrNS6vUKuCD6VLalddYkGxLl/u6iNVcKznp+7xqyxI0Plo
Jm5eBR6tS5OKb7LARvN3xM57VRCW7fbeOIIFdDVz4TONVVCvI2AtVc+CqS2H
BD9fr4bH5mj6/j42HB7Qqg7yrgb3abkg94NseBSn73P1YTXc3rSr4aI2G8RE
zLDcq2pQSrQ222jKBlVuJ0pMRTWoJT0/rH6NDd7dL0MD19dAyf67jb1v2LAQ
OiloV1sDwk7q7KalHNAxmq8+0lYDF4c6s3NXciB4GdeDjf01EGSXz4oQ5ID0
vVVjPydrgHn+eZ7qeg4cdtxENZWphbM5Tz1E93DAR8ckDLxqYaDcdZeqFQeW
zKWtWS9fBw5+Dv1zGRxY36g1Acp10J8tZXs7hwMqiV3tdgfqwEut0WCigAOX
DZa/Tj9WB89iCzSaSjlQ88pGXutmHfzSk4tQaOVAqLqEukN1Haz8r1nWeZID
yQKZUs+a60A65pqZxywHSgZ0/2V310FFgWKX2wIH/gR5VCzgOgiBde1neDBY
dFOOh4nXA4TdvVOzFoPU3Ue2+Q71oJYWm75vN4Z9JtK6Pe718Kv+S1iJCobj
m3MUuO/Xw0Pu+Vzt/Rh8Gn6zDcPr4Sv1VdUewDAgdci7r7AeuIMO0b8YY0j5
PhHMy98AmCXuccQeQ9nzIJdtYg1Q69m22cQBw8/LsidPyDQAuzRv1elrGPgF
Tqx7pdIAY7zj3sfcMLhapSbuuNAAr+Syi3ruYVD9Z513Kr0Bziu7GPlHYDA+
VuJ3tKAB/hgkbV8ZjcH29cYTamUNYMDiCnj0EkOYWh9NsqMBOGsH3zjGYWC4
nJcY+K8Bph4IXv/xAQNXceFw6/JGONVnv0w2BYMYv2R2pVAjrF5xQcQmDYNW
8g/DFPlG6A7gDm7MwBD7y/yu67FGqDYM7zYowJCtlKtvc7oRlKLVV1kUYqi5
KyJqdqkRirmupp0rwjAl3vpZzbMRWsKvaBwrIfEzNelfjG0EO7XJ4M5qDNxl
hlohrEbYt3Fp5IN2DOJrUgV8phth+1X16LWdGJSsVna7cjVBfoT0koQfGM7N
V7ubiTRB5m1X0YRuDDl7jr5ff7AJShSvyej8xlD34N2N1bpN8N5Xwj5mAMOv
pqWH/51ogl1RX4QZgxhWO5V1DNg2AavYNcFlBIP9W1iR+rQJclRr7suOYrg7
Ht/2OqoJHnY9nlBnYYiAxTchCU0gNkZvMGZjKOkuOnDjSxNkawV/OosxdChK
LbP93gQy10yzzcYwsLzutJhVN4H60Pf1+uMYJETUnfZ3N0FXyAdx8QkMu2xe
qW0bboIxpZy0ScK6mbNLpXATTP73NLF2EoObcX7svyUUaJqj5lhOYwiMEXMY
56fAKsm+ZskZDAl0z32DYhQQOzFl0ky4wV+lqWobBUzbozy2zmFQF6xf8nwf
BYJ5fpu0EU5+dUntvCYFepM7VbznSX43zzrJG1HgeY2RzNq/GB6mP3uDzSmg
zBFa+57w2H759q/WFHikwL1aaQGDVfm3lf5OFMjlm1idTlj9B91N3JcC/yWb
bo74jzzfxufjwFMKHJe9f2CWsBhbtOdTNAUWvu4wN1vE4O/1aY1XIgVOx2p7
fSQ8zq199MgnCqjeTEsYJ2wV3HVrVT4F/t060bTnH7mPmGt6eykFPltJL3Ui
rJ64bDChgQKtF3kPxxBO3h63zrGTAu8Pzd8vISyWt9dYZYACMwfHK3sJ+2vW
PVhkUUB764DwH8J/6qxza2YokGpYffk/wpmpfz0MuKkweSuu+B9hGtYNTV9G
hSh+O+k5whv2haes5adCWp+UH4Ow2e3ecm8hKiyYNLCohJ8ihb5eMSpM69+6
kEG4jMdjVkuKChm7drb5E541QMLJslTon54wMSWsHMq3c/VWwgI9rSKE7dvM
9dx2UOGt67Qlhdw/TiLxUuduKnx9acF6QLjNinXnoBoVDgcK+ykSXvVOLTrx
IBV6KrQ21JL4ajH8MpdpUaHszJLSi4RvKTXVOelRIb7F2ZFN8pPpLjFMNaZC
6NFkSTfCtAK7f/tOUkHOoLmZTfK7YTFD4vVpKhjNCYRZEzbX/ruX6wIVjKcD
zeuIPoIDdY9ftqHCdzuHTdsJzwn3+ilfp4LHd+HW5lmi3zMKcZFu5P4BB/PX
EbaPc8+f86KC5t1nb82IHtu28rHK/ajgcz4w6ssUeZ+DauZnXlJhZ6LzMO8f
8j6+fi7f40h8Z2yEeIg/NlQ3Ptn0lgrW2Xf05oifgk3tilmfqYBV9FtriN+u
2j/f6ltOhSaj9W4LdKL/tJ4jIzVUkFmBZ7JpxH9jWy2NmqigdMg/yJr4WedO
cZhoFxWWmN3ofEP8vjFsdC6FQ4UTkRbr83oxFF/yScmeoALzupuyZg/R3961
Z7/NUiEu4u6dsp+kvnWoFzQsaYas5y1FGaT+iEsH3cRizXDukjLe0YwhnyO9
ZXZ9M6yxONfoTSH9oySrnUu2GbZGh48UNWKIsu1SEd7eDOwnffU76zAIpypM
qEAzjN5Qc84uw5B1pyjpkE4zeKYK7y4h9dDkmMlJXYNmaIyP2FNVjCF0zCvr
9Klm+Dl5c6KQ1FN+tWqX21eagXe8+LZeNgbeisssFNoM+fOXRdkJGN5Fzb2u
iWwG6v10Lh9S33WuhBg1v2qGBr4De1e+xuDHl5s68LYZSu3vuS4j/WHRhMeB
t6AZ6sb4L7x7SvTamzRs+KsZ4qfLnjl7Yhid6e9r39UClYH8Gke0MeRdCS0z
VG2BvPWe8pGkvz3oPPwBabRA/NFd4n0axH/5cddTdFvIPDkoeZr0R62b5xfu
WrZAj3/Wl97NGGImOyQ2B7ZAypMZpcOk3+qPN5q59bfA/ejBbLMiDqy9dG8/
bagFDmUGMILyOdBH3SFlyWyB0tP+JwqyOeCR+XTw6FQLLOOTy5hN5kCCi4Gb
xKpW+BJydEgwigPT7IrQEtVWcEi75PDKiQPvmN/qBJ61AuIduCsnzAHnFyfk
HCNaIchXf50VPwfUdAbvVL5shfyPijZhyzhQF8e38+7bVrgyWCvYM8+GcZOz
oYyCVlBU5pkVHCTzVf70qYrBVhgfmHAZzWJD18PdvbcOtEGS94zQPQM2CEh/
xENDbWAu8kve3ZoFmhYPewcZbWCZGZusROY/t9CL9QOcNrBOjTk7aMqCDm7x
j79m22Cj9KVj+7VZED8SaNXD3w5rrr35HCbPAqVMx8ZWlXbIbnk0sEAfhWPa
Smll/u3g2cnFRSXzabBDrv2bzR1Q/TjwbOM5JjA1Pweu2tYBlP7yEVlTJuiJ
v0+9qdwBp+YCuF30mLCkOpJjrN4BnX9jmH/2MuHWZo+bcyc6oKbg8o9EfibY
9+95dPJOB3gU60bGFzHgiHnme56WDvAJ1w3cuo7M35ppQ1d9OsFUbWJIOp8G
HnsqcsTKfwDX9HKKa/8Q9KdXPG2W/QkNJy8rPnT+DX8d214r3u6GM1S9yL33
u2H7keWL9t964NOIcWKNUhvoJcleyVrXByWrbim4tVWDl/TFTb8t++FPO7/9
Ilcm7GCZr+o89gv2t1htyAhOR2sFx1ZUzP8CKxGZg++9ahAPep0hF/sb3mzN
3qw73IqcVL51rTQaAOO6hBSVn90ozcDmTfH0AHy9tSu3PPo3mhqVXDMSPQgm
YW/PWH4bQrmn9JZG6gzByRChwS21NBRoVBAgpTcEDgnlhbWtNGSprbjivcEQ
MPGpz/Z9NLRk76rVeccJL4T+eDZBQ8eFKWI/zgyBZbjx4gtpOqJTLbZJXR8C
nW02Wk9d6UjyuL3pu6ghUhftOgeFGMhHPyAhZ2QIFGst/FqPMFGL1VXLXYwh
sMhbGvPNkIk2expJfBodAuM++xtxp5ioLlEo4u3YEBR291kcv8xEIn/jHoXP
D0HkaHOpXSATJX/Ou+4qMAyvj4fp2jQyEVWYrrFDdRiCLi1Qn58cRZsU62c/
7h8Gwyeiw5/PjSJPSM+V0xiGV9EHvcttRpHkNQ/l9ZrDMJfFK9LtNorsKrnk
+AyH4QNtLetb+Cia9ZLgo18YBhal0EureRTJ9hr+eBswDEZHj0hZGLBQUJlG
hnngMBR876YcNGWhPx93PFr+dBiWCwpGk8UKlbkJqDiFDYOKhZtp6VUWslvR
Errn9TA8zF+m9/kxCyXvPatXmjkM5dYRRrwVLKQUdCWvr3sYHFYEy35UZaNo
lzMhYX3D0HmlRSD4EBv9MzOw0/o9DNYKQQ1XddiIunG78IeRYTjJfJO18iQb
3cjlXL8+Pgxd1N1s+jU2yvnlKb+wbARUZZIer09kI3U1/0iJPSMwI2ecpbOU
gzpsJFTjVEbgdFHkxLcVHOT+LL1TRm0EQp7LDG0X4KBPwz8kFQ6OQGd/Xt2U
OAdtiNyZqKo7AgLPVZ7sVuKgJeMdn0+dG4HfO1d80jvNQfWpitUhfiPQnSDI
Gn7LQVc7iq8KBYyAZqZuoGsyB/EsMeOLejwCOR7taROfOOjw2fvHYoNHoHg4
yn8wl4Myl7e2pkaPgMYaIyuHag6KtLv7qzp1BHhzaiv5GRxkuYEyx906AlZJ
NhfTtmAkIOGW+619BIxqdy0L34ZR6VrRG54/RsCVtaTERQmjLSvP0+m9IxAx
qnd1jSpGeGKkg0IfAZb71LURHYz8ahe/xC2OQKSDseWQNUYqFYkup7lpoDQj
lqNhhxGtWGe7EA8NTtAuCQRdwcg4JyjJfyUNJKezqlY5YySaIPbcSYQGk0bn
dry9jVGyh5LzgW00sjcAr2w4RudcmhUndtAAvxCVoEditNrRY/iTMg3O/3dH
9sMLjNwuFlrK7KNBzJcO/uVxGGkY6hot16SBYrDDfsuPGHF0GMtKtWjw3u9k
988UjN5AcNntozQ4cqf+msknjHj2tRzgGNLAvSP+jEwWRk0brRTazWmw1z1P
81QhRg8kuYeenaHBs+BZnSdFGO0VfZegf57cj/fGnrxijF7yMcWKrGmwK/NJ
1WQZRjZTnrxvnWjgvDK4jKceo6m6kAFXXxocXj/x1KULo55V7VcXHtJAl/+1
yexPjMqMpfDjRzTQnOqWudWDUVhT6t/4pzTwMk4dsOnHaFtLtUhjFLnPe/ff
HUMYrVkr+PrMSxqML6XObhzBaOaUhexQDA1stRbEL9Ewqmgf2vk3gQbfXwW4
1TMwsuri1lNMJfFEa/00ORjpSBo05nyiwZjGq04DjNH282GnNDNoINL4bq/R
GEazPRusT+fQ4KPEicV9fzDqk7YfGcijgbeu+7WNExhVWn2+5vyVsKPCL65J
jMJ/adwKKKbBGzv7zrQpjLxlH/5bU0oDi1j/c57TGF20qQuILafBjWdWA6oz
GO0YOhP+pYYGG0wf/UucxUhY/o041NNgreetSKM5jOYu0+LrGmlgMO+2k024
iuaZ9ruFBle/dzmK/8Xok8L33dfbiV6OLAgkEY5w4CmY7aSBaG5ontwCRrdT
jQ77/6SBS577pTjC1qPhFYK9NFAdeiIo+B9Gujt+Gr7upwF055Z4E955XbZ5
ywANeNR6PX4SFkm/ejp7iAbJz2nbVRYxmudk9B6i0WDxYfFwAOFfyjO2tQwa
RLw/lkTmbVTtephpxqLBp2C/S0L/MErPCnD9xaHBqSZjOSPCkX8app3GaWCy
GEe7S/jOXpF7MxM0UM9wSP9A2Mbj/NKH0zS47ka6EWH93KQnAnM0WPdDX3uA
sPI0QzDmL9GjyzGhScJiaruj5RdpEFaZ/pvsH2jBy1sqi4sOTVccc8j+gQYL
UNLBpXSw/u3zhOwfqG5umWINLx2Ci8asRwlnqh/POLWCDtf8StTbCb+4E7Wv
n48O7MJJsXzC94t6vjmupkMtK3IqjLDdf3Ja04LkfFxqhw1hw8NONb7CdAgx
PVK4g/Bun+zjq0XpwHpq/4ZD4iFeMtf2ch0dwpsUnyQTXuQ6cn6zJB22xMR6
nCM8dCTwd4YUHdY4t9jwEK73o1zR2EgH15pfpz6Q+L/ksfI4uZk8fwntcAvJ
36Ltun3NW+jgaMMVZ0XYrpw6dUKRDh2VRccGSf53+Wl7HVOiw7/m6I/t8xhF
/15Qa9hFB929UybahBc082YN99Jh40rvYylETzX/FG7r76eDd/UDTSuiP6WL
A+rV6nQ4KW+h9pnoM7L49d+jh+hwcYDjO0n0a31P4J62Fh1WfpRee43oe2Z+
wuewMR1WZH/f9m8cI8tznzW/H6fD6bucijWEy77acx80pcNUr3eOJPHTM+8u
vwMWdEi7Exi5jvhvy3RxgIo1HTzy7l7MJf4MNvfW/WJDhyqORdoTOkZ/cnYv
33OZDrGF0cctiJ+L3d8FKjuS8/MusT+I/y3Gnzzd5kGHzwECVr6kPhSZaBun
3KQDcyjkungfRpsyF/gVbtHhqfdkx0dSTzjOLs/k79NB/c/PggxSfwJYZs9l
AumQw9hZbtuKEdNI4GRCEB2G6+fTvjdjZJJWLbwhhA73uT+MC1IxknJUj1wf
Tgf9pn1RcQ0Y5dA2vhCLpYOY1bT+hUqMJPW6TkfF0yHT027z7XJSLz+Ei4sk
0sHERNo6tJTU+8u8MUIfyPkT+vNJ30n+B5ix/Jl0kBv+UeWci9HavtykJRV0
eC4ZuvvVWxIv/nv38qvoZE7My1+RiBGfhs6Za7Uk3qBzwiUeoyUvW1Z3NNHB
h/UoV/YViZcp9k7posNeq1b39c8wolYqnDDBdNhkquRge5N8/yRW5P1DB8XG
c7Y67iT/m/J5CifpcI76846UK0bI52ih3DzJx5Orq7IdiH8P2MjP8DDg5qhx
sZslyc/n13/jJBmweim3vpEmRit6bDpOSjOg/XjLi/iDGPnzbctaLsOAqs7L
ooz9xN9XCuxvyDNgPn1ZvO1ujBxl25t1djHAZ4/MUixL/B0lkDx6lAF9rIsi
1twY8d7zNTtwgwG1jUHhX75yUM44aw65M6AwK9VXk/RzO/szCbo3GWB7nXew
MpODKk4oM0/dYUDd/Xauwo8c5L+p18c5gAGD95Rq9KLIfFCzP+3tKwa8zTB6
NO9M5ou1Y9wCZQz4+slcvlKKg7Ifn/8YWcGA/Q0bkmzWcZDNQpXx+moGlAnP
5s8KcVDZcNwLhQYGhIbvyhFYzkF+BUY7tTsYEBvvKTIwxkbcVh/PeDMZ0Fsj
n7y1nI24UqwyBoSZ0EOLkdhvw0ZVrE7nBFEmdDR9UbY7z0bBu0yVLMWZkDrW
UvfYjI3WFWh/bpdmAk/r2pe5umykVK2QVqPABOrDgqq0bWxkOfznQ/phJnjx
mB7iGWehr7KP4287MoFSIGru4cVCbjEZIcJlTDC+yN5LcRpF+Qsxj8sqmOBu
cHv3OttRtGD1yNetmgmjc7+fnSbz6mO5C54tDUxoV17iXqo/imI/8V0I72RC
2zpNeXX5UVRZfHmHMJsJMOlsVdrDROKD6+uFxEchiHp+Zr8uE33fHrhCyHkU
ym0rZG2WMpCQodsOPwEWXD7KZ9h4cQT17KS23ipiwWTRTsci2UGUGQ+bh6zY
4OhWWFn+oh9dyFAVkl5kg2y+WWF1xA/0ICDRtyeVA5y+H9Uyz6joM136tYAx
htc3LZOlY0tRYFyAdd9xDEW81krSFqXI7iRbPt0UwydGvdO6NaVIqqgo89hp
DBO8GjYLD0tQUOj5qmAbDE88KraIdhajq6qvxvluYWili92Mci9Em/xF9Jd/
wNByLX71rw9ZaHH/3dWdyRgO/Ojs7pfIQl3swZYPaRjkHra7/wzORGGnv1zQ
zcIw6Cd8znc4Hf3bdtI9oIjs2XeUxtLupqKe5tD4pa0YplOitkSkJKKCRzO2
re0Ybjq5GIuEvkGRGhcV3/7A0B2W0yDDiEdG75VytPowUPVfxU3dj0GF3o21
vgwMv3QSCrVTn6PonftCTVkY7LYYaqxhPkM3BmLNZDGGPRM2UaE+QUjB+Fp/
ySSG5nbaFa9UX8TD3fYubAbDZuH+TZU+t9GvXA1H63kMX5M8bSJSb6Aix7fK
u/7DoBZ73acg9RJ6sXHV1P9/l9u8O+T//28V/w8dyY1x
               "]]}, "Charting`Private`Tag#1"], 
            Annotation[{
              Directive[
               Opacity[1.], 
               RGBColor[0.95, 0.627, 0.1425], 
               AbsoluteThickness[2]], 
              Line[CompressedData["
1:eJwUWXc8lu8XpiQhSRJSIZUkqZQWl5WIRJSZlIZEFF+JBiqphAopIyEk2dk8
9t578y5eMl5SIen3/P56P9fnrOuc+9zPOffnlbjkcObKMjY2tl2cbGz//z15
hdlcNHpWeSij0nTcKYfgUBd1HBRRwNDozyffN+cQ+z+EhKWLaEBFQiptrDqb
0KnvTAsXMUKRrwf36JZswvjy74LXIpdRZH04j1GbSfTvear+UsQZ4oJfxAa3
ZhCR6097Pxd5jKJhMSI67ivhXv+27FzuY6g0B2Tz/Eskzj0ZWrbV/Ak8mvlr
v9gmErw/bz3MC/MGWwc/67vqF8K1LdB1fMszsA3wH7FjxRMGb3ps9bb7oWiM
v8HuVAwhq7P1s2ilHzzGA4Z4c6IJruV2I8PX/FE0yf8jUSqauJCzlEoYBUBl
hl944s9HYv3OADmT4Ffw+ClR1mP0gVj2JONU4fArsP2WGBWVjSBYQ112Uoqv
4fFbgs98eThRGyLxhdVJYnZJk97U90T27PGac9Jv4MEpeX/js3dErL7taL4r
iVdKRplbhRCBiX5cW6vfgI1PsjJU8S3hyZW+45lIIDzWSo738gUTMide+aQ5
krihbc32+kCi5YnDaG9lINjm1tX5Bb4m3MtOnVyxJQhswVKLnLEvCKnlsl/k
XEh8QMKKJelF1Kly85rUkzjxqE86bhH/eTDtPKWCwVaUsvj+2jFU/I2Ra2sh
sfb4GtvRR+D9EXxgi+87sDWx5z9li0dIv5v6t6UIiH9aKXSLk4CqmGnMwNkP
sDLco7ggX4QxM8UVXF8/QEVWyP4opQibx+9af90diYB+WleBagkcrh/cxtYX
iRSVhykly8ohcDk5/tOhKDRxZl6oe1yDq482mx65HAX+wbCg1QdqkRf1clWj
fxSGsh7V6jFqcZlyw3ZuOAoe1w0Um4/X45ultKxOUDTEr7qsvLG8CdwP3vYN
FkUju+V61AvzJliGc750Ho8GS/m8UmJ6Ezj76BPh6jGo2qDhNGHdDLM/hhH7
HGKg/1iRjy+/GcmipXqV72PgyJL5LCfYAo4j+/6ZV8TA6trQRbHzLTAx/ZjM
mo6BCq9ifOvbFkz1GnFHiX5CgGhqe2xDC7wtua4Yqn9ClfSu5W4rWpFu7SCa
GfgJjse3WIo7tYLvptITd8VYmDxYKWiv14Zyr24zzvtxiGR1PuRc0YF9iWs5
xbgSUFTuwOHu1I1quXKrevkEOL7tfvffl25YpbrmPTBNgPx19T2OtG68zBx0
pCQkgMm7weyKYQ+YRV97Y099gY9hYfLp/b2IaNdO3fsmEQEUXnOpH304YPKX
h5aXCOl0F9bmXf2o60m5GkhPRNXjoSci1v2YH9wg9vvAVwhLZ6TwtfbDaIzh
nd/1FSoO5pzzaQP4bveOYs+ehCaV8tAfYwPwmtI9tkUmCQECe/ZOSg4iZTZ9
2tM9CdKZyyxorwdx4s413f0xSSh6ajfdXzOIgXnROHpdElJkb6jbsQ/B+V4D
e/DPJIStF/e7vmkIPP88LU5sTkbXb7bxYPkhhFw3tpTVTEb2jM9/N44NQapN
1mrtzWRYTfD/g9YQlD93WvcWJKOPKi4wemEIOZ+Dv2XJpWCxXuXQUf8hTBiO
5+s0pGA82uPx4MQQzsa/rXVanQYFfbZN0l8oCDvvpXtVIg2Batrt8lkUUAXs
600OpEHj59JV/1IKHO6rNSqdT0OMme1z3T4Knp2ZaFn5NQ1W21SbK1ZTUbCo
1hOqmw7evEnLPEcqthlMMktfZEBwWNst5iANog9PHLn2MQMKmWMOazRo4P8a
+YI7KwPMf9R1PAY0LHAZyhlQM9Bl47lL4zoNTUVZTgOHviH+SKFZ5jsa3OQ9
l+YY33BvQDHn/QINDpY9p8P+fMOcwMrjWZx0XPbd/xFrM3H5REdTqwAdp5kM
de9jmbBKcWby7qJDKvLks3VvMqHilbrhoTkdIg3RPZnxmSjK9IgOvUYH3+Li
LrPCTEh/P70n24mOeePkhsjRTIgbTWpOv6Bj8gmXuMa/TMT4FLSsDqGDnn7x
1ohgFhbzfS1lYujopuSWPJfJwuNp8zHNFDoa1ggKyqlkgWv7LhfrfDpKleyv
NJ/NQp2teLxXOR3ZNyoynW9kwSKZY3tgPR3Rla6mecFZiDxUL5HVT4frw/4I
rYkscOhYivz9S4fkVOxO6/fZaHLw4HqmzMCGTWzunCnZMMm47P1ekwFeHdO6
z+XZ4JjX4kjUY+B3LI8Di5WNY15r2RotGRhvu1z0hjMHXRU/7w9dZYC6rHCt
olgObHh6/kzfZKDO0jHj/okcZAdG/RZ8yECJb/UKifM5kO32/m/7UwayciWN
y27noGrTjR+K/gwkMt3jr/nkwPXS6VvabxmIEmqf547IgWDc/imzDwy81ZDT
SUrPQdj3DfZ2cQz43n4aZlBN+pNfHLufzIBX5NDE7EAOjF5Sv/2Xw8CdhsMI
mc3BrB1h+7yBAT65b4xqrlywNm2bP0hlIOalvO8fsVyUNTx/SvvJQLPujm7L
47lokj8Xc2zTMHbVCjptC85FzOx4/+SNYQxWTsWmKebB556ogeGqEbjsuHGK
rpMHi90eg//ERsD7dPjHeqs8OA8w7BPlR3BYs1/lrk8eTFRSn68wGcGbspoe
dOdBg0OrLCt2BDJSmp63Jkj87euZy7kjKHpUvCOaPR/SV9dR+BtGMKGW7cwp
kw+xqoG/13+O4HHU/o2HlPMhfFfDV2gVE6LLkouvnyGxTIJoqRgTKRdlbEKv
5oO/d81nB3kmThR/4qt3y0dfzTL6vBITA+IS35b88pGdqcE/rs6Es0eYuXx0
PunX+9iANhMf8Sb+TW0+DrlxB5WcZeJPgYeamVgBAnYKaL6wZyI519xlpKAA
0j4S8WLhTGiKdoqJtBRA3Nm6jS+aib67Z0pPDheAeeETG/tnJlYd1uZP4iuE
r+JOU0YGE9ZZBxOcLxRidlieO6mOiQWhNP1Yp0Jyntw+GNnCRIDL7t+dTwsR
WJhx6XUXEwUHpDSOphRCNvhQngudCaOgD2N2ZYVg83IbsRljYmxW9FVEF+nP
Pn+dOYsJD6NgxabxQtSZLuHULyY2ZKwdYGcn8Pi4ih0WmbDw/WNEFyLA9fKz
V/x3JqIuM2orZAmEbTseWtvExMixRrXPagTECofSJ78xIbs+J+eFCYGmc/fq
1oYyoeZiFbQ+hQB/zphcxB4mDoYZxwbuKULi/cofmeT5mvrUUZ4cKYKRkDVv
j9II7jmrbrpzvAhDSUtSfyVHUKy7K9DUvAi8QwfOqU8MQ/fvkufmp6S+Wkx2
o+cwLlrGno8fKMLss4zw2lQGHp/c+O7daBH6+u0iMkIZiD0Y0PZ8lsR7t30I
f0LePz43HXvuYgR0B0U6mDLgQpw6vO9gMWx23olex87Auy8lzltVi6F7f0/M
4hgd+W8VUwR1iyHbPBLDaKOD3VFix++LxRC/axKbFU+Hr/hPwfyXxciuOvzZ
XJ+OJF5b/a8hxcgXm/mscYSO5rmBFxHRxfB1TEjYLUWHUHPVMs+cYjgLb0z8
95uGwwVKyrfLimFn15rIpNBg8TntrnVjMTSKXnxtrqXho2cY6zijGGI2i0nR
H2gos18rq8gqBkd+RrLvMxqGTb2vSf8hMb99yn9ONKzS/BMlwlmCPuttqZbn
aZDd5zjAvbYETVn9qSdO0KC3mSGyuLEEQ4E5eh7kPLjFbXZ2YnsJXGWD3QuP
0hD4qyFgYG8J9Mtuxy+q0JBJVa9rPFaCcfPT7Uc0aejQ8px+eaIEs8+ZT610
aPiVVCike6YEXLmeR7z1aVB0P3yx6loJxIUzPjSb0ZC9bs+votclMGoTtrVx
oKHrrt3Gh+ElsFqeJubnTMPc4GcVpfgSWOzTaUy/S8OhRKkXOQUl8Ai4r/Dv
EQ05GqLiaUySvy51KSiEhp4E4+OOP0qQ7e6emhdOziv+IFu5JVKeIHiZEkXD
kf413xLWlWKI60S17FcazNRP9dhsLsW44pD7mTRyfn1+/m/7zlLMXr0r55pF
Q+5/K05GK5dCrPzLm9Ji0n+vmsNF7VLwzmpojlaQ/lU9ArcYlUJ+68AcXx05
P+MLcvotS6Fy5s4XhWYajvL9GQi9XgqTiaODH3vI83M+xGHmXIq51/9qHEZp
uNfz307hh6VIOVSaqTRHQ34syykwkIz/6KRf93o6+njl3p35UIqQnXxucWR/
LN6+UcifUArdxuYr/+2nQwnDXC+JUjwWNVVaa0BHYWdv+JOxUhxKvTau5UvH
gJJIqfrPUvK+7eoSCqVjKfock52tDM6Lk6X0z3QoOzbve7C+DEUnXEI9Kukg
uCorXVTKoDXw+GT2MgaGbnJMKOiUYeiR1kHvtQywtasK/DhbhsCdvJJG4gyo
fMy3cLhRBqbzm/kpJQasVi547nYpg6uoMaNAlwEPe8W47x5lkC4SbX5hzkDR
4bTpa8FkfJ6o+B13Sf8fpoS2fywDf+qVwJ/k/GLj3H2M/qUMKed2epQGMyBu
Z3sxKrMMfTt2SReT91e1Jc7bqrgMXUn5sS2tDFw6xPiyua4MZQf0ttHJeeMV
Idnc10Hi/MHonxuGUWIbvtF0nMyvZtlHYYthpI/euGH5qwyzJ71/DboPI8bm
SJ41WzkO1a7SjQsdxpOrnWY3BcuRXcv/+0DvMLQurX3/6Fg5quo2nzI0G0Gj
6RPhJN9y0BuOzL80Ib/PWvbrl++ugKOZ1ep1d8ZQX3n0CpdiBQRvXn8ZFz6G
Qk3ub6tVK7DoeXv1sbIxfNCIMxI+W0He48err6z9jksqlDe771dAZS5+ddaX
72AqnhUwqa+AVvD0avOhcXRnbr10vpP0l7DwcopzAjUHZlIvUSqQX7Cc7/Hu
CXzZ729g/7MC0oz1fF/dJnBzT3WA16ZK6Coc4fsnOImf25XWfLWvhLxE3b7q
HVNQpqpVPnetBMf7qAuXtabgHa710OZRJdoE7vr+s5mCkKDR1NZ3lbjMsX34
QMIUDrLfaHxfVomKH4SugRALD/Idn7o2VkJGfhctYjsLFXdccK6nEn52wXfH
D7JgPOmZvJZVCUuGXexTYxZce0P8fTZWYa5DhK0whIWi4IgTV7dXwWrdk2Ce
zyxwnYn5p763ChWnWbKmOSy8q0p2+KdZBZ+qCtPZbhaoj77t6DeoAotjH0t1
jAUZ5A3mWlThnGq4t/8CC7nfKk673K6CaK5TuszGaSy7VbfS6H4VHv8a0Hbd
NY2Tsi3EXp8qjO07OVR+dBqvRzrvrHlThfj/mJuuaE+jN6p/z0R4FRIId+9S
3WlIWdJGauKrELlqzZSE/jTsREY/xKdXIcQwytjDcBqL/rNrLleT/EaqpJXM
pqGhs1Cp2lYFr70Wr0LPT8OXk81jy2AVXN2n5uetprHpPg+rZ7YKN9cI1WZe
m4ayrWSTgXg1Tipa28v/Nw3vbdI+e3ZVQ83zV7uf6zQahnarrD5YDY3aZ8oT
7tOwND6cUqVTDdkLKWsSvKbxUEM/AHeqIfb0b+rWgGlU/TurtcmrGrzNAaJe
b6bBn2fO9se3GmwbpR4NBU8jcu81x8yoakwknTQKD58Gc9xOOvBrNehz/fl/
IqchH3976FZ2NYbVbm0zi5mGq7VryOnSagz4cvhlx02jaPMD/d0N1WjoePtL
6Ms0uHoecfF0V6NMfNeF/5KmoR/0rIhJq0ZHy3R/Lakfou/vWjFZjVHTxX25
ZDwKT5B8zHw1loY4feJJfjKV75meHDVYZrO2P/jZNG57RUZeWFODzVMb9z15
SJ7f/Bf+jdtqcOSvfN/FG9PYWK/2A3tq8PRZ7p0/F6eh8LG7/fLhGhSu11gX
ZDKNK9orQ5NO1cBMzvhk1XGyHu8ubVNzqYHNhfvZcuJkfPv5ldc8ahDzndOo
Smia/F4HjL14XgPmnYCpi6unITtWkNweUQOXgOjtQWQ/+R8ROXK9sgZexdWB
f9pYiOdLEfNrrkHVKUP5oFqyf6ma/9J6Sf49fbVyJSzMPHcuW5yqweuZqWWX
klngucATJ7FQg7YHdyP+fGJBan/UM02OWgjwLD8SFMaC0srDdjf4anHprW+7
3BsWzvU26gUI1yJ2q9CtqmcsOCRf3ftNshbU5A+8lzxY8Hn0d12PbC36njln
yLmzEGkc+GvpYC0yj21Ma3BlIWfXru6tqrVwmypOvunCQsu/4jwtnVpoRNl8
5XNmYazVJML+bC3Ez675knSLBbF73tZZ12tRkWsRO2nHwgH9TZp9TrUItF8e
42fLgp5UhjT7g1pYiSd8lLNh4WEdZeLk61rMPfkddtOavI9iSq4DubVQMHj9
ZtKUhT+sVrPl5WR+HIdf+ZH3XbDcVkm6sRZDmYN+cmdZ0LQPWXabVgtfsd3P
b+qz8Lngh+8K3jpUjVR6TGqyUPLquYOMUB1839984KfBQs8ViTOnxetgcWr9
PTk1Fnj5Tm94p1AHtvRLd24qsbCNypgvUK5D05VV//EdZUE5814fVasOCcIp
t5MOseBomfBR9nwd1B78tZ/cz8KzfaqPDa7VQWBvzA2/vSxEcXZddblVh2Ha
yetye8jvR89N7VD3OvSkdGd5KbLQmrRCtuhJHVQWno3LqbAw7hXGx/Cvw3v1
IxK9WixwGO+fXvW+Dj98x84+NWDh4D+rTMOkOmRs0SEGL7Gge6rI63h2Hawk
yzStbrBgHbrltGJJHbi3KTUMObEQoDgwItpRBzOZPf2UxyyMOpiLUP+S8gPr
/tBiWQgbOnvP8VQ9zE72HmSS3zv2kpNqL8frwf36hdx/ztMQ5k/ge/irHnv6
5AM0709DznJVryNbAyy3d0xv8J6G2UKlk5FgAz7nin/LfTuNjH3HP2081oCz
tG9H2fKmcTUaXAkvGhCjMKT1gn0G96Yj2kKDGlD84EmCBfcM3mAp8uWHBvyo
kuGVWzeDot78w7fSG3Dk/H+NTVIz6Ngpxmld0AC7ONG9UbtnMH7HvcWosgHP
ponXTgdnICJ45Mah3gZQn3CfE9Kagfyld4oyjAbwNSVnjejPQDNlbrnYVAOO
ip4VyTGdgcWScdPqeZL/5QW355dmcFs3K+zfskY8SPrQZ35jBj7vha5P8zbC
bYVnNHFrBh+Y/x2gCTXihYvqd+Z/M8g82M7eLt6I+BH2/QJuM6h7rNBQIdOI
DJMSt6MPZnBkTe2yVwcacWLQR5/wmkH8u4uK5iqNmLxyerv60xk8SvKLnDrb
iE1Ofc0nA0j9LuZtYc9GeL/8JW0WRepfehhHfdGIHYIFS/2xMxCaWN+XGNwI
4v2jtotfZjDNrn5cNbER43H8HtczSP1d4RtsOxtxpkSm07WC1M/cr6tAbcSs
1nTiYs0MHqvUeCyNN+J5Y5aXR+MMUhL+OGuzN6GoT0POp2sGI1Oa/kmcTbC0
5uHg7Z/B5gOvP6/jbcLUaHO3P2UGLwjpgX6hJkj9tnzydmwGJRzOc2piTSi8
v81849QM5rQJgXiJJlhwjMt/+DGDPf7cu1fvaML88zTOrXMzuNp29sRt2SZ8
PfrwhcLCDMJFPl7s3NsEx1PHMuxI3GY57n5MsQnSF+b7YkisNuqVwqnWhGQv
J7n1f2ZwV66h5sYJUj9Q3vgUiVOcRBhNuk04HDvx8AmJNy8li4QaNyGv+lrz
TxLPC/R77bEn+fFbOHcskv1gIh0eeLsJdyVFwvn+knzCnbLm7zRBQ6GjXJPE
bTu4x0u9mlBmrL8hi8QpxxTPmoQ0oTpCI/ftElkfTy+HgvAmvE5hpzWSeHNl
/TPJ6CbolhTycP2bga/B5cLxr01oZhw670ri0uDkLoN0Uv/3zycpJF7oXZjJ
zG6C/qr0JCaJba6+2uFZ2oQ22d1spmw/8OFLn+pwFamvPCb9isQdrB0WOg1N
MNKPM6gm8eqDTi4prU2I8/5nP/RzBhruhQHru5vAK3t+U8zoDNyLVn1xG2iC
V3Nu3TXy/NJWnC0fpDVh3EX43q7mGWwJ+D7/ebIJVcWtPWnZMyi8+PBz2g8y
/5isrVpfZ2C5f51p3lwTSrxD7fo/ziCs40h23bJmFOtYL618MQPhTc9dpoSa
kd8+I3H+/AyyJjdtn9vYDPXsDtsZgxmcK0ptZ5NoRvb73PSnmjMIsu5WENjV
jLQLXsfT9sxAIEH6hwKa8XV07fWVy2aQ6p4fpaTRDLm6n6lhv8h5fkr/jKZ2
MxKTuhf2fp+GP+tOqrEhae/00deijfzelPBctDJpxr5zT9qnq8h95c0H/uvn
m5F06PrmpwXT4FWsdHC71oyUv/IpqbHT+MJlvuWRXTNkhwTnNUPJfaxnsuHF
rWZ8KplT7fOfxugXrweBLs24Gie3d5z8fvncF5ILd2+G1hofuqTnNHacTuj/
5NEMmTuUt6bkPlQhrvwy6UkzVg0e0Qkg96cVZVfGCf9mlCdNpP69Po2YoPnQ
qsBmfBY6cUXhMrmfXXup0/yuGR4PIoVvWE7Di/tbAjW6GUp6hg+7zkxjSZ/j
+opssp4T2brp5H441x/FODnUjFjZxyM25H7wNvlgkCGjGa8C+99/WDmNg541
GhZjJN/Fg3od7NP4T2om2n62GZvrRjPUf5Hz79cTQ5f5ZixTULdxY7GQUSmy
/OFSM4ZCwzamkt/zGVvVSwFcLQi9cdpr8yALr461r323ugUPWuMPnCX3XXm+
68UfBVpgfXTZ6ItWFhoHFx0TNrRALdo8rKSehZupAeLpYi0YUzXcyapiYfUj
qaY8iRboF9w52lfGQqJR9sOy7S2oOhR2qqqIhe+/Bwfa5VsQsodxKzKbhcxr
/iUnD7ZAVJvVp5DBgkencixxtAURl/6cqCb3F6GscPvPmi0IC1q7eYacR2ou
5ov3LFqQ9kepRj2IjDfMPTR9sQX71msf6ApgoetsbunVay3IljOKtPMl+R0Q
eaF/uwUFF21dgh6x8H62Q0TKpwV1lcGSI+T+ceWy99+Qly3QpHx86W5P5tt2
gLL6TQuaFhLn1lwn3xPpgfG/w1vQsbu04ZAVWZ+tGr520S0wP9FwuN6cBYs3
Pxwo8S0YsuqOuUjuG9O3zyjWppP4zZTbcz0W8qnsG1VyWnDz6wJj80kWvM+k
LmUUtmCiYoVB+nEWDEqsqDvLWnDfrHehlJznYvv4KyKqW8BaS1Po0GVh5CPx
eV1jC8yqx24yyX0lba3DS582Mh+PmfgFIxa0puuNbg+24N0U+6Yt51lYd/H+
oRF6C9jjVhnvvcjCQJOsmMVYC65Yrn2lfoUF55QXtOM/W3CkXnyFDZnvBwft
2yI8raAkYCLlPgu2g3Nn/fhboXHpxI5STxYUTscfXi7UihSR0xfbn7BQI7eS
fUK8FT4+lu3zL1n4NVHmX3SwFbJX7xeoRbBQfN7Z6cCxVrzb9OS3URQLvvVb
jRNUW8l3uu/ea+T5SX712hyo24o29bBPL5JYmBDbt2zVmVYc/BM9GJ7GQrYv
hXHfuBWxaV9EUjJZ8FoMqJ6xaAWfbbphSS4Lp+xUvl671Ir/JPJethWyINw3
FdB3rRWToa07tUhM1fngbGDfCmH54OxF8v32NU/PpOJ2K7TKTE6kfiPff7uW
jh51bcVjk40dV1JZUA/9uiXlfivSxvsvi35lgY/n/PJtj1rR4xH5oyGehZix
vBo+v1Yc+7xt7aFIsp/ent5q+6YVys2huWzk/qyoQXMvDyHx/NrL1W/J+oRz
774X3QoV7aVMM3+yH/RN/UezSTzaYXH/Abnf/R0f0Sgk8dpTnJpuLDxO8FCJ
LG2F+uHSZD5yXxbmiJ8+10DGe5a8LJI8H+WsX4ZltFao7fSJL7Eg36eXnydu
GW2FqsGSwQsTcr/m37zCfZLEd53/GJL9EFaQer7jRyvwcSxGjOyXK7bHM/fO
k/bVVnoMHRbkNnTzvVxqheZ0x++vJ1iYK7W7xlzeBhWRUx9d1Mn915GtSH1V
G06olp4EyPPbFCj8ga8NvhdsTe+S7+lzNTtuLaxrw4q4rMMvZVnYciev+qxI
G1wmOUQ/SpL92UR145Vqg839Dz1VfCx0P9rbf/dwG0IOfs6Sb5hClHz5gXbl
NviUq7ua5E7Brt/ET16jDV5GA4c8YqfApuiBEb02WN5el9v4YArbxxo+Gl1u
g2zS/fybe6bgrG93dY9/GzK3nSlODJgE36a4KTq9Daz1r7Yut5+AyrlH/bTR
NnAn9N9mWUzgtv+FWupkG2SUZUr6dSfQwS4cNzTXhudXS62yZScQMexj2cfb
Dtmsn+H24+OQS7Gtb1Voh5+JmXDXjXGcUpf7UvK4HW1r30nFW3/Hg3vc74qf
tWPukqBs15nvSPk27F3k1w56uv9+LrXvEJT+cKkwpB2zZ73VbMS/o4+XXzQ3
sR3D75yspPvHYNcx7ZPa1g4OSb2w+HNj8L3+7WqkVAfsdrS1T5waxZjKVx8e
mQ6YPPp9CcdGcUL4U4LLng7oDoqyAmRGsawycFL3SAcOvb3IrbByFHelnF3m
T3dgknNK2a2IiauD+7zPuHcgeHhVPOd+JsoyZeILPDoQoLb7gIkEE5J+kjXS
3h3widAv+byGif5jAnz/Ajpge+5tn+74CIzeTwd9ie0g502a91zsCFTPpnzi
aOmAxutdqnxbRxAhG1/p0NmBuUK3uQCBESwujxzt6etA4vfq5HXLRpCd5r87
daQDwsdtNotQhiHH7/Dt/F9S/3fMn60fhuE7crWzalknQqRm02L9hjFWaDm/
n6sTRgbqtjsfDOOTvZ4S97pOZCRQuuTOD0Osdnd5pnQnXM5vzjy8cRhuUdtG
JOQ6If/c3j6fexiddzeterm/E6zMfCksMMh34Ppdc4c6EU/j6SseZeC19OpT
1sqdsOA3f6PRzQDrH4dDg3onuJQSTlZWMaDXuRhwWJuMF+QyuaWEQe4Zs2kx
ep0Y8nN7fKKYgVXe421rjDrB7fNA1KGIgavn6b/cTMn4nl4pwQQDZQp9wsOW
nbjp5q1ZWMiAB63WIv96J6rs/G6vLmDgl8oXus3DTngbRNR8yWEgP+Z76J3H
nShrLK6lZDPgxSVr6P2sE79OMeo2kJivKbE4+k0nTE7KNj7KZGD7haSIgbhO
HFPPbTVPZ2C8ZPLsRGIn7Ir7216lMZC2fc/qxdROhIG9ozKVAeXJZHeR/E5w
HNPq2p/CwLn7qSZGTZ0YUOjo4/nKgBhleo11eyd40+f7VRMZoGrsq7zV0wmN
vZsG73xhID7+9gOPwU7cS1YZ+prAwE3e9AP+dLI+uy9TaJ/J+jr+GA8fJfl+
eUoVIfFC6/6YxMlORMRXPq6MY6BI0dk870cn9Bedz8rHMuAdmiFQM9eJZfqS
29/FMKD7b7a6628nmqIbf7FHMyBgfcBzZFkXvH/fq7T9yECETOYUx+ousH3o
tDkWwcC3nKw6SHSBNeH7ZfAtA26b5h7pbe9CvuqRe1rBDKh4Hjp6flcXHING
dFMDGajTyvnsdqALfcfUJr1eMUDvzPX+pk3iF7/lt79gIOHoH6UyvS48H4xh
93/GgOOHoz9bDLugtf9My++nDCxezbdmne8i3+GJTtWPGeT+VKCy63YXsnde
yrR7wECP6dLvw3e6cPn+mqft9xiILFBO1rrXBfnmfGNld7I/JB5eNfYk40nZ
SsfdZUD2CbHpqncXYlw3zK9xZWCG+a/N+UUXrtaVVbu6MJCtq+L7KKALouK3
31OcGXiQ4qH+OqgLVRKC2pSbDGgIFi9Evu9Cgh7lUKgNA9yu7GnJH7oQ6J4k
ffYSA029qtcLY7rgF+8uvMaCAYvoks7epC6oLROa8zrNgPO+sgyh0i6MfzuZ
ZXuQ5KcgHvmqqgt1ydX2EXsYMDl47wVvQxdKPmtJtUgzcPSIwqVl3V1wDdd8
dXgjA8vUYtZMTnaB44naDS42BmbV2f7YzHZh8kGxxLF5OhjHLYZp8yRfV5Uu
hxk6qrQFC7o5uhFsp3y8k06Hv8Fj23LRbkgbHdkSW02Hh+HQWRXxbgjr5bR3
l9Bx++wx1bxt3Zg5cch3dT4dl41DZA/u6kaFapaa6jc6zpnObkiV70bK0YPz
zkl0aJnrL5c92I3AA9+S4+PoOHw+cTL2aDf4Zr/5RQTTIXOBq0dCtRuxXAMy
Rk/oELt4uTxMsxvymzgrVznTwWddlLJBtxuFe+WsiUt0sF0RC3tt0A0VzXP/
nA3ooNm03fax6MZlh1jFITk6Ehw1xJ1vdyOmWDM+c5SGsNuRPFN3unGo46aG
XRcNL50Xf12/342iseAhiUoaHF0z6i/4dIO5bkT4ZQwNih5S7joR3ZC6+vSZ
9QUapL08rlZEdyPNLXmbiB4Noo/7DFQ/k/H9O4sbjtGw9DRQWjGjG+eydywc
FqWB9Yy1Li2nG+N1p4OnuGigvND9J0t0w5lyZ9+n31SU+XN0SNZ0I4K7ypa/
nYrMV1bF4Y1kvbewOCtKqYh/k58o3E7y2y8c7Z5Gxfsg4ZA3PWQ8LRXs/UjF
i7fOj/iGumFzcOrtnDsV99413XzG6MZm62/+XAZU3AyVNeP43o0uf/enwtup
OPOBLr/wk7QfXXnnUBMFGh9VxP770w1BoYabWp8oOBAdtpLF1oMhtcCrJm4U
CMcZDTB4eqAfJn7OVYqCwaSyF80SPVA7ffhAtusQmiY4xvft6MHi7rjTAXpD
KJI9rhso24MW3vW2NlJDiEwo5zVW7EFRIEVpb+QgLsVWvOzT7QHruf7aGb0B
nGFwTiqd6YGvlqxm1EI/1KVO6H0w7gEXJ5f7mdh+SEVV8l261AMpT4Ke9rcP
w+FV/iN3eqB1Ry7bKbEXHX1cLK37PWA7wD2x1aQXlRu19RO8emDSMx79Z2Uv
ss2epfD49MDCWfb8z9IexL+r5rd/2QNXPjuhqYc9sA2qeTUT1QNHF9s/7Q7d
mPCte/O3vgdNmtfKo0+T391a3lnL1h6UDcU+COfpRAP3KaOirh50uQ0rvq3s
QJJPveAjWg+YSVcSnqMDjo8bgrjmezArdNn/1p52WJXy/bq+ROabEq1143sb
DJadPle7vBfiOjT2K3Ft2OfRKOTH1wvhh5ecTba0QZJYc2dqXS/kRaJ2n+lt
xbql0536Ir2QTqcM67xtBYdSgGLaZhKfkog8btiKWfemt+ukeqEyYmWKNa2g
5/LPOe/sRYq/qebdkRa0z+ubdMiR/n3nV1/ta0HFoVfZigq9iPR5136muQWZ
d5qF3x3uBevx4XBUtCA2c+3dBeVeOHp2X5bNa8Hbnwbd5hq96Lp/V1YkpQWu
Ti3vNp/uRZFLTt7MuxbYpAksPDQi83EyfTTo1wLT6TNmFNNexDvMn6x7RL5T
HFpFYy6T/mwO93yyb8Ef27bQnW4kf7OcORPVFhgdPP9K7mEvrA7//LNcsQWJ
7MPe+x/3wkZ4778k2RZYhvy+peTXi4CO+BUrhFtQXC6qZRBF5msYIpA62QzR
V9FK5+JI+31t6y3ozbhtIbvfnOwLj7X8Iit7miH1Q2nzlUySb+PTLefLm3G/
sGKdbR6ZT1KpJFdeMzqenV7lUNQLNr9/29JTmiF3tmvJqZzMx/7oTsvYZjwV
vzjrWtMLfd07sqvCyHf399HR+4290FInDqd6N+NQ1u1Br7ZemGi9WpC80Yyx
U49rfAdI+zMH7nEqNOOUe1xk5Ewvhq7cf1hf3oR1HRO6VaJ9EN+4kTerpRF2
H13U6rf0YUiKePk+tBFldv8UW6T6UCRnvebB5Ua4LF+7tU+uDylqXwSO/2pA
t7zC/JRaH1Rsj4q0ijRg32L+5OyJPvA7D77PpNbjeeVx+rwuiR88Env/pR7H
LI0blxuT/l/VbrmoVI+gnUNlXBZ9aAp1+KjBWY/JWZvc1RdJ/5/WbZVurMOH
F26fNtzog1WO+fYpqzrMnVseKuZI4tJ/cS0766Av6Rsg8V8fIute1fcN1eLz
hKD3djeSj8eaYi7/WizLCXff9bAPHgovMxSUanFluMgAb/rAWv7Yi/6zGrtU
Vy5dzSP1o29t1rhWiZSELzu6ikg+d/oFffkqoSCob6BdQdZHV5un7VsFjo2E
xOxq7gPbT/E5a44K6L2U0WEN9yFAs6n50ccytPxqcL44Tso3Hquq1SqDsZVT
RMs0KZ+KK1zHKoXV/vzpjEXSX8jDL///350eZrVx+7J+pNh9//idUYLrnCuO
v13ZD3FV45D9L0sw6fD5JtfqfjiuL/VzVyjB7e5TIXcF+tE0KvektLcYv9Rm
isc29GNotvSP9rNiuCcGfzff1A8Ph7Xpp68Ug03o6Pp6SdLfmKXtWdViPH44
qKwsTepfTpQw31QMrtFHNsm7+xEwON9lNV+El2ekX4vv74eV2YmAq+1FCN52
i7FMuR+s09SlWy+LkHMrcJ/vddK/Ttht9BZCufeQxd+b/WBTVaScfFOIEo3+
JzedSfnBltPndApRs2F7t/5D0p8E1277vAL0FWQ9XB/UD5XfTiPvQ/NhtcPi
s/f7fhSN852LNcwHI4Ct9fcH0h/1c1kqTz5sF2IWbT6R+p0a+wtK8zBprb29
J4HMp37wY5V7Hm7XT5zWSelHZIkbf9v+PPw++Ppu/jfSPnv9w8HvubgXeTB6
dx7J52vKxFh0Lti4e+siikh/FS8HDsTn4rHTw19rKkj9yoNBP2tzsap/q7hn
LVmfykGdb1O5EEixc7LuIPlX781RUMyD1LklEelx0r6u/c3+ijyciJK4lrph
ACotm7T30vOhEMK3vUJsAB6H9o6+WlEAcb8/9B4JUv5B49nM9gIs3G2/xCE7
gCK7G9Xp1wsw4lAiIbKX1G99cF3wRQHariQP7T44ALYjr1f9l1iArwbPLI1V
SPuVOdoHpwrw/oTLJrvjpL193WgwfyG8laz7PE4OYKht8NnvvYVw2q8fGnSa
1D/6Y6eJYSGsdiqZJRgNwOojZ022cyFObZERIUzJeFyitiLBhTiyfkNXqyUZ
z2E3t1tWIbbzcLxlWpPYpxCM0UKsY58++9eG9Kd30ZACAmy/+wUFbpL2ghzX
+oMIjI/XtG53InFPrFv3dwIVXTEG+vdJ/f2/mpg6RbibYnIq+hUZnzg6N/S7
CIMXijS0cwfg2lmh2Xy6BHVnvy63JAYQcCREv9GtBNk670tul5H64dfN6j+V
4LWis0pYwwAcrXlvVv8pwfE10semqCSeMggqjivFvhXr/yxnkvHPbP1AtJRi
8x/2XOGJAYR8m40v+FuKueFeRbXfpNz9bX6OYRkYfVW/zi2S8gGbiqwH5H1t
+fbtBvsgHFWPNH37XIbCqihnD85BBMTw9KS3leFLof/+IJ5BRM7PKr1iliEk
497MZ/5BiBN3Jjtmy/A44Xpq4fpBND1eiBBjL4dlsPoe5pZBePCzscWLlGPt
zd8yRxUGyT7nKSk8WY47my5IUiwGUWQkoTmeWI5L+vLn+i6S9v0FGrPZ5dB7
xP688+ogWFfN1BfLyrF9NHq63pHkc/eNCm9/OdoymEW5jweRErHiqOzqChSN
5Mx+ezYIeemowwoiFfgi+kI61W8QWqnKh45tq4CXx+6AuJBBZJfeOaCrVIGb
6UulUeGD4D8lqGCkXQHT4cbf4VGD0O9I2WdxtgIaIh93vYsj871wau/lixWQ
1719ITCR5Msc3WNnXwGxh+pv/FMH0fVu97MnMhVYmSZY+TyTrMdBva8ne8sx
sCFLzrOI5HfT/2fbsXL40v78tW8bxNDgWu/Rf6Vguj0JO7FI+i8RihPwLsbY
uV02H9mGkGKpWNt5sBhWrHXLtiwn97YF46mwkSLobGUcEOUaQsD+d4o7tIsg
+expOL8AucdpKwbcES5Ek1Gd3d9tpJxPtaVaKgey42d5Ok8NQfzTYrBnZTKy
jXSJ5/qk/qrTX419kqBeoOakbDiEIYePpbu1v8LMb0/vJ5Mh8r5osrprEvBM
ftUXZ+sheDT5a+9r+IRh5/yTAndJPHd8rvzzW9zuT1sqdydx6ZjU7V1B+Hv8
c9rdByQ+qdW94cdrCG4IFqU8GgKb+rYL4nIvoZ7jMJbsR+J94Y7L791B5F/J
56diSFxoGXRU8ikhe1VEmT2OxDaCUH/wgshqWDOT8ZnEa2uYJ3v8iYYPi6Zi
yWQ9UkU379YOJP6qduz8nkPKV3rfOsYeTvgk1PVH5JP8e600VfZ8IATXlb46
Q5B8usNXRyVFErL05PmcsiFYJblSP/VFEdm6sV/tK0ksMlwX9yOaUP8WdlGi
htR/ZJj1mfsT0bDpzfr2OrJ+k0Ufv0jEEmbez6p9Gkn9JvaCI79jieHJh/eP
tZDx9h+9/Iojjrhl7LKX1UbaBzvzMNfGET7S1u+Me0j5+RHTINk4IrPm2PXt
DNJ+rO7X1MU4Yt0aFlfZAumfM0T+U10c0VLw/Kn2XzKfvK15G7rjiNd22zgb
/5Hn45h8/DkjjhCoMVvew0GBSl+FmcMSqe/60/PCSgrEX51hULjjidc7AtgY
q0h8YsDBaEM8IfCk/O8UHwVDqT8fH5aPJ1r2W937by2FrK/nmsRjpD51YWFh
HYk3rX6/WTueOPMq6K6HEAVWrSFSr87GE2tV5OdWiFBQ5COVvPxSPNE0WePy
YiMFHkoph11uxhMB4Vd+8m8m5T+OljHd4gl9XTbnYHESx1fqmT+NJ/j/vJ/Z
uJXkK5LP/96YtP984NbHbaT/XglXK5J/gEnT1HZpCiIjng5u/xRHrMlcMbF3
N+lfyjApfSaW4LvlOHJCkeS3d0yn/uUngnfkeJ+TDql/QvgpW1kUURc0ZDZ/
isyX58FkhW0U4avh3v1An5TX086+XBtF8ESldDw7S/ozTJYSvfCR4D6/sfnD
BRIX+j6+NvuBqOHJPL3tEulfw8RwVvUD8TxXvyHhMolrtkp6+kcQq4S9a79d
J/U7con3MuFEVYX4yaN2pPy8t98O1zDC57+8qqKbZH4Ug/MZ5aGEltS5E5q3
SPnVTbKq60IJrlZWea0TKZ9gLtRbvSeqPF9oGLiQ8n+mT8z1Iwgf+e2lHa5k
vbx1mpXqPhIr/cyLKPdJ+VufyfOCcQSndkXu76ek3MxT8HRLCsFBhCZvDaOg
6e4fPf9LeUTPMQ2twQgKAorD9Mab8onk3PGh9x8pYHEp62mjkDDLVBIQiKOA
nD2x7H5FROrXQWe2tP/Xf1lsnm0p4b3LZ3V+BgVdD1q3jUmUERaf5WPvZFGQ
LRnzSbi7jOD65Nk5mU/mb3v8038nKogBSRnHBIICGz6hbTFLFUR6ZAvX1RIK
+NOGY1q+VRI+m90/SpRT4HM2S4rdvoqwDNt6pL+S5Gc/G/97XzWhIFrXElJD
+hfw21KzpYZYFeJ8w6ie9Je1IziMt5bIeFMeVttCARe7+SPV4TqC58W1fzn9
FPjWDCWV6zYR2Xe/lAX/oEDM8sSzNWxthN9vw/NnflEQJh9Y5urSRlj/t/hz
9TwFc8so/yjjbWT/nNrxZImCtjg3l4zuduKKzdQzp1VUVE1/tTZN7yQEjPef
1t9ChcLYgbAGu17ihkJe9yodKtS/bymx9aIQRU3tidmnqLD9pMu3ppBCrLdn
PbymT8WzC3fN0ucpBPFp2/bys1QQrS0zfxyphKCayryTCRWdL/8pRyZSiesD
ZnWS5lT8OSH7QoNJJdZtCLjtYUXF9vwnW19eoBE26QnH91hToeuS5rA3lEYU
nC4XHrhChY38YF57B40QGB/87mtDhdMYD5ebAJ245rNQePQGFX4xh4w269GJ
fKn1r8fsqdjq4jun7E4n1hbvufLOkQpmZlC/zDs6cfX8yUNaTlQU/o4oEcqi
E3nzl3l+/0dF0KH4uGXtdII/+OHAJ1cqrt5N9Z2coRNX9r1PNXKnYltu7q0e
fgax5kajcZoHFfVH64+m6TII677DMfYvqBDCTOPFMgbBQ/Ap0SOp+Hj82FxR
+jBhZb6T/000FS7ex/sTm4eJb7/VaaqxVByv1CsJmRomLsjfffbhCxVDWhd9
HXeNEBl1byz0kqjIeGZ7y0J7hFh1PWnP3xQqPGuczmldGyHSP9LazTKpkNX1
FhePHiG4lJfiV+VQMevrv4K3eIQ43yN8LzuPiqb6kLHfAyNEmsv+09cKqfjE
F9VIWxwhVq7TkxQqpiLl5MDtEF4mYZFs87OslIrnVJ01XoJMIlXnUZVTBRWO
bjlfbogxCfPH2Teba6nYlxBIV5ZlEiniraoeDWS+ass8pRWYxIqCCcE9zVSM
dTtsEjjGJJJ/Sub5dlDxbZXOOYYOk1h+7eVKLQoVStfZq17cYBJftC9FFv6i
QkP65peuBCahICuhjHkqOKSPsR1JYxKFfEO9xB8qGndwnw3NYRJNrec3FLPR
oL4jdul8FZMwzRT7prqcBt4dzoZEI5OghvSeKVlBQ/l2tXjxTiYxe97Ur5Sb
BtXtAwY0BpO4ryIsq7GahqltibEaE0yCc2tnddkaGvK3uf35NMskAlYEXzsu
QMMZkyYb3QUmIcI0WlEhSIPezzCBI0wmEVWzLlpzAw2mr6/n7+hgErJfW1Qq
RWgw2XPw6voyJqF8W/9e1WYaDK435rA+MIlKozWi2hI0XOQMsx54yST0FRuy
qreS/qJtVte5M4lLizo/aqRpuNLPfjHOmEk89T5hW7+PBgsDBS7LNWS+75VN
WjRpcDj87lztgxHC9P7fn2e0abDpuMKWYzdCUC/kv2nVoeG2076EWLMRYlbq
SGObPg13v9b+9Tw4QogkH9DsNCP1JZZiDk0OE5dKZRX6btLgr+J7Jfj4MPH9
0/dmi1s07D4/ec9j9zDh7JPg0O9EQ8Vd/UDb9cPE01PSXwZcaeBOFyxVZjCI
xM6tkhQvGny3hYuPPGYQP7+L8g8H05DEndSrWEYnAsNHKsPe0aC5o+KQSAKd
2H8646FhGA3t6gNBC/504lbaqamijzSw3efTLzAn79dl0bg7MTQEv9v+NUKV
TiSvH7GUi6NhR6Yyt8cOOjHh6tEQmkiD8dTNMrUfNMJX5pT3mWQahnmeSkh1
04hdfSLKq9JocJX+8GAFQSNqXg7/JDJoWHc8q3c4hkZcR/pXlywaoi82Hqp6
TiO4ph9e2Z1Lw5LggSaPuzQiLkp3Ez2fBobVKZevNjSCsWLY16CEhpS5+yWc
J2jE46w0Da5yMl+NYJv9B2nE1usPFwsraXAJSOKz2kYjLtYJ28nW03BEetAs
ZzmN6H+to7Oyi4ZKY5UfN4qoRPuW1FUFEzSMZS6Taj5MJZyb7xc7sWhoWbax
5q80+b17dPKuzA8a0vT2O8oIUwmDYRrz7RwN94at8x/9ohCstymRen9osNx3
71IKg0L4a983WbFEg9qDQK7+NgpRnyhUdXs5HRxC5UYH0ymEnSXt4U5OOmYv
9i9ciqIQPPwpikNcdHR9/Rnp/4pCJBTfmwrmoSNBKDbz5GsKoe2kHXeKj471
DhadaXEUgikldIFjLR0PKwXmRAsoxNMOqlDeOjooW6qFH7VQiPLD97ylRejI
bzpgZviXQlz+rqU8uJGOfTvH3fIEqMTy8PW/gjbT8dozKnQrmZ8qW/KV5VJ0
3Ni3pv/HGSpRUEHRGJCjgz+QeSEwnkp8MzyxPFCDDmPj0CvthjTCRyf7idgJ
Osr0+Fc0X6MRFuo7uT5p03FU80lMnTuNWLafZ3WmHh0iBxxopdE0ol3mnr+y
AR3esnQvIotGxEtOrK00pGNiq6lkXi2N0BNoFOoyoaNEQP1iGtk/Etwq76zM
6djLnc2WtJJOzLKnbhw9T8ffR88NoyXoRNW8RMQtKzrqxGODhLToROj0a/GF
S2Q9Coo7n92kEzdHl0d7XaFDxqxf5G8gnVCjOG/jsaGD+WvO3DGPTjCbzsmI
2dOhJi8/dI6LQeRVVSbGONAxUqcjWSPHIPyKDu3ZfZuOkOvXLiudZRAKKaIK
ynfoYEVFMLdGMQhP/wElK086ktevnmYdHSZE9a4axATRse3PKPsLhxFi4nhn
q2wIHW1vV2gsBY0QRUpa5769p+OxgoT3rfwR4upuGfOKD6Tc3oTbZBWTOLwt
tF8vio633M66tXuYBO8mXqvOGDrk4/z9lM8xiXTeycvMz3R8HKoQ2BbNJLw5
Low4JtKhf59qFFLNJMwWG6/PJ9GxWnQpmIfFJHbPqox7ptIh+P2oc9SyUYJt
PPUmdwYddr1bxKa5R4lWmuT060yy32qXl2HdKBHb+8ZpYw4du/NHbvhtHCV0
a/9zlS2kYyEsOW+X7CixpXR4IaOIDquXb6zdFEaJmVzj+0qldKTdv8NTfWyU
eJdw2Euvio6bljC/emqUGH7294VjCx1DWxoXIm+OEg+1nnzIGKZjIGrysFDq
KNFiaWMhP0qHi/iff0dyRgmp/3REEr/TMRe+suJC8ShR83Htm2gWHSveiZ/5
3DxKiGXPnt7yg44HQruFG7pHCYeGTt7Qn3RsCDw8MEMZJQT/hHu/XqBjp/8Z
22Mzo8TVtZ7qfH/pyOa9IH9xYZTI2XGZ7fk/Og49v/HrybIxglf5RMGKZQyU
rXTNT+AeIyyNZNw8ORiQ8dN9xk/iFNvVin85GWjYu1ydwTlGLPdk/XBdxcCJ
9pzFnOVjRPzXTHtHPgZMxXY4Wv8dJRZK38mM8zPQQfTvPETGO9Vzb+TaOgau
WQfSeH+T9eJUv3hBmAHPBHbjTNYoccyq0UhPkoGYQ31Kq+ijRJMA86jsQQZG
jV7xJNeMEpI7a+fiDjFwb+5E+aPKUeI/JH3bepSBNWFLD0zKRglRO+c9G1UY
WEW7McNeOErYeRmPB6sx8M5bMrEjd5QgQo58FjjOgKxM95UvWaPE5XK2rdwn
GdC6pdltRNY/s5c2+ESXgVLBv693Jo0Sq2YqwthPM6Cena67lDBKWHAlmN43
IPMxt+VsjRslkja/FJo3ZMDon3hRXAzZTwccW53PMeA/GR4aETtKGOoYBrBM
GLAeM9atJ/3FXjx4ys6cAbnhtX//ZI4Sc3dEuJnnGVik1H6VIUaJk36LFdZW
DNT2P7E0JfMLjxl8NHiJgcRurPFpHCXUmj/97bjGgEpzuiNjcJScJ/umy2+R
+RWF7o9kGyMk+k92RT9hYM+HGznr1caI5yVHk8/6kPUeik78dXKMmImT9V75
goF4ib4PnYZjRMltPoUbAQxsj9H1fndljJAx+ce96Q0DNxmP77rdHCPeKLEo
DUEMRG0vsDO/M0Zc5mrx3xfKgNTn3Yabno0RdRMlV+nh5HmPXdFcejVGHGhN
VwqOZCB2V8ThwfdjRER2jKBWNAMUuw7ZougxgjMi6Pv8JwbEk/jEPyaOETcf
eZd8iWdA7G7hrlfZY0SnzZ13578wINpdMH29cYxQ0bNxXJPEwNrDBVlqw2R/
7Tc9UZzCwHxI/v2Nf8cIfpGTm53SGWDM5anPrvtO3F068lMqk4Eek7xV9TLf
iZPVYtE+eQxUCOcGPTD5Tny3HFo6XcFAYEjWV0r6d0Lu+bXMgV6ST0haf5zt
OBHsYPIyYIA8j9+p0R6e48Q/I+3LahQGZo1Tr5uGjBNNW3YJxA4z/lexdcdT
/b1xSSkZmUkiijJTKTNPSSWpKC0rqy0iyrciMw0t2WmIVEISkeKxQkP2yMq6
+34+l2uVjN/n9+fzOp/zPO91OOePC0NLcsZEqrjok0+eOzdM5TU+S8xLhcC8
Xn+1qfl0SIgZX91CI9DYIDxm6Xo6mBtFOhaE8bDVbemmx/p02NMSzPn1iIcX
7ma3rTCgg6/P5ctT73mYSWtXWGNKh8uvzyVsHeShUoxOyqYddGgW1WQfVx1C
weHWrAP2dOr/k+fn0YtD+D1Do/pOKB3kKz+uM5UaxlOtJackI+iwJUH89dCy
YRQStBOJjaTDaU/3FS/UhtHsaNCe5Cg6lMiISYgbDWOOcFNTRhwdnI+7cH8f
G8YYj6u91Rl0sN7OdS58OYx69yVDd2fRwSzqjvGCnGGs/ZS+su4tHbSbdOWO
FA7jfOmGE615dNBy9amdqBnGgDI1YrCEDsKB4yYG7GF0VKr7O6eJDt/yBJZ+
0Oaj+FLf/E8tdOjTXt9QuJGPZdKyPv7tdBhMc7/5yYyP6gsdmMxuOszGVP0t
teFj+9yZ1Oe9dFgg9uddxVE+3pp5dsxxgA4iERpnqtz4yBuht9YxKTz+UR3f
/fj4nLwZfZNDB32iOPpnIB/tWNp7t5F02HacZ9VwnY/zB+sWTg/RYX/3irnN
9/hY2OP75cMIHVpD/wXtiefjmV+yIefHKf5MVaGfiXxc3lxoqvmXDgV7rG7u
TeZj6NeZ949n6PBcPvHhvhQ+6lemeB+ewwCloFL5+lQ+MkostCSFGHB9gPHY
Jp2P1nm3nocvZMCp7E2vbN/wUfap3IOzMgzQs2j+fCCfj6/8dL2MNBlQ4y1B
P/yVj/beDRoj2gzQbdl0tv07H8XO+NEy1zIg3dh56MhPPvoeK3JcsZHqPy9r
8mgTH1fZO8l3GDCAPNN8raOFj612As0PjRlwuv6fkEM7H02sduwW3sIA20dW
Eo7dfCQtWPPLzBlQKeAb0/Wbj88gqvzydgrPicSlTv183G+8NkjfkgH80XG3
1C4+Cm1sNCKtGHB1RUNrCdX/w1r/sZd7GCBi/caqg8JzWlP+nasNA+IuRZSM
VfPxp7LzmpaDDHjx0yhdu4iPwQpzBu8eYYDxpLSC5Xs+bpBNe2rpwIByNfKO
eyYfE0TYcp9dGNB59bl/0hM+uo35z0s9y4B/mou2Lwjj49i3O/3nQxhwJLJr
YGA3H7sWtZyaCmNAbE/LBr/tfCy3VuRFXmfAz411YULAx/s/M/49uc2AnYNl
K9XW8/GiBD9E8y4D7pt8upCvxUcnG6MFH+4zoCo6r2K7Gh8tHgTf3fqQAQLs
LOlWJT5qNlbL1MYywGjrS/cT8nxcLC3x6EgCAwITnr0fl+TjxIFDKoNJDDgr
cbVAch4fe2Iev/R+zAAn4R3p9yeGsbJlUOffU4rvrESsBJV/519zdmpkMGCg
x8BmUd4wWijsqs3LZEBD6xy4lT6MWg73D2x5y4Dcn991FiYO458uJZfDeQyI
Kjm2SDhoGKN7Tf6LKGGA9pPIKkHLYaxi+L/pa2TARac208nOIcxcU7zuXAsD
zhxM0frv5xA+PC1U+KeNAUf3nFX4UzqELpzoSoluKp+bZyfGXgzhDu0Oq0e/
GSC88SvdL2EIdc6pNKj3U/nRftgycmsIJ8m33ZsZlD6Kq98Pew9h79oJ968s
BuTJDKecdxvC6vNmbDsuA5wNLuxTPjSE2e8izveSVB40p9fG7h7CGP6P8bPD
lL+KkYsXbR3CteMsiaR/DHjEyI7ulxtCOYN1cWozDLDsMLxwRHQIpy4FKL4T
YIJQbfmBn3OG8Nvf+Ro185gw5JGl4feLhx7TK83HJZgQOTmlszKChwlCzn77
VzFhTC15U0gXiTPuSzY2qDNBxrsYW6tJ9KioH9unwQTrwh5L7fck6oVuu7RH
lwlxVioObTdJjOubMvihx4TGh+aD2v4kTm358MdqAxMGu9zPhbqQWDO75rKl
IRMsvdOv6RiQqHus37jamAnBhdULwlRJjCl59G/7Ziakz2E9aBcjcXL5wc+V
wIQYPb6yvAiJLoHigdvMmTAlkH93pTiJVV3Vm8stmHCq4dK0rhSJ2qYhM1t2
MqEzxdjTWI7EicmRa2bWTCg3L91lq0Sio33WluK9TFCRDit0pOaVfzwxx9SW
Cc8Htq8+pU7i3YBfoUaHmBAa/l3omi6J6uMlEfouTNhZ1YqZZiQeGr55W9OP
CbiL2LjgGImfbbZZv77IBB2FnDRpdxJVc6ZE1/zHhGi2r7TySRJJL++7akFM
8Lr9Z2ijN4l2P9fsSwtmQq/Dp2NbL5BYpNMvsTKMCS7aQT+tL5EYwbV7sOIG
E4xr52a6XyORvVt8/9NbTEh7XKXgHUaizZtqKaU7TBD3unnzciSJH0RCmpLv
MSHczPpPxG0SFc8YxyyLZsL7mU0fJx6Q1N/TEbukGCZ8muq/+ySJROaaLNml
8Uy4P3nXY3sqiXkM5Xi5ZCbcGqdLPMwjUWHnr8OxT5gQNRpNMyomMTg9Wl4m
hQn3+Gafer+QaH18XpJkOhNukHEndNtIHOxnJ4vmMMGGvqP4618SpXvynwtW
UnlpTT8jADy8KxoYWFDFhAzH4HY3Sx6KmFgc8fzKhPUDR3d8seWhYEKjWOtP
JpwYElW95cHDoKpE5q0GJghfot/jnuPh5KhLBTQzIXEap/de4iHflhfw+hcT
fopc+CV9i4dewR8OOHcxwfOB9c6LD3nIzg7Ulf7NhJkl6vntyTw80W2xsKaP
CfFPZlVN0nnYt0h08OogEzzu8Dq+vuSho3FTyToGEz54tIddSOJh+6mkRDqL
CcqmZdrL7/Cw/suafTY8Ks/s6KDzvjy0HuVpzOMzYUf5ldUKx3lYo1ogVDTK
hKBEj/qKwzzEa9uLVk4ywcpyk+qSzTzMNnJTmxBiQd6LX1+KhXkYlfXo32MF
FuS4rBBb9JjEBV1urfuXs2Ch4cIPefdIDBfRfCe8ggVeEnxn51ASr5wsPOGj
xgLdkoqcd1SexmOvbVVfw4K7sZlHHexJ9K3codipyYIez1jBeXtIPKPS0mCh
x4Iny07aHVlPIn1fcubf9SyQGNk3PUeNRLcg98jsjSw48s0w/c0SEnsyNd3c
DVlgZDEnvpc6T0c7h03lTVhQI5O24rwwic0LPy6p3cyCg7QdGbOzBNoYBvND
trCgI5+14d4fAi1jxV9xtrNg5tDandksAisrWkKfWbIganVj/eZ+Arfwk50O
7maB3B8/+9oOAg32aUmjDQvME4vOcb8T1H3EMijagfq+c3uMZjaB8wJD7Ix8
WDB1zLEv3Ze67w1z/+IFFrhIP/TKP0ugx4kjT3dcZEFz1dd/FR7UvH1r2Qeu
sKBUx0Cu7xCBfpVJ9zoCWaDXdy6Vt4/AVUbzN7oGsyA7Jk1vxpLA5iyfDkYo
hceys1jUnMBw1e5rXhEsiPsnuXuZCYH68ZZqY5EsEHxr2a6hT+DgorxvV26x
IOTsmU2+GwiMCVY+L3iHmjeoLnfZgECLsVuyN++xgOE0MBZC7R89PV4kEc0C
gbanLTeBwLQeV5e4GBYo2jjmP9hGoFCN4ZvURMpf8xa/lN0UP9M0G81kiv+n
B3avKbwe7yTGc55Q/fX36r87QPFLom8pSWXBP/XqkVIHAsPOxbS2Z7EgcdFH
315KD0HpoTni5Sz41px8XjmKwNxIh5cxlSwY3XPUZvV9At2mqqyXVbNAq1pW
b20MgeW0x/FrfrDg0Me7PLNkAn3tF25++5MFV9fvrtvxjEDVOr/+jQ0sKHwj
/HZvGoGhhbt1trWyYPJxsJdzJoHrdQoav7azQGnJ5r0ncgjsT1ENsOlkgc39
vzpeeQRGy91d3tbNgkHcU6SSS6D57b/lTr0Uv/O19w5S/vJnPU4N9rNAU2XP
8ZsZBD73qxc7S6P4NvwwLk4ncI7zyyMBbBaIbPhBW/WUwJxGqZkZLgteDez+
dOQRgS47g1IjeCzYFvP9flQ8gaV6B8noURaEjn0zGb1HYPDcueFZM1R+Cr4+
qAgmUOC189t+KTZMm1ZvdnMjsIrb5vVUlg2JOmrFFs4ERunZ6jrKs2GHUpjp
ansClxRuy2pZzoZbs2YmXFsCu/599oxewQb1oeSin3sovLBJe99KNnzonTR6
t4tA3eo1b2rWsGGy7IPhxa2U/yLPz0RoseFhrkzhkc0EFu1dpmmuy4YNqb4G
JkYUvugY1oweG54NBUZepNa3t4q9/rSBDTPDucqZVB5FFCJPBWxig8cIo6Bv
J4H1TgJrNhqx4ceoos0Sar4jjZ+ebcaGqInrwaGHKb80PE+c3cqGjj+f5Asd
CWR60tTWWLDBYnIoh3Al8MJoW1rKLjbITNv3HfEk8Nbc4ucxdmy4L7jWfG0I
gR9VIp9cPkPxFWub20X5EXRcwNngHBv44qLJkpS/Fq//Wz7qzYb9i7fq78yn
8Oh5Jp/zZ4Oq9BuPXCQwzo/moBnAhnCZ3ilGJYWv0HkZ4zIb6LKyscu/Ufim
2jpSA9lgvsRK50AdhQ9sk1yC2fBa/tqXG80EZod9O7o8jA1qWQfrrtVT57d6
29KOCDYkPTjn21BNve8WFbfH3WCD3MUI2ZXUvNm9mxIO3GbDE/vHhX4fCJRz
Xha3I44Nedwpi08PKb9SYg7OTWSDSYMMU/Q25RdNTLb0EbWer33bOZSg7mMC
MUYpbHgf5Ngwx4fid5X2QDuTDbWLPztZ7qX0L3W2ZWWzYdtYk0DSdorv3PbF
6e/Y8O0XJ5VjSqDD7W/3lAvY0Pt8GfuuFnV+kt7ekSpnA1P/ysWWBQQWTCVF
lleyIf9OTtI+AQKnnK+H+FazIZhOK/k6wUXzMp8rqt/YYAjLBrbxuBi50sm/
8QcblBJshEvoXPwRYekdWseG5qEILcMeLkoxN5xe38iGtF2f9uW2cPGwlbJ7
fzMb9sq9sFtAvY+TM0WcotsovQ63DFemc7FPfPyQeQcbaAnz7oVEclHdp8+G
38WG3R0btc1OcTFnY6HF/n5q3THuRIEGF7+UHNeWItig5Xa483UmB0VUbNXL
eWxwT40MOHGHgzZhpit8+ZRegwWyK7042LFTWqZxgg1nT8rbJK/lIFlf+u+B
IAeyPH9V3s1lo/zAsu+S8hyQveSQfaGQhU7bhb+UKXDgYuHt3XqJLHz+kl/i
s5wDX/5+YnL/Y6G259fcBlUOBFxVXHnChIVbxy4mPdDhQPPDMFuTWiaeEW48
LbmNAzPlBsf3CzLx7eli97LtHKixzN45xmTg6PdXTj6WHMj7uUozoY6B1+5f
s23Yw4HjHZK87mQGxizVMXpwhAMtw5yA0wYM/HVFfsNWBw50XXJzEFVioFLP
XJ1hJw6UT7dvfivEwFfPO1bY/v93NAurBMca6FisdWOBpBcHFqg8iwr2pOOm
5iW10ec54D4QFNVmR8ecqy8fyFzgQMcLpyjdzXTUUDM4FOdP8TllGhWhRsfn
tVUK8gEcGNBcFtUlRkfFi4d+J17mgNNyY9nhWRrGKtFTlwVyANX356+javFq
/1OPr3HAUO/MQd8ZGt7wnqejHMqBdKPQsdxpGs6Rjx1+Fs4BpW1JsSNTNLxc
uuqDaiQHrlvnbtSn6nOSFqAexQH7Y/3++ZM03P8+1FYnjgOj4ebjBRM0/O4g
Jfc2gQP779rH/RmnoYXQ8w69Rxz4Ee+7yYiqDQ6Wues/40BSxvOLRaM0VJyY
9TfJ4IBlveDE52Eaxj29Z1ycyYF3vxTip4doKGGpPGv2lgMKA+sNzKhaMNHs
hnkepceY2yUkacgwDkzaVUL1W1YxUcahocuA6LHvpRyYXNUZL0jVHbeTV+6p
oPDqjhhsY9PwgL428+cXDtQbLGoPY9HwR9enTJsaDvVeXBlQyaThjojdPo3f
OJBpZSI/j6pRp3OjXS0HMkZSe4Ko2rD1zGRLHQdOD+7lZlH9coMmSw43cmB9
y9+/XVwaaq2+FfarmQOzX9KERXk0TKtbaunQxoHiD/tkTSh+8SuMGpy7OLA3
4YVe4hgNr5ZfGjhO54CVg+3Jg5QfY2eEXzGYlP7WU37hAnT0ko73PM2h8mT6
MvS9IB1dPT6MeQ5xwE9p+rGkMB13zB8T9puk8tT3qrlWgo6l2eE/xqY4YN14
oH9Kko5Gh2UeXJrlgEzFDE9Lho7arzYoXBHiwts0u0W35OkoaeWrHSrOhbyT
AuY7VOj4rExikbEkF5Z+eHk+bSUd9YyyWMPSXLgutO+poDodMceq5rUcFxr3
j9e6rKHj3jXMdNelXLBPeTxVoknH7qcREUsVufCMZ6G1XIeOnktWejQocUHI
jHv0ylo6/rtban5ThQumGYsOKWvR8dZ8Z5Wtq7iQwFjkvI7qvzTo3+wfdS5M
rBI9sY3C82osoSdHgwsH3ES9DirSsXqw6dGKtVyQ7BYN+k+KjkIVu+QEjLkQ
1Cj2pIzS76ExY7TAlAtNEuLpTX9pqJob3uQNXNizRzybRuVtSwre/23Bhfpq
8ZKFVD4Cr21chPu4cKhYose2jYaiE42si/u58HJSgu7eSMNkr/M1uge5IGa4
mPSvpWGR05uIJ/ZcqMhdPJNYQcNxExWBoONc0HglqdT/loYR70t6Np7iQhpN
Un00g4YyWo7FxBkujKtK6c5Pp/Lw/O+jF+e4sNVFapN8Cg03KMRfdjrPhdTH
UmaayTQsf6B/VPYCF9rSlzRzE6jztbDRoNafC9ZaazzD4mnYF+wtFxHAhaK3
hkIKcTQ8/0d0zPQKF5bo70rOiaHhrHdG02ggF24UHtXf+ZCGdxk7czODubBg
85kf3Q9omNka6q14nQvt229PidyjISvvD+vffS5EH651PH6ThgHacTXvH3KB
19k9+i+ShgvSNrw8G8eFoy5kVPR1Gqo/9PLofMSFw6clijGMhm4+gz1F6VwY
uWy7XCGIhsPMkGLf11zwnHXNz7lKw2AX5WTNTC70hfnu2XmFhk/32R9NeseF
x1EPA/0CaNT9ZsJgfx4X1kumyS66RMMSs1g5kQIuXI3Ny0rxp2GXTn3Tf5+5
4PukpfunL7WfIxk4F7lw90GMf6APNf/1AfU7ZVyoCz8gpn2ewncytk6ukgvz
AqRedHhR/Fa1BTyr4oKDdcqH/aco/v3yqppfuSA4YdOU70Lp98z++/vvFJ4U
gSH5o5Sfy3qWV9dzYXb8mMbvXZTfv5SrbZooP1MkdpibU3mJdz3f0ULxt0a3
F8Y0FJKmlRMdXMhMUUo+q0VDSRHuSRkaF5ysu8X/iNKwuVpH8gmDC9ITUVoO
82iYEOFdtJpN5SfF1LJkehCV5oyImvC4ID/xKCScHETtP3/fuf7lQmmK/eji
+kHk5Zs4cP5xwdlaRNKvZhBzLwQK+c9wQW7io05b6SAa8QQO35hLUPOWnnz8
bhB30IWnssUIEJpo+6XxcBAXpu16YbiYgJaUyPGo24P4w/X23nIpAi5aG0gP
hQ3ifeXaid2yBIWPvvbA1UE80C2e0rKEAA6HF6NyfhDlHtlYHVMgYL7TpX+N
Bwax40j0CFORgJHaGddwg0F0aZbdMaVCgEaO2FrGzACuij7Mi1hFgJJKbGxC
/wAy9iUmSKwmwDRacWpX1QB6fVfkqGoTsMNP62vmnQG8Ur7y/q5NBPgY7nL3
VRxAs+DjRk2GBNx4Xf91pcAACpq97Hc0IeC5whG9loF+vPFRc+P5LQRkTp2Y
NnjTj3E56zrirAjoKA2Pnzbqx6NeF8JW7CFgYJ3oTPbyflTUztfO2EcA6/lD
D5c5/Zj60vBasR0BghHP11XU9GHOE1g16EzA4V2l328c7sORyyPCrq4EnMi2
elVj0oebDr/kdLsTECrdEr5gRR8GbHCosz9BzQ845mop1IefJCTet50ioKKb
tfkGsxdnOOVxdmcJuGW0q3S8sRe31Fy83HCOgKM7M4pHynuxKrhn63dfAvTd
PQuJ5724wClazdKfAHmf2nx2dC/uNtqx8MslAoaDdN8zQnuxfjirvuQqAb1J
Q1l9br3Y6RZ4LPc6Ad6Nfqktqr2oBOu2rb1JgE1vy7NGqV50WUZTz7xNwBZy
05M6wV6kN1mTL+4TMCnNX/fwy28cslAMTEwiYE3YpOKV7b9xg0q9i9xjAhSe
fl7ir/YbL06HWTx8SkB9UZCU97zf+C+fs+hOGtWPL7jA/UsPzl/9KSk4m4An
rotGrLb34K653kHTOQT4BdYSFmo9GPVb1e3yewJ0E+8xzeb14M9Prdsn8glo
zLMdMKR1o2TCLQ2/QgI+1Ev3rP/SjXZ+ZmLDRQTEcVvatV90Y5wNf+hcMQG5
Wld7793uxl/a6c1sJGBvWaV8alg3Ki60LzxZTkDlITHbD1e68RhNLHmwkgA9
7sGbXy904/Oysmuu1QS8CnlS1nW2G1df1tjp8IOA8My16+c6duN6zp+Wva0E
JAvul7Yx7Ub/6syP39sJ0ExI2u2u342FqS6PLTsJyNMZCLuo3Y2bHWs8zHsJ
uHzEbzRZsRsta+NHNrKpPGbHtbCmutDp7SbJ5TMEJNh3xocVd+EH+z/i9QIk
nJD57z92XheKzy8SDZtLgvZPOQfbzC48+e6KyKb5JORF5pkWpnZhqePmBawF
JFzful9J+VEXyi+YnZe8iITF/3izEdFd6PO+dO4+cZLS704f92YXfnMOnSMo
ScIZ+TQpTlAXqopYzOZJk1B0Uqtu3KcLL+fPmz4pR4J5Qe5tweNd2ORSPamw
lISY+caW4ke6MLzAajxYiYTzLyzL1My6kO5hS1hrkJDQf/y9nUgXmi2W5sxq
keC4nvB2me7E+E/NzFxdEu6H+Gl7DnWipdSRQXl9EgxXhL0Ia+3EDHTuHDQj
YdDpWXzu804UPLviV/xWEoyzVtuVxHaig1x/q5UFCblT2Yu/3ehE0XPHG3N2
keDxqPhmn1cneil4fr1qR0J9e8eVxSadWPVFp3rtYWr/GjdDRd1OVPbhVfYf
JcH6Emt0tUonBii+K491JKGj6vy7DTKdWF/tW2p5jAQLuT/nQLgT11zQL/nn
SkLJ8Wuauyc7MERp/FO2BwnNxXHXi+o6sONrwUfXkyTI6/YoY0oHrvf/r0Dm
DAlBT9Q+VlzowFsrTPKrPUnqfXpuf832Dhz4PpV72ZuE+dfyOD+WdGCManB2
rx8JQi7blFo//cKJuusvMq+RYKbiGsac+wttrlimHgul+D54pUi0tOMrdZEU
qQgSuHOG8odftqN94J3kgFskXO0PYk7ubsfPmjEPLWIpv9OS94jFtKFM68EH
E/EkRMsM0iVPtOG5kCX3MpJI+BCuFSxn2IZK7Um3Fj+j9h8vylXuasXgiJSQ
rgwS5Fa3L1m/qhXFLglbuWaRoDd9rXfX3xZMOnVOiv6WylvT6teuP1tQ3b6p
40wulceMOp//Ulvw/W6jVF4eCTbBl4wfBLTgls1Pz/oVkLBq7/RY1aoW/KE7
T//vRxJUK5Lrsa4Z6ZINlYJIgmhWZ8Q7tWb0nWtwJ7KMhB2qV1wy6ptwdjT5
oGgl1S9ewST1ShPKt5+iy34lYX/I0aGYhkbc/URggUYThfdgm31AYAO23ztR
n9VCgum3ixt91jSgR8iPhPXtJBwBucVnmuoxyCNBw7SbhL0aB784aNRjjqbe
7n0Mys/JF8eCMmpRruDYXf9/JERZPV4oal+Dqa++HJqcJsFOv6tk+m016iVp
KV8T4EGC0jI/3rxq/Hz7AWPuXB6sWWiv0edQhbsCJ97emMcDG35CT+O7L9jq
5RQgtoAHOVfFO7eKfUE3l4ot0SI8+PMtdkoiuhKvbrvX8EiCB56n0yDzUQUu
3DiWuEKKB1cLtFwvr6jAOHUHtxcyPFgg/D7U8kU5vl24eiR7KQ/0XpR9Gcwu
w/66EpnylVT/iuJ443DELObyR+LWPHj24mXNzPIcvPE4wqVnLw96rR1e02Wz
0WM/oZZty4P7NifL6nhvUPHz55w9h3mweP+14ZTUl3jrnkNVlBsPXMZTHRJk
nuGpTYnDIv/xQGAoeUD9kSdacAQKOq5QtUCp6krPLyXKz05dzQii6oeLGs/f
94TWhYbCVuFUvZBQEfSOgO3drYo37/FgyyuXmROCiaAaLmMpnE7huZjkufRH
BswYXhVre0V9/3mn5sXYTPhFDDSmv6H0ExxjNDpnw/3D7512vONB+3CRyEhB
Dsxq7r8Q8ZnSv/nZa8/Y99DVcO/J3CYeBCR6Mo7ZfITC6xPuTS08KJVS31ci
XAQxJsc0Utup/bd+f1DEItj9QjfPvIfiH7j/+i+dz1AUUPs1hMWDmmOGagcW
IcTpbLxny+XBjbbhqHflCD79yXYqPGr91cFJ4c2lsMba83fpKA/0VSTcToyW
gtCc5rT7Ezw40s2JlbUpg958kzMukzzIS6z5WvmmDD6fSV2rN03l49CL6QvC
5RCvvGhsdpb6Xip03Ur3cvgf8Xkl3Q==
               "]]}, "Charting`Private`Tag#2"]}}, {}}, <|
         "HighlightElements" -> <|
           "Label" -> {"XYLabel"}, "Ball" -> {"InterpolatedBall"}|>, 
          "LayoutOptions" -> <|
           "PanelPlotLayout" -> <||>, 
            "PlotRange" -> {{0, 1}, {-1.180264568325935, 
              1.1876919927208478`}}, 
            "Frame" -> {{False, False}, {False, False}}, 
            "AxesOrigin" -> {0, 0}, "ImageSize" -> {360, 360/GoldenRatio}, 
            "Axes" -> {True, True}, "LabelStyle" -> {}, "AspectRatio" -> 
            GoldenRatio^(-1), "DefaultStyle" -> {
              Directive[
               Opacity[1.], 
               RGBColor[0.95, 0.627, 0.1425], 
               AbsoluteThickness[2]], 
              Directive[
               Opacity[1.], 
               RGBColor[0.24, 0.6, 0.8], 
               AbsoluteThickness[2]]}, 
            "HighlightLabelingFunctions" -> <|"CoordinatesToolOptions" -> ({
                (Identity[#]& )[
                 Part[#, 1]], 
                (Identity[#]& )[
                 Part[#, 2]]}& ), 
              "ScalingFunctions" -> {{Identity, Identity}, {
                Identity, Identity}}|>, "Primitives" -> {}, "GCFlag" -> 
            False|>, 
          "Meta" -> <|
           "DefaultHighlight" -> {"Dynamic", None}, "Index" -> {}, "Function" -> 
            Plot, "GroupHighlight" -> False|>|>]]& )[<|
        "HighlightElements" -> <|
          "Label" -> {"XYLabel"}, "Ball" -> {"InterpolatedBall"}|>, 
         "LayoutOptions" -> <|
          "PanelPlotLayout" -> <||>, 
           "PlotRange" -> {{0, 1}, {-1.180264568325935, 1.1876919927208478`}},
            "Frame" -> {{False, False}, {False, False}}, 
           "AxesOrigin" -> {0, 0}, "ImageSize" -> {360, 360/GoldenRatio}, 
           "Axes" -> {True, True}, "LabelStyle" -> {}, "AspectRatio" -> 
           GoldenRatio^(-1), "DefaultStyle" -> {
             Directive[
              Opacity[1.], 
              RGBColor[0.95, 0.627, 0.1425], 
              AbsoluteThickness[2]], 
             Directive[
              Opacity[1.], 
              RGBColor[0.24, 0.6, 0.8], 
              AbsoluteThickness[2]]}, 
           "HighlightLabelingFunctions" -> <|"CoordinatesToolOptions" -> ({
               (Identity[#]& )[
                Part[#, 1]], 
               (Identity[#]& )[
                Part[#, 2]]}& ), 
             "ScalingFunctions" -> {{Identity, Identity}, {
               Identity, Identity}}|>, "Primitives" -> {}, "GCFlag" -> 
           False|>, 
         "Meta" -> <|
          "DefaultHighlight" -> {"Dynamic", None}, "Index" -> {}, "Function" -> 
           Plot, "GroupHighlight" -> False|>|>]],
      Selectable->False]},
    Annotation[{{{{}, {}, 
        Annotation[{
          Directive[
           Opacity[1.], 
           RGBColor[0.24, 0.6, 0.8], 
           AbsoluteThickness[2]], 
          Line[CompressedData["
1:eJwVmXc81d8fxykaEhFCFEnRoCGK6i1kVxRakpBCISOaIkoisioZ0TLKykpy
7M29drLKusO995AtX/3O76/7eP5xPvdz3u/X6z3ulbVxOXl5CRcXVwY3F9f/
Pw0v05tLGOaHp4v5mgb3+R7m0ZZ07ZdQgZe5nRNSERdhb8LL2C8SOnAjKken
LdwFjBo7s+MkzOBBSuntpHAfOG038z1cwg42+L5pOBUeCr3Kj7VDJDxA7ehq
M/PnCfBG9MSjIAl/UEXz32+FZIDvii9bn0hEwn7RFB3p+wjOnE3MGBt/BwFF
34/yHaXCqn++lnobMiDfq1ylqKsT5E059PKnOaCQtoGiz+oDr6YD8HLyKwyN
dJ2tXDEI63KE+ri5EcguT+U2FBqBvAHtBsrBMvjrXr0vbZYOHfq+4yF6ZeB2
s0Bu31IGTKcXixmfLIPMB6ulC1YzQO3OgUs1V8qg1VplS8omBhSsVZ4uCS8D
HYbYETVjBnzVkZTJppeB7ZUkEe54BhR9GHOPjCyHE12dnmoHmVDmGLf+LKsC
PonRm17YjMIXhpOT1XQFfPt3fuNXx1F4d1X9my1XJUTaRTS2uo1CgH3nOWeR
Sig0uqkx5TcK+jZCMQ8PVoLq8aAt9KRRoJwNEE8ProRsW/mnwb9HoUf/uujS
nVUgGW12vewsCxqrNS6vUKuCD6VLalddYkGxLl/u6iNVcKznp+7xqyxI0Plo
Jm5eBR6tS5OKb7LARvN3xM57VRCW7fbeOIIFdDVz4TONVVCvI2AtVc+CqS2H
BD9fr4bH5mj6/j42HB7Qqg7yrgb3abkg94NseBSn73P1YTXc3rSr4aI2G8RE
zLDcq2pQSrQ222jKBlVuJ0pMRTWoJT0/rH6NDd7dL0MD19dAyf67jb1v2LAQ
OiloV1sDwk7q7KalHNAxmq8+0lYDF4c6s3NXciB4GdeDjf01EGSXz4oQ5ID0
vVVjPydrgHn+eZ7qeg4cdtxENZWphbM5Tz1E93DAR8ckDLxqYaDcdZeqFQeW
zKWtWS9fBw5+Dv1zGRxY36g1Acp10J8tZXs7hwMqiV3tdgfqwEut0WCigAOX
DZa/Tj9WB89iCzSaSjlQ88pGXutmHfzSk4tQaOVAqLqEukN1Haz8r1nWeZID
yQKZUs+a60A65pqZxywHSgZ0/2V310FFgWKX2wIH/gR5VCzgOgiBde1neDBY
dFOOh4nXA4TdvVOzFoPU3Ue2+Q71oJYWm75vN4Z9JtK6Pe718Kv+S1iJCobj
m3MUuO/Xw0Pu+Vzt/Rh8Gn6zDcPr4Sv1VdUewDAgdci7r7AeuIMO0b8YY0j5
PhHMy98AmCXuccQeQ9nzIJdtYg1Q69m22cQBw8/LsidPyDQAuzRv1elrGPgF
Tqx7pdIAY7zj3sfcMLhapSbuuNAAr+Syi3ruYVD9Z513Kr0Bziu7GPlHYDA+
VuJ3tKAB/hgkbV8ZjcH29cYTamUNYMDiCnj0EkOYWh9NsqMBOGsH3zjGYWC4
nJcY+K8Bph4IXv/xAQNXceFw6/JGONVnv0w2BYMYv2R2pVAjrF5xQcQmDYNW
8g/DFPlG6A7gDm7MwBD7y/yu67FGqDYM7zYowJCtlKtvc7oRlKLVV1kUYqi5
KyJqdqkRirmupp0rwjAl3vpZzbMRWsKvaBwrIfEzNelfjG0EO7XJ4M5qDNxl
hlohrEbYt3Fp5IN2DOJrUgV8phth+1X16LWdGJSsVna7cjVBfoT0koQfGM7N
V7ubiTRB5m1X0YRuDDl7jr5ff7AJShSvyej8xlD34N2N1bpN8N5Xwj5mAMOv
pqWH/51ogl1RX4QZgxhWO5V1DNg2AavYNcFlBIP9W1iR+rQJclRr7suOYrg7
Ht/2OqoJHnY9nlBnYYiAxTchCU0gNkZvMGZjKOkuOnDjSxNkawV/OosxdChK
LbP93gQy10yzzcYwsLzutJhVN4H60Pf1+uMYJETUnfZ3N0FXyAdx8QkMu2xe
qW0bboIxpZy0ScK6mbNLpXATTP73NLF2EoObcX7svyUUaJqj5lhOYwiMEXMY
56fAKsm+ZskZDAl0z32DYhQQOzFl0ky4wV+lqWobBUzbozy2zmFQF6xf8nwf
BYJ5fpu0EU5+dUntvCYFepM7VbznSX43zzrJG1HgeY2RzNq/GB6mP3uDzSmg
zBFa+57w2H759q/WFHikwL1aaQGDVfm3lf5OFMjlm1idTlj9B91N3JcC/yWb
bo74jzzfxufjwFMKHJe9f2CWsBhbtOdTNAUWvu4wN1vE4O/1aY1XIgVOx2p7
fSQ8zq199MgnCqjeTEsYJ2wV3HVrVT4F/t060bTnH7mPmGt6eykFPltJL3Ui
rJ64bDChgQKtF3kPxxBO3h63zrGTAu8Pzd8vISyWt9dYZYACMwfHK3sJ+2vW
PVhkUUB764DwH8J/6qxza2YokGpYffk/wpmpfz0MuKkweSuu+B9hGtYNTV9G
hSh+O+k5whv2haes5adCWp+UH4Ow2e3ecm8hKiyYNLCohJ8ihb5eMSpM69+6
kEG4jMdjVkuKChm7drb5E541QMLJslTon54wMSWsHMq3c/VWwgI9rSKE7dvM
9dx2UOGt67Qlhdw/TiLxUuduKnx9acF6QLjNinXnoBoVDgcK+ykSXvVOLTrx
IBV6KrQ21JL4ajH8MpdpUaHszJLSi4RvKTXVOelRIb7F2ZFN8pPpLjFMNaZC
6NFkSTfCtAK7f/tOUkHOoLmZTfK7YTFD4vVpKhjNCYRZEzbX/ruX6wIVjKcD
zeuIPoIDdY9ftqHCdzuHTdsJzwn3+ilfp4LHd+HW5lmi3zMKcZFu5P4BB/PX
EbaPc8+f86KC5t1nb82IHtu28rHK/ajgcz4w6ssUeZ+DauZnXlJhZ6LzMO8f
8j6+fi7f40h8Z2yEeIg/NlQ3Ptn0lgrW2Xf05oifgk3tilmfqYBV9FtriN+u
2j/f6ltOhSaj9W4LdKL/tJ4jIzVUkFmBZ7JpxH9jWy2NmqigdMg/yJr4WedO
cZhoFxWWmN3ofEP8vjFsdC6FQ4UTkRbr83oxFF/yScmeoALzupuyZg/R3961
Z7/NUiEu4u6dsp+kvnWoFzQsaYas5y1FGaT+iEsH3cRizXDukjLe0YwhnyO9
ZXZ9M6yxONfoTSH9oySrnUu2GbZGh48UNWKIsu1SEd7eDOwnffU76zAIpypM
qEAzjN5Qc84uw5B1pyjpkE4zeKYK7y4h9dDkmMlJXYNmaIyP2FNVjCF0zCvr
9Klm+Dl5c6KQ1FN+tWqX21eagXe8+LZeNgbeisssFNoM+fOXRdkJGN5Fzb2u
iWwG6v10Lh9S33WuhBg1v2qGBr4De1e+xuDHl5s68LYZSu3vuS4j/WHRhMeB
t6AZ6sb4L7x7SvTamzRs+KsZ4qfLnjl7Yhid6e9r39UClYH8Gke0MeRdCS0z
VG2BvPWe8pGkvz3oPPwBabRA/NFd4n0axH/5cddTdFvIPDkoeZr0R62b5xfu
WrZAj3/Wl97NGGImOyQ2B7ZAypMZpcOk3+qPN5q59bfA/ejBbLMiDqy9dG8/
bagFDmUGMILyOdBH3SFlyWyB0tP+JwqyOeCR+XTw6FQLLOOTy5hN5kCCi4Gb
xKpW+BJydEgwigPT7IrQEtVWcEi75PDKiQPvmN/qBJ61AuIduCsnzAHnFyfk
HCNaIchXf50VPwfUdAbvVL5shfyPijZhyzhQF8e38+7bVrgyWCvYM8+GcZOz
oYyCVlBU5pkVHCTzVf70qYrBVhgfmHAZzWJD18PdvbcOtEGS94zQPQM2CEh/
xENDbWAu8kve3ZoFmhYPewcZbWCZGZusROY/t9CL9QOcNrBOjTk7aMqCDm7x
j79m22Cj9KVj+7VZED8SaNXD3w5rrr35HCbPAqVMx8ZWlXbIbnk0sEAfhWPa
Smll/u3g2cnFRSXzabBDrv2bzR1Q/TjwbOM5JjA1Pweu2tYBlP7yEVlTJuiJ
v0+9qdwBp+YCuF30mLCkOpJjrN4BnX9jmH/2MuHWZo+bcyc6oKbg8o9EfibY
9+95dPJOB3gU60bGFzHgiHnme56WDvAJ1w3cuo7M35ppQ1d9OsFUbWJIOp8G
HnsqcsTKfwDX9HKKa/8Q9KdXPG2W/QkNJy8rPnT+DX8d214r3u6GM1S9yL33
u2H7keWL9t964NOIcWKNUhvoJcleyVrXByWrbim4tVWDl/TFTb8t++FPO7/9
Ilcm7GCZr+o89gv2t1htyAhOR2sFx1ZUzP8CKxGZg++9ahAPep0hF/sb3mzN
3qw73IqcVL51rTQaAOO6hBSVn90ozcDmTfH0AHy9tSu3PPo3mhqVXDMSPQgm
YW/PWH4bQrmn9JZG6gzByRChwS21NBRoVBAgpTcEDgnlhbWtNGSprbjivcEQ
MPGpz/Z9NLRk76rVeccJL4T+eDZBQ8eFKWI/zgyBZbjx4gtpOqJTLbZJXR8C
nW02Wk9d6UjyuL3pu6ghUhftOgeFGMhHPyAhZ2QIFGst/FqPMFGL1VXLXYwh
sMhbGvPNkIk2expJfBodAuM++xtxp5ioLlEo4u3YEBR291kcv8xEIn/jHoXP
D0HkaHOpXSATJX/Ou+4qMAyvj4fp2jQyEVWYrrFDdRiCLi1Qn58cRZsU62c/
7h8Gwyeiw5/PjSJPSM+V0xiGV9EHvcttRpHkNQ/l9ZrDMJfFK9LtNorsKrnk
+AyH4QNtLetb+Cia9ZLgo18YBhal0EureRTJ9hr+eBswDEZHj0hZGLBQUJlG
hnngMBR876YcNGWhPx93PFr+dBiWCwpGk8UKlbkJqDiFDYOKhZtp6VUWslvR
Errn9TA8zF+m9/kxCyXvPatXmjkM5dYRRrwVLKQUdCWvr3sYHFYEy35UZaNo
lzMhYX3D0HmlRSD4EBv9MzOw0/o9DNYKQQ1XddiIunG78IeRYTjJfJO18iQb
3cjlXL8+Pgxd1N1s+jU2yvnlKb+wbARUZZIer09kI3U1/0iJPSMwI2ecpbOU
gzpsJFTjVEbgdFHkxLcVHOT+LL1TRm0EQp7LDG0X4KBPwz8kFQ6OQGd/Xt2U
OAdtiNyZqKo7AgLPVZ7sVuKgJeMdn0+dG4HfO1d80jvNQfWpitUhfiPQnSDI
Gn7LQVc7iq8KBYyAZqZuoGsyB/EsMeOLejwCOR7taROfOOjw2fvHYoNHoHg4
yn8wl4Myl7e2pkaPgMYaIyuHag6KtLv7qzp1BHhzaiv5GRxkuYEyx906AlZJ
NhfTtmAkIOGW+619BIxqdy0L34ZR6VrRG54/RsCVtaTERQmjLSvP0+m9IxAx
qnd1jSpGeGKkg0IfAZb71LURHYz8ahe/xC2OQKSDseWQNUYqFYkup7lpoDQj
lqNhhxGtWGe7EA8NTtAuCQRdwcg4JyjJfyUNJKezqlY5YySaIPbcSYQGk0bn
dry9jVGyh5LzgW00sjcAr2w4RudcmhUndtAAvxCVoEditNrRY/iTMg3O/3dH
9sMLjNwuFlrK7KNBzJcO/uVxGGkY6hot16SBYrDDfsuPGHF0GMtKtWjw3u9k
988UjN5AcNntozQ4cqf+msknjHj2tRzgGNLAvSP+jEwWRk0brRTazWmw1z1P
81QhRg8kuYeenaHBs+BZnSdFGO0VfZegf57cj/fGnrxijF7yMcWKrGmwK/NJ
1WQZRjZTnrxvnWjgvDK4jKceo6m6kAFXXxocXj/x1KULo55V7VcXHtJAl/+1
yexPjMqMpfDjRzTQnOqWudWDUVhT6t/4pzTwMk4dsOnHaFtLtUhjFLnPe/ff
HUMYrVkr+PrMSxqML6XObhzBaOaUhexQDA1stRbEL9Ewqmgf2vk3gQbfXwW4
1TMwsuri1lNMJfFEa/00ORjpSBo05nyiwZjGq04DjNH282GnNDNoINL4bq/R
GEazPRusT+fQ4KPEicV9fzDqk7YfGcijgbeu+7WNExhVWn2+5vyVsKPCL65J
jMJ/adwKKKbBGzv7zrQpjLxlH/5bU0oDi1j/c57TGF20qQuILafBjWdWA6oz
GO0YOhP+pYYGG0wf/UucxUhY/o041NNgreetSKM5jOYu0+LrGmlgMO+2k024
iuaZ9ruFBle/dzmK/8Xok8L33dfbiV6OLAgkEY5w4CmY7aSBaG5ontwCRrdT
jQ77/6SBS577pTjC1qPhFYK9NFAdeiIo+B9Gujt+Gr7upwF055Z4E955XbZ5
ywANeNR6PX4SFkm/ejp7iAbJz2nbVRYxmudk9B6i0WDxYfFwAOFfyjO2tQwa
RLw/lkTmbVTtephpxqLBp2C/S0L/MErPCnD9xaHBqSZjOSPCkX8app3GaWCy
GEe7S/jOXpF7MxM0UM9wSP9A2Mbj/NKH0zS47ka6EWH93KQnAnM0WPdDX3uA
sPI0QzDmL9GjyzGhScJiaruj5RdpEFaZ/pvsH2jBy1sqi4sOTVccc8j+gQYL
UNLBpXSw/u3zhOwfqG5umWINLx2Ci8asRwlnqh/POLWCDtf8StTbCb+4E7Wv
n48O7MJJsXzC94t6vjmupkMtK3IqjLDdf3Ja04LkfFxqhw1hw8NONb7CdAgx
PVK4g/Bun+zjq0XpwHpq/4ZD4iFeMtf2ch0dwpsUnyQTXuQ6cn6zJB22xMR6
nCM8dCTwd4YUHdY4t9jwEK73o1zR2EgH15pfpz6Q+L/ksfI4uZk8fwntcAvJ
36Ltun3NW+jgaMMVZ0XYrpw6dUKRDh2VRccGSf53+Wl7HVOiw7/m6I/t8xhF
/15Qa9hFB929UybahBc082YN99Jh40rvYylETzX/FG7r76eDd/UDTSuiP6WL
A+rV6nQ4KW+h9pnoM7L49d+jh+hwcYDjO0n0a31P4J62Fh1WfpRee43oe2Z+
wuewMR1WZH/f9m8cI8tznzW/H6fD6bucijWEy77acx80pcNUr3eOJPHTM+8u
vwMWdEi7Exi5jvhvy3RxgIo1HTzy7l7MJf4MNvfW/WJDhyqORdoTOkZ/cnYv
33OZDrGF0cctiJ+L3d8FKjuS8/MusT+I/y3Gnzzd5kGHzwECVr6kPhSZaBun
3KQDcyjkungfRpsyF/gVbtHhqfdkx0dSTzjOLs/k79NB/c/PggxSfwJYZs9l
AumQw9hZbtuKEdNI4GRCEB2G6+fTvjdjZJJWLbwhhA73uT+MC1IxknJUj1wf
Tgf9pn1RcQ0Y5dA2vhCLpYOY1bT+hUqMJPW6TkfF0yHT027z7XJSLz+Ei4sk
0sHERNo6tJTU+8u8MUIfyPkT+vNJ30n+B5ix/Jl0kBv+UeWci9HavtykJRV0
eC4ZuvvVWxIv/nv38qvoZE7My1+RiBGfhs6Za7Uk3qBzwiUeoyUvW1Z3NNHB
h/UoV/YViZcp9k7posNeq1b39c8wolYqnDDBdNhkquRge5N8/yRW5P1DB8XG
c7Y67iT/m/J5CifpcI76846UK0bI52ih3DzJx5Orq7IdiH8P2MjP8DDg5qhx
sZslyc/n13/jJBmweim3vpEmRit6bDpOSjOg/XjLi/iDGPnzbctaLsOAqs7L
ooz9xN9XCuxvyDNgPn1ZvO1ujBxl25t1djHAZ4/MUixL/B0lkDx6lAF9rIsi
1twY8d7zNTtwgwG1jUHhX75yUM44aw65M6AwK9VXk/RzO/szCbo3GWB7nXew
MpODKk4oM0/dYUDd/Xauwo8c5L+p18c5gAGD95Rq9KLIfFCzP+3tKwa8zTB6
NO9M5ou1Y9wCZQz4+slcvlKKg7Ifn/8YWcGA/Q0bkmzWcZDNQpXx+moGlAnP
5s8KcVDZcNwLhQYGhIbvyhFYzkF+BUY7tTsYEBvvKTIwxkbcVh/PeDMZ0Fsj
n7y1nI24UqwyBoSZ0EOLkdhvw0ZVrE7nBFEmdDR9UbY7z0bBu0yVLMWZkDrW
UvfYjI3WFWh/bpdmAk/r2pe5umykVK2QVqPABOrDgqq0bWxkOfznQ/phJnjx
mB7iGWehr7KP4287MoFSIGru4cVCbjEZIcJlTDC+yN5LcRpF+Qsxj8sqmOBu
cHv3OttRtGD1yNetmgmjc7+fnSbz6mO5C54tDUxoV17iXqo/imI/8V0I72RC
2zpNeXX5UVRZfHmHMJsJMOlsVdrDROKD6+uFxEchiHp+Zr8uE33fHrhCyHkU
ym0rZG2WMpCQodsOPwEWXD7KZ9h4cQT17KS23ipiwWTRTsci2UGUGQ+bh6zY
4OhWWFn+oh9dyFAVkl5kg2y+WWF1xA/0ICDRtyeVA5y+H9Uyz6joM136tYAx
htc3LZOlY0tRYFyAdd9xDEW81krSFqXI7iRbPt0UwydGvdO6NaVIqqgo89hp
DBO8GjYLD0tQUOj5qmAbDE88KraIdhajq6qvxvluYWili92Mci9Em/xF9Jd/
wNByLX71rw9ZaHH/3dWdyRgO/Ojs7pfIQl3swZYPaRjkHra7/wzORGGnv1zQ
zcIw6Cd8znc4Hf3bdtI9oIjs2XeUxtLupqKe5tD4pa0YplOitkSkJKKCRzO2
re0Ybjq5GIuEvkGRGhcV3/7A0B2W0yDDiEdG75VytPowUPVfxU3dj0GF3o21
vgwMv3QSCrVTn6PonftCTVkY7LYYaqxhPkM3BmLNZDGGPRM2UaE+QUjB+Fp/
ySSG5nbaFa9UX8TD3fYubAbDZuH+TZU+t9GvXA1H63kMX5M8bSJSb6Aix7fK
u/7DoBZ73acg9RJ6sXHV1P9/l9u8O+T//28V/w8dyY1x
           "]]}, "Charting`Private`Tag#1"], 
        Annotation[{
          Directive[
           Opacity[1.], 
           RGBColor[0.95, 0.627, 0.1425], 
           AbsoluteThickness[2]], 
          Line[CompressedData["
1:eJwUWXc8lu8XpiQhSRJSIZUkqZQWl5WIRJSZlIZEFF+JBiqphAopIyEk2dk8
9t578y5eMl5SIen3/P56P9fnrOuc+9zPOffnlbjkcObKMjY2tl2cbGz//z15
hdlcNHpWeSij0nTcKYfgUBd1HBRRwNDozyffN+cQ+z+EhKWLaEBFQiptrDqb
0KnvTAsXMUKRrwf36JZswvjy74LXIpdRZH04j1GbSfTvear+UsQZ4oJfxAa3
ZhCR6097Pxd5jKJhMSI67ivhXv+27FzuY6g0B2Tz/Eskzj0ZWrbV/Ak8mvlr
v9gmErw/bz3MC/MGWwc/67vqF8K1LdB1fMszsA3wH7FjxRMGb3ps9bb7oWiM
v8HuVAwhq7P1s2ilHzzGA4Z4c6IJruV2I8PX/FE0yf8jUSqauJCzlEoYBUBl
hl944s9HYv3OADmT4Ffw+ClR1mP0gVj2JONU4fArsP2WGBWVjSBYQ112Uoqv
4fFbgs98eThRGyLxhdVJYnZJk97U90T27PGac9Jv4MEpeX/js3dErL7taL4r
iVdKRplbhRCBiX5cW6vfgI1PsjJU8S3hyZW+45lIIDzWSo738gUTMide+aQ5
krihbc32+kCi5YnDaG9lINjm1tX5Bb4m3MtOnVyxJQhswVKLnLEvCKnlsl/k
XEh8QMKKJelF1Kly85rUkzjxqE86bhH/eTDtPKWCwVaUsvj+2jFU/I2Ra2sh
sfb4GtvRR+D9EXxgi+87sDWx5z9li0dIv5v6t6UIiH9aKXSLk4CqmGnMwNkP
sDLco7ggX4QxM8UVXF8/QEVWyP4opQibx+9af90diYB+WleBagkcrh/cxtYX
iRSVhykly8ohcDk5/tOhKDRxZl6oe1yDq482mx65HAX+wbCg1QdqkRf1clWj
fxSGsh7V6jFqcZlyw3ZuOAoe1w0Um4/X45ultKxOUDTEr7qsvLG8CdwP3vYN
FkUju+V61AvzJliGc750Ho8GS/m8UmJ6Ezj76BPh6jGo2qDhNGHdDLM/hhH7
HGKg/1iRjy+/GcmipXqV72PgyJL5LCfYAo4j+/6ZV8TA6trQRbHzLTAx/ZjM
mo6BCq9ifOvbFkz1GnFHiX5CgGhqe2xDC7wtua4Yqn9ClfSu5W4rWpFu7SCa
GfgJjse3WIo7tYLvptITd8VYmDxYKWiv14Zyr24zzvtxiGR1PuRc0YF9iWs5
xbgSUFTuwOHu1I1quXKrevkEOL7tfvffl25YpbrmPTBNgPx19T2OtG68zBx0
pCQkgMm7weyKYQ+YRV97Y099gY9hYfLp/b2IaNdO3fsmEQEUXnOpH304YPKX
h5aXCOl0F9bmXf2o60m5GkhPRNXjoSci1v2YH9wg9vvAVwhLZ6TwtfbDaIzh
nd/1FSoO5pzzaQP4bveOYs+ehCaV8tAfYwPwmtI9tkUmCQECe/ZOSg4iZTZ9
2tM9CdKZyyxorwdx4s413f0xSSh6ajfdXzOIgXnROHpdElJkb6jbsQ/B+V4D
e/DPJIStF/e7vmkIPP88LU5sTkbXb7bxYPkhhFw3tpTVTEb2jM9/N44NQapN
1mrtzWRYTfD/g9YQlD93WvcWJKOPKi4wemEIOZ+Dv2XJpWCxXuXQUf8hTBiO
5+s0pGA82uPx4MQQzsa/rXVanQYFfbZN0l8oCDvvpXtVIg2Batrt8lkUUAXs
600OpEHj59JV/1IKHO6rNSqdT0OMme1z3T4Knp2ZaFn5NQ1W21SbK1ZTUbCo
1hOqmw7evEnLPEcqthlMMktfZEBwWNst5iANog9PHLn2MQMKmWMOazRo4P8a
+YI7KwPMf9R1PAY0LHAZyhlQM9Bl47lL4zoNTUVZTgOHviH+SKFZ5jsa3OQ9
l+YY33BvQDHn/QINDpY9p8P+fMOcwMrjWZx0XPbd/xFrM3H5REdTqwAdp5kM
de9jmbBKcWby7qJDKvLks3VvMqHilbrhoTkdIg3RPZnxmSjK9IgOvUYH3+Li
LrPCTEh/P70n24mOeePkhsjRTIgbTWpOv6Bj8gmXuMa/TMT4FLSsDqGDnn7x
1ohgFhbzfS1lYujopuSWPJfJwuNp8zHNFDoa1ggKyqlkgWv7LhfrfDpKleyv
NJ/NQp2teLxXOR3ZNyoynW9kwSKZY3tgPR3Rla6mecFZiDxUL5HVT4frw/4I
rYkscOhYivz9S4fkVOxO6/fZaHLw4HqmzMCGTWzunCnZMMm47P1ekwFeHdO6
z+XZ4JjX4kjUY+B3LI8Di5WNY15r2RotGRhvu1z0hjMHXRU/7w9dZYC6rHCt
olgObHh6/kzfZKDO0jHj/okcZAdG/RZ8yECJb/UKifM5kO32/m/7UwayciWN
y27noGrTjR+K/gwkMt3jr/nkwPXS6VvabxmIEmqf547IgWDc/imzDwy81ZDT
SUrPQdj3DfZ2cQz43n4aZlBN+pNfHLufzIBX5NDE7EAOjF5Sv/2Xw8CdhsMI
mc3BrB1h+7yBAT65b4xqrlywNm2bP0hlIOalvO8fsVyUNTx/SvvJQLPujm7L
47lokj8Xc2zTMHbVCjptC85FzOx4/+SNYQxWTsWmKebB556ogeGqEbjsuHGK
rpMHi90eg//ERsD7dPjHeqs8OA8w7BPlR3BYs1/lrk8eTFRSn68wGcGbspoe
dOdBg0OrLCt2BDJSmp63Jkj87euZy7kjKHpUvCOaPR/SV9dR+BtGMKGW7cwp
kw+xqoG/13+O4HHU/o2HlPMhfFfDV2gVE6LLkouvnyGxTIJoqRgTKRdlbEKv
5oO/d81nB3kmThR/4qt3y0dfzTL6vBITA+IS35b88pGdqcE/rs6Es0eYuXx0
PunX+9iANhMf8Sb+TW0+DrlxB5WcZeJPgYeamVgBAnYKaL6wZyI519xlpKAA
0j4S8WLhTGiKdoqJtBRA3Nm6jS+aib67Z0pPDheAeeETG/tnJlYd1uZP4iuE
r+JOU0YGE9ZZBxOcLxRidlieO6mOiQWhNP1Yp0Jyntw+GNnCRIDL7t+dTwsR
WJhx6XUXEwUHpDSOphRCNvhQngudCaOgD2N2ZYVg83IbsRljYmxW9FVEF+nP
Pn+dOYsJD6NgxabxQtSZLuHULyY2ZKwdYGcn8Pi4ih0WmbDw/WNEFyLA9fKz
V/x3JqIuM2orZAmEbTseWtvExMixRrXPagTECofSJ78xIbs+J+eFCYGmc/fq
1oYyoeZiFbQ+hQB/zphcxB4mDoYZxwbuKULi/cofmeT5mvrUUZ4cKYKRkDVv
j9II7jmrbrpzvAhDSUtSfyVHUKy7K9DUvAi8QwfOqU8MQ/fvkufmp6S+Wkx2
o+cwLlrGno8fKMLss4zw2lQGHp/c+O7daBH6+u0iMkIZiD0Y0PZ8lsR7t30I
f0LePz43HXvuYgR0B0U6mDLgQpw6vO9gMWx23olex87Auy8lzltVi6F7f0/M
4hgd+W8VUwR1iyHbPBLDaKOD3VFix++LxRC/axKbFU+Hr/hPwfyXxciuOvzZ
XJ+OJF5b/a8hxcgXm/mscYSO5rmBFxHRxfB1TEjYLUWHUHPVMs+cYjgLb0z8
95uGwwVKyrfLimFn15rIpNBg8TntrnVjMTSKXnxtrqXho2cY6zijGGI2i0nR
H2gos18rq8gqBkd+RrLvMxqGTb2vSf8hMb99yn9ONKzS/BMlwlmCPuttqZbn
aZDd5zjAvbYETVn9qSdO0KC3mSGyuLEEQ4E5eh7kPLjFbXZ2YnsJXGWD3QuP
0hD4qyFgYG8J9Mtuxy+q0JBJVa9rPFaCcfPT7Uc0aejQ8px+eaIEs8+ZT610
aPiVVCike6YEXLmeR7z1aVB0P3yx6loJxIUzPjSb0ZC9bs+votclMGoTtrVx
oKHrrt3Gh+ElsFqeJubnTMPc4GcVpfgSWOzTaUy/S8OhRKkXOQUl8Ai4r/Dv
EQ05GqLiaUySvy51KSiEhp4E4+OOP0qQ7e6emhdOziv+IFu5JVKeIHiZEkXD
kf413xLWlWKI60S17FcazNRP9dhsLsW44pD7mTRyfn1+/m/7zlLMXr0r55pF
Q+5/K05GK5dCrPzLm9Ji0n+vmsNF7VLwzmpojlaQ/lU9ArcYlUJ+68AcXx05
P+MLcvotS6Fy5s4XhWYajvL9GQi9XgqTiaODH3vI83M+xGHmXIq51/9qHEZp
uNfz307hh6VIOVSaqTRHQ34syykwkIz/6KRf93o6+njl3p35UIqQnXxucWR/
LN6+UcifUArdxuYr/+2nQwnDXC+JUjwWNVVaa0BHYWdv+JOxUhxKvTau5UvH
gJJIqfrPUvK+7eoSCqVjKfock52tDM6Lk6X0z3QoOzbve7C+DEUnXEI9Kukg
uCorXVTKoDXw+GT2MgaGbnJMKOiUYeiR1kHvtQywtasK/DhbhsCdvJJG4gyo
fMy3cLhRBqbzm/kpJQasVi547nYpg6uoMaNAlwEPe8W47x5lkC4SbX5hzkDR
4bTpa8FkfJ6o+B13Sf8fpoS2fywDf+qVwJ/k/GLj3H2M/qUMKed2epQGMyBu
Z3sxKrMMfTt2SReT91e1Jc7bqrgMXUn5sS2tDFw6xPiyua4MZQf0ttHJeeMV
Idnc10Hi/MHonxuGUWIbvtF0nMyvZtlHYYthpI/euGH5qwyzJ71/DboPI8bm
SJ41WzkO1a7SjQsdxpOrnWY3BcuRXcv/+0DvMLQurX3/6Fg5quo2nzI0G0Gj
6RPhJN9y0BuOzL80Ib/PWvbrl++ugKOZ1ep1d8ZQX3n0CpdiBQRvXn8ZFz6G
Qk3ub6tVK7DoeXv1sbIxfNCIMxI+W0He48err6z9jksqlDe771dAZS5+ddaX
72AqnhUwqa+AVvD0avOhcXRnbr10vpP0l7DwcopzAjUHZlIvUSqQX7Cc7/Hu
CXzZ729g/7MC0oz1fF/dJnBzT3WA16ZK6Coc4fsnOImf25XWfLWvhLxE3b7q
HVNQpqpVPnetBMf7qAuXtabgHa710OZRJdoE7vr+s5mCkKDR1NZ3lbjMsX34
QMIUDrLfaHxfVomKH4SugRALD/Idn7o2VkJGfhctYjsLFXdccK6nEn52wXfH
D7JgPOmZvJZVCUuGXexTYxZce0P8fTZWYa5DhK0whIWi4IgTV7dXwWrdk2Ce
zyxwnYn5p763ChWnWbKmOSy8q0p2+KdZBZ+qCtPZbhaoj77t6DeoAotjH0t1
jAUZ5A3mWlThnGq4t/8CC7nfKk673K6CaK5TuszGaSy7VbfS6H4VHv8a0Hbd
NY2Tsi3EXp8qjO07OVR+dBqvRzrvrHlThfj/mJuuaE+jN6p/z0R4FRIId+9S
3WlIWdJGauKrELlqzZSE/jTsREY/xKdXIcQwytjDcBqL/rNrLleT/EaqpJXM
pqGhs1Cp2lYFr70Wr0LPT8OXk81jy2AVXN2n5uetprHpPg+rZ7YKN9cI1WZe
m4ayrWSTgXg1Tipa28v/Nw3vbdI+e3ZVQ83zV7uf6zQahnarrD5YDY3aZ8oT
7tOwND6cUqVTDdkLKWsSvKbxUEM/AHeqIfb0b+rWgGlU/TurtcmrGrzNAaJe
b6bBn2fO9se3GmwbpR4NBU8jcu81x8yoakwknTQKD58Gc9xOOvBrNehz/fl/
IqchH3976FZ2NYbVbm0zi5mGq7VryOnSagz4cvhlx02jaPMD/d0N1WjoePtL
6Ms0uHoecfF0V6NMfNeF/5KmoR/0rIhJq0ZHy3R/Lakfou/vWjFZjVHTxX25
ZDwKT5B8zHw1loY4feJJfjKV75meHDVYZrO2P/jZNG57RUZeWFODzVMb9z15
SJ7f/Bf+jdtqcOSvfN/FG9PYWK/2A3tq8PRZ7p0/F6eh8LG7/fLhGhSu11gX
ZDKNK9orQ5NO1cBMzvhk1XGyHu8ubVNzqYHNhfvZcuJkfPv5ldc8ahDzndOo
Smia/F4HjL14XgPmnYCpi6unITtWkNweUQOXgOjtQWQ/+R8ROXK9sgZexdWB
f9pYiOdLEfNrrkHVKUP5oFqyf6ma/9J6Sf49fbVyJSzMPHcuW5yqweuZqWWX
klngucATJ7FQg7YHdyP+fGJBan/UM02OWgjwLD8SFMaC0srDdjf4anHprW+7
3BsWzvU26gUI1yJ2q9CtqmcsOCRf3ftNshbU5A+8lzxY8Hn0d12PbC36njln
yLmzEGkc+GvpYC0yj21Ma3BlIWfXru6tqrVwmypOvunCQsu/4jwtnVpoRNl8
5XNmYazVJML+bC3Ez675knSLBbF73tZZ12tRkWsRO2nHwgH9TZp9TrUItF8e
42fLgp5UhjT7g1pYiSd8lLNh4WEdZeLk61rMPfkddtOavI9iSq4DubVQMHj9
ZtKUhT+sVrPl5WR+HIdf+ZH3XbDcVkm6sRZDmYN+cmdZ0LQPWXabVgtfsd3P
b+qz8Lngh+8K3jpUjVR6TGqyUPLquYOMUB1839984KfBQs8ViTOnxetgcWr9
PTk1Fnj5Tm94p1AHtvRLd24qsbCNypgvUK5D05VV//EdZUE5814fVasOCcIp
t5MOseBomfBR9nwd1B78tZ/cz8KzfaqPDa7VQWBvzA2/vSxEcXZddblVh2Ha
yetye8jvR89N7VD3OvSkdGd5KbLQmrRCtuhJHVQWno3LqbAw7hXGx/Cvw3v1
IxK9WixwGO+fXvW+Dj98x84+NWDh4D+rTMOkOmRs0SEGL7Gge6rI63h2Hawk
yzStbrBgHbrltGJJHbi3KTUMObEQoDgwItpRBzOZPf2UxyyMOpiLUP+S8gPr
/tBiWQgbOnvP8VQ9zE72HmSS3zv2kpNqL8frwf36hdx/ztMQ5k/ge/irHnv6
5AM0709DznJVryNbAyy3d0xv8J6G2UKlk5FgAz7nin/LfTuNjH3HP2081oCz
tG9H2fKmcTUaXAkvGhCjMKT1gn0G96Yj2kKDGlD84EmCBfcM3mAp8uWHBvyo
kuGVWzeDot78w7fSG3Dk/H+NTVIz6Ngpxmld0AC7ONG9UbtnMH7HvcWosgHP
ponXTgdnICJ45Mah3gZQn3CfE9Kagfyld4oyjAbwNSVnjejPQDNlbrnYVAOO
ip4VyTGdgcWScdPqeZL/5QW355dmcFs3K+zfskY8SPrQZ35jBj7vha5P8zbC
bYVnNHFrBh+Y/x2gCTXihYvqd+Z/M8g82M7eLt6I+BH2/QJuM6h7rNBQIdOI
DJMSt6MPZnBkTe2yVwcacWLQR5/wmkH8u4uK5iqNmLxyerv60xk8SvKLnDrb
iE1Ofc0nA0j9LuZtYc9GeL/8JW0WRepfehhHfdGIHYIFS/2xMxCaWN+XGNwI
4v2jtotfZjDNrn5cNbER43H8HtczSP1d4RtsOxtxpkSm07WC1M/cr6tAbcSs
1nTiYs0MHqvUeCyNN+J5Y5aXR+MMUhL+OGuzN6GoT0POp2sGI1Oa/kmcTbC0
5uHg7Z/B5gOvP6/jbcLUaHO3P2UGLwjpgX6hJkj9tnzydmwGJRzOc2piTSi8
v81849QM5rQJgXiJJlhwjMt/+DGDPf7cu1fvaML88zTOrXMzuNp29sRt2SZ8
PfrwhcLCDMJFPl7s3NsEx1PHMuxI3GY57n5MsQnSF+b7YkisNuqVwqnWhGQv
J7n1f2ZwV66h5sYJUj9Q3vgUiVOcRBhNuk04HDvx8AmJNy8li4QaNyGv+lrz
TxLPC/R77bEn+fFbOHcskv1gIh0eeLsJdyVFwvn+knzCnbLm7zRBQ6GjXJPE
bTu4x0u9mlBmrL8hi8QpxxTPmoQ0oTpCI/ftElkfTy+HgvAmvE5hpzWSeHNl
/TPJ6CbolhTycP2bga/B5cLxr01oZhw670ri0uDkLoN0Uv/3zycpJF7oXZjJ
zG6C/qr0JCaJba6+2uFZ2oQ22d1spmw/8OFLn+pwFamvPCb9isQdrB0WOg1N
MNKPM6gm8eqDTi4prU2I8/5nP/RzBhruhQHru5vAK3t+U8zoDNyLVn1xG2iC
V3Nu3TXy/NJWnC0fpDVh3EX43q7mGWwJ+D7/ebIJVcWtPWnZMyi8+PBz2g8y
/5isrVpfZ2C5f51p3lwTSrxD7fo/ziCs40h23bJmFOtYL618MQPhTc9dpoSa
kd8+I3H+/AyyJjdtn9vYDPXsDtsZgxmcK0ptZ5NoRvb73PSnmjMIsu5WENjV
jLQLXsfT9sxAIEH6hwKa8XV07fWVy2aQ6p4fpaTRDLm6n6lhv8h5fkr/jKZ2
MxKTuhf2fp+GP+tOqrEhae/00deijfzelPBctDJpxr5zT9qnq8h95c0H/uvn
m5F06PrmpwXT4FWsdHC71oyUv/IpqbHT+MJlvuWRXTNkhwTnNUPJfaxnsuHF
rWZ8KplT7fOfxugXrweBLs24Gie3d5z8fvncF5ILd2+G1hofuqTnNHacTuj/
5NEMmTuUt6bkPlQhrvwy6UkzVg0e0Qkg96cVZVfGCf9mlCdNpP69Po2YoPnQ
qsBmfBY6cUXhMrmfXXup0/yuGR4PIoVvWE7Di/tbAjW6GUp6hg+7zkxjSZ/j
+opssp4T2brp5H441x/FODnUjFjZxyM25H7wNvlgkCGjGa8C+99/WDmNg541
GhZjJN/Fg3od7NP4T2om2n62GZvrRjPUf5Hz79cTQ5f5ZixTULdxY7GQUSmy
/OFSM4ZCwzamkt/zGVvVSwFcLQi9cdpr8yALr461r323ugUPWuMPnCX3XXm+
68UfBVpgfXTZ6ItWFhoHFx0TNrRALdo8rKSehZupAeLpYi0YUzXcyapiYfUj
qaY8iRboF9w52lfGQqJR9sOy7S2oOhR2qqqIhe+/Bwfa5VsQsodxKzKbhcxr
/iUnD7ZAVJvVp5DBgkencixxtAURl/6cqCb3F6GscPvPmi0IC1q7eYacR2ou
5ov3LFqQ9kepRj2IjDfMPTR9sQX71msf6ApgoetsbunVay3IljOKtPMl+R0Q
eaF/uwUFF21dgh6x8H62Q0TKpwV1lcGSI+T+ceWy99+Qly3QpHx86W5P5tt2
gLL6TQuaFhLn1lwn3xPpgfG/w1vQsbu04ZAVWZ+tGr520S0wP9FwuN6cBYs3
Pxwo8S0YsuqOuUjuG9O3zyjWppP4zZTbcz0W8qnsG1VyWnDz6wJj80kWvM+k
LmUUtmCiYoVB+nEWDEqsqDvLWnDfrHehlJznYvv4KyKqW8BaS1Po0GVh5CPx
eV1jC8yqx24yyX0lba3DS582Mh+PmfgFIxa0puuNbg+24N0U+6Yt51lYd/H+
oRF6C9jjVhnvvcjCQJOsmMVYC65Yrn2lfoUF55QXtOM/W3CkXnyFDZnvBwft
2yI8raAkYCLlPgu2g3Nn/fhboXHpxI5STxYUTscfXi7UihSR0xfbn7BQI7eS
fUK8FT4+lu3zL1n4NVHmX3SwFbJX7xeoRbBQfN7Z6cCxVrzb9OS3URQLvvVb
jRNUW8l3uu/ea+T5SX712hyo24o29bBPL5JYmBDbt2zVmVYc/BM9GJ7GQrYv
hXHfuBWxaV9EUjJZ8FoMqJ6xaAWfbbphSS4Lp+xUvl671Ir/JPJethWyINw3
FdB3rRWToa07tUhM1fngbGDfCmH54OxF8v32NU/PpOJ2K7TKTE6kfiPff7uW
jh51bcVjk40dV1JZUA/9uiXlfivSxvsvi35lgY/n/PJtj1rR4xH5oyGehZix
vBo+v1Yc+7xt7aFIsp/ent5q+6YVys2huWzk/qyoQXMvDyHx/NrL1W/J+oRz
774X3QoV7aVMM3+yH/RN/UezSTzaYXH/Abnf/R0f0Sgk8dpTnJpuLDxO8FCJ
LG2F+uHSZD5yXxbmiJ8+10DGe5a8LJI8H+WsX4ZltFao7fSJL7Eg36eXnydu
GW2FqsGSwQsTcr/m37zCfZLEd53/GJL9EFaQer7jRyvwcSxGjOyXK7bHM/fO
k/bVVnoMHRbkNnTzvVxqheZ0x++vJ1iYK7W7xlzeBhWRUx9d1Mn915GtSH1V
G06olp4EyPPbFCj8ga8NvhdsTe+S7+lzNTtuLaxrw4q4rMMvZVnYciev+qxI
G1wmOUQ/SpL92UR145Vqg839Dz1VfCx0P9rbf/dwG0IOfs6Sb5hClHz5gXbl
NviUq7ua5E7Brt/ET16jDV5GA4c8YqfApuiBEb02WN5el9v4YArbxxo+Gl1u
g2zS/fybe6bgrG93dY9/GzK3nSlODJgE36a4KTq9Daz1r7Yut5+AyrlH/bTR
NnAn9N9mWUzgtv+FWupkG2SUZUr6dSfQwS4cNzTXhudXS62yZScQMexj2cfb
Dtmsn+H24+OQS7Gtb1Voh5+JmXDXjXGcUpf7UvK4HW1r30nFW3/Hg3vc74qf
tWPukqBs15nvSPk27F3k1w56uv9+LrXvEJT+cKkwpB2zZ73VbMS/o4+XXzQ3
sR3D75yspPvHYNcx7ZPa1g4OSb2w+HNj8L3+7WqkVAfsdrS1T5waxZjKVx8e
mQ6YPPp9CcdGcUL4U4LLng7oDoqyAmRGsawycFL3SAcOvb3IrbByFHelnF3m
T3dgknNK2a2IiauD+7zPuHcgeHhVPOd+JsoyZeILPDoQoLb7gIkEE5J+kjXS
3h3widAv+byGif5jAnz/Ajpge+5tn+74CIzeTwd9ie0g502a91zsCFTPpnzi
aOmAxutdqnxbRxAhG1/p0NmBuUK3uQCBESwujxzt6etA4vfq5HXLRpCd5r87
daQDwsdtNotQhiHH7/Dt/F9S/3fMn60fhuE7crWzalknQqRm02L9hjFWaDm/
n6sTRgbqtjsfDOOTvZ4S97pOZCRQuuTOD0Osdnd5pnQnXM5vzjy8cRhuUdtG
JOQ6If/c3j6fexiddzeterm/E6zMfCksMMh34Ppdc4c6EU/j6SseZeC19OpT
1sqdsOA3f6PRzQDrH4dDg3onuJQSTlZWMaDXuRhwWJuMF+QyuaWEQe4Zs2kx
ep0Y8nN7fKKYgVXe421rjDrB7fNA1KGIgavn6b/cTMn4nl4pwQQDZQp9wsOW
nbjp5q1ZWMiAB63WIv96J6rs/G6vLmDgl8oXus3DTngbRNR8yWEgP+Z76J3H
nShrLK6lZDPgxSVr6P2sE79OMeo2kJivKbE4+k0nTE7KNj7KZGD7haSIgbhO
HFPPbTVPZ2C8ZPLsRGIn7Ir7216lMZC2fc/qxdROhIG9ozKVAeXJZHeR/E5w
HNPq2p/CwLn7qSZGTZ0YUOjo4/nKgBhleo11eyd40+f7VRMZoGrsq7zV0wmN
vZsG73xhID7+9gOPwU7cS1YZ+prAwE3e9AP+dLI+uy9TaJ/J+jr+GA8fJfl+
eUoVIfFC6/6YxMlORMRXPq6MY6BI0dk870cn9Bedz8rHMuAdmiFQM9eJZfqS
29/FMKD7b7a6628nmqIbf7FHMyBgfcBzZFkXvH/fq7T9yECETOYUx+ousH3o
tDkWwcC3nKw6SHSBNeH7ZfAtA26b5h7pbe9CvuqRe1rBDKh4Hjp6flcXHING
dFMDGajTyvnsdqALfcfUJr1eMUDvzPX+pk3iF7/lt79gIOHoH6UyvS48H4xh
93/GgOOHoz9bDLugtf9My++nDCxezbdmne8i3+GJTtWPGeT+VKCy63YXsnde
yrR7wECP6dLvw3e6cPn+mqft9xiILFBO1rrXBfnmfGNld7I/JB5eNfYk40nZ
SsfdZUD2CbHpqncXYlw3zK9xZWCG+a/N+UUXrtaVVbu6MJCtq+L7KKALouK3
31OcGXiQ4qH+OqgLVRKC2pSbDGgIFi9Evu9Cgh7lUKgNA9yu7GnJH7oQ6J4k
ffYSA029qtcLY7rgF+8uvMaCAYvoks7epC6oLROa8zrNgPO+sgyh0i6MfzuZ
ZXuQ5KcgHvmqqgt1ydX2EXsYMDl47wVvQxdKPmtJtUgzcPSIwqVl3V1wDdd8
dXgjA8vUYtZMTnaB44naDS42BmbV2f7YzHZh8kGxxLF5OhjHLYZp8yRfV5Uu
hxk6qrQFC7o5uhFsp3y8k06Hv8Fj23LRbkgbHdkSW02Hh+HQWRXxbgjr5bR3
l9Bx++wx1bxt3Zg5cch3dT4dl41DZA/u6kaFapaa6jc6zpnObkiV70bK0YPz
zkl0aJnrL5c92I3AA9+S4+PoOHw+cTL2aDf4Zr/5RQTTIXOBq0dCtRuxXAMy
Rk/oELt4uTxMsxvymzgrVznTwWddlLJBtxuFe+WsiUt0sF0RC3tt0A0VzXP/
nA3ooNm03fax6MZlh1jFITk6Ehw1xJ1vdyOmWDM+c5SGsNuRPFN3unGo46aG
XRcNL50Xf12/342iseAhiUoaHF0z6i/4dIO5bkT4ZQwNih5S7joR3ZC6+vSZ
9QUapL08rlZEdyPNLXmbiB4Noo/7DFQ/k/H9O4sbjtGw9DRQWjGjG+eydywc
FqWB9Yy1Li2nG+N1p4OnuGigvND9J0t0w5lyZ9+n31SU+XN0SNZ0I4K7ypa/
nYrMV1bF4Y1kvbewOCtKqYh/k58o3E7y2y8c7Z5Gxfsg4ZA3PWQ8LRXs/UjF
i7fOj/iGumFzcOrtnDsV99413XzG6MZm62/+XAZU3AyVNeP43o0uf/enwtup
OPOBLr/wk7QfXXnnUBMFGh9VxP770w1BoYabWp8oOBAdtpLF1oMhtcCrJm4U
CMcZDTB4eqAfJn7OVYqCwaSyF80SPVA7ffhAtusQmiY4xvft6MHi7rjTAXpD
KJI9rhso24MW3vW2NlJDiEwo5zVW7EFRIEVpb+QgLsVWvOzT7QHruf7aGb0B
nGFwTiqd6YGvlqxm1EI/1KVO6H0w7gEXJ5f7mdh+SEVV8l261AMpT4Ke9rcP
w+FV/iN3eqB1Ry7bKbEXHX1cLK37PWA7wD2x1aQXlRu19RO8emDSMx79Z2Uv
ss2epfD49MDCWfb8z9IexL+r5rd/2QNXPjuhqYc9sA2qeTUT1QNHF9s/7Q7d
mPCte/O3vgdNmtfKo0+T391a3lnL1h6UDcU+COfpRAP3KaOirh50uQ0rvq3s
QJJPveAjWg+YSVcSnqMDjo8bgrjmezArdNn/1p52WJXy/bq+ROabEq1143sb
DJadPle7vBfiOjT2K3Ft2OfRKOTH1wvhh5ecTba0QZJYc2dqXS/kRaJ2n+lt
xbql0536Ir2QTqcM67xtBYdSgGLaZhKfkog8btiKWfemt+ukeqEyYmWKNa2g
5/LPOe/sRYq/qebdkRa0z+ubdMiR/n3nV1/ta0HFoVfZigq9iPR5136muQWZ
d5qF3x3uBevx4XBUtCA2c+3dBeVeOHp2X5bNa8Hbnwbd5hq96Lp/V1YkpQWu
Ti3vNp/uRZFLTt7MuxbYpAksPDQi83EyfTTo1wLT6TNmFNNexDvMn6x7RL5T
HFpFYy6T/mwO93yyb8Ef27bQnW4kf7OcORPVFhgdPP9K7mEvrA7//LNcsQWJ
7MPe+x/3wkZ4778k2RZYhvy+peTXi4CO+BUrhFtQXC6qZRBF5msYIpA62QzR
V9FK5+JI+31t6y3ozbhtIbvfnOwLj7X8Iit7miH1Q2nzlUySb+PTLefLm3G/
sGKdbR6ZT1KpJFdeMzqenV7lUNQLNr9/29JTmiF3tmvJqZzMx/7oTsvYZjwV
vzjrWtMLfd07sqvCyHf399HR+4290FInDqd6N+NQ1u1Br7ZemGi9WpC80Yyx
U49rfAdI+zMH7nEqNOOUe1xk5Ewvhq7cf1hf3oR1HRO6VaJ9EN+4kTerpRF2
H13U6rf0YUiKePk+tBFldv8UW6T6UCRnvebB5Ua4LF+7tU+uDylqXwSO/2pA
t7zC/JRaH1Rsj4q0ijRg32L+5OyJPvA7D77PpNbjeeVx+rwuiR88Env/pR7H
LI0blxuT/l/VbrmoVI+gnUNlXBZ9aAp1+KjBWY/JWZvc1RdJ/5/WbZVurMOH
F26fNtzog1WO+fYpqzrMnVseKuZI4tJ/cS0766Av6Rsg8V8fIute1fcN1eLz
hKD3djeSj8eaYi7/WizLCXff9bAPHgovMxSUanFluMgAb/rAWv7Yi/6zGrtU
Vy5dzSP1o29t1rhWiZSELzu6ikg+d/oFffkqoSCob6BdQdZHV5un7VsFjo2E
xOxq7gPbT/E5a44K6L2U0WEN9yFAs6n50ccytPxqcL44Tso3Hquq1SqDsZVT
RMs0KZ+KK1zHKoXV/vzpjEXSX8jDL///350eZrVx+7J+pNh9//idUYLrnCuO
v13ZD3FV45D9L0sw6fD5JtfqfjiuL/VzVyjB7e5TIXcF+tE0KvektLcYv9Rm
isc29GNotvSP9rNiuCcGfzff1A8Ph7Xpp68Ug03o6Pp6SdLfmKXtWdViPH44
qKwsTepfTpQw31QMrtFHNsm7+xEwON9lNV+El2ekX4vv74eV2YmAq+1FCN52
i7FMuR+s09SlWy+LkHMrcJ/vddK/Ttht9BZCufeQxd+b/WBTVaScfFOIEo3+
JzedSfnBltPndApRs2F7t/5D0p8E1277vAL0FWQ9XB/UD5XfTiPvQ/NhtcPi
s/f7fhSN852LNcwHI4Ct9fcH0h/1c1kqTz5sF2IWbT6R+p0a+wtK8zBprb29
J4HMp37wY5V7Hm7XT5zWSelHZIkbf9v+PPw++Ppu/jfSPnv9w8HvubgXeTB6
dx7J52vKxFh0Lti4e+siikh/FS8HDsTn4rHTw19rKkj9yoNBP2tzsap/q7hn
LVmfykGdb1O5EEixc7LuIPlX781RUMyD1LklEelx0r6u/c3+ijyciJK4lrph
ACotm7T30vOhEMK3vUJsAB6H9o6+WlEAcb8/9B4JUv5B49nM9gIs3G2/xCE7
gCK7G9Xp1wsw4lAiIbKX1G99cF3wRQHariQP7T44ALYjr1f9l1iArwbPLI1V
SPuVOdoHpwrw/oTLJrvjpL193WgwfyG8laz7PE4OYKht8NnvvYVw2q8fGnSa
1D/6Y6eJYSGsdiqZJRgNwOojZ022cyFObZERIUzJeFyitiLBhTiyfkNXqyUZ
z2E3t1tWIbbzcLxlWpPYpxCM0UKsY58++9eG9Kd30ZACAmy/+wUFbpL2ghzX
+oMIjI/XtG53InFPrFv3dwIVXTEG+vdJ/f2/mpg6RbibYnIq+hUZnzg6N/S7
CIMXijS0cwfg2lmh2Xy6BHVnvy63JAYQcCREv9GtBNk670tul5H64dfN6j+V
4LWis0pYwwAcrXlvVv8pwfE10semqCSeMggqjivFvhXr/yxnkvHPbP1AtJRi
8x/2XOGJAYR8m40v+FuKueFeRbXfpNz9bX6OYRkYfVW/zi2S8gGbiqwH5H1t
+fbtBvsgHFWPNH37XIbCqihnD85BBMTw9KS3leFLof/+IJ5BRM7PKr1iliEk
497MZ/5BiBN3Jjtmy/A44Xpq4fpBND1eiBBjL4dlsPoe5pZBePCzscWLlGPt
zd8yRxUGyT7nKSk8WY47my5IUiwGUWQkoTmeWI5L+vLn+i6S9v0FGrPZ5dB7
xP688+ogWFfN1BfLyrF9NHq63pHkc/eNCm9/OdoymEW5jweRErHiqOzqChSN
5Mx+ezYIeemowwoiFfgi+kI61W8QWqnKh45tq4CXx+6AuJBBZJfeOaCrVIGb
6UulUeGD4D8lqGCkXQHT4cbf4VGD0O9I2WdxtgIaIh93vYsj871wau/lixWQ
1719ITCR5Msc3WNnXwGxh+pv/FMH0fVu97MnMhVYmSZY+TyTrMdBva8ne8sx
sCFLzrOI5HfT/2fbsXL40v78tW8bxNDgWu/Rf6Vguj0JO7FI+i8RihPwLsbY
uV02H9mGkGKpWNt5sBhWrHXLtiwn97YF46mwkSLobGUcEOUaQsD+d4o7tIsg
+expOL8AucdpKwbcES5Ek1Gd3d9tpJxPtaVaKgey42d5Ok8NQfzTYrBnZTKy
jXSJ5/qk/qrTX419kqBeoOakbDiEIYePpbu1v8LMb0/vJ5Mh8r5osrprEvBM
ftUXZ+sheDT5a+9r+IRh5/yTAndJPHd8rvzzW9zuT1sqdydx6ZjU7V1B+Hv8
c9rdByQ+qdW94cdrCG4IFqU8GgKb+rYL4nIvoZ7jMJbsR+J94Y7L791B5F/J
56diSFxoGXRU8ikhe1VEmT2OxDaCUH/wgshqWDOT8ZnEa2uYJ3v8iYYPi6Zi
yWQ9UkU379YOJP6qduz8nkPKV3rfOsYeTvgk1PVH5JP8e600VfZ8IATXlb46
Q5B8usNXRyVFErL05PmcsiFYJblSP/VFEdm6sV/tK0ksMlwX9yOaUP8WdlGi
htR/ZJj1mfsT0bDpzfr2OrJ+k0Ufv0jEEmbez6p9Gkn9JvaCI79jieHJh/eP
tZDx9h+9/Iojjrhl7LKX1UbaBzvzMNfGET7S1u+Me0j5+RHTINk4IrPm2PXt
DNJ+rO7X1MU4Yt0aFlfZAumfM0T+U10c0VLw/Kn2XzKfvK15G7rjiNd22zgb
/5Hn45h8/DkjjhCoMVvew0GBSl+FmcMSqe/60/PCSgrEX51hULjjidc7AtgY
q0h8YsDBaEM8IfCk/O8UHwVDqT8fH5aPJ1r2W937by2FrK/nmsRjpD51YWFh
HYk3rX6/WTueOPMq6K6HEAVWrSFSr87GE2tV5OdWiFBQ5COVvPxSPNE0WePy
YiMFHkoph11uxhMB4Vd+8m8m5T+OljHd4gl9XTbnYHESx1fqmT+NJ/j/vJ/Z
uJXkK5LP/96YtP984NbHbaT/XglXK5J/gEnT1HZpCiIjng5u/xRHrMlcMbF3
N+lfyjApfSaW4LvlOHJCkeS3d0yn/uUngnfkeJ+TDql/QvgpW1kUURc0ZDZ/
isyX58FkhW0U4avh3v1An5TX086+XBtF8ESldDw7S/ozTJYSvfCR4D6/sfnD
BRIX+j6+NvuBqOHJPL3tEulfw8RwVvUD8TxXvyHhMolrtkp6+kcQq4S9a79d
J/U7con3MuFEVYX4yaN2pPy8t98O1zDC57+8qqKbZH4Ug/MZ5aGEltS5E5q3
SPnVTbKq60IJrlZWea0TKZ9gLtRbvSeqPF9oGLiQ8n+mT8z1Iwgf+e2lHa5k
vbx1mpXqPhIr/cyLKPdJ+VufyfOCcQSndkXu76ek3MxT8HRLCsFBhCZvDaOg
6e4fPf9LeUTPMQ2twQgKAorD9Mab8onk3PGh9x8pYHEp62mjkDDLVBIQiKOA
nD2x7H5FROrXQWe2tP/Xf1lsnm0p4b3LZ3V+BgVdD1q3jUmUERaf5WPvZFGQ
LRnzSbi7jOD65Nk5mU/mb3v8038nKogBSRnHBIICGz6hbTFLFUR6ZAvX1RIK
+NOGY1q+VRI+m90/SpRT4HM2S4rdvoqwDNt6pL+S5Gc/G/97XzWhIFrXElJD
+hfw21KzpYZYFeJ8w6ie9Je1IziMt5bIeFMeVttCARe7+SPV4TqC58W1fzn9
FPjWDCWV6zYR2Xe/lAX/oEDM8sSzNWxthN9vw/NnflEQJh9Y5urSRlj/t/hz
9TwFc8so/yjjbWT/nNrxZImCtjg3l4zuduKKzdQzp1VUVE1/tTZN7yQEjPef
1t9ChcLYgbAGu17ihkJe9yodKtS/bymx9aIQRU3tidmnqLD9pMu3ppBCrLdn
PbymT8WzC3fN0ucpBPFp2/bys1QQrS0zfxyphKCayryTCRWdL/8pRyZSiesD
ZnWS5lT8OSH7QoNJJdZtCLjtYUXF9vwnW19eoBE26QnH91hToeuS5rA3lEYU
nC4XHrhChY38YF57B40QGB/87mtDhdMYD5ebAJ245rNQePQGFX4xh4w269GJ
fKn1r8fsqdjq4jun7E4n1hbvufLOkQpmZlC/zDs6cfX8yUNaTlQU/o4oEcqi
E3nzl3l+/0dF0KH4uGXtdII/+OHAJ1cqrt5N9Z2coRNX9r1PNXKnYltu7q0e
fgax5kajcZoHFfVH64+m6TII677DMfYvqBDCTOPFMgbBQ/Ap0SOp+Hj82FxR
+jBhZb6T/000FS7ex/sTm4eJb7/VaaqxVByv1CsJmRomLsjfffbhCxVDWhd9
HXeNEBl1byz0kqjIeGZ7y0J7hFh1PWnP3xQqPGuczmldGyHSP9LazTKpkNX1
FhePHiG4lJfiV+VQMevrv4K3eIQ43yN8LzuPiqb6kLHfAyNEmsv+09cKqfjE
F9VIWxwhVq7TkxQqpiLl5MDtEF4mYZFs87OslIrnVJ01XoJMIlXnUZVTBRWO
bjlfbogxCfPH2Teba6nYlxBIV5ZlEiniraoeDWS+ass8pRWYxIqCCcE9zVSM
dTtsEjjGJJJ/Sub5dlDxbZXOOYYOk1h+7eVKLQoVStfZq17cYBJftC9FFv6i
QkP65peuBCahICuhjHkqOKSPsR1JYxKFfEO9xB8qGndwnw3NYRJNrec3FLPR
oL4jdul8FZMwzRT7prqcBt4dzoZEI5OghvSeKVlBQ/l2tXjxTiYxe97Ur5Sb
BtXtAwY0BpO4ryIsq7GahqltibEaE0yCc2tnddkaGvK3uf35NMskAlYEXzsu
QMMZkyYb3QUmIcI0WlEhSIPezzCBI0wmEVWzLlpzAw2mr6/n7+hgErJfW1Qq
RWgw2XPw6voyJqF8W/9e1WYaDK435rA+MIlKozWi2hI0XOQMsx54yST0FRuy
qreS/qJtVte5M4lLizo/aqRpuNLPfjHOmEk89T5hW7+PBgsDBS7LNWS+75VN
WjRpcDj87lztgxHC9P7fn2e0abDpuMKWYzdCUC/kv2nVoeG2076EWLMRYlbq
SGObPg13v9b+9Tw4QogkH9DsNCP1JZZiDk0OE5dKZRX6btLgr+J7Jfj4MPH9
0/dmi1s07D4/ec9j9zDh7JPg0O9EQ8Vd/UDb9cPE01PSXwZcaeBOFyxVZjCI
xM6tkhQvGny3hYuPPGYQP7+L8g8H05DEndSrWEYnAsNHKsPe0aC5o+KQSAKd
2H8646FhGA3t6gNBC/504lbaqamijzSw3efTLzAn79dl0bg7MTQEv9v+NUKV
TiSvH7GUi6NhR6Yyt8cOOjHh6tEQmkiD8dTNMrUfNMJX5pT3mWQahnmeSkh1
04hdfSLKq9JocJX+8GAFQSNqXg7/JDJoWHc8q3c4hkZcR/pXlywaoi82Hqp6
TiO4ph9e2Z1Lw5LggSaPuzQiLkp3Ez2fBobVKZevNjSCsWLY16CEhpS5+yWc
J2jE46w0Da5yMl+NYJv9B2nE1usPFwsraXAJSOKz2kYjLtYJ28nW03BEetAs
ZzmN6H+to7Oyi4ZKY5UfN4qoRPuW1FUFEzSMZS6Taj5MJZyb7xc7sWhoWbax
5q80+b17dPKuzA8a0vT2O8oIUwmDYRrz7RwN94at8x/9ohCstymRen9osNx3
71IKg0L4a983WbFEg9qDQK7+NgpRnyhUdXs5HRxC5UYH0ymEnSXt4U5OOmYv
9i9ciqIQPPwpikNcdHR9/Rnp/4pCJBTfmwrmoSNBKDbz5GsKoe2kHXeKj471
DhadaXEUgikldIFjLR0PKwXmRAsoxNMOqlDeOjooW6qFH7VQiPLD97ylRejI
bzpgZviXQlz+rqU8uJGOfTvH3fIEqMTy8PW/gjbT8dozKnQrmZ8qW/KV5VJ0
3Ni3pv/HGSpRUEHRGJCjgz+QeSEwnkp8MzyxPFCDDmPj0CvthjTCRyf7idgJ
Osr0+Fc0X6MRFuo7uT5p03FU80lMnTuNWLafZ3WmHh0iBxxopdE0ol3mnr+y
AR3esnQvIotGxEtOrK00pGNiq6lkXi2N0BNoFOoyoaNEQP1iGtk/Etwq76zM
6djLnc2WtJJOzLKnbhw9T8ffR88NoyXoRNW8RMQtKzrqxGODhLToROj0a/GF
S2Q9Coo7n92kEzdHl0d7XaFDxqxf5G8gnVCjOG/jsaGD+WvO3DGPTjCbzsmI
2dOhJi8/dI6LQeRVVSbGONAxUqcjWSPHIPyKDu3ZfZuOkOvXLiudZRAKKaIK
ynfoYEVFMLdGMQhP/wElK086ktevnmYdHSZE9a4axATRse3PKPsLhxFi4nhn
q2wIHW1vV2gsBY0QRUpa5769p+OxgoT3rfwR4upuGfOKD6Tc3oTbZBWTOLwt
tF8vio633M66tXuYBO8mXqvOGDrk4/z9lM8xiXTeycvMz3R8HKoQ2BbNJLw5
Low4JtKhf59qFFLNJMwWG6/PJ9GxWnQpmIfFJHbPqox7ptIh+P2oc9SyUYJt
PPUmdwYddr1bxKa5R4lWmuT060yy32qXl2HdKBHb+8ZpYw4du/NHbvhtHCV0
a/9zlS2kYyEsOW+X7CixpXR4IaOIDquXb6zdFEaJmVzj+0qldKTdv8NTfWyU
eJdw2Euvio6bljC/emqUGH7294VjCx1DWxoXIm+OEg+1nnzIGKZjIGrysFDq
KNFiaWMhP0qHi/iff0dyRgmp/3REEr/TMRe+suJC8ShR83Htm2gWHSveiZ/5
3DxKiGXPnt7yg44HQruFG7pHCYeGTt7Qn3RsCDw8MEMZJQT/hHu/XqBjp/8Z
22Mzo8TVtZ7qfH/pyOa9IH9xYZTI2XGZ7fk/Og49v/HrybIxglf5RMGKZQyU
rXTNT+AeIyyNZNw8ORiQ8dN9xk/iFNvVin85GWjYu1ydwTlGLPdk/XBdxcCJ
9pzFnOVjRPzXTHtHPgZMxXY4Wv8dJRZK38mM8zPQQfTvPETGO9Vzb+TaOgau
WQfSeH+T9eJUv3hBmAHPBHbjTNYoccyq0UhPkoGYQ31Kq+ijRJMA86jsQQZG
jV7xJNeMEpI7a+fiDjFwb+5E+aPKUeI/JH3bepSBNWFLD0zKRglRO+c9G1UY
WEW7McNeOErYeRmPB6sx8M5bMrEjd5QgQo58FjjOgKxM95UvWaPE5XK2rdwn
GdC6pdltRNY/s5c2+ESXgVLBv693Jo0Sq2YqwthPM6Cena67lDBKWHAlmN43
IPMxt+VsjRslkja/FJo3ZMDon3hRXAzZTwccW53PMeA/GR4aETtKGOoYBrBM
GLAeM9atJ/3FXjx4ys6cAbnhtX//ZI4Sc3dEuJnnGVik1H6VIUaJk36LFdZW
DNT2P7E0JfMLjxl8NHiJgcRurPFpHCXUmj/97bjGgEpzuiNjcJScJ/umy2+R
+RWF7o9kGyMk+k92RT9hYM+HGznr1caI5yVHk8/6kPUeik78dXKMmImT9V75
goF4ib4PnYZjRMltPoUbAQxsj9H1fndljJAx+ce96Q0DNxmP77rdHCPeKLEo
DUEMRG0vsDO/M0Zc5mrx3xfKgNTn3Yabno0RdRMlV+nh5HmPXdFcejVGHGhN
VwqOZCB2V8ThwfdjRER2jKBWNAMUuw7ZougxgjMi6Pv8JwbEk/jEPyaOETcf
eZd8iWdA7G7hrlfZY0SnzZ13578wINpdMH29cYxQ0bNxXJPEwNrDBVlqw2R/
7Tc9UZzCwHxI/v2Nf8cIfpGTm53SGWDM5anPrvtO3F068lMqk4Eek7xV9TLf
iZPVYtE+eQxUCOcGPTD5Tny3HFo6XcFAYEjWV0r6d0Lu+bXMgV6ST0haf5zt
OBHsYPIyYIA8j9+p0R6e48Q/I+3LahQGZo1Tr5uGjBNNW3YJxA4z/lexdcdT
/b1xSSkZmUkiijJTKTNPSSWpKC0rqy0iyrciMw0t2WmIVEISkeKxQkP2yMq6
+34+l2uVjN/n9+fzOp/zPO91OOePC0NLcsZEqrjok0+eOzdM5TU+S8xLhcC8
Xn+1qfl0SIgZX91CI9DYIDxm6Xo6mBtFOhaE8bDVbemmx/p02NMSzPn1iIcX
7ma3rTCgg6/P5ctT73mYSWtXWGNKh8uvzyVsHeShUoxOyqYddGgW1WQfVx1C
weHWrAP2dOr/k+fn0YtD+D1Do/pOKB3kKz+uM5UaxlOtJackI+iwJUH89dCy
YRQStBOJjaTDaU/3FS/UhtHsaNCe5Cg6lMiISYgbDWOOcFNTRhwdnI+7cH8f
G8YYj6u91Rl0sN7OdS58OYx69yVDd2fRwSzqjvGCnGGs/ZS+su4tHbSbdOWO
FA7jfOmGE615dNBy9amdqBnGgDI1YrCEDsKB4yYG7GF0VKr7O6eJDt/yBJZ+
0Oaj+FLf/E8tdOjTXt9QuJGPZdKyPv7tdBhMc7/5yYyP6gsdmMxuOszGVP0t
teFj+9yZ1Oe9dFgg9uddxVE+3pp5dsxxgA4iERpnqtz4yBuht9YxKTz+UR3f
/fj4nLwZfZNDB32iOPpnIB/tWNp7t5F02HacZ9VwnY/zB+sWTg/RYX/3irnN
9/hY2OP75cMIHVpD/wXtiefjmV+yIefHKf5MVaGfiXxc3lxoqvmXDgV7rG7u
TeZj6NeZ949n6PBcPvHhvhQ+6lemeB+ewwCloFL5+lQ+MkostCSFGHB9gPHY
Jp2P1nm3nocvZMCp7E2vbN/wUfap3IOzMgzQs2j+fCCfj6/8dL2MNBlQ4y1B
P/yVj/beDRoj2gzQbdl0tv07H8XO+NEy1zIg3dh56MhPPvoeK3JcsZHqPy9r
8mgTH1fZO8l3GDCAPNN8raOFj612As0PjRlwuv6fkEM7H02sduwW3sIA20dW
Eo7dfCQtWPPLzBlQKeAb0/Wbj88gqvzydgrPicSlTv183G+8NkjfkgH80XG3
1C4+Cm1sNCKtGHB1RUNrCdX/w1r/sZd7GCBi/caqg8JzWlP+nasNA+IuRZSM
VfPxp7LzmpaDDHjx0yhdu4iPwQpzBu8eYYDxpLSC5Xs+bpBNe2rpwIByNfKO
eyYfE0TYcp9dGNB59bl/0hM+uo35z0s9y4B/mou2Lwjj49i3O/3nQxhwJLJr
YGA3H7sWtZyaCmNAbE/LBr/tfCy3VuRFXmfAz411YULAx/s/M/49uc2AnYNl
K9XW8/GiBD9E8y4D7pt8upCvxUcnG6MFH+4zoCo6r2K7Gh8tHgTf3fqQAQLs
LOlWJT5qNlbL1MYywGjrS/cT8nxcLC3x6EgCAwITnr0fl+TjxIFDKoNJDDgr
cbVAch4fe2Iev/R+zAAn4R3p9yeGsbJlUOffU4rvrESsBJV/519zdmpkMGCg
x8BmUd4wWijsqs3LZEBD6xy4lT6MWg73D2x5y4Dcn991FiYO458uJZfDeQyI
Kjm2SDhoGKN7Tf6LKGGA9pPIKkHLYaxi+L/pa2TARac208nOIcxcU7zuXAsD
zhxM0frv5xA+PC1U+KeNAUf3nFX4UzqELpzoSoluKp+bZyfGXgzhDu0Oq0e/
GSC88SvdL2EIdc6pNKj3U/nRftgycmsIJ8m33ZsZlD6Kq98Pew9h79oJ968s
BuTJDKecdxvC6vNmbDsuA5wNLuxTPjSE2e8izveSVB40p9fG7h7CGP6P8bPD
lL+KkYsXbR3CteMsiaR/DHjEyI7ulxtCOYN1cWozDLDsMLxwRHQIpy4FKL4T
YIJQbfmBn3OG8Nvf+Ro185gw5JGl4feLhx7TK83HJZgQOTmlszKChwlCzn77
VzFhTC15U0gXiTPuSzY2qDNBxrsYW6tJ9KioH9unwQTrwh5L7fck6oVuu7RH
lwlxVioObTdJjOubMvihx4TGh+aD2v4kTm358MdqAxMGu9zPhbqQWDO75rKl
IRMsvdOv6RiQqHus37jamAnBhdULwlRJjCl59G/7Ziakz2E9aBcjcXL5wc+V
wIQYPb6yvAiJLoHigdvMmTAlkH93pTiJVV3Vm8stmHCq4dK0rhSJ2qYhM1t2
MqEzxdjTWI7EicmRa2bWTCg3L91lq0Sio33WluK9TFCRDit0pOaVfzwxx9SW
Cc8Htq8+pU7i3YBfoUaHmBAa/l3omi6J6uMlEfouTNhZ1YqZZiQeGr55W9OP
CbiL2LjgGImfbbZZv77IBB2FnDRpdxJVc6ZE1/zHhGi2r7TySRJJL++7akFM
8Lr9Z2ijN4l2P9fsSwtmQq/Dp2NbL5BYpNMvsTKMCS7aQT+tL5EYwbV7sOIG
E4xr52a6XyORvVt8/9NbTEh7XKXgHUaizZtqKaU7TBD3unnzciSJH0RCmpLv
MSHczPpPxG0SFc8YxyyLZsL7mU0fJx6Q1N/TEbukGCZ8muq/+ySJROaaLNml
8Uy4P3nXY3sqiXkM5Xi5ZCbcGqdLPMwjUWHnr8OxT5gQNRpNMyomMTg9Wl4m
hQn3+Gafer+QaH18XpJkOhNukHEndNtIHOxnJ4vmMMGGvqP4618SpXvynwtW
UnlpTT8jADy8KxoYWFDFhAzH4HY3Sx6KmFgc8fzKhPUDR3d8seWhYEKjWOtP
JpwYElW95cHDoKpE5q0GJghfot/jnuPh5KhLBTQzIXEap/de4iHflhfw+hcT
fopc+CV9i4dewR8OOHcxwfOB9c6LD3nIzg7Ulf7NhJkl6vntyTw80W2xsKaP
CfFPZlVN0nnYt0h08OogEzzu8Dq+vuSho3FTyToGEz54tIddSOJh+6mkRDqL
CcqmZdrL7/Cw/suafTY8Ks/s6KDzvjy0HuVpzOMzYUf5ldUKx3lYo1ogVDTK
hKBEj/qKwzzEa9uLVk4ywcpyk+qSzTzMNnJTmxBiQd6LX1+KhXkYlfXo32MF
FuS4rBBb9JjEBV1urfuXs2Ch4cIPefdIDBfRfCe8ggVeEnxn51ASr5wsPOGj
xgLdkoqcd1SexmOvbVVfw4K7sZlHHexJ9K3codipyYIez1jBeXtIPKPS0mCh
x4Iny07aHVlPIn1fcubf9SyQGNk3PUeNRLcg98jsjSw48s0w/c0SEnsyNd3c
DVlgZDEnvpc6T0c7h03lTVhQI5O24rwwic0LPy6p3cyCg7QdGbOzBNoYBvND
trCgI5+14d4fAi1jxV9xtrNg5tDandksAisrWkKfWbIganVj/eZ+Arfwk50O
7maB3B8/+9oOAg32aUmjDQvME4vOcb8T1H3EMijagfq+c3uMZjaB8wJD7Ix8
WDB1zLEv3Ze67w1z/+IFFrhIP/TKP0ugx4kjT3dcZEFz1dd/FR7UvH1r2Qeu
sKBUx0Cu7xCBfpVJ9zoCWaDXdy6Vt4/AVUbzN7oGsyA7Jk1vxpLA5iyfDkYo
hceys1jUnMBw1e5rXhEsiPsnuXuZCYH68ZZqY5EsEHxr2a6hT+DgorxvV26x
IOTsmU2+GwiMCVY+L3iHmjeoLnfZgECLsVuyN++xgOE0MBZC7R89PV4kEc0C
gbanLTeBwLQeV5e4GBYo2jjmP9hGoFCN4ZvURMpf8xa/lN0UP9M0G81kiv+n
B3avKbwe7yTGc55Q/fX36r87QPFLom8pSWXBP/XqkVIHAsPOxbS2Z7EgcdFH
315KD0HpoTni5Sz41px8XjmKwNxIh5cxlSwY3XPUZvV9At2mqqyXVbNAq1pW
b20MgeW0x/FrfrDg0Me7PLNkAn3tF25++5MFV9fvrtvxjEDVOr/+jQ0sKHwj
/HZvGoGhhbt1trWyYPJxsJdzJoHrdQoav7azQGnJ5r0ncgjsT1ENsOlkgc39
vzpeeQRGy91d3tbNgkHcU6SSS6D57b/lTr0Uv/O19w5S/vJnPU4N9rNAU2XP
8ZsZBD73qxc7S6P4NvwwLk4ncI7zyyMBbBaIbPhBW/WUwJxGqZkZLgteDez+
dOQRgS47g1IjeCzYFvP9flQ8gaV6B8noURaEjn0zGb1HYPDcueFZM1R+Cr4+
qAgmUOC189t+KTZMm1ZvdnMjsIrb5vVUlg2JOmrFFs4ERunZ6jrKs2GHUpjp
ansClxRuy2pZzoZbs2YmXFsCu/599oxewQb1oeSin3sovLBJe99KNnzonTR6
t4tA3eo1b2rWsGGy7IPhxa2U/yLPz0RoseFhrkzhkc0EFu1dpmmuy4YNqb4G
JkYUvugY1oweG54NBUZepNa3t4q9/rSBDTPDucqZVB5FFCJPBWxig8cIo6Bv
J4H1TgJrNhqx4ceoos0Sar4jjZ+ebcaGqInrwaGHKb80PE+c3cqGjj+f5Asd
CWR60tTWWLDBYnIoh3Al8MJoW1rKLjbITNv3HfEk8Nbc4ucxdmy4L7jWfG0I
gR9VIp9cPkPxFWub20X5EXRcwNngHBv44qLJkpS/Fq//Wz7qzYb9i7fq78yn
8Oh5Jp/zZ4Oq9BuPXCQwzo/moBnAhnCZ3ilGJYWv0HkZ4zIb6LKyscu/Ufim
2jpSA9lgvsRK50AdhQ9sk1yC2fBa/tqXG80EZod9O7o8jA1qWQfrrtVT57d6
29KOCDYkPTjn21BNve8WFbfH3WCD3MUI2ZXUvNm9mxIO3GbDE/vHhX4fCJRz
Xha3I44Nedwpi08PKb9SYg7OTWSDSYMMU/Q25RdNTLb0EbWer33bOZSg7mMC
MUYpbHgf5Ngwx4fid5X2QDuTDbWLPztZ7qX0L3W2ZWWzYdtYk0DSdorv3PbF
6e/Y8O0XJ5VjSqDD7W/3lAvY0Pt8GfuuFnV+kt7ekSpnA1P/ysWWBQQWTCVF
lleyIf9OTtI+AQKnnK+H+FazIZhOK/k6wUXzMp8rqt/YYAjLBrbxuBi50sm/
8QcblBJshEvoXPwRYekdWseG5qEILcMeLkoxN5xe38iGtF2f9uW2cPGwlbJ7
fzMb9sq9sFtAvY+TM0WcotsovQ63DFemc7FPfPyQeQcbaAnz7oVEclHdp8+G
38WG3R0btc1OcTFnY6HF/n5q3THuRIEGF7+UHNeWItig5Xa483UmB0VUbNXL
eWxwT40MOHGHgzZhpit8+ZRegwWyK7042LFTWqZxgg1nT8rbJK/lIFlf+u+B
IAeyPH9V3s1lo/zAsu+S8hyQveSQfaGQhU7bhb+UKXDgYuHt3XqJLHz+kl/i
s5wDX/5+YnL/Y6G259fcBlUOBFxVXHnChIVbxy4mPdDhQPPDMFuTWiaeEW48
LbmNAzPlBsf3CzLx7eli97LtHKixzN45xmTg6PdXTj6WHMj7uUozoY6B1+5f
s23Yw4HjHZK87mQGxizVMXpwhAMtw5yA0wYM/HVFfsNWBw50XXJzEFVioFLP
XJ1hJw6UT7dvfivEwFfPO1bY/v93NAurBMca6FisdWOBpBcHFqg8iwr2pOOm
5iW10ec54D4QFNVmR8ecqy8fyFzgQMcLpyjdzXTUUDM4FOdP8TllGhWhRsfn
tVUK8gEcGNBcFtUlRkfFi4d+J17mgNNyY9nhWRrGKtFTlwVyANX356+javFq
/1OPr3HAUO/MQd8ZGt7wnqejHMqBdKPQsdxpGs6Rjx1+Fs4BpW1JsSNTNLxc
uuqDaiQHrlvnbtSn6nOSFqAexQH7Y/3++ZM03P8+1FYnjgOj4ebjBRM0/O4g
Jfc2gQP779rH/RmnoYXQ8w69Rxz4Ee+7yYiqDQ6Wues/40BSxvOLRaM0VJyY
9TfJ4IBlveDE52Eaxj29Z1ycyYF3vxTip4doKGGpPGv2lgMKA+sNzKhaMNHs
hnkepceY2yUkacgwDkzaVUL1W1YxUcahocuA6LHvpRyYXNUZL0jVHbeTV+6p
oPDqjhhsY9PwgL428+cXDtQbLGoPY9HwR9enTJsaDvVeXBlQyaThjojdPo3f
OJBpZSI/j6pRp3OjXS0HMkZSe4Ko2rD1zGRLHQdOD+7lZlH9coMmSw43cmB9
y9+/XVwaaq2+FfarmQOzX9KERXk0TKtbaunQxoHiD/tkTSh+8SuMGpy7OLA3
4YVe4hgNr5ZfGjhO54CVg+3Jg5QfY2eEXzGYlP7WU37hAnT0ko73PM2h8mT6
MvS9IB1dPT6MeQ5xwE9p+rGkMB13zB8T9puk8tT3qrlWgo6l2eE/xqY4YN14
oH9Kko5Gh2UeXJrlgEzFDE9Lho7arzYoXBHiwts0u0W35OkoaeWrHSrOhbyT
AuY7VOj4rExikbEkF5Z+eHk+bSUd9YyyWMPSXLgutO+poDodMceq5rUcFxr3
j9e6rKHj3jXMdNelXLBPeTxVoknH7qcREUsVufCMZ6G1XIeOnktWejQocUHI
jHv0ylo6/rtban5ThQumGYsOKWvR8dZ8Z5Wtq7iQwFjkvI7qvzTo3+wfdS5M
rBI9sY3C82osoSdHgwsH3ES9DirSsXqw6dGKtVyQ7BYN+k+KjkIVu+QEjLkQ
1Cj2pIzS76ExY7TAlAtNEuLpTX9pqJob3uQNXNizRzybRuVtSwre/23Bhfpq
8ZKFVD4Cr21chPu4cKhYose2jYaiE42si/u58HJSgu7eSMNkr/M1uge5IGa4
mPSvpWGR05uIJ/ZcqMhdPJNYQcNxExWBoONc0HglqdT/loYR70t6Np7iQhpN
Un00g4YyWo7FxBkujKtK6c5Pp/Lw/O+jF+e4sNVFapN8Cg03KMRfdjrPhdTH
UmaayTQsf6B/VPYCF9rSlzRzE6jztbDRoNafC9ZaazzD4mnYF+wtFxHAhaK3
hkIKcTQ8/0d0zPQKF5bo70rOiaHhrHdG02ggF24UHtXf+ZCGdxk7czODubBg
85kf3Q9omNka6q14nQvt229PidyjISvvD+vffS5EH651PH6ThgHacTXvH3KB
19k9+i+ShgvSNrw8G8eFoy5kVPR1Gqo/9PLofMSFw6clijGMhm4+gz1F6VwY
uWy7XCGIhsPMkGLf11zwnHXNz7lKw2AX5WTNTC70hfnu2XmFhk/32R9NeseF
x1EPA/0CaNT9ZsJgfx4X1kumyS66RMMSs1g5kQIuXI3Ny0rxp2GXTn3Tf5+5
4PukpfunL7WfIxk4F7lw90GMf6APNf/1AfU7ZVyoCz8gpn2ewncytk6ukgvz
AqRedHhR/Fa1BTyr4oKDdcqH/aco/v3yqppfuSA4YdOU70Lp98z++/vvFJ4U
gSH5o5Sfy3qWV9dzYXb8mMbvXZTfv5SrbZooP1MkdpibU3mJdz3f0ULxt0a3
F8Y0FJKmlRMdXMhMUUo+q0VDSRHuSRkaF5ysu8X/iNKwuVpH8gmDC9ITUVoO
82iYEOFdtJpN5SfF1LJkehCV5oyImvC4ID/xKCScHETtP3/fuf7lQmmK/eji
+kHk5Zs4cP5xwdlaRNKvZhBzLwQK+c9wQW7io05b6SAa8QQO35hLUPOWnnz8
bhB30IWnssUIEJpo+6XxcBAXpu16YbiYgJaUyPGo24P4w/X23nIpAi5aG0gP
hQ3ifeXaid2yBIWPvvbA1UE80C2e0rKEAA6HF6NyfhDlHtlYHVMgYL7TpX+N
Bwax40j0CFORgJHaGddwg0F0aZbdMaVCgEaO2FrGzACuij7Mi1hFgJJKbGxC
/wAy9iUmSKwmwDRacWpX1QB6fVfkqGoTsMNP62vmnQG8Ur7y/q5NBPgY7nL3
VRxAs+DjRk2GBNx4Xf91pcAACpq97Hc0IeC5whG9loF+vPFRc+P5LQRkTp2Y
NnjTj3E56zrirAjoKA2Pnzbqx6NeF8JW7CFgYJ3oTPbyflTUztfO2EcA6/lD
D5c5/Zj60vBasR0BghHP11XU9GHOE1g16EzA4V2l328c7sORyyPCrq4EnMi2
elVj0oebDr/kdLsTECrdEr5gRR8GbHCosz9BzQ845mop1IefJCTet50ioKKb
tfkGsxdnOOVxdmcJuGW0q3S8sRe31Fy83HCOgKM7M4pHynuxKrhn63dfAvTd
PQuJ5724wClazdKfAHmf2nx2dC/uNtqx8MslAoaDdN8zQnuxfjirvuQqAb1J
Q1l9br3Y6RZ4LPc6Ad6Nfqktqr2oBOu2rb1JgE1vy7NGqV50WUZTz7xNwBZy
05M6wV6kN1mTL+4TMCnNX/fwy28cslAMTEwiYE3YpOKV7b9xg0q9i9xjAhSe
fl7ir/YbL06HWTx8SkB9UZCU97zf+C+fs+hOGtWPL7jA/UsPzl/9KSk4m4An
rotGrLb34K653kHTOQT4BdYSFmo9GPVb1e3yewJ0E+8xzeb14M9Prdsn8glo
zLMdMKR1o2TCLQ2/QgI+1Ev3rP/SjXZ+ZmLDRQTEcVvatV90Y5wNf+hcMQG5
Wld7793uxl/a6c1sJGBvWaV8alg3Ki60LzxZTkDlITHbD1e68RhNLHmwkgA9
7sGbXy904/Oysmuu1QS8CnlS1nW2G1df1tjp8IOA8My16+c6duN6zp+Wva0E
JAvul7Yx7Ub/6syP39sJ0ExI2u2u342FqS6PLTsJyNMZCLuo3Y2bHWs8zHsJ
uHzEbzRZsRsta+NHNrKpPGbHtbCmutDp7SbJ5TMEJNh3xocVd+EH+z/i9QIk
nJD57z92XheKzy8SDZtLgvZPOQfbzC48+e6KyKb5JORF5pkWpnZhqePmBawF
JFzful9J+VEXyi+YnZe8iITF/3izEdFd6PO+dO4+cZLS704f92YXfnMOnSMo
ScIZ+TQpTlAXqopYzOZJk1B0Uqtu3KcLL+fPmz4pR4J5Qe5tweNd2ORSPamw
lISY+caW4ke6MLzAajxYiYTzLyzL1My6kO5hS1hrkJDQf/y9nUgXmi2W5sxq
keC4nvB2me7E+E/NzFxdEu6H+Gl7DnWipdSRQXl9EgxXhL0Ia+3EDHTuHDQj
YdDpWXzu804UPLviV/xWEoyzVtuVxHaig1x/q5UFCblT2Yu/3ehE0XPHG3N2
keDxqPhmn1cneil4fr1qR0J9e8eVxSadWPVFp3rtYWr/GjdDRd1OVPbhVfYf
JcH6Emt0tUonBii+K491JKGj6vy7DTKdWF/tW2p5jAQLuT/nQLgT11zQL/nn
SkLJ8Wuauyc7MERp/FO2BwnNxXHXi+o6sONrwUfXkyTI6/YoY0oHrvf/r0Dm
DAlBT9Q+VlzowFsrTPKrPUnqfXpuf832Dhz4PpV72ZuE+dfyOD+WdGCManB2
rx8JQi7blFo//cKJuusvMq+RYKbiGsac+wttrlimHgul+D54pUi0tOMrdZEU
qQgSuHOG8odftqN94J3kgFskXO0PYk7ubsfPmjEPLWIpv9OS94jFtKFM68EH
E/EkRMsM0iVPtOG5kCX3MpJI+BCuFSxn2IZK7Um3Fj+j9h8vylXuasXgiJSQ
rgwS5Fa3L1m/qhXFLglbuWaRoDd9rXfX3xZMOnVOiv6WylvT6teuP1tQ3b6p
40wulceMOp//Ulvw/W6jVF4eCTbBl4wfBLTgls1Pz/oVkLBq7/RY1aoW/KE7
T//vRxJUK5Lrsa4Z6ZINlYJIgmhWZ8Q7tWb0nWtwJ7KMhB2qV1wy6ptwdjT5
oGgl1S9ewST1ShPKt5+iy34lYX/I0aGYhkbc/URggUYThfdgm31AYAO23ztR
n9VCgum3ixt91jSgR8iPhPXtJBwBucVnmuoxyCNBw7SbhL0aB784aNRjjqbe
7n0Mys/JF8eCMmpRruDYXf9/JERZPV4oal+Dqa++HJqcJsFOv6tk+m016iVp
KV8T4EGC0jI/3rxq/Hz7AWPuXB6sWWiv0edQhbsCJ97emMcDG35CT+O7L9jq
5RQgtoAHOVfFO7eKfUE3l4ot0SI8+PMtdkoiuhKvbrvX8EiCB56n0yDzUQUu
3DiWuEKKB1cLtFwvr6jAOHUHtxcyPFgg/D7U8kU5vl24eiR7KQ/0XpR9Gcwu
w/66EpnylVT/iuJ443DELObyR+LWPHj24mXNzPIcvPE4wqVnLw96rR1e02Wz
0WM/oZZty4P7NifL6nhvUPHz55w9h3mweP+14ZTUl3jrnkNVlBsPXMZTHRJk
nuGpTYnDIv/xQGAoeUD9kSdacAQKOq5QtUCp6krPLyXKz05dzQii6oeLGs/f
94TWhYbCVuFUvZBQEfSOgO3drYo37/FgyyuXmROCiaAaLmMpnE7huZjkufRH
BswYXhVre0V9/3mn5sXYTPhFDDSmv6H0ExxjNDpnw/3D7512vONB+3CRyEhB
Dsxq7r8Q8ZnSv/nZa8/Y99DVcO/J3CYeBCR6Mo7ZfITC6xPuTS08KJVS31ci
XAQxJsc0Utup/bd+f1DEItj9QjfPvIfiH7j/+i+dz1AUUPs1hMWDmmOGagcW
IcTpbLxny+XBjbbhqHflCD79yXYqPGr91cFJ4c2lsMba83fpKA/0VSTcToyW
gtCc5rT7Ezw40s2JlbUpg958kzMukzzIS6z5WvmmDD6fSV2rN03l49CL6QvC
5RCvvGhsdpb6Xip03Ur3cvgf8Xkl3Q==
           "]]}, "Charting`Private`Tag#2"]}}, {}}, <|
     "HighlightElements" -> <|
       "Label" -> {"XYLabel"}, "Ball" -> {"InterpolatedBall"}|>, 
      "LayoutOptions" -> <|
       "PanelPlotLayout" -> <||>, 
        "PlotRange" -> {{0, 1}, {-1.180264568325935, 1.1876919927208478`}}, 
        "Frame" -> {{False, False}, {False, False}}, "AxesOrigin" -> {0, 0}, 
        "ImageSize" -> {360, 360/GoldenRatio}, "Axes" -> {True, True}, 
        "LabelStyle" -> {}, "AspectRatio" -> GoldenRatio^(-1), "DefaultStyle" -> {
          Directive[
           Opacity[1.], 
           RGBColor[0.95, 0.627, 0.1425], 
           AbsoluteThickness[2]], 
          Directive[
           Opacity[1.], 
           RGBColor[0.24, 0.6, 0.8], 
           AbsoluteThickness[2]]}, 
        "HighlightLabelingFunctions" -> <|"CoordinatesToolOptions" -> ({
            (Identity[#]& )[
             Part[#, 1]], 
            (Identity[#]& )[
             Part[#, 2]]}& ), 
          "ScalingFunctions" -> {{Identity, Identity}, {
            Identity, Identity}}|>, "Primitives" -> {}, "GCFlag" -> False|>, 
      "Meta" -> <|
       "DefaultHighlight" -> {"Dynamic", None}, "Index" -> {}, "Function" -> 
        Plot, "GroupHighlight" -> False|>|>, "DynamicHighlight"]]},
  AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948],
  Axes->{True, True},
  AxesLabel->{None, None},
  AxesOrigin->{0, 0},
  DisplayFunction->Identity,
  Frame->{{False, False}, {False, False}},
  FrameLabel->{{None, None}, {None, None}},
  FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}},
  GridLines->{None, None},
  GridLinesStyle->Directive[
    GrayLevel[0.5, 0.4]],
  Method->{
   "AxisPadding" -> Scaled[0.02], "DefaultBoundaryStyle" -> Automatic, 
    "DefaultGraphicsInteraction" -> {
     "Version" -> 1.2, "TrackMousePosition" -> {True, False}, 
      "Effects" -> {
       "Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2}, 
        "Droplines" -> {
         "freeformCursorMode" -> True, 
          "placement" -> {"x" -> "All", "y" -> "None"}}}}, "DefaultMeshStyle" -> 
    AbsolutePointSize[6], "DefaultPlotStyle" -> {
      Directive[
       RGBColor[0.24, 0.6, 0.8], 
       AbsoluteThickness[2]], 
      Directive[
       RGBColor[0.95, 0.627, 0.1425], 
       AbsoluteThickness[2]], 
      Directive[
       RGBColor[0.455, 0.7, 0.21], 
       AbsoluteThickness[2]], 
      Directive[
       RGBColor[0.922526, 0.385626, 0.209179], 
       AbsoluteThickness[2]], 
      Directive[
       RGBColor[0.578, 0.51, 0.85], 
       AbsoluteThickness[2]], 
      Directive[
       RGBColor[0.772079, 0.431554, 0.102387], 
       AbsoluteThickness[2]], 
      Directive[
       RGBColor[0.4, 0.64, 1.], 
       AbsoluteThickness[2]], 
      Directive[
       RGBColor[1., 0.75, 0.], 
       AbsoluteThickness[2]], 
      Directive[
       RGBColor[0.8, 0.4, 0.76], 
       AbsoluteThickness[2]], 
      Directive[
       RGBColor[0.637, 0.65, 0.], 
       AbsoluteThickness[2]], 
      Directive[
       RGBColor[0.915, 0.3325, 0.2125], 
       AbsoluteThickness[2]], 
      Directive[
       RGBColor[0.40082222609352647`, 0.5220066643438841, 0.85], 
       AbsoluteThickness[2]], 
      Directive[
       RGBColor[0.9728288904374106, 0.621644452187053, 0.07336199581899142], 
       AbsoluteThickness[2]], 
      Directive[
       RGBColor[0.736782672705901, 0.358, 0.5030266573755369], 
       AbsoluteThickness[2]], 
      Directive[
       RGBColor[0.28026441037696703`, 0.715, 0.4292089322474965], 
       AbsoluteThickness[2]]}, "DomainPadding" -> Scaled[0.02], 
    "PointSizeFunction" -> "SmallPointSize", "RangePadding" -> Scaled[0.05], 
    "OptimizePlotMarkers" -> True, "IncludeHighlighting" -> "CurrentPoint", 
    "HighlightStyle" -> Automatic, "OptimizePlotMarkers" -> True, 
    "CoordinatesToolOptions" -> {"DisplayFunction" -> ({
        (Identity[#]& )[
         Part[#, 1]], 
        (Identity[#]& )[
         Part[#, 2]]}& ), "CopiedValueFunction" -> ({
        (Identity[#]& )[
         Part[#, 1]], 
        (Identity[#]& )[
         Part[#, 2]]}& )}},
  PlotRange->{{0, 1.}, {-1.2099460715858352`, 1.3584228870796313`}},
  PlotRangeClipping->True,
  PlotRangePadding->{{
     Scaled[0.02], 
     Scaled[0.02]}, {
     Scaled[0.05], 
     Scaled[0.05]}},
  Ticks->{Automatic, Automatic}]], "Output",
 CellChangeTimes->{{3.948122948802953*^9, 3.9481229523201313`*^9}, 
   3.948122991046713*^9, 3.948123043040886*^9, 3.9481231497813797`*^9, {
   3.9481233707957773`*^9, 3.9481233755350027`*^9}, {3.9481234527552223`*^9, 
   3.948123460843011*^9}, {3.9481241432934504`*^9, 3.948124176404828*^9}, {
   3.948124394456109*^9, 3.948124419764196*^9}, 3.948124553867531*^9, {
   3.948125561445524*^9, 3.9481255658787527`*^9}, 3.948126068714563*^9},
 CellLabel->
  "Out[586]=",ExpressionUUID->"521a4e94-9194-4b92-8425-fea48cd77c67"]
}, Open  ]],

Cell[BoxData[
 RowBox[{
  RowBox[{"testini3", "=", 
   RowBox[{"0", 
    RowBox[{"RandomVariate", "[", 
     RowBox[{
      RowBox[{"NormalDistribution", "[", "]"}], ",", "100"}], "]"}]}]}], 
  ";"}]], "Input",
 CellChangeTimes->{{3.948117958635509*^9, 3.948117961737759*^9}, 
   3.948118009196693*^9, {3.9481184224530888`*^9, 3.948118457550139*^9}, {
   3.948118865567238*^9, 3.948118865622703*^9}, {3.948120671985375*^9, 
   3.948120674553061*^9}, {3.948121770190486*^9, 3.948121770270083*^9}, {
   3.948121909348001*^9, 3.948121909579666*^9}, 3.948123161335349*^9, 
   3.948123403489081*^9, 3.948123730710327*^9, {3.9481242216662607`*^9, 
   3.948124242659664*^9}, {3.948124610153791*^9, 3.9481246102495747`*^9}, {
   3.9481247696566477`*^9, 3.948124769703936*^9}},
 CellLabel->
  "In[587]:=",ExpressionUUID->"bed33f4f-46a0-47eb-8dc2-b968bd2f29f2"],

Cell[CellGroupData[{

Cell[BoxData[
 RowBox[{"Norm", "[", 
  RowBox[{"Total", "[", 
   RowBox[{"Transpose", "[", 
    RowBox[{
     RowBox[{"dCost", "[", 
      RowBox[{
       RowBox[{"edgeBasis", "[", "1000", "]"}], ",", "testdat"}], "]"}], "@@", 
     RowBox[{"(", 
      RowBox[{"testresult3", "=", 
       RowBox[{
        RowBox[{"gradientDescent", "[", 
         RowBox[{
          RowBox[{"edgeBasis", "[", "1000", "]"}], ",", "testdat", ",", 
          "10000"}], "]"}], "@@", "testini3"}]}], ")"}]}], "]"}], "]"}], 
  "]"}]], "Input",
 CellChangeTimes->{{3.948116443805812*^9, 3.948116595874456*^9}, 
   3.94811663448494*^9, {3.948116675111467*^9, 3.94811669012147*^9}, {
   3.9481170279593077`*^9, 3.948117034948435*^9}, {3.948117139185307*^9, 
   3.948117139416718*^9}, {3.948117619301654*^9, 3.948117644869664*^9}, {
   3.948117701129861*^9, 3.948117725424323*^9}, 3.9481177976042557`*^9, {
   3.948117949234351*^9, 3.948118005251853*^9}, {3.9481181222490892`*^9, 
   3.948118131658963*^9}, {3.948118183420438*^9, 3.948118183730976*^9}, {
   3.948118290031867*^9, 3.948118300008397*^9}, {3.948118391012185*^9, 
   3.9481183956216516`*^9}, {3.9481184306853952`*^9, 3.948118480496229*^9}, {
   3.9481187959571867`*^9, 3.948118869886958*^9}, {3.948118944962851*^9, 
   3.94811896683502*^9}, {3.948119010941477*^9, 3.948119011052844*^9}, {
   3.948120502251251*^9, 3.9481205305715523`*^9}, {3.9481205627655373`*^9, 
   3.948120562876808*^9}, {3.948120655117876*^9, 3.9481206875217953`*^9}, {
   3.948120734940549*^9, 3.948120735011962*^9}, {3.948121549534327*^9, 
   3.9481215880145884`*^9}, {3.948121688668117*^9, 3.948121689443036*^9}, {
   3.948121772639497*^9, 3.948121793399719*^9}, {3.948121906717914*^9, 
   3.948121917803709*^9}, {3.948122065722803*^9, 3.9481220657861853`*^9}, {
   3.94812220460056*^9, 3.9481222048319683`*^9}, {3.948122583297418*^9, 
   3.948122628001231*^9}, 3.948123178952187*^9, {3.9481232109706783`*^9, 
   3.948123211097036*^9}, {3.9481233858889837`*^9, 3.948123387480199*^9}, {
   3.948123468637094*^9, 3.948123492652911*^9}, {3.948124607930203*^9, 
   3.948124614361999*^9}, {3.9481247097842627`*^9, 3.948124713278831*^9}, {
   3.948124745287875*^9, 3.9481248469399137`*^9}, {3.9481249215669003`*^9, 
   3.948124921622423*^9}, {3.948126083625267*^9, 3.948126093733265*^9}},
 CellLabel->
  "In[588]:=",ExpressionUUID->"68019ef8-0ad0-4736-bcd3-369769400c1d"],

Cell[BoxData["0.027261670813651672`"], "Output",
 CellChangeTimes->{
  3.948116920781104*^9, {3.948117036764943*^9, 3.948117051224715*^9}, {
   3.948117143594776*^9, 3.948117150513681*^9}, 3.94811718447971*^9, 
   3.9481172182141438`*^9, {3.948117638498147*^9, 3.9481177376918983`*^9}, {
   3.948117798579523*^9, 3.948117841103928*^9}, {3.948117941742052*^9, 
   3.94811801037414*^9}, {3.9481181194825706`*^9, 3.948118132143605*^9}, 
   3.948118184196604*^9, {3.9481182858143787`*^9, 3.948118292728421*^9}, 
   3.948118322966217*^9, {3.948118392460451*^9, 3.948118404573513*^9}, {
   3.948118446107132*^9, 3.9481184873970633`*^9}, {3.948118789974741*^9, 
   3.948118876322757*^9}, {3.9481189372969913`*^9, 3.9481189777874928`*^9}, 
   3.948119026920826*^9, 3.948120164039448*^9, 3.94812041284212*^9, {
   3.9481205240286617`*^9, 3.948120540191484*^9}, 3.948120580966222*^9, 
   3.948120724047164*^9, 3.948120766860879*^9, {3.948121555151058*^9, 
   3.948121571333715*^9}, 3.9481216223770313`*^9, 3.948121726277417*^9, {
   3.948121782452505*^9, 3.948121806304799*^9}, 3.948122032073092*^9, 
   3.948122149666922*^9, 3.9481223738481283`*^9, {3.948122613421915*^9, 
   3.948122632674111*^9}, {3.9481231704519444`*^9, 3.948123198900226*^9}, 
   3.948123246439061*^9, {3.948123392638522*^9, 3.948123409259997*^9}, {
   3.948123472343184*^9, 3.94812349749905*^9}, 3.948123736651988*^9, {
   3.9481242119162483`*^9, 3.94812425173217*^9}, 3.948124617989807*^9, {
   3.9481247089443493`*^9, 3.9481247114935417`*^9}, {3.948124743284782*^9, 
   3.948124840856414*^9}, 3.9481248844425898`*^9, 3.948124995080082*^9},
 CellLabel->
  "Out[552]=",ExpressionUUID->"a133428a-f962-4ad8-be5f-1a66523f0037"]
}, Open  ]],

Cell[CellGroupData[{

Cell[BoxData[
 RowBox[{"Show", "[", 
  RowBox[{
   RowBox[{"ListPlot", "[", "testdat", "]"}], ",", 
   RowBox[{"Plot", "[", 
    RowBox[{
     RowBox[{"{", 
      RowBox[{
       RowBox[{"Sin", "[", 
        RowBox[{"2", "\[Pi]", " ", "x"}], "]"}], ",", 
       RowBox[{
        RowBox[{"(", 
         RowBox[{
          RowBox[{"trialFunction", "[", 
           RowBox[{"edgeBasis", "[", "1000", "]"}], "]"}], "@@", 
          "testresult3"}], ")"}], "[", "x", "]"}]}], "}"}], ",", 
     RowBox[{"{", 
      RowBox[{"x", ",", "0", ",", "1"}], "}"}]}], "]"}]}], "]"}]], "Input",
 CellChangeTimes->{{3.948122980215281*^9, 3.9481229873595943`*^9}, 
   3.948124625338462*^9, 3.948124797346903*^9, 
   3.948126096350622*^9},ExpressionUUID->"ed7e7612-8de4-4ef5-bc3b-\
f2cf49b64d0e"],

Cell[BoxData[
 GraphicsBox[{{{}, 
    InterpretationBox[{
      TagBox[
       TagBox[
        {RGBColor[0.24, 0.6, 0.8], PointSize[0.011000000000000001`], 
         AbsoluteThickness[2], PointBox[CompressedData["
1:eJw1U3tIk1EctYWDjNLWfCToLMIegxYlYVSepEJEcuK00igrMVZi0svU0Moy
zeiPTFmZWVq0JCmW2kiMy0RmS7M5ba6sOfdyL+ecLLXCcvu+Lr/L5d7f65xz
7119Ij81h+Hn57dlYXrX/8N/mKu997CCbPfniXWmGgQZWIcb2h/Q+2f4sC74
eWRdK1FXyH8pD72GPkpNjiQZQfnbsEsQ9HfUqEOl183pwKtlcpa0xgIqnsCU
1lVuyDShem3ignWhjZcZKfJ30vnduKYRP12pHceYid1ZX9aDKO7cDJthpOt9
xOx8cqCL74A3mt3Zh8Lqq4/Lcqfo+p+xfm/x0gmFA4jxnSAgzMnt9ljpfipo
LhafiZxzwewtLxrEpZfV/XaJju4/hNJo0y3uiBV3PI2SuBg1pt1pP/gtGhrP
MLY+2uZJMBno8hq4GaLS2ywHje8brPcPxE9rzRh5m+c1hDIL9n8xKGm835HM
XHI6O24I10UC17kALdwnB1LuXuik8Y9iKFESNrNKg2AvPIEO0e9K6uVNvYRq
qIMmfyomIkFBhC2BCxDHoJ7POtifKicUPz36xMKmrJoB4kt36ZHUseRYbYqe
UHwNaJdJ55T77CTIR9CIiRlVx4o+E32/Rix+ISzkNjhIdom3gwnuHRZuXfwk
ofQw4zxvkWpNgYdIffTM+Pp+U8ZvvotQ+oxjd9Wn/GiFgQQcTZb1brAgr1G1
nOeZJpReFgg5HNHPgSnicxdawd8YWzV83EEo/WzIsepkN0Is5E2cN8OGtFKB
9s8pI6H0tINZy9Mr0m3EB5ftAGtWcjO82UYofR0Q95ZHMYvGSQYn3L4newI7
W4OlzMs6QuntROXm9FhjiJ345JM4UfTkSnriWTX9nifR0xyrHIzoItRvcGE2
lJGQGy0j/wAEu7KH
          "]]},
        Annotation[#, "Charting`Private`Tag#1"]& ],
       {"WolframDynamicHighlight", <|
        "Label" -> {"XYLabel"}, "Ball" -> {"IndicatedBall"}|>}], 
      StyleBox[
       DynamicBox[(Charting`HighlightActionBox["DynamicHighlight", {}, 
         Slot["HighlightElements"], 
         Slot["LayoutOptions"], 
         Slot["Meta"], 
         Charting`HighlightActionFunction["DynamicHighlight", {{
            Annotation[{
              Directive[
               PointSize[0.011000000000000001`], 
               RGBColor[0.24, 0.6, 0.8], 
               AbsoluteThickness[2]], 
              Point[CompressedData["
1:eJw1U3tIk1EctYWDjNLWfCToLMIegxYlYVSepEJEcuK00igrMVZi0svU0Moy
zeiPTFmZWVq0JCmW2kiMy0RmS7M5ba6sOfdyL+ecLLXCcvu+Lr/L5d7f65xz
7119Ij81h+Hn57dlYXrX/8N/mKu997CCbPfniXWmGgQZWIcb2h/Q+2f4sC74
eWRdK1FXyH8pD72GPkpNjiQZQfnbsEsQ9HfUqEOl183pwKtlcpa0xgIqnsCU
1lVuyDShem3ignWhjZcZKfJ30vnduKYRP12pHceYid1ZX9aDKO7cDJthpOt9
xOx8cqCL74A3mt3Zh8Lqq4/Lcqfo+p+xfm/x0gmFA4jxnSAgzMnt9ljpfipo
LhafiZxzwewtLxrEpZfV/XaJju4/hNJo0y3uiBV3PI2SuBg1pt1pP/gtGhrP
MLY+2uZJMBno8hq4GaLS2ywHje8brPcPxE9rzRh5m+c1hDIL9n8xKGm835HM
XHI6O24I10UC17kALdwnB1LuXuik8Y9iKFESNrNKg2AvPIEO0e9K6uVNvYRq
qIMmfyomIkFBhC2BCxDHoJ7POtifKicUPz36xMKmrJoB4kt36ZHUseRYbYqe
UHwNaJdJ55T77CTIR9CIiRlVx4o+E32/Rix+ISzkNjhIdom3gwnuHRZuXfwk
ofQw4zxvkWpNgYdIffTM+Pp+U8ZvvotQ+oxjd9Wn/GiFgQQcTZb1brAgr1G1
nOeZJpReFgg5HNHPgSnicxdawd8YWzV83EEo/WzIsepkN0Is5E2cN8OGtFKB
9s8pI6H0tINZy9Mr0m3EB5ftAGtWcjO82UYofR0Q95ZHMYvGSQYn3L4newI7
W4OlzMs6QuntROXm9FhjiJ345JM4UfTkSnriWTX9nifR0xyrHIzoItRvcGE2
lJGQGy0j/wAEu7KH
               "]]}, "Charting`Private`Tag#1"]}}, <|
          "HighlightElements" -> <|
            "Label" -> {"XYLabel"}, "Ball" -> {"IndicatedBall"}|>, 
           "LayoutOptions" -> <|
            "PanelPlotLayout" -> <||>, 
             "PlotRange" -> {{0, 1.}, {-1.3413418010049696`, 
               1.0887476187282612`}}, 
             "Frame" -> {{False, False}, {False, False}}, 
             "AxesOrigin" -> {0, 0}, "ImageSize" -> {360, 360/GoldenRatio}, 
             "Axes" -> {True, True}, "LabelStyle" -> {}, "AspectRatio" -> 
             GoldenRatio^(-1), "DefaultStyle" -> {
               Directive[
                PointSize[0.011000000000000001`], 
                RGBColor[0.24, 0.6, 0.8], 
                AbsoluteThickness[2]]}, 
             "HighlightLabelingFunctions" -> <|"CoordinatesToolOptions" -> ({
                 (Identity[#]& )[
                  Part[#, 1]], 
                 (Identity[#]& )[
                  Part[#, 2]]}& ), 
               "ScalingFunctions" -> {{Identity, Identity}, {
                 Identity, Identity}}|>, "Primitives" -> {}, "GCFlag" -> 
             False|>, 
           "Meta" -> <|
            "DefaultHighlight" -> {"Dynamic", None}, "Index" -> {}, 
             "Function" -> ListPlot, "GroupHighlight" -> False|>|>]]& )[<|
         "HighlightElements" -> <|
           "Label" -> {"XYLabel"}, "Ball" -> {"IndicatedBall"}|>, 
          "LayoutOptions" -> <|
           "PanelPlotLayout" -> <||>, 
            "PlotRange" -> {{0, 1.}, {-1.3413418010049696`, 
              1.0887476187282612`}}, 
            "Frame" -> {{False, False}, {False, False}}, 
            "AxesOrigin" -> {0, 0}, "ImageSize" -> {360, 360/GoldenRatio}, 
            "Axes" -> {True, True}, "LabelStyle" -> {}, "AspectRatio" -> 
            GoldenRatio^(-1), "DefaultStyle" -> {
              Directive[
               PointSize[0.011000000000000001`], 
               RGBColor[0.24, 0.6, 0.8], 
               AbsoluteThickness[2]]}, 
            "HighlightLabelingFunctions" -> <|"CoordinatesToolOptions" -> ({
                (Identity[#]& )[
                 Part[#, 1]], 
                (Identity[#]& )[
                 Part[#, 2]]}& ), 
              "ScalingFunctions" -> {{Identity, Identity}, {
                Identity, Identity}}|>, "Primitives" -> {}, "GCFlag" -> 
            False|>, 
          "Meta" -> <|
           "DefaultHighlight" -> {"Dynamic", None}, "Index" -> {}, "Function" -> 
            ListPlot, "GroupHighlight" -> False|>|>]],
       Selectable->False]},
     Annotation[{{
        Annotation[{
          Directive[
           PointSize[0.011000000000000001`], 
           RGBColor[0.24, 0.6, 0.8], 
           AbsoluteThickness[2]], 
          Point[CompressedData["
1:eJw1U3tIk1EctYWDjNLWfCToLMIegxYlYVSepEJEcuK00igrMVZi0svU0Moy
zeiPTFmZWVq0JCmW2kiMy0RmS7M5ba6sOfdyL+ecLLXCcvu+Lr/L5d7f65xz
7119Ij81h+Hn57dlYXrX/8N/mKu997CCbPfniXWmGgQZWIcb2h/Q+2f4sC74
eWRdK1FXyH8pD72GPkpNjiQZQfnbsEsQ9HfUqEOl183pwKtlcpa0xgIqnsCU
1lVuyDShem3ignWhjZcZKfJ30vnduKYRP12pHceYid1ZX9aDKO7cDJthpOt9
xOx8cqCL74A3mt3Zh8Lqq4/Lcqfo+p+xfm/x0gmFA4jxnSAgzMnt9ljpfipo
LhafiZxzwewtLxrEpZfV/XaJju4/hNJo0y3uiBV3PI2SuBg1pt1pP/gtGhrP
MLY+2uZJMBno8hq4GaLS2ywHje8brPcPxE9rzRh5m+c1hDIL9n8xKGm835HM
XHI6O24I10UC17kALdwnB1LuXuik8Y9iKFESNrNKg2AvPIEO0e9K6uVNvYRq
qIMmfyomIkFBhC2BCxDHoJ7POtifKicUPz36xMKmrJoB4kt36ZHUseRYbYqe
UHwNaJdJ55T77CTIR9CIiRlVx4o+E32/Rix+ISzkNjhIdom3gwnuHRZuXfwk
ofQw4zxvkWpNgYdIffTM+Pp+U8ZvvotQ+oxjd9Wn/GiFgQQcTZb1brAgr1G1
nOeZJpReFgg5HNHPgSnicxdawd8YWzV83EEo/WzIsepkN0Is5E2cN8OGtFKB
9s8pI6H0tINZy9Mr0m3EB5ftAGtWcjO82UYofR0Q95ZHMYvGSQYn3L4newI7
W4OlzMs6QuntROXm9FhjiJ345JM4UfTkSnriWTX9nifR0xyrHIzoItRvcGE2
lJGQGy0j/wAEu7KH
           "]]}, "Charting`Private`Tag#1"]}}, <|
      "HighlightElements" -> <|
        "Label" -> {"XYLabel"}, "Ball" -> {"IndicatedBall"}|>, 
       "LayoutOptions" -> <|
        "PanelPlotLayout" -> <||>, 
         "PlotRange" -> {{0, 1.}, {-1.3413418010049696`, 
           1.0887476187282612`}}, "Frame" -> {{False, False}, {False, False}},
          "AxesOrigin" -> {0, 0}, "ImageSize" -> {360, 360/GoldenRatio}, 
         "Axes" -> {True, True}, "LabelStyle" -> {}, "AspectRatio" -> 
         GoldenRatio^(-1), "DefaultStyle" -> {
           Directive[
            PointSize[0.011000000000000001`], 
            RGBColor[0.24, 0.6, 0.8], 
            AbsoluteThickness[2]]}, 
         "HighlightLabelingFunctions" -> <|"CoordinatesToolOptions" -> ({
             (Identity[#]& )[
              Part[#, 1]], 
             (Identity[#]& )[
              Part[#, 2]]}& ), 
           "ScalingFunctions" -> {{Identity, Identity}, {
             Identity, Identity}}|>, "Primitives" -> {}, "GCFlag" -> False|>, 
       "Meta" -> <|
        "DefaultHighlight" -> {"Dynamic", None}, "Index" -> {}, "Function" -> 
         ListPlot, "GroupHighlight" -> False|>|>, 
      "DynamicHighlight"]], {{}, {}}}, 
   InterpretationBox[{
     TagBox[{{{}, {}, 
        TagBox[
         {RGBColor[0.24, 0.6, 0.8], AbsoluteThickness[2], Opacity[1.], 
          LineBox[CompressedData["
1:eJwVmXc81d8fxykaEhFCFEnRoCGK6i1kVxRakpBCISOaIkoisioZ0TLKykpy
7M29drLKusO995AtX/3O76/7eP5xPvdz3u/X6z3ulbVxOXl5CRcXVwY3F9f/
Pw0v05tLGOaHp4v5mgb3+R7m0ZZ07ZdQgZe5nRNSERdhb8LL2C8SOnAjKken
LdwFjBo7s+MkzOBBSuntpHAfOG038z1cwg42+L5pOBUeCr3Kj7VDJDxA7ehq
M/PnCfBG9MSjIAl/UEXz32+FZIDvii9bn0hEwn7RFB3p+wjOnE3MGBt/BwFF
34/yHaXCqn++lnobMiDfq1ylqKsT5E059PKnOaCQtoGiz+oDr6YD8HLyKwyN
dJ2tXDEI63KE+ri5EcguT+U2FBqBvAHtBsrBMvjrXr0vbZYOHfq+4yF6ZeB2
s0Bu31IGTKcXixmfLIPMB6ulC1YzQO3OgUs1V8qg1VplS8omBhSsVZ4uCS8D
HYbYETVjBnzVkZTJppeB7ZUkEe54BhR9GHOPjCyHE12dnmoHmVDmGLf+LKsC
PonRm17YjMIXhpOT1XQFfPt3fuNXx1F4d1X9my1XJUTaRTS2uo1CgH3nOWeR
Sig0uqkx5TcK+jZCMQ8PVoLq8aAt9KRRoJwNEE8ProRsW/mnwb9HoUf/uujS
nVUgGW12vewsCxqrNS6vUKuCD6VLalddYkGxLl/u6iNVcKznp+7xqyxI0Plo
Jm5eBR6tS5OKb7LARvN3xM57VRCW7fbeOIIFdDVz4TONVVCvI2AtVc+CqS2H
BD9fr4bH5mj6/j42HB7Qqg7yrgb3abkg94NseBSn73P1YTXc3rSr4aI2G8RE
zLDcq2pQSrQ222jKBlVuJ0pMRTWoJT0/rH6NDd7dL0MD19dAyf67jb1v2LAQ
OiloV1sDwk7q7KalHNAxmq8+0lYDF4c6s3NXciB4GdeDjf01EGSXz4oQ5ID0
vVVjPydrgHn+eZ7qeg4cdtxENZWphbM5Tz1E93DAR8ckDLxqYaDcdZeqFQeW
zKWtWS9fBw5+Dv1zGRxY36g1Acp10J8tZXs7hwMqiV3tdgfqwEut0WCigAOX
DZa/Tj9WB89iCzSaSjlQ88pGXutmHfzSk4tQaOVAqLqEukN1Haz8r1nWeZID
yQKZUs+a60A65pqZxywHSgZ0/2V310FFgWKX2wIH/gR5VCzgOgiBde1neDBY
dFOOh4nXA4TdvVOzFoPU3Ue2+Q71oJYWm75vN4Z9JtK6Pe718Kv+S1iJCobj
m3MUuO/Xw0Pu+Vzt/Rh8Gn6zDcPr4Sv1VdUewDAgdci7r7AeuIMO0b8YY0j5
PhHMy98AmCXuccQeQ9nzIJdtYg1Q69m22cQBw8/LsidPyDQAuzRv1elrGPgF
Tqx7pdIAY7zj3sfcMLhapSbuuNAAr+Syi3ruYVD9Z513Kr0Bziu7GPlHYDA+
VuJ3tKAB/hgkbV8ZjcH29cYTamUNYMDiCnj0EkOYWh9NsqMBOGsH3zjGYWC4
nJcY+K8Bph4IXv/xAQNXceFw6/JGONVnv0w2BYMYv2R2pVAjrF5xQcQmDYNW
8g/DFPlG6A7gDm7MwBD7y/yu67FGqDYM7zYowJCtlKtvc7oRlKLVV1kUYqi5
KyJqdqkRirmupp0rwjAl3vpZzbMRWsKvaBwrIfEzNelfjG0EO7XJ4M5qDNxl
hlohrEbYt3Fp5IN2DOJrUgV8phth+1X16LWdGJSsVna7cjVBfoT0koQfGM7N
V7ubiTRB5m1X0YRuDDl7jr5ff7AJShSvyej8xlD34N2N1bpN8N5Xwj5mAMOv
pqWH/51ogl1RX4QZgxhWO5V1DNg2AavYNcFlBIP9W1iR+rQJclRr7suOYrg7
Ht/2OqoJHnY9nlBnYYiAxTchCU0gNkZvMGZjKOkuOnDjSxNkawV/OosxdChK
LbP93gQy10yzzcYwsLzutJhVN4H60Pf1+uMYJETUnfZ3N0FXyAdx8QkMu2xe
qW0bboIxpZy0ScK6mbNLpXATTP73NLF2EoObcX7svyUUaJqj5lhOYwiMEXMY
56fAKsm+ZskZDAl0z32DYhQQOzFl0ky4wV+lqWobBUzbozy2zmFQF6xf8nwf
BYJ5fpu0EU5+dUntvCYFepM7VbznSX43zzrJG1HgeY2RzNq/GB6mP3uDzSmg
zBFa+57w2H759q/WFHikwL1aaQGDVfm3lf5OFMjlm1idTlj9B91N3JcC/yWb
bo74jzzfxufjwFMKHJe9f2CWsBhbtOdTNAUWvu4wN1vE4O/1aY1XIgVOx2p7
fSQ8zq199MgnCqjeTEsYJ2wV3HVrVT4F/t060bTnH7mPmGt6eykFPltJL3Ui
rJ64bDChgQKtF3kPxxBO3h63zrGTAu8Pzd8vISyWt9dYZYACMwfHK3sJ+2vW
PVhkUUB764DwH8J/6qxza2YokGpYffk/wpmpfz0MuKkweSuu+B9hGtYNTV9G
hSh+O+k5whv2haes5adCWp+UH4Ow2e3ecm8hKiyYNLCohJ8ihb5eMSpM69+6
kEG4jMdjVkuKChm7drb5E541QMLJslTon54wMSWsHMq3c/VWwgI9rSKE7dvM
9dx2UOGt67Qlhdw/TiLxUuduKnx9acF6QLjNinXnoBoVDgcK+ykSXvVOLTrx
IBV6KrQ21JL4ajH8MpdpUaHszJLSi4RvKTXVOelRIb7F2ZFN8pPpLjFMNaZC
6NFkSTfCtAK7f/tOUkHOoLmZTfK7YTFD4vVpKhjNCYRZEzbX/ruX6wIVjKcD
zeuIPoIDdY9ftqHCdzuHTdsJzwn3+ilfp4LHd+HW5lmi3zMKcZFu5P4BB/PX
EbaPc8+f86KC5t1nb82IHtu28rHK/ajgcz4w6ssUeZ+DauZnXlJhZ6LzMO8f
8j6+fi7f40h8Z2yEeIg/NlQ3Ptn0lgrW2Xf05oifgk3tilmfqYBV9FtriN+u
2j/f6ltOhSaj9W4LdKL/tJ4jIzVUkFmBZ7JpxH9jWy2NmqigdMg/yJr4WedO
cZhoFxWWmN3ofEP8vjFsdC6FQ4UTkRbr83oxFF/yScmeoALzupuyZg/R3961
Z7/NUiEu4u6dsp+kvnWoFzQsaYas5y1FGaT+iEsH3cRizXDukjLe0YwhnyO9
ZXZ9M6yxONfoTSH9oySrnUu2GbZGh48UNWKIsu1SEd7eDOwnffU76zAIpypM
qEAzjN5Qc84uw5B1pyjpkE4zeKYK7y4h9dDkmMlJXYNmaIyP2FNVjCF0zCvr
9Klm+Dl5c6KQ1FN+tWqX21eagXe8+LZeNgbeisssFNoM+fOXRdkJGN5Fzb2u
iWwG6v10Lh9S33WuhBg1v2qGBr4De1e+xuDHl5s68LYZSu3vuS4j/WHRhMeB
t6AZ6sb4L7x7SvTamzRs+KsZ4qfLnjl7Yhid6e9r39UClYH8Gke0MeRdCS0z
VG2BvPWe8pGkvz3oPPwBabRA/NFd4n0axH/5cddTdFvIPDkoeZr0R62b5xfu
WrZAj3/Wl97NGGImOyQ2B7ZAypMZpcOk3+qPN5q59bfA/ejBbLMiDqy9dG8/
bagFDmUGMILyOdBH3SFlyWyB0tP+JwqyOeCR+XTw6FQLLOOTy5hN5kCCi4Gb
xKpW+BJydEgwigPT7IrQEtVWcEi75PDKiQPvmN/qBJ61AuIduCsnzAHnFyfk
HCNaIchXf50VPwfUdAbvVL5shfyPijZhyzhQF8e38+7bVrgyWCvYM8+GcZOz
oYyCVlBU5pkVHCTzVf70qYrBVhgfmHAZzWJD18PdvbcOtEGS94zQPQM2CEh/
xENDbWAu8kve3ZoFmhYPewcZbWCZGZusROY/t9CL9QOcNrBOjTk7aMqCDm7x
j79m22Cj9KVj+7VZED8SaNXD3w5rrr35HCbPAqVMx8ZWlXbIbnk0sEAfhWPa
Smll/u3g2cnFRSXzabBDrv2bzR1Q/TjwbOM5JjA1Pweu2tYBlP7yEVlTJuiJ
v0+9qdwBp+YCuF30mLCkOpJjrN4BnX9jmH/2MuHWZo+bcyc6oKbg8o9EfibY
9+95dPJOB3gU60bGFzHgiHnme56WDvAJ1w3cuo7M35ppQ1d9OsFUbWJIOp8G
HnsqcsTKfwDX9HKKa/8Q9KdXPG2W/QkNJy8rPnT+DX8d214r3u6GM1S9yL33
u2H7keWL9t964NOIcWKNUhvoJcleyVrXByWrbim4tVWDl/TFTb8t++FPO7/9
Ilcm7GCZr+o89gv2t1htyAhOR2sFx1ZUzP8CKxGZg++9ahAPep0hF/sb3mzN
3qw73IqcVL51rTQaAOO6hBSVn90ozcDmTfH0AHy9tSu3PPo3mhqVXDMSPQgm
YW/PWH4bQrmn9JZG6gzByRChwS21NBRoVBAgpTcEDgnlhbWtNGSprbjivcEQ
MPGpz/Z9NLRk76rVeccJL4T+eDZBQ8eFKWI/zgyBZbjx4gtpOqJTLbZJXR8C
nW02Wk9d6UjyuL3pu6ghUhftOgeFGMhHPyAhZ2QIFGst/FqPMFGL1VXLXYwh
sMhbGvPNkIk2expJfBodAuM++xtxp5ioLlEo4u3YEBR291kcv8xEIn/jHoXP
D0HkaHOpXSATJX/Ou+4qMAyvj4fp2jQyEVWYrrFDdRiCLi1Qn58cRZsU62c/
7h8Gwyeiw5/PjSJPSM+V0xiGV9EHvcttRpHkNQ/l9ZrDMJfFK9LtNorsKrnk
+AyH4QNtLetb+Cia9ZLgo18YBhal0EureRTJ9hr+eBswDEZHj0hZGLBQUJlG
hnngMBR876YcNGWhPx93PFr+dBiWCwpGk8UKlbkJqDiFDYOKhZtp6VUWslvR
Errn9TA8zF+m9/kxCyXvPatXmjkM5dYRRrwVLKQUdCWvr3sYHFYEy35UZaNo
lzMhYX3D0HmlRSD4EBv9MzOw0/o9DNYKQQ1XddiIunG78IeRYTjJfJO18iQb
3cjlXL8+Pgxd1N1s+jU2yvnlKb+wbARUZZIer09kI3U1/0iJPSMwI2ecpbOU
gzpsJFTjVEbgdFHkxLcVHOT+LL1TRm0EQp7LDG0X4KBPwz8kFQ6OQGd/Xt2U
OAdtiNyZqKo7AgLPVZ7sVuKgJeMdn0+dG4HfO1d80jvNQfWpitUhfiPQnSDI
Gn7LQVc7iq8KBYyAZqZuoGsyB/EsMeOLejwCOR7taROfOOjw2fvHYoNHoHg4
yn8wl4Myl7e2pkaPgMYaIyuHag6KtLv7qzp1BHhzaiv5GRxkuYEyx906AlZJ
NhfTtmAkIOGW+619BIxqdy0L34ZR6VrRG54/RsCVtaTERQmjLSvP0+m9IxAx
qnd1jSpGeGKkg0IfAZb71LURHYz8ahe/xC2OQKSDseWQNUYqFYkup7lpoDQj
lqNhhxGtWGe7EA8NTtAuCQRdwcg4JyjJfyUNJKezqlY5YySaIPbcSYQGk0bn
dry9jVGyh5LzgW00sjcAr2w4RudcmhUndtAAvxCVoEditNrRY/iTMg3O/3dH
9sMLjNwuFlrK7KNBzJcO/uVxGGkY6hot16SBYrDDfsuPGHF0GMtKtWjw3u9k
988UjN5AcNntozQ4cqf+msknjHj2tRzgGNLAvSP+jEwWRk0brRTazWmw1z1P
81QhRg8kuYeenaHBs+BZnSdFGO0VfZegf57cj/fGnrxijF7yMcWKrGmwK/NJ
1WQZRjZTnrxvnWjgvDK4jKceo6m6kAFXXxocXj/x1KULo55V7VcXHtJAl/+1
yexPjMqMpfDjRzTQnOqWudWDUVhT6t/4pzTwMk4dsOnHaFtLtUhjFLnPe/ff
HUMYrVkr+PrMSxqML6XObhzBaOaUhexQDA1stRbEL9Ewqmgf2vk3gQbfXwW4
1TMwsuri1lNMJfFEa/00ORjpSBo05nyiwZjGq04DjNH282GnNDNoINL4bq/R
GEazPRusT+fQ4KPEicV9fzDqk7YfGcijgbeu+7WNExhVWn2+5vyVsKPCL65J
jMJ/adwKKKbBGzv7zrQpjLxlH/5bU0oDi1j/c57TGF20qQuILafBjWdWA6oz
GO0YOhP+pYYGG0wf/UucxUhY/o041NNgreetSKM5jOYu0+LrGmlgMO+2k024
iuaZ9ruFBle/dzmK/8Xok8L33dfbiV6OLAgkEY5w4CmY7aSBaG5ontwCRrdT
jQ77/6SBS577pTjC1qPhFYK9NFAdeiIo+B9Gujt+Gr7upwF055Z4E955XbZ5
ywANeNR6PX4SFkm/ejp7iAbJz2nbVRYxmudk9B6i0WDxYfFwAOFfyjO2tQwa
RLw/lkTmbVTtephpxqLBp2C/S0L/MErPCnD9xaHBqSZjOSPCkX8app3GaWCy
GEe7S/jOXpF7MxM0UM9wSP9A2Mbj/NKH0zS47ka6EWH93KQnAnM0WPdDX3uA
sPI0QzDmL9GjyzGhScJiaruj5RdpEFaZ/pvsH2jBy1sqi4sOTVccc8j+gQYL
UNLBpXSw/u3zhOwfqG5umWINLx2Ci8asRwlnqh/POLWCDtf8StTbCb+4E7Wv
n48O7MJJsXzC94t6vjmupkMtK3IqjLDdf3Ja04LkfFxqhw1hw8NONb7CdAgx
PVK4g/Bun+zjq0XpwHpq/4ZD4iFeMtf2ch0dwpsUnyQTXuQ6cn6zJB22xMR6
nCM8dCTwd4YUHdY4t9jwEK73o1zR2EgH15pfpz6Q+L/ksfI4uZk8fwntcAvJ
36Ltun3NW+jgaMMVZ0XYrpw6dUKRDh2VRccGSf53+Wl7HVOiw7/m6I/t8xhF
/15Qa9hFB929UybahBc082YN99Jh40rvYylETzX/FG7r76eDd/UDTSuiP6WL
A+rV6nQ4KW+h9pnoM7L49d+jh+hwcYDjO0n0a31P4J62Fh1WfpRee43oe2Z+
wuewMR1WZH/f9m8cI8tznzW/H6fD6bucijWEy77acx80pcNUr3eOJPHTM+8u
vwMWdEi7Exi5jvhvy3RxgIo1HTzy7l7MJf4MNvfW/WJDhyqORdoTOkZ/cnYv
33OZDrGF0cctiJ+L3d8FKjuS8/MusT+I/y3Gnzzd5kGHzwECVr6kPhSZaBun
3KQDcyjkungfRpsyF/gVbtHhqfdkx0dSTzjOLs/k79NB/c/PggxSfwJYZs9l
AumQw9hZbtuKEdNI4GRCEB2G6+fTvjdjZJJWLbwhhA73uT+MC1IxknJUj1wf
Tgf9pn1RcQ0Y5dA2vhCLpYOY1bT+hUqMJPW6TkfF0yHT027z7XJSLz+Ei4sk
0sHERNo6tJTU+8u8MUIfyPkT+vNJ30n+B5ix/Jl0kBv+UeWci9HavtykJRV0
eC4ZuvvVWxIv/nv38qvoZE7My1+RiBGfhs6Za7Uk3qBzwiUeoyUvW1Z3NNHB
h/UoV/YViZcp9k7posNeq1b39c8wolYqnDDBdNhkquRge5N8/yRW5P1DB8XG
c7Y67iT/m/J5CifpcI76846UK0bI52ih3DzJx5Orq7IdiH8P2MjP8DDg5qhx
sZslyc/n13/jJBmweim3vpEmRit6bDpOSjOg/XjLi/iDGPnzbctaLsOAqs7L
ooz9xN9XCuxvyDNgPn1ZvO1ujBxl25t1djHAZ4/MUixL/B0lkDx6lAF9rIsi
1twY8d7zNTtwgwG1jUHhX75yUM44aw65M6AwK9VXk/RzO/szCbo3GWB7nXew
MpODKk4oM0/dYUDd/Xauwo8c5L+p18c5gAGD95Rq9KLIfFCzP+3tKwa8zTB6
NO9M5ou1Y9wCZQz4+slcvlKKg7Ifn/8YWcGA/Q0bkmzWcZDNQpXx+moGlAnP
5s8KcVDZcNwLhQYGhIbvyhFYzkF+BUY7tTsYEBvvKTIwxkbcVh/PeDMZ0Fsj
n7y1nI24UqwyBoSZ0EOLkdhvw0ZVrE7nBFEmdDR9UbY7z0bBu0yVLMWZkDrW
UvfYjI3WFWh/bpdmAk/r2pe5umykVK2QVqPABOrDgqq0bWxkOfznQ/phJnjx
mB7iGWehr7KP4287MoFSIGru4cVCbjEZIcJlTDC+yN5LcRpF+Qsxj8sqmOBu
cHv3OttRtGD1yNetmgmjc7+fnSbz6mO5C54tDUxoV17iXqo/imI/8V0I72RC
2zpNeXX5UVRZfHmHMJsJMOlsVdrDROKD6+uFxEchiHp+Zr8uE33fHrhCyHkU
ym0rZG2WMpCQodsOPwEWXD7KZ9h4cQT17KS23ipiwWTRTsci2UGUGQ+bh6zY
4OhWWFn+oh9dyFAVkl5kg2y+WWF1xA/0ICDRtyeVA5y+H9Uyz6joM136tYAx
htc3LZOlY0tRYFyAdd9xDEW81krSFqXI7iRbPt0UwydGvdO6NaVIqqgo89hp
DBO8GjYLD0tQUOj5qmAbDE88KraIdhajq6qvxvluYWili92Mci9Em/xF9Jd/
wNByLX71rw9ZaHH/3dWdyRgO/Ojs7pfIQl3swZYPaRjkHra7/wzORGGnv1zQ
zcIw6Cd8znc4Hf3bdtI9oIjs2XeUxtLupqKe5tD4pa0YplOitkSkJKKCRzO2
re0Ybjq5GIuEvkGRGhcV3/7A0B2W0yDDiEdG75VytPowUPVfxU3dj0GF3o21
vgwMv3QSCrVTn6PonftCTVkY7LYYaqxhPkM3BmLNZDGGPRM2UaE+QUjB+Fp/
ySSG5nbaFa9UX8TD3fYubAbDZuH+TZU+t9GvXA1H63kMX5M8bSJSb6Aix7fK
u/7DoBZ73acg9RJ6sXHV1P9/l9u8O+T//28V/w8dyY1x
           "]]},
         Annotation[#, "Charting`Private`Tag#1"]& ], 
        TagBox[
         {RGBColor[0.95, 0.627, 0.1425], AbsoluteThickness[2], Opacity[1.], 
          LineBox[CompressedData["
1:eJwUmnk0lV8XxymVSlJpIGVImiSVosIXIZVKpRKSSorKlEQTSlJUEoWQkFnm
eXiueZ7n2b3uiGvKL5T0Pu9fd33WPmc/+7vPOXufs9aVvG597uYCHh6ewUU8
PP//PXGT3UjhXFClvFFrzzgTSfAdFbXpF1GAWsq2Yp1XkcT+r/5BqSKaoPQI
JnYVRBIna9tTgkX0wbO7131+dxRxyWw630fEDDx1Tge1BaKJ3j2vjr4VsQfP
mlS/1ooYwvfrBspWowfgORzoeosnljixMla5IMgBLjdc780qxhIZozUHxsSd
oJZ6RmtTVCzxLmH19rMyz8BzYWTK7GUcobUpIoJzyxmUZ80Dv/LiiGdlgUKF
+i6gRObUeEzFEQoHZd9e/uQKyi+PiPgb8cTKUfvqrYrP4SJh4636JZ4Y+p6/
dLL9OXh0Lj1paIonSq8s1ilwfAE1W9Xb15clEKFrz7i/EXGDWsBW/Sn1BOJx
7eeSizlucPG+bYD7CcTFlwMLthi9hJroxMmUEwnEXpUd6mN/XoIS5oStUgmE
wH+2zrlB7lCTXbDffzaeYMXn5L9SeQWX9DcyyxvjiSKzhXPn+0hWXiP6LDqe
cGzxdRwRfw3KKWles0vxxHmv3owsymvwdMRPtcnFE3KaMv+5XXsDiukB9vHF
8QQ9NdN2U7gneO5r1+9JjyPOfuyyPC3zDmqfbgf/WR1HyJ7cEiNa/g4U8Qlv
q6FYgn/hXRbz1nuoRTu5UQtjiavZ88mEvjfUct7cKbeJJdbu8JYz+PQBlL74
Qx/rYogFL9NOFTA/QO3Wgd2LI2OI8YGOu9KKPlAbz5dwehpDVPtLxo23+8CF
t37JVdkYImtKq+ri9o9Qe3PpT+PCGCJSz5KT5/gRLmsGRjW7ownf+Hf8Wyo/
gifkNi0zJZpw5U/d9lrEFzwyE60730QTO4998EixIflN/ycFk2ii6aU1p7vc
F2rP6o3+LoomHpecOrFI3A8uAXeC7A5FEdILZePkHPyglrakl3U3kqhRXyZg
UEva68I3XQn9TjxwYd91lf4EChsmTc0RRNnfCLmWpk/k+jv25x0OJ6yVX7z/
u+MzeA4JS+yzCiM2PL42LuP6GZQLSaZR374RFjObUpz2+IPyhk39wB9KCPz8
dEDcKwA8I8kVtfEBRPreB590BgPgIjl0PGuNP2Fic37a9nAgeC5JVYc9+kQk
cldml7BJLvGpfajzkTjH9lC21Aoiv8eKOFrxmvgjcyv4YxDJYZeiNnxyJyJu
as3n/SR5WUUM98YL4j8aL2VlWDB4Gs5e2fPPiQiRHJA4NEty6L7rnYH3CW3T
AtfreiHgGZCpW3zPkhgLCaJ5RpGs15iYrmNE+Pc+Opo+T7LLsQM9DzYS6mKX
I/oufAVPxIkqv+ZbGDJUXMSfQDLlfQ5rwhGbR5xuJOwOBY9GSoqQ62tYWxzc
ytNDslux3PeKAKw2S4z+rhQGF5mau9YjMTB/sfnyYbMwqN13WnL/bRxyw94u
rX9P2gtkwhzkEmBGvWM5wwyDRAJlWFUpCekm22VP+oXDRWujpPajVCx79rmn
nxIOtRHb0fITaTAJXvzWfiQcpj4Vucc3piMl74HK0g0RUFMSf109nI7FPXRu
8NEImPY9uHgqLwOGf86H7LOOwIBbzZZ6r0wkihafLg8kx+/aMqF3JQt8h/f9
Myoj7SoOEhvtsmFw+Vvi+ARpf6flR5TlYKxbf1mY6HdQtrdubeTLg7sJ/83z
R78jtMgsg6aRj9Qb1qIZvt9hOv2ifRFBQNBK5eVjxUio7aEKRBoVofR5p+Hi
p1GgfBI/M3K+HPviVy0W448Fz9zcmnWRDaiUKzWtlY9Fh1VJ+JbZBpgmO+Y+
uxwLR6rn/r26jXib0W9DjY3FQJnoed3JRrApCd2Rp+JA+aDk81y1GSGtx5P3
foyH/zZ7obG2Vhww+Lt8MDceaoFHQud2tKGmK8nclx6PDSsWyi972obZ/vVi
0wcScHvyw5mtW9qhP8Rwz+tIgEF+4jsj6w4M3w2g3uP9ASH5h5stijrwfExX
WXznDySFqf5wWNuJpKnUCdfHPyDhUVv7IbcTxx7e0t0f8QP8f3yvfBXsQt+s
aBS9hhx/z5gbf60L9k/qeD/99wMGA1ue5qR1Yfk/V+NjmxPh4bO+oG22C/4W
l0xktRMRWu/7yHtfN6RbZE1XWSWCf8VqxRN3uqEa036jOz8R3q8EkvJ7upEd
8yk9Uy4J3k94wyKIHnDPj+SdrEuCi/nwS7uXfVBY2q6iSktCQ/htDdmCPjwq
KCyQ/5UEeSpjnvGrD0t2fKas3ZyMUKOBh5dv90NyXr2k/14yDKKHFEK3DuB2
qqxWk2syxrV3rPmrPoAft9eXlfglw5dxa+KyyQCONI+Ux+Qno0eKkbDm8wCe
e7TrBDUmw75wi5dN6gAqVIoq3zGSscH0umVt/QAEf8afcJ1NRvR8qM7OkQFc
iP5cfX9FCvSD+2Ve8VMRdOW5rrkkybxZCiGSVNBW36s1OJACncAKzrkDVFg/
1ahXuZIChRrO+TxjKl6f4zYtSUgBn7zs9vdxVOTPaXR90U1F/HRSg8JxGvhS
dhu9M01FkHfhS44xDSdubehxsU+F946mwyE2NLQ3cntvBqXCxuhnxBJ/GiYi
/al7RlJhQBxw6mLSsPXsKLvYMw097jmSLm6DEHU+dvjWtzRkTVy1HAgYhFBC
qOeyzDQoLGrlDiQMYlH3bE9CTRrulv14IEEM4jf/ebmztDT4vvL4e7VhEA2U
zPt9SulQ8hoTM1lLxyN51/kZRjrS/PKNDL/SYW3SdSboTzoGLn4eDEiiw8xr
/zesyoDYBts7nYV0nGEzjrorZ+BRoPRjAzod0qEnXq/5mIHtXz0DL+5gQKQu
vCsjOgMGpjelPh1mQHBubpdhQQbcJRHbepKB2UuJdaGcDFSET2brWzEw+pJf
QvNfBvhu1qj7OjNAT71myxLOxGGZyMpmbwY6qTlFb3Zm4i7L+eyaMAbqVgoL
y6llwif6cue5VAaKVe7dbLyQiSded8a1CxnIulOWYX8nE479FXWr6hgIL3e8
nPuJtL984RnFYsDRuTdEh5sJ38YZvmZRJqTGInfcCMwCxWJweocrE+s38Txe
nJSFjDy1tqm3TAicvFwTU0raV4akEYFMTEcutx4fz8JQuoHthTQmakxs0p4e
y0Ybb92QC4uJIq/KRZJXsjGiv6vy5BQTmTlSl0rIOjYf5RG1jpeFsHWts8tC
SPupo2bxoix81pQ7+SOVtIeGajzcxoKX3augs5XZEJz6K6GhwMLz0AHuVF82
7Lq50cfUWHhYdwj+U9koeW5TUHWMBUG5dEYlfw5mVHyf1p5mIeKtvNcfsRxo
zGYqN1xgoVF3W6eJVg5arP/ltN5gYVe18P2tn3IwZ/wuc8CZhf7yscgUxVzo
KcYn/cpkwWHbnVP0k7lImqy3ni1gQeAV8+da01yMJ/yUmytl4ZB2r5qTRy7e
SB9J4G1h4WNJVRc6c1GwqipGYJyFndLarrbcXAjWcm+vnGaB8qJwWzhvHnQ9
Vm1fPc8CVyPLfvHOPAzMG0SuF2DDLWz/RiXVPGzPeXJTdA0bogsSCy3O5eHd
g1DpTaJsJF3befuLeR5y5EsGxSXZOFb4XbD2UR4M7u87fmgbG30Skunz7/Lg
KO5bvVeWDXuXICP58Dz4VP93audeNr7hY/TH6jzkbck+t/EIG3/yXTQMxfKh
0QLjv6fZSMwxcmDl52P1gVPWhQ5saIu2i4k05UOW+mMi+zEbPU7nik8w86H8
Vsg+xYWNpYeOC/0QLMATRrNj+Bs2bmQejLW/WoA+P8PnL0PY+L0uRS/yfgHZ
j/P4noWz4e2we7r9VQEkRje9cohmI/+AtOaRpAKc06Z63kphQ9/v69DdkgJY
TmoImmayMTQl+iGkowCOIRHeBnlsuOh/UmwYKUD8icVrzhaysT5tVR8vL4G0
X7f8jpexYez1R5++jsCknJPw1xo2wswY1WWyBCSc/2SYNrMhuzY729OAgL44
z9zgABsaDqZ+a5MIDF1d6j70h42DQZciffdQ0DewMXB6LweXPWqoLw9TsGxv
iHK2EgdP7NU3PdSiQN5Vov8ROCjU3eV72YgCQ8mt0vO6HOj+nXfd/IqCpmty
P/huc2DFuZ+/0oeCmeQkvTIrDj60smd4gikQW7D/56sHHKQVXlGYjKJA+Vy6
3/EnHLQlNFkPplCgH6aotPwFB7MBx+Ja8imwmczuqnnNgZh7HrO0goIgDeWn
77w5ULXbK5XZTIFUoUx7rR8H10wir0T3UZDU8/bKtgAO3E5sDAjgULBzZmrQ
JYiDyIPeLW+mKPixxtiy6ysHI4KPTt5bVoi0Ezsfvo3kwIE4dWjfwUL4Z5V5
/0zlICCuyH6LeiG2t+xefyqTg7zPiknCuoWIGPMNjszhgNdGctv0tUKEytyI
vVzIgZfEf8J5bwvh7fuvmKjj4IeApV6CfyE2J5mfEGnioHGmzzMknLRX1zbY
tXKwrrFigWs2yQuCerf2cHAoX0XVrqQQQpsXmjn3c2Ack+J0o74Qnw5ZDnXQ
OPjmGjSuxSjEMxulaU8OByX3VskqjhdindfXp4wRDpiX3W9t/1MIj6jFfBjn
YKn2nzCRxUUQLr73xv8nB7L7bPqWrSqCd1+L0OQvDk5vZojMbSyCgwTf20cz
HNguM7zAlSmCWU12yaNJDnx/1Xn37S2CrKP13CPSfwbtaE29chHmtmxVeMwk
10vHdeLtsSLYt/FZfR7g4NePgnW654rQ40GPSu3iQPHxoWsVt4pQxQ3fOELm
I2vNnl8UnyJEZ0otvELms8Pp7kbn4CLMWCxQcUrmYKY/Rk0lmoxHjObgF8eB
Ury0Z3Z+EXRdvw3VkuuVrSkqkcIugsRJiSZVDw66Yi9p2fwk9fz9t9zoOQe/
hfws5eaLIJTUr/WQ3E+He1emx64pxrjw1+xEGw4Mj57qur25GKblz35WW3Lw
KObNP5kdxShwMtnNNuMg58GiE+Gqxcjo2/RN4jLpv1vD+trxYgh9+NulfJ70
r+7iK65fjJCjvcKXT3EgGp2f3WtSjJn/8k4/OMbBEcE/fV8sijG076VrLHk+
jO2V+AztiyEQohv9+AB5froe7NjgXAy9pcL1urvI/RQ5ft/Xtxhp/WFiY+s4
6BGQCzj3tRi0E5ZHKQIczNndKRCKLcaGjL2WHxZwoAIm/1uiGN5elMz9o2wU
tHcHvxwqxvVDfeccS9kg+MvLHdRKIPVR5DWvPRsDVnxchZMl0J0fSGyyYIOn
VX31zwslcLOIbgu/yobatzxj6zsl+AVFae2TbJgu+e2626EEMnHzJ9ark/Xm
nmLUsEsJjNeV2bIPskE5lDJx61MJOkb0iTdSpP+vY+tkvpVAwECMabSB9L94
tzI9rgRqxYMCuwXZkLhreS0so4R8L2+44ryIDfWmKHfTwhLU+GVdSf7LQpFl
8MbLIyUYX6dk6tTHQirnzh2TXyUQrkPM3nayf90+nHuDpxRKL49NcupZeGne
bmglXIonPy+6GRayoHN9VeAL5VLwNTyIPhJB9iNqP8dDuxTSr55O/Awi+4/p
j0Pv9EphqvrycLwf2b9MTnb6m5UiKN63RuwVC/WXX2744VWKDa9Tx/9akP2p
4/zt1E+l0FPLPZRxnYWkS1JZWaGlMJsuem5lxILPBeJScVopkm42CffrsvCi
5W1URUEpGsS6rnzWYsH+vPF0bUUpfjVTI8+osnDx7Oynjp5S7NOYUKLsYeFY
Qzmzl1mKi7Mzro7bWVA68+ng4DipJ4mnWl6She11Zu7s36VoOZtZOS3Cgsip
/W1cvjKE8njL00heVsMr81OwDI8Sb3+uIfn3iYYHMxvKoGeiPp9Bco/OvbUL
d5dhJHey2pPk2vIjN/kVy1BjWb3PgeQC7WXpK9TL4C0SEWBK8lfNKP0NF8qg
+/DCrQMkX1ejftz9tAzR+7IW9G9g4TyROLjvVRnuUr0tKknWVH22X+lDGfS9
LRpSSd6qvLFZ43sZZriiIR4ksxUvrDaoLYNBzNND+0juzNhy/Up7GWQNLoaK
kVx1YDL5OrUMPEv2LFlCctz+92fv/VeGSLOBlu71LASlXPlm968Mz9dkHykj
2Wuv7MTDpeXQLvoQlkSy1Z5K7+ebyjEiftTmJclXf3weeLWtHA11G9utSdbb
bS7/dm854p9OqRiSrB6v4OJzpBxPZGsjNEnet2thw2etchh2f1++h+QtsY3i
wWfK0XJnarBIigXhHaHWYZfLoRcoZPxFjoX/ZFRWJtwrh/K0jq6uNguqNI3y
N47lsK896Sd9ngX3YB3n2y/KkRJ+um/uKgvrhPXHtgSUQ1NP3ybBiYWDvHfq
A0vKoRZz1VcwgYVneTavHOvL4e98vZeZzULZQwdc7CLjv3BThihj4dKoa+Kq
8XLoLriTZT3AgmO3/3uPjRUwNXLoaSDvQ5RPIcfMZSoQtNdpa4wEG/znIv4d
3VuBviVPrFx3sxFQkWj9T5scn+bKs+8YG7QX6dt6z1Yg/o3b8WX6bOxEbn+O
cQXYpq98aKZs5KSXnXGwq4DxirfSHx+xscC2Zon+0wpEDr6/d+cVGydkm4i9
HhWYzPbJOOrLhg+r/eHKjxXweBGblRbGRndY7x5ucAXUdN1a1Mj7irTJIKsq
ugICa03Ga6rZuCvC+RqdWoGKXkWBy+R9Y+791Eqzygrcth4+aruUA82Tv8vV
WyogrVR69e8msn8u5nER7yfj4/n6+PU+DjY9XT7eNVWBuz7nUr8Zkf3eUqrh
rEQl7NKzpZoSOHDW1PPGw0qE/XnFu//cEBbMxglt3FoFDy2mUf+XYWys1fiJ
PVWY1Hx/Ry5xGArfOlvNDlVBW1Pp8dOiYdw8vuTLj1NV4Dv6JnAjZxgVAde3
ajhU4a6aXOelgyN4f1jksEV5FQ4fcbjY0DCCaMEksXeNVfA9LG4uTh8Bhab9
L6W7CrRDFQ+spkcw+ca+ZG6sCtFKon4Cm7lYfnV5lOTvKswpFkcY7eVCen/Y
a22+ahgo3k2L1eTiYnf9ae8N1RA4WNCsc4cL60TzvelS1bA5cGvw8zMumee/
a7pkqyE2FyLj946L0Eu+v+YPViMr9H3YxSAusnft6tyiTvrTctm8IZYLsSfu
NzItqlHSriG4mcrFAb1N2j33q6H/ZP+b/lEuTkunbed9Vg22hPTib3NcONdQ
uSd8qiFtuWh+y4ZR0MRUHPtyquE2V87dcWYUf8abDReWVmP7tyyLYeNRCJda
qmyvJ/1rxTDiLUehfc9/gd1gNSbfvend4z6KmPyfXosEanBX8lTtgfxRFH14
Y71zXQ3mSlWOT1eNouum5LkzEjUItJQrzeoYhYDgmfUBCjXkO29l/pGpUWyl
MWbzVcn5BjyH/vKOQTXjSQ9NpwYL/o6nFawcg41J7DfZKzXQ0G6KV981htf7
1N3O3qrB0FDR9oWHxhC2uMPcwbYG9u9TI0q0x5DTZXX8y+MaPDeVYP05Pobm
H4tkKS9rIDC+IrhHdwwjz4MEGe9r4O3851z+mTHwXdo/sTSQtK/k8IecG8PB
f6YZ53/UYINcif1VgzHonqI818qqge9rj/i9RmO48UX8jGJRDYQYuvSFJmPw
VuxjibbVYOBL6/noG2PgWBuJ0P7WwGUpa9+E1Rh4CnIYzUtqMWYWZ1lsO4Z1
AqIppatqcYpiHeZnPwaN6I4TMVtrof5wZtXhR2MIGrjwxOZULWj0pRPPX44h
RS5d5/qlWhio1W2/4DGGiifCa/Wv1SL9i4/pNs8x/LehOUHxQS0Cz21sqPYe
g8CtfY92ONfid0L/kpCPY5BK/6C98XUtLJdGwObTGE6f1eufD6rFFopsonDQ
GMy+JsaNR9YibuMEkxkyhsdcQUdaUi3WPEzfnP1tDD5HrDRbcmrh2uR00TNi
DNGva4XKSmph+0u8wpq0F7TL9mbW1WJTWHA2nfTXstUrJqajFu2nNsZd9h8D
b9EJjbcjtVD7vu7d0fdj2CAUK+j8qxZTer7OWW/GIGeytNuGpw7xc6tsd7uP
wfB3+X198jKwSX+F/vqnY0jbp/V9o3Id+hbwiQ5bjsE8HPyxnnV4Zjrx3Ydc
7ycTIS1f/OqgKWD9eYnGGD6SL+m3X+swmjni8URlDJTuvEO2qXUwXMm+Y64w
BhHhw3eUuusgXtC397DUGGrcFOrKdtaj7/baerWZURxeWb3gw4F6XH3J5nya
GEV0wDVFI7V6TH7L5eMOjeLFj3ehYxfqsbb72uGAXnJ8B9tug2s9LE/9+D5R
RI7fFbzesr0e3L3HnoS9HYUG53nSYo0GZL1d/zlBZhROcnVVd441QHH/y/YG
iVEk3RdhNOg2ILxjcv2U6Cg2zyeKfLnUgC9b6vwPrxzF7Ore53vuNcAt2y2w
fJqLJGXFCwb+DbjAmAimVnDBcn1unR/cgJo3V/v4irnYXF77Wiq8AUflazdv
z+fC66xZwUhCA/Y9jv5qlcxF8afEjrOpDYiXWDfwIY6L392/JzOyGiBX9kIi
/TsXt80/bHMtboD4qqvf/gRw8TWuR51Z0YCvGTXUzb5ctI1vMz5Z14DVxoel
NMj6tOLgfYek5gaI7qcn677hQvNxgffazgbE2v4588Gdi8eUpXGP+hqglrR6
tPU5FymLLpT2DzagbXSHl6gzF+Lew7Mxow34fcegIvwhFwXXnGNSfjagkGGl
v92eC5P9ay7nzjTA5erLgXgbLoLaDmfVLGgE3/mUmXQLLjZseuMwtq4RCocF
dlQYcZE5uklmZmMjBlOl0nUNyHpLSW7lkWxEyu5D6o36XPjd6FRYvasRqpLm
l7tOcbE6dvtPBTTiND/l9Qi4SH6cF6ai2Yitz9vW2ipzoXdK75z28Ub0/Rn5
9p8SF+/HHyZfOt+Im2MiOfNkfZcrWn7N1KARchby2i/kuKj7+FXI4koj/tC0
m5bs4kJAsdz60a1GOLfdHxKS5iKO30j8xd1GKOu9cfCT4OJE12idp20jVlWF
LhDdxAUn7vkzX4dGjKg7mRzfQPaDp+vkgh83YnHFjQXlq7jYdia297tLI7af
Ph2puZyLMgnVtz9eNuJEi9KJIj4uFpXcHCHeN8JrYIVPPtmfIvxmv1T4NiLe
fObAkYkRaN56e7IxoBEVI7TOrKERPF+WHksLb8TvmUzJtN4RzOvxWSzKaoTb
quvJscUjCJby3yCY34jIz7oXtuePQHlqV8W6okaUbFKc/Z4xgsefz2/bXtOI
yR0C6t9iRjDTG8Y4MdAIe42Mhs/vR/A58aDfeUYj/CpC7deSGT7oWqVpPNSI
gtOeGz4+H8ED6cnwe1ONmDI0NX33YATCv16ed5htxEbqCT4B6xGklYssdJ4n
1/fWgejXt8l+a6l+3Zu/Cbb3l427GY3gg3LrqoAVTQiYnfq44MII5AUtCr+t
bkKKc7+iy+kR1PfP2cSub0Lpoqruv8dGYJXsLZEq1gS7imbluCMjWPFCuiFX
sgn7E35Nd+8cQbx+lnOJTBMGP4ikCoiOYHi6v69VvgnmRld3WM0MI+PW+6IT
B5sgsN7M5wBzGC7tqpHEkSZkN93+M9c8jHWZwfditJvAe8Ku1pO8f2g4GM09
MW5CmNJL2xjzYQROtYlIezShZG1cNr1lCDoTtfp2/U2Qt7hhIuHDwZprT5VY
9CZccB2283/EQV+DrJjxUBM+Bdx/JXSDA/skz0Gt/5rAX/UiiUeBg6/Wx+1E
ljejZWfEAmorG7+4Je8pB5sRNkKP/CbCRsRQbpXgu2Z82pq8sriOCavPZ7ZY
fmxGq2hlwOd8JhQ1Bx+X+jeDT4i65W48E1XBy3Y/CW/Gh99CSmvfMDGhd/k9
J6sZT+ptTG9pMZHzd4SlWdCMqBKPoSMKTLjFuqiFFjdjJDvUXmgLExv4oicu
1jXjXESDRzYPE6qZv86XDDZDyUk+eXkeA/xmb+LFOc2wt9I5MhDLQJPQ5kWP
R5sRe8O0NC2AgZuWWhl7Z5shfdq788pDBuTWdwq+nW+G8dHoG/vMGZgpvnuL
vbAF75Qo3MUXGCiy4aEcXdqCht0dD7uPMuC1yXfDV8EW2E+f9+k5yMDFqm22
v9e04MthSanhnQyIP8ytvCDSgrKno8mzmxlIaaA9EpBugSzf68Z1SxjofLG3
1+lQC8aECoTOttMRJl96oFW1BRv0PUOvVtNxt9fgnbxmC3Q/G8hbEXTwKLqA
dboFIZt+nvGMokNmqO6bvlkLru/c/r70IR32enfN97xvQdNRnxWHN9AhuClq
jE5vQcGQ0fPt5wahdvFF7yCnBYExFLqx9iDs3l+tpo22wOf21mMfDg+ijXdD
1MBMCxyYo8t/Sw0ihOlh0iPQCgmaq1/1TxoaxG/qdq9qhfA35vQ/Fg0LLqsf
7lrXCj7Tk4YKPTSYV8+u7ZBoBaNXWDy4hAa5JMvaZoVW+HdGRVv50WDK0c5t
OtSKl/4Cy8Nf0+AjtSWmUbUV1pds77U/peGXb7dbvU4rDFoP71Mzp5Hv1Uy7
ulOtUPf96mtvSIPhEl/T2nOt2HOebzr6NA1eajanay614sKSvrE0TRoKnHSV
q41bMfDTX/67Mg3jKdt3Vl1rxZOB87Z+CjRIjfBtqDRvxcpawZSXsjS4m+T/
LLNpxdFIt/3mYjScOioXV+TWimgDm4Pb5qh49mRZQOHrVihr7Xq4foqKpHSm
O+VdK+r2MjOXjFAhvP3r9QJ/Uv9y40Psbip6BIREc+JbcTn/mHJMLhWC2iNL
spNbwRu74GlAKhVqzhX/ZWa0wvtTfv7rOCoiJlwa0ymtKLDeD8svVNxtm/BI
bmmFqJS4xq7HVISsrHNI6mzFD8Gu5xvvU9GgE2uW2NcKnT++xcvvUKGQe10t
gd2KZy3LtEYMqTCfUpWL55L6Cktf9pyjwn/3RrG4yVbEJbiU1Zygosp8emns
dCsOBh5Zkq9BxdzX5unouVZUbh54fAdUyHUmMqJ429D2wfbESU0qTFd7NUcu
bkMX30KRXcepKHHTTIwQagPP8NaMIdK/l0W6eah0G+Qz74xbmFMxpJbgsXxn
G656Lz6bSsZ3bMP3WIc9bQi0+JY8Z0PFgnLfUd3DbVgq1m73ntTnJG3vMHum
DWwXjf/SvKlo+3PH3+xCGyQNey/M+5H6mm/k1Bu2wXS/Y8YxMj/jrufnv99s
Qycj4WHXd1Jv/z73c4/bkHBC5Pe/HDK+jJ3R+S5tmNySZnicQoXUO6mq7e5t
WPf3dK5PKRUuN0VHPnq2Qa+Ns7Gniope5dWC/7zb8CHR7cnWBioOCy+Tt/zU
hjwP8V6rVjJ/w7znWr+0YfZajkpWFxW/imbvq31rw2GfQ6/FaFToB074xUW2
oTDCvPTHTypSbDmZ6+LboJP5kVd9EQ0rj1M7XZPbUFNJUWleR0PVdMMmg7w2
1I+KZkwfokH9QtJ3vqY2UJXqI9VcaAiRjS63bm/DzZNztKYPNMwtDOV09bRh
4soO8ZvhNGSlvN+dzGrD9PMXn1+XkedLyDr9yt82LK9V9GgSGIRY9e7SjO3t
2HEt1MIsYBC/1OLot53bsfYfVe/iAB15EcNfHrq14+TfY1+Kpuh4zi973v11
O9z/JDDkljIg2BBfGP6xHYtmnB4t2ceAzNUfIX1R7aCPr4rIesHASNHoBW58
OxTGHo5K+5P1TGbPirnkdlzn9ip9iGdAdTTxsUheO/o4MbUWrWQ9fJpsoN/Q
Tr5j1adFtzEhRp1YeaO1HbzUKPVXR5igae4rt+1qx7H+FV4/zzARHW33zKW/
HS9677ddNSP7h0Dqgff0dqR0d0rUODKhYPNzJJjTjl+duKP0lonfzfsj4kfb
8TvX6ebpECYoivZGuT/bsVV5HOkJTLh/SVtdNdOOQ3nmomJk/9H9N1XZ8bcd
hsq9U89rmFh944Ara0EH7PLO13O6mQjZmTHGt6IDmXlqbpm/mUjPzqyBZAe2
54uOnlNi4dGmmRenZTpwVOVDRfYxFtRclY5c2dWBG/lLwiUusVCjkx3z6EAH
IvKnLo0+YIHenuOefrwDwgV1ha9TWYg98kel5HQHdqlqBY0XsWDz9ch/Tec7
oFeQ63CpiYU587wb41c64FUQvWvrBIu8n+Sr7bLrAB/x3I8ix0bX5fnpQw/J
eDBrvU2VjdB81USdJx1QIaxPvDvFhrmks/kl1w5cBlP6P2M2ZF8Sm8zdO/CM
MP5ndJeNSfa/FnvPDrxDc2fRYzaydNW8Xnh3II84nrbDk41nSS5Hffw64HDz
7m1bLzY0hQt/hwZ24OxcXF0nycsceVMSv3ZA7uOwgsZbNhq61S0KIjqwdueu
L7EkG4cXtXf/6EDNpdhbj9+xYb+vJG1dcQc0UqN5NnmT8SlIhH6o6ECWhavE
O5INDj7xFKjrgLyEodo/ko8cVri+oLMDi98ud6F+YGOBRsTK0dEOsm5Z/fv+
kY2pozx/bk91AJuOia/3ZYOhZcwcnO1AbrM4PEiuOC6c38nXCR+1xmeWfmy8
P+tmWSraCQNRhXm5z2y4nB+4oCbRiZoGgc2hJNtdUFbP3doJlVcMlVX+bJhd
8pc9uKsT8SoFV56TfPHy1Ppk+U5ITH16+pNkHSO9hbIHO+EXax1sFsDGoSvx
o5FHOlFpUNGu78HGzqv8XZLqnej77qPa7sCG2DWz0iDtTvyZNP5++SYbgjco
Set1OyGgtk2g5zwbPDfFgnzOdkL87YSdiQYbg7db7DyMO3Fum7vaDXE2Ym00
JeztOkExSuy+28lCkF3o8rGHnWiOdtIYK2fhrf3cL4unnRj672iMbQa5nxzT
aq96dGKVd4eDw0cWFF2kH58M6cTdEt7VLqdY2P7cxbwsvBMvVtU4LlBmQdSt
56x6TCdCTD71u+1kYf6V73bFtE7Uz+xMeL2EhZL3fG1SVZ2Q362v87GQiYwP
poXB9Z3Ao82Ja5PI8/oxL35DayculrPX+pPnL9Bvg//Hrk44Cqc+ESXPp+dn
+xeCA51Q/qqq3G3DxJOABqvXDFJf/JsD7mfJ8/1F1pBvuBNXs9vk9u5j4txX
uvzv/zrh0mwl+eonA5rf1MQe/CF5IEd0XwsDB8KDlozzdOErd7FwbxoDG6L0
+xjLu5Cx5Ovi/Q4M9P8o8WyU7MLUkfrhvhk6Grh8I/u2dcFBPWlsYxcdFFkt
XV9Z0q794adBLh2hsaUClxS70Hv2/J+mp3Rcjyx726PbhYJb7cvKF9DBDK54
z3rYBdeP/TsSyfrK9ar5+Le2CzaF4XkS3QPoqxaYMmnugj51fsY5cwB1y07p
Uzq6cJrX8ED/xwH88KgVfjHYBXl1oR/BugOwcavz45/tQovrrOqBJ/0wLRb8
ZTHfBUphYuZPhX6cXXDmYvXCbqTxmsuncPuwz6V+3TvBbji4NknuudoHKWLl
w7E13bhY6BHIXd+HNfNn2vVEuiHLizXxDb2YetzweY10N2Zc4vh2aPSCniM0
Y7+jG6Ojq1785O1F66yeQZtcN+Ym34QyK3qQ8bBxQ8Chbuz886S75mIPHO83
BWw+0w2v5dfOBth1449ly5cdj7rhK7tDZV9sJ/QPXvkg59yNLFCOz9qT54SX
6b7fjfR/7tJFCjph4j9tq/KuG/ucXlqfbu1AYamoztmwbrBLqd8seTog+iFc
5WJUN6Q6HX/srW6HnbHsfqP4buiMrMyd8WuH9E+VzTczuhG0WrXFfVc7nhaU
rbHM7QZla+vAqV/kveT1maXWlG7QlO5yhQvbIHehY/5+aTcEdRf+7ib7+iuJ
a1OOVd1Quxq4OPxiGwaGOZyn9d0wFhJOS9ndBqVMu/7nLd2wOrv3VtLyNgyd
cqvy6iP1Nt+pjStvxanHUaGhk6S+9oGAMLRiTRtXt0K0B8sGqvZ572nB3W8O
GrXiPZCQZDPermhByd1/ik3SPVC7vijAc7gZDgtXbemR64EOHf/co5rRKa8w
O6bRg3fstOqn4s3YN5c3OnWsB747mp49/tuEN+Va9FndHsRbju116m6Cssml
+oWXevBjZIe//ecm+O0YKOE37kHd7mMn7R40YXTqds6Kaz3IszKbtz7fhK+e
j76vv9ODtvEQszsrmzBzceEXMZseMPfmrbfgNkJPystb8kEPItW6b/C1NCKG
K+wu86gHLlcSnrEKGrEgO/jxLuce6D1yDqiKaYSRm4ytvFsPdn4+m5ZAvuPT
ziSaH3jdg/nULfXezo24yaScxcceULjlfJcuNGKX+pJ589weeLQYdFvHNyAp
Nm5bB6UHMzYNzZ5+DVAQ1jt7vKwH2it0aqKeNUCZ5R+xq7EHUtqK+f16DTj9
dufJcWYPTK13qX4dqkfTrzr7ayM94IsW3dOeV49LpvdDmiZIvQNLJVa+ryfv
gXkTaXPk+HNsXuf99aAHmW6UWdALMc/2yYxF9bBYvEjr85JedBSXDY6212HU
OsaKf0Uv4ufSW2Ri62DXecrfaXUvbA58LzV5UodfGpOFQ+t7oaMksaNSrw6P
4z8NG23qBVuNv+n9gTrwrDuytlaqFzXHxx9dFK2Dm3O/qur2Xhif69iy6V8t
+c61ZSxQ7YX3A8dyRZ9aZNv67vOy6IVLbpbgvawaqHYrGf+1Iv2XhGbuD65B
kWbvSyv7Xmyv9TD97VqDqvUynXrOvfDvM0h5dbIGPfmZzmv9epHFO3shrK8a
ptuMY9wDe6G0jDp/u7gaDG+e5umvvRBYUxm1J7oaozeOy3TFkvqkA2bzbKth
V8s9czKpFwa7XcNeXKzG9EEfp7z0XvActDh54kg1noQeDN+d24sk1bNTQhLV
4FnWXRNCIccr8nVXr6iG233nXyvLetFilH1H6V8VlvZukXCtJvW5WM1FjFdh
ddLd+zfaekGp7Nj0rLkK0hfnRbaP9ELZOMFUPqAKx8IkbyWTdUnB9SLTV7oK
Cv6CMmVifVB2N5ifWVcFiXd/6F2SfZDwNFx3ZWkVfju1XueT7YOSn4n21tFK
JJx9bXJJrQ9pMeaR6ZmVCDzmsOmuVh88ftwuEImthLvKjR6XE33wTrVsexpU
ifv79b74nemDS9bdUeq7SpjuUDGM1e8DJd9qsbZrJU6J7xQhLpNcZLM59n4l
Dq9d39Fs0oeScruDguaVkFnO95l9ow9uIn8eHb5QiTW8Exf+3u5DVlKzWaJK
JXime4VXW/VBXif+tLRMJUZGqppl7vfBv99NKUCwEmUdEWf1nvZBV/CgwIv+
CjglGZwK/9CH6Dv+qRddK9B/laJ5PKcPZjJXFsyXlKPmQsJCE6IPSfkHRuwS
ypF1MrDIroTM1wXBNpZfOXwU7dWC6vpQ84KIaTQvh9bK7cpjtD6oUSXPfucv
x75Fa/8sZJP+HX8fFp0ow+Y/vDkbyD4hLNQs/b6zDMsnRh13T/ZBNipOkK+o
DDPMbkWNaTJfqm4zjrFlYPRU/Lo414fxVmMa16cMTU3p6Xd4+6F570DN9cdl
KKgIs3dZ3I8gPsGM9htliCt4v99veT9ChSZWft9RBv+0J5MxQiS3ef1cRS+F
W6xFcsHafrCDtrc/CymFyaeje9ji/VDaYRpisKYUq6ymdx4h+1qQer2swN9i
PNx0VYpq3A8vu4Tj9xsKcV1P/mLPtX6IuZyYUPEqxOkXvG/azfuh+5blz69T
CBlO+EStTT+EoiXZwQQFLWlsSo5bP/hzd634cIUAhZU9lf66H/6tN41lWgsQ
J+q5Pfkd2VfHv8bl6hbguctu7yj/fnRsFT7BPJIPq9T54rDgftxWOx3wODUP
l5n108Fh/fAw8mAL7cqDpsi3XQFRpD6HIsXIsFzI69pd9Y3vx4z3nPsR0VyI
OR/9+D6Z9D+x7Sz/uRwsSREuf5PRD70Zicg+52z0rc+Uc6X0o2HRGj3P7kx4
Df75e6+FzIfUdDjdJw3sRy+Djs2R9tRnn+UWxmPo4q7b33gGIFRoo95tEkvG
vWaB+MIBeNddH36VE42TWxgHRPkHMD6kDartd0i9fhUstHoAplqb67YVBqNB
v+bu360D4Fk7a/Gx/w5kRy4sbz9F3jNOmCf4Pf1OZOnrEm/0SNba8mNqeRRx
NF/jvur5ASSpDfw4HxhNGL7b0/3dYAChBwyTVmXGEa/ll8bZ3xiAklBUp/ZM
EiEc8M9kuzk5/u0iQwcimQjl/bW65/YA9JabdX13TyGymmiPjloNgH+xZDff
2jRC80in3LTNADxeOBsp9KQR9eH1tNj7pB6evu4b4emEoUDZJxOHAag9Uzb+
aJlBMO3zTqx2GoDjn8Ceor2ZhF1vynzpY1KP06zx5Ewm8VcrJsXpGRkP07x0
57MswuPHV/PdrqSex7JGEbNZhPD6T6LUF2R+Vk6Ob3qQTRzNth5KfDcAeTN+
Hb4buUToX6k3pyLI+Jcf+NWgShCy5iKqvFED8A/97XkihyAy61ZOpsUMoEd0
QIgmSiHqvs5dFkscQF7i90ijTxTir3rbjuHsAZR0yjedfltIeMTW9IbkkXoj
1gQvry4khNcUfzhHDKDG6tetCv4iQpaeOJtdMgCvhXl/1d2KiCzdyIR75QOQ
rgupmC8sIo6mB12TrCLj8Xf9mPuviKjb9HFtaw0Z/3UzE0eVYsLQ/XWlR/0A
+LT4nwrYFxPMUeenyk0DUChzFM7xLSZsLznsHW8ZwIZjnLhb6cWEx/YbAZe6
yHwcr+oq+lVMZFQpW8gwSP+nvJScnEqINSvH+Ut+D8DsotAU41kp0ZT/5tXx
vwOYkh9JMgsuJXzubl1c/28Abssr7g3mlhKrqwwXdvFR4U1xZg3MkPyy9O+Y
IBXRO8e6uu3KiKb9pk8erKJCaFH1Z8MPZYQP7ffv32uoiO+P1O9MLCNWqcnP
LBKhIs3XpK5tpIxoGK1y8NxIhZ71Yc8Ly8sJ7+Cb/wltpiLr+Dqdlh3lhJ4u
j/0nCSrUpCf5zuuUE0J/Aic3bqHCMVhEaeBqOdEQc8D221bS39H26Qg7cr5B
w5jMdipqOL6ZFi/LiZUZi7h7d1Ox4aCQ4s/YckLQ1oZ1TJGKpLrFBxf/KicE
WFo9909SMfXv535Zrwqixm/AcPYUGX9k8s/xkArCS/Nx5zM9KsR0rVPTkyuI
5WFJba8vUGHmP7QP7RXEsisbG79eJf3vpe49J1VJVC3POLP1OhXy7SET6w5U
Em9y9OpizajQfWqc3H2skli6wb063YLUV9kuf/NeJVFRJnHiyF0qOqz9xne4
VBIeD3IrKFZU5K09nzTqU0noSF88pm1LBU+ekE3q90qCv3m8tPo++b3rdXsc
s8j5rp6aZx2oEIh8RjFpIefLyxS3OVKhv8bm1chkJbHknRGF+pQKNvfcWn75
KmLx8bKc6VdUKIVv2IvYKoKP+JK4JYiKJysibieEVBNdypo6/SFUeMx7FlcR
1URizshA4DcqQsfub2YPVBOGGSqrV0dRMdd4tEVqSw2RnNBvz5NCrsenQfhH
1RDuuzxW5KWR/l5VB6ZX1BDGMfKRDzOpiHBM/a+JU0Pwf3dtH80j5xu+iFsh
W0v0Se20iSX+n987i3edqiVSQ5v4zYtIVjl/TceqlvDY/PibZCkV/HJH8m6+
ryVMgrYc7i2nwo2+ccYxq5ZQEK1p8q+iYiBgOtrpVy2x1N/+jn4tuZ6nmy8/
Uqgj0j6WBlU3USGd/Sb3cVIdsdzz1r/sXipa3s4+exZdT2Q5xZV8+kmF/5fh
BRo1DcS76fNXzv2iQsrhspHGcANx48HcfytmqUjRK0/VWNZI7p9T217Ok+u1
KNzsqE4jcfP22Ov7S2nYbWNYplnSSBxmfpbaI0BD/ImKzVqDjYSQmVrukCAN
N7YefKi1oIlgUtnnI1fR8PtfeL2WZBORd/XDyDVhGh51rdqurdZE+PQeerlp
PQ0S6c4u2lebiFtGtE2dIjSkvud2aD9rIpQ732T4itEgu6A9cDqhiVh9af8Z
PXEaWPeSa7J6mwh2SzdruRQNeZ2e804rmon8c24u5dI0mGiZyx9RaSZun25N
Vt1JA11so29+UDNRoPVQePcBGtjVbkZFRi3EHYXczqUnSd5hMFTd2UpQGlrj
s07R8FSYw03gbyPW3ht3vqVHw+J/ThPvFdsI4vtWmdILNKi2fJk579dGrFnv
bediSup51r+4R6+dyJ01Wz79gAa3jsDLnZMdhNAn577vjjQskBAJXirXSdzc
F5is/5gGh1ufBw5ZdBIr79RfSnGhwfDXx1uB/Z3EjZ5DEfc8adgr/PaBUU0X
sZwQVKGH0lBxxvlD7/cewtRoh9DHcBr5HvnbsoLaQ6RPHx1Uj6QhsO/xBlWx
XuKqvNPrr3E0eN1z/Bri00ukfhtsNcwg8+Fpm3DVuY8wcsuyaqymwbcifvW7
XQNE3PHroQW/aFC6Urt04QIaoSArqYpZGuyHrEasN9GIAsGBbuIPmd+HQvU9
SjSiofnK+kKeQcj7nPfNsKYRU1cuvyteNojV5Z2bLXtphKqd3pOKzYOw4Uvn
7QgZJMr1V4oelxyEhWvaoHT6IKGnWJdZuWUQ5+dTS22rB4nrcyd/Vm0fxMGZ
lNfLZwaJV+7HLGv3DYJnJGkVztKJhkBVgybtQbg2x0tGLmQQl5/+/e/c8UFY
6sUv/CnCIGhX8z42nxyEcW0cA/IMYkr6cH2LHumvPDam05hBPF0ye/fC+UFs
04z1lLnPIBYPZS5ruzAI6cKYe/dfMwiRxAPa7YaDWJIbvXdFBoMI+zA1eOnK
IBiK0WsMaxiErH2qa8fVQYynRf0XSWMQ6RftxC9fH0TH3qj2nzMMQvXQ3vxO
s0GoVz1nqq5kEuUbxw0Nbw1iw+PXKlQxJqE3/2Omy2IQK2S9fV/sZBLXi2UV
eqwGkfU2WKNCi0kMfx9uNLYdhK9qRIDleSZh7xFr3XufzNdY7LjANSbx6tT2
uD7HQew6mxVy9gmTiG/fIkV9PogI4ebfXSlM4r9hUSEmWYt8v/CncsVZhG8w
qzwoYBBlbm11GXIsYv+ZNOfzQYMYvBcx5KzCImxTTo1Rvg1CU01NarURizyv
olEPIwZxf4egarcFi0hcyzKRiyJr2+qeyxGOLILr6FL3JX4Q0/SHHw5+YhFe
O0+5n0scxJY6rYR/ESxiV4+I6tIUcj0z11RWpLKIqrfM/4i0QbiEUukfiliE
BVITHDIHkfQ6kceokUXwTzjf3J0ziOuNjsW3O1hEVJjuJnreILp+KC5e1c8i
GIuYXmeLBlFlke55bYRFuGWmaPKXDkLtmH3d0p8sYouF81xB+SCypfevSpll
EddqNtyVrR1EbH/SpwVL2ESvz8mTSzoG8f5C/LdwSTbRKp68NJ87CCP18EzG
RTZh3/i08P44mY/N13+/vcIm1rw44bTz5yC05iRUDpqxibPMQfbnmUEoZ4YU
uduyidr4dRV2C+mQ2B1Yu82LTZQeeuK+XYSOhzVjGXwVbMJsWEe1fyMd64pW
pdDq2cTC4LW//DbTkZ25P4HSzibUeRJvLpSmYzLsYfgTFpvIL6Nq9snRccXp
3/upxRwi/fyxhb6adGjLrLSga3EIj5NZL8WO0eGZ+ddK+RSHMD66g//7cTqa
dUbsffU5xIL9y1dknKbD5E6li+YNDtG688l71bN0RM1lugdZcohoKe6q8vN0
0N5Gek3ZcojTq+vXdRjQcT3phX+EC4eQXKYWYGpER6S6XcjcKw4xxZu8kXOF
jj0Sk6fPfOAQFbOSIbamdPz2EVcsDeEQXyZ8JH5fpyNm0SnxI/EcwoqzMPz5
TdKf46MlydkcQoNqv3X5bTqkh6PGZMo5BLvh4k6xe3SENyygrKZxiNyK8vgI
azr0j8pHe4xxiHcUpT277egQyrjiPT/HIRSSRBVUH9Lx4kuW6dD6IcL1fZ+K
qSsd5uZWvEWnhgjR0+ZnI/zoUJ7r1LDNHiK4Wu3Nsv50/LVasotVNkRQVHQu
pgfSkUVVWHOlZYgw373TqOwrHQrl7wd1xoaIQ1u/9J4Oo6PtUH51wdwQIbBJ
wLQ9go7A+KFUhWXDRKrAqBk7ho5lPlpuEluHCXe+qyybeDrq+O7f/bRvmDCc
q7eY/UHHu4eh+gJqw8TuKbUR12Q61CaIks96wwTPSLLVsjRyfySu+pl7fZjQ
rX7gKFtAx5tIg3jduGFCvJj5O41Ch7FZbJdN/jAxmXPpqUoxqUdqjt+vfpgI
iD30/HQFuT+Cv97s/TlMMF//9bRpIsf7MTdbKY8Qzjovv6Yx6TjoZv/hfe0I
0WRy21ieQ0dIzMPjBv0jhPSDkyLxw3SM1j3ilZwYIaq+rfoYPk5HuoirbYow
lxD+E+zu85uO1Ylvz7YacYnohIx7NoIMCF/PFNjxi0s0rGYfkT3IwBLkb9h0
ZIyQ2lE9E6XEQHfQ08t3z4wRD/AjfcsRBn78VgnMvTFGiN6137NRjQHtjIKN
hl5jhFkpz5ZlJxh4s5uy+XPvGDHzUGQZ+woDfBceN6aqjhOSvSc6wl8ycCpQ
6u2C7nHiTdGRxAseDJxeZXEqiDFOTEbJui/xZOCSR+KKg+PjRJGdoMIdbwYM
HZTfWSyaIMz4m97v+8KA5bmL7xv2TBA13CJzejADNpVBZywPTxAHmlNVPoWS
drXBlXxaE0RIVoSwTjgDjzJ3NASfmSAWh/gNz35nwFXOxlvRcIKweuFeFBfN
QJKKzR0pswmi/fbDgCtk6+iTmvcKvjNBRO+/fKwwiYGLXJGGj48mCCGRE5vv
pzLg3hQ1Ifh8gnCaP/yfdAYDZZkH1rx5PUGcqBQL98hlQOH52Ysu/hPEsMnA
/JkyBjasf91zN2OCkHtzK6Ovm4E6tRm21uQE8cna4K13HwPLZNyXFc5OEP/0
j5tpUBlQXS4sq8w7STSI71odySTja91jvU9oklBaJMa5xGFgJCffO2H9JBE6
JEBZOsKAWOjJlO3ik4Rt+ui9exMMeFne+m+z3CTRFdivKT7FQPWZ/9YFHpgk
NFwaNjb+YoDnwAultSqTROzNwsnnswyoia4y9NacJFafTKlUmGOAYa2/caPO
JPFIPjyUOc9AYeBSFdqxSWJwre9Df14mfEoLTGJITht4sHVuMRNnN+4IUyRZ
rMx8LmEpE9LafcXz2pPEy7hLzVcFmFhg+5FRSvJFh0OuxauYSCv7u12f5Onl
f3veiDEhZteUaKM1SRxWdPMV2cfEeMXj/Jijk0TbdZGDwQpMzJ02+WFP8v13
P9olFJlY3ar2FSTHMzpEtyszcZS6yLVVY5LQWWWVF6fKhP4ttm0oyQzlhSZ7
1Jkw41Zdv0PyZt/d3w5qM+E5+16Tl+QcokgjR4eJb852B2rUJ4lLw5foKieZ
//9f3P8qsvJwqr4uTNEgkQbJEAkhU5MMZUmSShlSGkxJJRlSqJQMEaUiP2Su
NEuhVDItJEOlTCE0kHvOucO515UoxHe+P99n773etd619lr7PEfjBoOHZOno
qu0EXO+68rzOfBATLCKXbbIjYNk+0bOaRoOo47ewod6BgKovQRaX9AexIS3P
22YXAbZ7OTM5GoM4Rdj+ZOc+Ak7uaU19vGAQsxV9bDucGf87N7tLzh5EU2tR
4T43AjKcypb5ig1i4M3lqz08Cajefe+l3i8hEtvDS477ETBn16m2wiYhvs/V
qrsaScA9e4U5xXFC9Gqv8JKJJsCkOb5D7oIQxaY4SiTHEPDBTuzmGaZezfae
3555hdHTltY1PSrEgumtrbkpBKzbgdsqrISY5HnuR10uAWN7V2p5DQ+gQYJM
5LYnBLS9EH01mzuAjaX3l37KJ+CpTLPl8+8DOG1e8+H2IgLcGvzdJ+oH8HSV
Ot1fQUCt0ZMbSRkD6Lz401/RVgLSFmpOqzIfQKlFJ16UfiZgqf7GTSdWD2DV
vAUBQZ0EJFu5Ri3VHECNmfsp6iuzPyhpykXpART8Ito/UYx+D0QnkssEGNkw
8TxrgoCk+9c6KBkBrq657e8kSsIJ+HkmdJKPZIXlchkxEhQ71yrOpfloU3Q5
J2omCaUze91N6/m44Kbs9WPzSWj3WcW5ep6PDwP1/Iy1SVBa1Tm+kkvjPv9m
rV86JHx/r3OzrpPG2d6BrDx9Eu57RmxwrqXxhFuJs8oaEsxTtC9G36ZRbZ+L
XNdaEmboh2nKx9PY7ijS9p8JCS11re+enqPRdKvVtunmJLj8PSfd6UQj35I9
rcqCBK3E5kKfTTTegivVIZtIGNDWcBRdRaODif751dYkLIqcv0zXgEaxNS3G
/K0kDNdxIV6fxpf6Qb8fbCehe/abPUI9Go9qyxUesCOhemd6wE4Gf1R21fy8
i4SL363vLNSlMVxetP/aHhIOqauUndGhcdWCuzet95NgfWykrXs5jakSHNky
dxJmjtybdkubRo/fQeJ3jpFwXWqqt6Ymjb/fXe07HkFC0fpyA+OlNPbM+uw1
foGEWM/cinuqNFbbKApiLpJgEXfDZi6DEz7mjmXHkfCjM8CLq0JjsPRghPY1
Eh5Pug47MdjFznjGywQS/DRsomqUabS8Hn5tw///u243nruCwdotdfMbk0kQ
CdS4lbWYxjnzpDP2pJLwLn2engSDR3buXtKfzujtvGsiiNHjW1LWA/8sEtz2
7XyTZEFjzed+3bGbJKTssY99vovGXFmdoos5JHB2225v8aLxutNJk7n3SDDY
tX2u8CyNrl9EN2vlktBjvyVTL4fxR35LY1EeCVJ2mw9sf0Hj8v0JO83zSdiz
Y5OGTz2Nf3oWuzsVkfB364aCR3waE3+YnomuIEHW0rhGzZSPtWTQ494Wph4N
tXjybXzM0yxf4fuZiX/1skJjko//HRUr/tNBwsRK9eA9o3x05ybWSH8lIUl/
iUiKigBH+flf15MkVGoumi/jK0D9YbZ0+hhTf00BLtLTB1B27YoU9QmGP9cn
yVxmAMdPnVYsFKHAJPrI+wCFAXz3d5pWvTgFTcYuxm36A+j5b6nFsDQFQznW
C9L2DGCqmGuggxoFBkHKjaq5AzhxcOGaZg0KnnWYfVMpYva/afptq0XBShNX
weIK5v5Hbjy1XY8C/clMGYWWAUzpHV/7wYCC0gNlqot6GH7zl3+2rqLAtKZ7
1UJiAOsnNUOsjSgwuyS/e97oAOq59ZnUmVBQxTU+IiPG9JeKjLFN6ymw2rH3
tLSUEEeVdpXVAAXF2/qO1MwTonuoVOhGCwo+qdvdDlsoxNqeuvXVlhT0TpZ3
mSgIUWddxIT5ZgoGvyyfP7xYiCOjv8LMbCiYd216jI+GEJ33PTEv30GBrldQ
5TJtIVa/Piy6zp6CjRY///bpCvHa6S+RxrspODJc4bN3jRA1hiuiV7tTUOAa
7GBlKcTdwktx2oEU2OmzlFQ8hFhmt9HmUTAFnjN3OnUfEqJqwbik5hkKTv+s
TEhh+iffz/+a+nkKsm5kTp0dIETHj5q2d8MpeBEgsb4+UIglun3SSy9Q8GHb
6eALp4UYzXO8rhJLAXtyJ/tvmBA526Qcbl6m4O+XKtUXTL+2e1w3d/FVCiSL
9J2PxwjxpUREa2Y8BcrXspKXM/1d0dskSSGRgplWA7pRDI5s+OWYnkTB4Vll
GRgrRErzyYJFNxj9mmJmjkULsYhUviGbSUHcfmVWQLgQ5Td/cUrOZvRT4To8
CRVi+P1Eufm3KXAgXlZSzHywOSSeLnOfggUBOzLdgoTY38fJlCygIO1i6M7t
3kKc9+1FzpQaCnILu6s0HRk9JUNDX9VSoPSgdLmmvRAlTC33+DRQEJ+Zkbxs
hxCnpLbMbv9IQVDM/qMa1kI8X5tGXW6mgHXOtFWdeY+NDrm/gTZG7xMK69Ut
hDhoLzj96AtTfy7dc9TWMe+x8Jc7XXsoeOxQGrLUmNHraajevO8Mn3VGv6qh
EA9/tZxZ38vEt/7sDtVVQuydJdl/rp+CDRKl9iSTb2eT1ooVJAWyGoo9fmpC
7PRKTyPYFHRvCD08LC/EpreatnYCCjzOwFnxGUz8QwIt8UEKtJJviV+dYOpZ
9ZVYyRCTrwLRhPm/BxDDNpUsHaUgkHpzd2nfAD419lAfEWNDopP1xw1lA3jl
ScZYljwb6tfYLzl/fABn9Hi0Oyix4bL9s8fiRwYwSkK7cLoKG3b6zjO86jKA
Z48UHw5QZ0Pf3c9bM7cO4HBy2AYNTTbkVRp+XrphAE/UWCl2a7PBv+eG2+O1
A+i95HOzpQEbJubtCyxRG0DCNjPv70o21OiXTmxg7r/H+YMxT9ewIWmb4qUG
pj98y9P2OGjEhhapbCWxaQO4t1u4Ts6UDRK5r/0W/xKgdbLUQ+4mNmR15687
FS9A8dAIR+MANnTdjg3sEuFjkZD3F0+yodQ8fEo6m0bPw3tuWgWz4dL3Uwl7
W5h+a6vP2XmWDRpKR/I679AYpfo1zC+aDetSN/W3WzHzq97o8Z00hu99fU52
PA+nzBsQlapmsE6H4WFVLj6L2f8gqYYNUnPlChJncdFjvNZGoY4NCn/2aOEQ
B6tZWTc0P7DBpKZLQa6Og5HF23Q3trMhzPmbyLtjHBR1fbDnNIcNO0pqvml+
YqPII9f8vrkc2HHKdEfEIwpreR1+NxdwwDJhqDQrmcIrBvZ6znIcUH/0RKsk
gsKFxRuffFbiwIJuZfFfeynsGSvzSVThwPyhzhPSVhTmgKGO7VIO/JNM/LF8
JYV6dZqP6zU5wDcTK/OUoHBIIsc7ejkHapzKtSKGSSzZoaBtoceBiuPBN7L6
SAxPTGJPGHDA6MLh+KB2Eje1z35UuooDRd3ZB9e8J1FCPsbrtCEHzFZ3rP2N
JDa5iGiuMebA0yvSki+KSHRmDd5/asaBl+vDi1Znk8z3l8/hYxs4oJNSHDuU
SCLlw1LXtGTs8Qeci2JIPDnUcff2Fg48u3lAfHUAiZenluckOXKgQHTj7lWW
JL5eEpMd4s2BW2/F/6zgEHj+kIjrWl8OaC42+yD8RqDlozNKQ/6MveDgW4Wt
BDYZ+GT6BnGgchlpvaKcwJRA1n7t0xxQDVdWEhYS6FzsqkCGcCC/00lYcJ9A
1fGOrjuhHDBckfD2eAaBFNinu4cz8VyqTzNIIPDphXd7lS4w+kR/eXgyjsDA
uo2LuqI5UP/3yb3xSwSazCrvTInlwH3fyJzoWAIndxim7ozjQGLv7ptSMQTW
JOY7zbnG4F3LM29EE3i5XXNhYwIHLjRMpqpEESjrqpBilcKBw4UPE1dGENhz
O2nX1DQO2KiHxpeGEZjDmr2gMoMD5mn2VyzPE6jrK5JkfJsDahGj0bvPMvGf
Y13XyeMAaWdzJiSIQIlKV3v2Uw58qVEJnhrI6DG1c879Qg50Gf0+ceUEgfvj
3sUrv+JAikq2T7Y/gSfS86/OreaA34DArfooga/G02OqaziwPTV8pYMXgeOu
FyNO1HFAyVxGvO8wgRZVAWdV33FghLzdEXCIwJilLkEtH5h6il+ZK+pJ4Ido
a//ITxwoW/vm3HUPAudSq46ubOHAle87bZccINBpq/LBvjYODGaar77DrGfm
SbgkdjD5iX1hl+RNYK/U8G6LLg5sOantG834qxHQazfYw4Fw15uXgkMILFhT
bOnQx4FPqy9V77lM4NuKQzpzaQ6c73VerZTLxL/EXqNawIEnH5rtpJ4RaHdh
ncqJQQ70vLLynXxNYNfmefNbRjigd83gfm8DgfymyrHrU7jwzkRM7j6bQLmf
Cu9l5LigmfR4TE+LRJdN099WyXNha5iKnMoKEnMeDFYEKHHhnHfyahljEnV8
Gp41q3Kh1jzM95c1iRt+B6df1+WCgU3R8+1+JHpPbzkqs5ELbxaVDccx9yX/
aPnBqk1cSJ+nhM8bSBx6/9AlwJqxP/t8THcriWEJYfbN27lQIGIut5wiMWmR
rvH1PVy4SL4xfjeHwi9n5VZt2M8Fo161KYPyFC7+NlVX6MKF3q7od4vUKXyY
06Vif5ALjh837z9qTGH58tgZMn5cWPPi/bkZHhQati1sTDzOhfK4Qw8ijlFY
cO7B9fknuWDlMdk8Gkihlvra3SlBXCgyShs/eZ7pJ4218nKnuWAsvWoZHUOh
YvDu72khXJCN/f2mKp7C5MXEHYVQLvw3Xfm+C9OvpOqCvLLCuDAlxjr2bzqF
sf7iusqRXDg/7YR38i0KReWShbeiuNAdnWGz4j6FIZVqL1VjuGAn/lav8TGF
vjKWoHGFCyAm90vsFYUOzyPtdVO4MHNKxdnARgrf758rm5/K6B9BusxppdBS
LKfLIIMLgyIy5nmdFK7dVXVw9S0u9E0eFOv/yfg7MhlkmsuFu/9mXt05SmHK
zXiT8jwuaISu8hdMUihtrTxpls+FhHFn+zhxNk5JM4u1KOJC8Fj+gjdz2Eia
hKZvqeCCxd9d2SuXsdH9p6Tb+0oulJwOC/+ow8auuMyl298w9v489PBeycad
q3Woj2+58PxUi+U0IzZ+6CnNs6vngsTImEbOejZaRW8LaHnH8AWrzzTbyEbU
7V7j2MjUy4dX2g+t2GjU7j36+RMXXL6UfRfdzMZn50crnFq4kEZUJe1n8PJl
ly98aeNCw6/aLS8YfPfTIuv9HVygRT5MSFmz8YaKcbNrDxf2KLR7VTP4XPWp
n4cILiyz46zT2srG397TH5IUF9a5CISRDPabd8PnKJcLV72H7vcw+IDny98+
A1zgRU3MSdjG+Dvt9/TAUS48fD2XNWzDxsqnUR9+j3PhZ+3CdLvtbDR2mn/9
1CQTX5uibS6DdR6ukj8rxoOTfI3XLjvYKLP1hE6kFA8Ml5perbFl460q6Vkm
MjxojDZpUbdjo4HxE7ZwHg+uUcYLYxiMBVvrH8nyQG2bsTPF4B2a1P0Di3jQ
+cTo9hZ7Nn69GR29SJEH5+YYEbkM9lm41LN5MQ+0Tq5dLunAxrFrlRaXlvBA
fkPxuz2Mv5enuS7ZoMYD9y1toUsYfRedH5v8o8GDdPsBZsqx8eHv1G8FWjzg
7JXsf2bMxrr+1gwVfR64eFtutdRlo9ibLbIiJjzwjCuSPTKfjcy38tCrdTxI
/K+pQV+KjarPolr9gQc/Mnjn/kxno/ltTPhuyYM9eWo/L41RGBq2Zhba8sCt
MSk/r49CyZEWdrADD+58LvAI6qEw0+94vd4u5vzXDwvM2ikscXkcnb2PB958
sXOfGigcNl0icv4QD05IB1kPFlAY/bzi2xovHmQvvD5Wkkvh/OXO5bQ3D2jl
J08v3KXwbs7fjHu+PNDRbDhgk03hKvkbIS7HeeBnwJq/IJXC6uur9y44yYMS
8jfpmcDcr5ktaxuDeCDRbTaiyNzv438kf687y4OaqqYFV5l+MOmf2zoUygON
F4vUNzH94hq5+VleOA8uPvRY/e8AhXntkf6KF3mgHz/k4GtLIbvoD3ssgQf/
OcslbNdm3ie6Ta1nynhglvgg6mMyiTe5MqFTkQdJfmf2ql0l0ePRTo2rVTwY
3bpNLySKRLZax+lbtTyQ6h4pP3GSxGGFb0p1TTz4uME+bL0DiTISvCPzWTxY
Jy02pVWaxLY6XZlskgf9XvueRU8nMTXav2QZhweXqws8jCYJXCz6S9JUwOgT
5PImi0+gzp+/hQf+8iCv52WUVyOBghem+7ljPNhoOHuNwlsCn50MFQua4MFE
/EFWYxmBxgIRp9ipNDhsnGO1Ko9AK2L6+NPZNEjmHp0+wcyfmXe33DOaQ8OD
qZWvCiKZ+Xcgbkf1XBqCXWS9DjLzKkG5cWTbAhq0X/nIyTLzbOdXqdufF9Jg
ONL6z5+Zd7IZdlvd5Jn9jtkzZJl52rUn8RelSENNode8MjcC3dsWWI0vocHL
55/mjF0EqiU6CaLVaKhtqFv11JZA0jYtVXoZDVOWJZo5biXQ770iV1WHhsJe
DcdbQODZ6qUJWwxpmOZkF2akTaBZ+CHjViMaXIrkL39TI3CK2YM+Z1MaqmVY
SVHKBMa+1l5z3JwGjw9ncpvmM++nghVdKVtpSNxw57PXJAv3+p28oLKdhrZs
3x9SoyxU1Hmhk2tLg934Wm7REAvvPDAKK3ekoePlBxFRDgsLskGt35UGI53h
5WltLPwV8mv6gQM0mK7Zq77vEwsNnR5wvx5k9DUrW6zwjoWnV+3/tO8wDYc2
K8v11LCwVFr6eYcXDafsImWykIUT3OoUx2M0zIjrcb1bxkLz+uCQZl8a+t+5
y7wqZeGFu9quO47TcEuC9aahhIW14d82vD9Bg/PWo8E9r1k4wyVR3TqIBrPL
tKagmIXbjK1mvj3F2HsX0C3K4Cbhk6aKczTkbgkxX/aShd0eoW7PLjL2reMk
Tjxj4WJYsVH/Eg3PYqXLowpZ6K7A0siLo+FS/X/+NwpYSLTa8O8l0LDQOrOt
7CkLBywVQ9PSaTi6+Un29McsXLWkyV02i4ZVMSvs5XNZGPzvguV/N2kYqn0x
VfcRC8decGddvUvDDasKL4cHLJy2rDQ9/CkNPzZ9Wpl1h4Vbpvqf/1dAQ0r0
TlZ+DguvfFf1CHlOQ8DbjhvVt1n4sbR908gLpr7Enbd+vsVCmdTLWoHFTH1s
+jFO3mShY6DZbGEJDawoz/zRbBam2A0O+JbTMN+gVMwik4VfdO63cZAGA3vH
5uQkJr8z9xUfqabB9QSdxb7CQjfW7Mz+GhqO/3fRe300C3OqqsIO1NFwrUh5
7fVQFi4L0dq8/wNTn8P2TUZ+LFzJ/fN5RzsNu8++nBJry8KgurzX7ztp8My0
/dS9mYXFd9yzrLtpuFdOZeibs3C9c72nxQ8a3k3Kr+kwYKF1441fazg0WESF
HdGYy8LLj7Z1POPREHhPbnWIBAsboydL9AU0RNUWinycwkIHsyORWkM0dM3o
Twv61Y8u+YYyShNMvq9af6hp68eX+/5INYnw4YhOckXAh36UmlYieWEqH9Lf
9xYsrunHI4VnJQyn8eGet96d96X9WOm8fgZ7Bh/6Zp5NPv28H+VmTIpnzuLD
n4d1MeqP+zHgeeVUWyk+qFjPD2nJ6cd3rpGiU2T48OxunP/lhH5UlbCcLJrH
h2z2uIJhcD+GvBD/d0SWDwl6fvW9+/ux1b1uVH4RH0JOfg+8uqEfo15tHQ5f
zAfnf1WN/ZL9SHja0zZafFCViQn7785PNJszjzu5nA9au/8sh0s/8UZpG/VM
jw9TMo52cvx+ovXcPf1yq/nAUbNZYWHyE3PRtbvfjOE3kvk50NSHfvI+Decc
+WDtnmG1Y6IXa9/q1uk78cHwnuSvvz97UTlAUNO3l+HjhN6819CLpxULq5Od
+SCrL9hmn9+LTXUnKq3dGL5A9z/jSb2oeXJ1xdgBPgwVN999GNKLEYuHS596
8qFFRLy8dE8vrgw682q+Nx8sORtUlszrxZFPF+/lhfHhofKxfb5/v2N49O2I
nlw+GL00vvbmZjfOPjV964EnfBivDo1ucu3GdC/fuUQ+H1I/VZ37qtSNz7cZ
3xEU8eEHteXYSEYXEjLNNVOQD7Ff/C7nZn/BbdkiM7Ra+aBpHXBE624Hyr5y
uxY0xodw9eAly/Jb8c7Dt7tH//FB56Tsv3b/VjRIX64cJiKAOVUvOy8atOKW
0JH8WHEB5DmPxBOFLXhuY3xzhrQAnJf/Pq3U0Yx9nyrmVy8VgEqh/EGZNU3o
X6X21UpDAJUH3H58EmnC8WeX773XFICIunWpYtonXJCy2/CzrgAMqH0FsvUf
0dqZ70StFcCAb3i6hEYjPqGUMqRsBHDrzHu/wd4GjM2Kdv+2QwDu0i8/bPZt
QE8HWv2pvQBm3L2lnfWnHs2n7+KGOjLYOC528EI9KpaVFWx3EkBBYxCxWboe
/xxXC1baJ4CHHu6WWel12Kp+xZR2FkBsv8Iwz6YOn3b9Eil3Y+x/LY64IF6H
l+P3117xYOJp3zVbvqIWD1u+iXM+JIDjnwZTC4Jr0eKvtr2OlwA06+PVNuvX
4l+P0e73vgJoet1gGnjrLXoZpgklzgjgdNZ674+RNWjJFXnVdZY5n9L129O0
BpVveZ3LPc/Yjz8VMfbrDbbPNJq+NUoAdhGFqZqH3uCmr+2Kl+IF8MNTvS5y
czWqJJr17UkUQKdLtcMikWoct7r/QDNZAPW73b7lF1dhUUHQyvp0ARRbp/3u
0arChENfR25kCcBrg2HEyb5KPCa/qfzILUZvk1ZJiYxKVI2abz39PhOvzmy1
tZKVOGF0bnbHQyY/2xzdMi4hfqF/ttx/zOTP9Fpw/WgFFuVsSw1+yvj7lNII
uF6BCU7PXawKmfU3Gt6P9lagj6TCUtki5vwXzye9SyrQuiqSYr0UgDk/Z2AR
pxwntR1ORpcx+ZRTPnU5pBy7vr822oUMv55LSbVFOb5MWjKhVs3s35jxb1Si
HP0mBmJr6pj4fRdGHcsow57m+Oyprf/nk75uU1aKxRdHDrZ+ZnDn9raoqFJM
MnXTutPJ8PPjFpbblOK2e3pFFt+Y+pWbka37tQRLTjc2RLD/b0/ksdTEa0zR
XRNvz2POR5rxrWpfY0BfpuMSAbOeem5F2LXXqGnj871y6P98f14JFr9GMdG2
uwkjjP1Ow7FlZDH+eGHq7T7KrNOBZu75xVjmfUff4J8AEqY+j0g9VYw3lGf9
npxk4pMT1jRBMf4PNnGZww==
           "]]},
         Annotation[#, "Charting`Private`Tag#2"]& ]}, {}},
      {"WolframDynamicHighlight", <|
       "Label" -> {"XYLabel"}, "Ball" -> {"InterpolatedBall"}|>}], 
     StyleBox[
      DynamicBox[(Charting`HighlightActionBox["DynamicHighlight", {}, 
        Slot["HighlightElements"], 
        Slot["LayoutOptions"], 
        Slot["Meta"], 
        Charting`HighlightActionFunction["DynamicHighlight", {{{{}, {}, 
            Annotation[{
              Directive[
               Opacity[1.], 
               RGBColor[0.24, 0.6, 0.8], 
               AbsoluteThickness[2]], 
              Line[CompressedData["
1:eJwVmXc81d8fxykaEhFCFEnRoCGK6i1kVxRakpBCISOaIkoisioZ0TLKykpy
7M29drLKusO995AtX/3O76/7eP5xPvdz3u/X6z3ulbVxOXl5CRcXVwY3F9f/
Pw0v05tLGOaHp4v5mgb3+R7m0ZZ07ZdQgZe5nRNSERdhb8LL2C8SOnAjKken
LdwFjBo7s+MkzOBBSuntpHAfOG038z1cwg42+L5pOBUeCr3Kj7VDJDxA7ehq
M/PnCfBG9MSjIAl/UEXz32+FZIDvii9bn0hEwn7RFB3p+wjOnE3MGBt/BwFF
34/yHaXCqn++lnobMiDfq1ylqKsT5E059PKnOaCQtoGiz+oDr6YD8HLyKwyN
dJ2tXDEI63KE+ri5EcguT+U2FBqBvAHtBsrBMvjrXr0vbZYOHfq+4yF6ZeB2
s0Bu31IGTKcXixmfLIPMB6ulC1YzQO3OgUs1V8qg1VplS8omBhSsVZ4uCS8D
HYbYETVjBnzVkZTJppeB7ZUkEe54BhR9GHOPjCyHE12dnmoHmVDmGLf+LKsC
PonRm17YjMIXhpOT1XQFfPt3fuNXx1F4d1X9my1XJUTaRTS2uo1CgH3nOWeR
Sig0uqkx5TcK+jZCMQ8PVoLq8aAt9KRRoJwNEE8ProRsW/mnwb9HoUf/uujS
nVUgGW12vewsCxqrNS6vUKuCD6VLalddYkGxLl/u6iNVcKznp+7xqyxI0Plo
Jm5eBR6tS5OKb7LARvN3xM57VRCW7fbeOIIFdDVz4TONVVCvI2AtVc+CqS2H
BD9fr4bH5mj6/j42HB7Qqg7yrgb3abkg94NseBSn73P1YTXc3rSr4aI2G8RE
zLDcq2pQSrQ222jKBlVuJ0pMRTWoJT0/rH6NDd7dL0MD19dAyf67jb1v2LAQ
OiloV1sDwk7q7KalHNAxmq8+0lYDF4c6s3NXciB4GdeDjf01EGSXz4oQ5ID0
vVVjPydrgHn+eZ7qeg4cdtxENZWphbM5Tz1E93DAR8ckDLxqYaDcdZeqFQeW
zKWtWS9fBw5+Dv1zGRxY36g1Acp10J8tZXs7hwMqiV3tdgfqwEut0WCigAOX
DZa/Tj9WB89iCzSaSjlQ88pGXutmHfzSk4tQaOVAqLqEukN1Haz8r1nWeZID
yQKZUs+a60A65pqZxywHSgZ0/2V310FFgWKX2wIH/gR5VCzgOgiBde1neDBY
dFOOh4nXA4TdvVOzFoPU3Ue2+Q71oJYWm75vN4Z9JtK6Pe718Kv+S1iJCobj
m3MUuO/Xw0Pu+Vzt/Rh8Gn6zDcPr4Sv1VdUewDAgdci7r7AeuIMO0b8YY0j5
PhHMy98AmCXuccQeQ9nzIJdtYg1Q69m22cQBw8/LsidPyDQAuzRv1elrGPgF
Tqx7pdIAY7zj3sfcMLhapSbuuNAAr+Syi3ruYVD9Z513Kr0Bziu7GPlHYDA+
VuJ3tKAB/hgkbV8ZjcH29cYTamUNYMDiCnj0EkOYWh9NsqMBOGsH3zjGYWC4
nJcY+K8Bph4IXv/xAQNXceFw6/JGONVnv0w2BYMYv2R2pVAjrF5xQcQmDYNW
8g/DFPlG6A7gDm7MwBD7y/yu67FGqDYM7zYowJCtlKtvc7oRlKLVV1kUYqi5
KyJqdqkRirmupp0rwjAl3vpZzbMRWsKvaBwrIfEzNelfjG0EO7XJ4M5qDNxl
hlohrEbYt3Fp5IN2DOJrUgV8phth+1X16LWdGJSsVna7cjVBfoT0koQfGM7N
V7ubiTRB5m1X0YRuDDl7jr5ff7AJShSvyej8xlD34N2N1bpN8N5Xwj5mAMOv
pqWH/51ogl1RX4QZgxhWO5V1DNg2AavYNcFlBIP9W1iR+rQJclRr7suOYrg7
Ht/2OqoJHnY9nlBnYYiAxTchCU0gNkZvMGZjKOkuOnDjSxNkawV/OosxdChK
LbP93gQy10yzzcYwsLzutJhVN4H60Pf1+uMYJETUnfZ3N0FXyAdx8QkMu2xe
qW0bboIxpZy0ScK6mbNLpXATTP73NLF2EoObcX7svyUUaJqj5lhOYwiMEXMY
56fAKsm+ZskZDAl0z32DYhQQOzFl0ky4wV+lqWobBUzbozy2zmFQF6xf8nwf
BYJ5fpu0EU5+dUntvCYFepM7VbznSX43zzrJG1HgeY2RzNq/GB6mP3uDzSmg
zBFa+57w2H759q/WFHikwL1aaQGDVfm3lf5OFMjlm1idTlj9B91N3JcC/yWb
bo74jzzfxufjwFMKHJe9f2CWsBhbtOdTNAUWvu4wN1vE4O/1aY1XIgVOx2p7
fSQ8zq199MgnCqjeTEsYJ2wV3HVrVT4F/t060bTnH7mPmGt6eykFPltJL3Ui
rJ64bDChgQKtF3kPxxBO3h63zrGTAu8Pzd8vISyWt9dYZYACMwfHK3sJ+2vW
PVhkUUB764DwH8J/6qxza2YokGpYffk/wpmpfz0MuKkweSuu+B9hGtYNTV9G
hSh+O+k5whv2haes5adCWp+UH4Ow2e3ecm8hKiyYNLCohJ8ihb5eMSpM69+6
kEG4jMdjVkuKChm7drb5E541QMLJslTon54wMSWsHMq3c/VWwgI9rSKE7dvM
9dx2UOGt67Qlhdw/TiLxUuduKnx9acF6QLjNinXnoBoVDgcK+ykSXvVOLTrx
IBV6KrQ21JL4ajH8MpdpUaHszJLSi4RvKTXVOelRIb7F2ZFN8pPpLjFMNaZC
6NFkSTfCtAK7f/tOUkHOoLmZTfK7YTFD4vVpKhjNCYRZEzbX/ruX6wIVjKcD
zeuIPoIDdY9ftqHCdzuHTdsJzwn3+ilfp4LHd+HW5lmi3zMKcZFu5P4BB/PX
EbaPc8+f86KC5t1nb82IHtu28rHK/ajgcz4w6ssUeZ+DauZnXlJhZ6LzMO8f
8j6+fi7f40h8Z2yEeIg/NlQ3Ptn0lgrW2Xf05oifgk3tilmfqYBV9FtriN+u
2j/f6ltOhSaj9W4LdKL/tJ4jIzVUkFmBZ7JpxH9jWy2NmqigdMg/yJr4WedO
cZhoFxWWmN3ofEP8vjFsdC6FQ4UTkRbr83oxFF/yScmeoALzupuyZg/R3961
Z7/NUiEu4u6dsp+kvnWoFzQsaYas5y1FGaT+iEsH3cRizXDukjLe0YwhnyO9
ZXZ9M6yxONfoTSH9oySrnUu2GbZGh48UNWKIsu1SEd7eDOwnffU76zAIpypM
qEAzjN5Qc84uw5B1pyjpkE4zeKYK7y4h9dDkmMlJXYNmaIyP2FNVjCF0zCvr
9Klm+Dl5c6KQ1FN+tWqX21eagXe8+LZeNgbeisssFNoM+fOXRdkJGN5Fzb2u
iWwG6v10Lh9S33WuhBg1v2qGBr4De1e+xuDHl5s68LYZSu3vuS4j/WHRhMeB
t6AZ6sb4L7x7SvTamzRs+KsZ4qfLnjl7Yhid6e9r39UClYH8Gke0MeRdCS0z
VG2BvPWe8pGkvz3oPPwBabRA/NFd4n0axH/5cddTdFvIPDkoeZr0R62b5xfu
WrZAj3/Wl97NGGImOyQ2B7ZAypMZpcOk3+qPN5q59bfA/ejBbLMiDqy9dG8/
bagFDmUGMILyOdBH3SFlyWyB0tP+JwqyOeCR+XTw6FQLLOOTy5hN5kCCi4Gb
xKpW+BJydEgwigPT7IrQEtVWcEi75PDKiQPvmN/qBJ61AuIduCsnzAHnFyfk
HCNaIchXf50VPwfUdAbvVL5shfyPijZhyzhQF8e38+7bVrgyWCvYM8+GcZOz
oYyCVlBU5pkVHCTzVf70qYrBVhgfmHAZzWJD18PdvbcOtEGS94zQPQM2CEh/
xENDbWAu8kve3ZoFmhYPewcZbWCZGZusROY/t9CL9QOcNrBOjTk7aMqCDm7x
j79m22Cj9KVj+7VZED8SaNXD3w5rrr35HCbPAqVMx8ZWlXbIbnk0sEAfhWPa
Smll/u3g2cnFRSXzabBDrv2bzR1Q/TjwbOM5JjA1Pweu2tYBlP7yEVlTJuiJ
v0+9qdwBp+YCuF30mLCkOpJjrN4BnX9jmH/2MuHWZo+bcyc6oKbg8o9EfibY
9+95dPJOB3gU60bGFzHgiHnme56WDvAJ1w3cuo7M35ppQ1d9OsFUbWJIOp8G
HnsqcsTKfwDX9HKKa/8Q9KdXPG2W/QkNJy8rPnT+DX8d214r3u6GM1S9yL33
u2H7keWL9t964NOIcWKNUhvoJcleyVrXByWrbim4tVWDl/TFTb8t++FPO7/9
Ilcm7GCZr+o89gv2t1htyAhOR2sFx1ZUzP8CKxGZg++9ahAPep0hF/sb3mzN
3qw73IqcVL51rTQaAOO6hBSVn90ozcDmTfH0AHy9tSu3PPo3mhqVXDMSPQgm
YW/PWH4bQrmn9JZG6gzByRChwS21NBRoVBAgpTcEDgnlhbWtNGSprbjivcEQ
MPGpz/Z9NLRk76rVeccJL4T+eDZBQ8eFKWI/zgyBZbjx4gtpOqJTLbZJXR8C
nW02Wk9d6UjyuL3pu6ghUhftOgeFGMhHPyAhZ2QIFGst/FqPMFGL1VXLXYwh
sMhbGvPNkIk2expJfBodAuM++xtxp5ioLlEo4u3YEBR291kcv8xEIn/jHoXP
D0HkaHOpXSATJX/Ou+4qMAyvj4fp2jQyEVWYrrFDdRiCLi1Qn58cRZsU62c/
7h8Gwyeiw5/PjSJPSM+V0xiGV9EHvcttRpHkNQ/l9ZrDMJfFK9LtNorsKrnk
+AyH4QNtLetb+Cia9ZLgo18YBhal0EureRTJ9hr+eBswDEZHj0hZGLBQUJlG
hnngMBR876YcNGWhPx93PFr+dBiWCwpGk8UKlbkJqDiFDYOKhZtp6VUWslvR
Errn9TA8zF+m9/kxCyXvPatXmjkM5dYRRrwVLKQUdCWvr3sYHFYEy35UZaNo
lzMhYX3D0HmlRSD4EBv9MzOw0/o9DNYKQQ1XddiIunG78IeRYTjJfJO18iQb
3cjlXL8+Pgxd1N1s+jU2yvnlKb+wbARUZZIer09kI3U1/0iJPSMwI2ecpbOU
gzpsJFTjVEbgdFHkxLcVHOT+LL1TRm0EQp7LDG0X4KBPwz8kFQ6OQGd/Xt2U
OAdtiNyZqKo7AgLPVZ7sVuKgJeMdn0+dG4HfO1d80jvNQfWpitUhfiPQnSDI
Gn7LQVc7iq8KBYyAZqZuoGsyB/EsMeOLejwCOR7taROfOOjw2fvHYoNHoHg4
yn8wl4Myl7e2pkaPgMYaIyuHag6KtLv7qzp1BHhzaiv5GRxkuYEyx906AlZJ
NhfTtmAkIOGW+619BIxqdy0L34ZR6VrRG54/RsCVtaTERQmjLSvP0+m9IxAx
qnd1jSpGeGKkg0IfAZb71LURHYz8ahe/xC2OQKSDseWQNUYqFYkup7lpoDQj
lqNhhxGtWGe7EA8NTtAuCQRdwcg4JyjJfyUNJKezqlY5YySaIPbcSYQGk0bn
dry9jVGyh5LzgW00sjcAr2w4RudcmhUndtAAvxCVoEditNrRY/iTMg3O/3dH
9sMLjNwuFlrK7KNBzJcO/uVxGGkY6hot16SBYrDDfsuPGHF0GMtKtWjw3u9k
988UjN5AcNntozQ4cqf+msknjHj2tRzgGNLAvSP+jEwWRk0brRTazWmw1z1P
81QhRg8kuYeenaHBs+BZnSdFGO0VfZegf57cj/fGnrxijF7yMcWKrGmwK/NJ
1WQZRjZTnrxvnWjgvDK4jKceo6m6kAFXXxocXj/x1KULo55V7VcXHtJAl/+1
yexPjMqMpfDjRzTQnOqWudWDUVhT6t/4pzTwMk4dsOnHaFtLtUhjFLnPe/ff
HUMYrVkr+PrMSxqML6XObhzBaOaUhexQDA1stRbEL9Ewqmgf2vk3gQbfXwW4
1TMwsuri1lNMJfFEa/00ORjpSBo05nyiwZjGq04DjNH282GnNDNoINL4bq/R
GEazPRusT+fQ4KPEicV9fzDqk7YfGcijgbeu+7WNExhVWn2+5vyVsKPCL65J
jMJ/adwKKKbBGzv7zrQpjLxlH/5bU0oDi1j/c57TGF20qQuILafBjWdWA6oz
GO0YOhP+pYYGG0wf/UucxUhY/o041NNgreetSKM5jOYu0+LrGmlgMO+2k024
iuaZ9ruFBle/dzmK/8Xok8L33dfbiV6OLAgkEY5w4CmY7aSBaG5ontwCRrdT
jQ77/6SBS577pTjC1qPhFYK9NFAdeiIo+B9Gujt+Gr7upwF055Z4E955XbZ5
ywANeNR6PX4SFkm/ejp7iAbJz2nbVRYxmudk9B6i0WDxYfFwAOFfyjO2tQwa
RLw/lkTmbVTtephpxqLBp2C/S0L/MErPCnD9xaHBqSZjOSPCkX8app3GaWCy
GEe7S/jOXpF7MxM0UM9wSP9A2Mbj/NKH0zS47ka6EWH93KQnAnM0WPdDX3uA
sPI0QzDmL9GjyzGhScJiaruj5RdpEFaZ/pvsH2jBy1sqi4sOTVccc8j+gQYL
UNLBpXSw/u3zhOwfqG5umWINLx2Ci8asRwlnqh/POLWCDtf8StTbCb+4E7Wv
n48O7MJJsXzC94t6vjmupkMtK3IqjLDdf3Ja04LkfFxqhw1hw8NONb7CdAgx
PVK4g/Bun+zjq0XpwHpq/4ZD4iFeMtf2ch0dwpsUnyQTXuQ6cn6zJB22xMR6
nCM8dCTwd4YUHdY4t9jwEK73o1zR2EgH15pfpz6Q+L/ksfI4uZk8fwntcAvJ
36Ltun3NW+jgaMMVZ0XYrpw6dUKRDh2VRccGSf53+Wl7HVOiw7/m6I/t8xhF
/15Qa9hFB929UybahBc082YN99Jh40rvYylETzX/FG7r76eDd/UDTSuiP6WL
A+rV6nQ4KW+h9pnoM7L49d+jh+hwcYDjO0n0a31P4J62Fh1WfpRee43oe2Z+
wuewMR1WZH/f9m8cI8tznzW/H6fD6bucijWEy77acx80pcNUr3eOJPHTM+8u
vwMWdEi7Exi5jvhvy3RxgIo1HTzy7l7MJf4MNvfW/WJDhyqORdoTOkZ/cnYv
33OZDrGF0cctiJ+L3d8FKjuS8/MusT+I/y3Gnzzd5kGHzwECVr6kPhSZaBun
3KQDcyjkungfRpsyF/gVbtHhqfdkx0dSTzjOLs/k79NB/c/PggxSfwJYZs9l
AumQw9hZbtuKEdNI4GRCEB2G6+fTvjdjZJJWLbwhhA73uT+MC1IxknJUj1wf
Tgf9pn1RcQ0Y5dA2vhCLpYOY1bT+hUqMJPW6TkfF0yHT027z7XJSLz+Ei4sk
0sHERNo6tJTU+8u8MUIfyPkT+vNJ30n+B5ix/Jl0kBv+UeWci9HavtykJRV0
eC4ZuvvVWxIv/nv38qvoZE7My1+RiBGfhs6Za7Uk3qBzwiUeoyUvW1Z3NNHB
h/UoV/YViZcp9k7posNeq1b39c8wolYqnDDBdNhkquRge5N8/yRW5P1DB8XG
c7Y67iT/m/J5CifpcI76846UK0bI52ih3DzJx5Orq7IdiH8P2MjP8DDg5qhx
sZslyc/n13/jJBmweim3vpEmRit6bDpOSjOg/XjLi/iDGPnzbctaLsOAqs7L
ooz9xN9XCuxvyDNgPn1ZvO1ujBxl25t1djHAZ4/MUixL/B0lkDx6lAF9rIsi
1twY8d7zNTtwgwG1jUHhX75yUM44aw65M6AwK9VXk/RzO/szCbo3GWB7nXew
MpODKk4oM0/dYUDd/Xauwo8c5L+p18c5gAGD95Rq9KLIfFCzP+3tKwa8zTB6
NO9M5ou1Y9wCZQz4+slcvlKKg7Ifn/8YWcGA/Q0bkmzWcZDNQpXx+moGlAnP
5s8KcVDZcNwLhQYGhIbvyhFYzkF+BUY7tTsYEBvvKTIwxkbcVh/PeDMZ0Fsj
n7y1nI24UqwyBoSZ0EOLkdhvw0ZVrE7nBFEmdDR9UbY7z0bBu0yVLMWZkDrW
UvfYjI3WFWh/bpdmAk/r2pe5umykVK2QVqPABOrDgqq0bWxkOfznQ/phJnjx
mB7iGWehr7KP4287MoFSIGru4cVCbjEZIcJlTDC+yN5LcRpF+Qsxj8sqmOBu
cHv3OttRtGD1yNetmgmjc7+fnSbz6mO5C54tDUxoV17iXqo/imI/8V0I72RC
2zpNeXX5UVRZfHmHMJsJMOlsVdrDROKD6+uFxEchiHp+Zr8uE33fHrhCyHkU
ym0rZG2WMpCQodsOPwEWXD7KZ9h4cQT17KS23ipiwWTRTsci2UGUGQ+bh6zY
4OhWWFn+oh9dyFAVkl5kg2y+WWF1xA/0ICDRtyeVA5y+H9Uyz6joM136tYAx
htc3LZOlY0tRYFyAdd9xDEW81krSFqXI7iRbPt0UwydGvdO6NaVIqqgo89hp
DBO8GjYLD0tQUOj5qmAbDE88KraIdhajq6qvxvluYWili92Mci9Em/xF9Jd/
wNByLX71rw9ZaHH/3dWdyRgO/Ojs7pfIQl3swZYPaRjkHra7/wzORGGnv1zQ
zcIw6Cd8znc4Hf3bdtI9oIjs2XeUxtLupqKe5tD4pa0YplOitkSkJKKCRzO2
re0Ybjq5GIuEvkGRGhcV3/7A0B2W0yDDiEdG75VytPowUPVfxU3dj0GF3o21
vgwMv3QSCrVTn6PonftCTVkY7LYYaqxhPkM3BmLNZDGGPRM2UaE+QUjB+Fp/
ySSG5nbaFa9UX8TD3fYubAbDZuH+TZU+t9GvXA1H63kMX5M8bSJSb6Aix7fK
u/7DoBZ73acg9RJ6sXHV1P9/l9u8O+T//28V/w8dyY1x
               "]]}, "Charting`Private`Tag#1"], 
            Annotation[{
              Directive[
               Opacity[1.], 
               RGBColor[0.95, 0.627, 0.1425], 
               AbsoluteThickness[2]], 
              Line[CompressedData["
1:eJwUmnk0lV8XxymVSlJpIGVImiSVosIXIZVKpRKSSorKlEQTSlJUEoWQkFnm
eXiueZ7n2b3uiGvKL5T0Pu9fd33WPmc/+7vPOXufs9aVvG597uYCHh6ewUU8
PP//PXGT3UjhXFClvFFrzzgTSfAdFbXpF1GAWsq2Yp1XkcT+r/5BqSKaoPQI
JnYVRBIna9tTgkX0wbO7131+dxRxyWw630fEDDx1Tge1BaKJ3j2vjr4VsQfP
mlS/1ooYwvfrBspWowfgORzoeosnljixMla5IMgBLjdc780qxhIZozUHxsSd
oJZ6RmtTVCzxLmH19rMyz8BzYWTK7GUcobUpIoJzyxmUZ80Dv/LiiGdlgUKF
+i6gRObUeEzFEQoHZd9e/uQKyi+PiPgb8cTKUfvqrYrP4SJh4636JZ4Y+p6/
dLL9OXh0Lj1paIonSq8s1ilwfAE1W9Xb15clEKFrz7i/EXGDWsBW/Sn1BOJx
7eeSizlucPG+bYD7CcTFlwMLthi9hJroxMmUEwnEXpUd6mN/XoIS5oStUgmE
wH+2zrlB7lCTXbDffzaeYMXn5L9SeQWX9DcyyxvjiSKzhXPn+0hWXiP6LDqe
cGzxdRwRfw3KKWles0vxxHmv3owsymvwdMRPtcnFE3KaMv+5XXsDiukB9vHF
8QQ9NdN2U7gneO5r1+9JjyPOfuyyPC3zDmqfbgf/WR1HyJ7cEiNa/g4U8Qlv
q6FYgn/hXRbz1nuoRTu5UQtjiavZ88mEvjfUct7cKbeJJdbu8JYz+PQBlL74
Qx/rYogFL9NOFTA/QO3Wgd2LI2OI8YGOu9KKPlAbz5dwehpDVPtLxo23+8CF
t37JVdkYImtKq+ri9o9Qe3PpT+PCGCJSz5KT5/gRLmsGRjW7ownf+Hf8Wyo/
gifkNi0zJZpw5U/d9lrEFzwyE60730QTO4998EixIflN/ycFk2ii6aU1p7vc
F2rP6o3+LoomHpecOrFI3A8uAXeC7A5FEdILZePkHPyglrakl3U3kqhRXyZg
UEva68I3XQn9TjxwYd91lf4EChsmTc0RRNnfCLmWpk/k+jv25x0OJ6yVX7z/
u+MzeA4JS+yzCiM2PL42LuP6GZQLSaZR374RFjObUpz2+IPyhk39wB9KCPz8
dEDcKwA8I8kVtfEBRPreB590BgPgIjl0PGuNP2Fic37a9nAgeC5JVYc9+kQk
cldml7BJLvGpfajzkTjH9lC21Aoiv8eKOFrxmvgjcyv4YxDJYZeiNnxyJyJu
as3n/SR5WUUM98YL4j8aL2VlWDB4Gs5e2fPPiQiRHJA4NEty6L7rnYH3CW3T
AtfreiHgGZCpW3zPkhgLCaJ5RpGs15iYrmNE+Pc+Opo+T7LLsQM9DzYS6mKX
I/oufAVPxIkqv+ZbGDJUXMSfQDLlfQ5rwhGbR5xuJOwOBY9GSoqQ62tYWxzc
ytNDslux3PeKAKw2S4z+rhQGF5mau9YjMTB/sfnyYbMwqN13WnL/bRxyw94u
rX9P2gtkwhzkEmBGvWM5wwyDRAJlWFUpCekm22VP+oXDRWujpPajVCx79rmn
nxIOtRHb0fITaTAJXvzWfiQcpj4Vucc3piMl74HK0g0RUFMSf109nI7FPXRu
8NEImPY9uHgqLwOGf86H7LOOwIBbzZZ6r0wkihafLg8kx+/aMqF3JQt8h/f9
Myoj7SoOEhvtsmFw+Vvi+ARpf6flR5TlYKxbf1mY6HdQtrdubeTLg7sJ/83z
R78jtMgsg6aRj9Qb1qIZvt9hOv2ifRFBQNBK5eVjxUio7aEKRBoVofR5p+Hi
p1GgfBI/M3K+HPviVy0W448Fz9zcmnWRDaiUKzWtlY9Fh1VJ+JbZBpgmO+Y+
uxwLR6rn/r26jXib0W9DjY3FQJnoed3JRrApCd2Rp+JA+aDk81y1GSGtx5P3
foyH/zZ7obG2Vhww+Lt8MDceaoFHQud2tKGmK8nclx6PDSsWyi972obZ/vVi
0wcScHvyw5mtW9qhP8Rwz+tIgEF+4jsj6w4M3w2g3uP9ASH5h5stijrwfExX
WXznDySFqf5wWNuJpKnUCdfHPyDhUVv7IbcTxx7e0t0f8QP8f3yvfBXsQt+s
aBS9hhx/z5gbf60L9k/qeD/99wMGA1ue5qR1Yfk/V+NjmxPh4bO+oG22C/4W
l0xktRMRWu/7yHtfN6RbZE1XWSWCf8VqxRN3uqEa036jOz8R3q8EkvJ7upEd
8yk9Uy4J3k94wyKIHnDPj+SdrEuCi/nwS7uXfVBY2q6iSktCQ/htDdmCPjwq
KCyQ/5UEeSpjnvGrD0t2fKas3ZyMUKOBh5dv90NyXr2k/14yDKKHFEK3DuB2
qqxWk2syxrV3rPmrPoAft9eXlfglw5dxa+KyyQCONI+Ux+Qno0eKkbDm8wCe
e7TrBDUmw75wi5dN6gAqVIoq3zGSscH0umVt/QAEf8afcJ1NRvR8qM7OkQFc
iP5cfX9FCvSD+2Ve8VMRdOW5rrkkybxZCiGSVNBW36s1OJACncAKzrkDVFg/
1ahXuZIChRrO+TxjKl6f4zYtSUgBn7zs9vdxVOTPaXR90U1F/HRSg8JxGvhS
dhu9M01FkHfhS44xDSdubehxsU+F946mwyE2NLQ3cntvBqXCxuhnxBJ/GiYi
/al7RlJhQBxw6mLSsPXsKLvYMw097jmSLm6DEHU+dvjWtzRkTVy1HAgYhFBC
qOeyzDQoLGrlDiQMYlH3bE9CTRrulv14IEEM4jf/ebmztDT4vvL4e7VhEA2U
zPt9SulQ8hoTM1lLxyN51/kZRjrS/PKNDL/SYW3SdSboTzoGLn4eDEiiw8xr
/zesyoDYBts7nYV0nGEzjrorZ+BRoPRjAzod0qEnXq/5mIHtXz0DL+5gQKQu
vCsjOgMGpjelPh1mQHBubpdhQQbcJRHbepKB2UuJdaGcDFSET2brWzEw+pJf
QvNfBvhu1qj7OjNAT71myxLOxGGZyMpmbwY6qTlFb3Zm4i7L+eyaMAbqVgoL
y6llwif6cue5VAaKVe7dbLyQiSded8a1CxnIulOWYX8nE479FXWr6hgIL3e8
nPuJtL984RnFYsDRuTdEh5sJ38YZvmZRJqTGInfcCMwCxWJweocrE+s38Txe
nJSFjDy1tqm3TAicvFwTU0raV4akEYFMTEcutx4fz8JQuoHthTQmakxs0p4e
y0Ybb92QC4uJIq/KRZJXsjGiv6vy5BQTmTlSl0rIOjYf5RG1jpeFsHWts8tC
SPupo2bxoix81pQ7+SOVtIeGajzcxoKX3augs5XZEJz6K6GhwMLz0AHuVF82
7Lq50cfUWHhYdwj+U9koeW5TUHWMBUG5dEYlfw5mVHyf1p5mIeKtvNcfsRxo
zGYqN1xgoVF3W6eJVg5arP/ltN5gYVe18P2tn3IwZ/wuc8CZhf7yscgUxVzo
KcYn/cpkwWHbnVP0k7lImqy3ni1gQeAV8+da01yMJ/yUmytl4ZB2r5qTRy7e
SB9J4G1h4WNJVRc6c1GwqipGYJyFndLarrbcXAjWcm+vnGaB8qJwWzhvHnQ9
Vm1fPc8CVyPLfvHOPAzMG0SuF2DDLWz/RiXVPGzPeXJTdA0bogsSCy3O5eHd
g1DpTaJsJF3befuLeR5y5EsGxSXZOFb4XbD2UR4M7u87fmgbG30Skunz7/Lg
KO5bvVeWDXuXICP58Dz4VP93audeNr7hY/TH6jzkbck+t/EIG3/yXTQMxfKh
0QLjv6fZSMwxcmDl52P1gVPWhQ5saIu2i4k05UOW+mMi+zEbPU7nik8w86H8
Vsg+xYWNpYeOC/0QLMATRrNj+Bs2bmQejLW/WoA+P8PnL0PY+L0uRS/yfgHZ
j/P4noWz4e2we7r9VQEkRje9cohmI/+AtOaRpAKc06Z63kphQ9/v69DdkgJY
TmoImmayMTQl+iGkowCOIRHeBnlsuOh/UmwYKUD8icVrzhaysT5tVR8vL4G0
X7f8jpexYez1R5++jsCknJPw1xo2wswY1WWyBCSc/2SYNrMhuzY729OAgL44
z9zgABsaDqZ+a5MIDF1d6j70h42DQZciffdQ0DewMXB6LweXPWqoLw9TsGxv
iHK2EgdP7NU3PdSiQN5Vov8ROCjU3eV72YgCQ8mt0vO6HOj+nXfd/IqCpmty
P/huc2DFuZ+/0oeCmeQkvTIrDj60smd4gikQW7D/56sHHKQVXlGYjKJA+Vy6
3/EnHLQlNFkPplCgH6aotPwFB7MBx+Ja8imwmczuqnnNgZh7HrO0goIgDeWn
77w5ULXbK5XZTIFUoUx7rR8H10wir0T3UZDU8/bKtgAO3E5sDAjgULBzZmrQ
JYiDyIPeLW+mKPixxtiy6ysHI4KPTt5bVoi0Ezsfvo3kwIE4dWjfwUL4Z5V5
/0zlICCuyH6LeiG2t+xefyqTg7zPiknCuoWIGPMNjszhgNdGctv0tUKEytyI
vVzIgZfEf8J5bwvh7fuvmKjj4IeApV6CfyE2J5mfEGnioHGmzzMknLRX1zbY
tXKwrrFigWs2yQuCerf2cHAoX0XVrqQQQpsXmjn3c2Ack+J0o74Qnw5ZDnXQ
OPjmGjSuxSjEMxulaU8OByX3VskqjhdindfXp4wRDpiX3W9t/1MIj6jFfBjn
YKn2nzCRxUUQLr73xv8nB7L7bPqWrSqCd1+L0OQvDk5vZojMbSyCgwTf20cz
HNguM7zAlSmCWU12yaNJDnx/1Xn37S2CrKP13CPSfwbtaE29chHmtmxVeMwk
10vHdeLtsSLYt/FZfR7g4NePgnW654rQ40GPSu3iQPHxoWsVt4pQxQ3fOELm
I2vNnl8UnyJEZ0otvELms8Pp7kbn4CLMWCxQcUrmYKY/Rk0lmoxHjObgF8eB
Ury0Z3Z+EXRdvw3VkuuVrSkqkcIugsRJiSZVDw66Yi9p2fwk9fz9t9zoOQe/
hfws5eaLIJTUr/WQ3E+He1emx64pxrjw1+xEGw4Mj57qur25GKblz35WW3Lw
KObNP5kdxShwMtnNNuMg58GiE+Gqxcjo2/RN4jLpv1vD+trxYgh9+NulfJ70
r+7iK65fjJCjvcKXT3EgGp2f3WtSjJn/8k4/OMbBEcE/fV8sijG076VrLHk+
jO2V+AztiyEQohv9+AB5froe7NjgXAy9pcL1urvI/RQ5ft/Xtxhp/WFiY+s4
6BGQCzj3tRi0E5ZHKQIczNndKRCKLcaGjL2WHxZwoAIm/1uiGN5elMz9o2wU
tHcHvxwqxvVDfeccS9kg+MvLHdRKIPVR5DWvPRsDVnxchZMl0J0fSGyyYIOn
VX31zwslcLOIbgu/yobatzxj6zsl+AVFae2TbJgu+e2626EEMnHzJ9ark/Xm
nmLUsEsJjNeV2bIPskE5lDJx61MJOkb0iTdSpP+vY+tkvpVAwECMabSB9L94
tzI9rgRqxYMCuwXZkLhreS0so4R8L2+44ryIDfWmKHfTwhLU+GVdSf7LQpFl
8MbLIyUYX6dk6tTHQirnzh2TXyUQrkPM3nayf90+nHuDpxRKL49NcupZeGne
bmglXIonPy+6GRayoHN9VeAL5VLwNTyIPhJB9iNqP8dDuxTSr55O/Awi+4/p
j0Pv9EphqvrycLwf2b9MTnb6m5UiKN63RuwVC/WXX2744VWKDa9Tx/9akP2p
4/zt1E+l0FPLPZRxnYWkS1JZWaGlMJsuem5lxILPBeJScVopkm42CffrsvCi
5W1URUEpGsS6rnzWYsH+vPF0bUUpfjVTI8+osnDx7Oynjp5S7NOYUKLsYeFY
Qzmzl1mKi7Mzro7bWVA68+ng4DipJ4mnWl6She11Zu7s36VoOZtZOS3Cgsip
/W1cvjKE8njL00heVsMr81OwDI8Sb3+uIfn3iYYHMxvKoGeiPp9Bco/OvbUL
d5dhJHey2pPk2vIjN/kVy1BjWb3PgeQC7WXpK9TL4C0SEWBK8lfNKP0NF8qg
+/DCrQMkX1ejftz9tAzR+7IW9G9g4TyROLjvVRnuUr0tKknWVH22X+lDGfS9
LRpSSd6qvLFZ43sZZriiIR4ksxUvrDaoLYNBzNND+0juzNhy/Up7GWQNLoaK
kVx1YDL5OrUMPEv2LFlCctz+92fv/VeGSLOBlu71LASlXPlm968Mz9dkHykj
2Wuv7MTDpeXQLvoQlkSy1Z5K7+ebyjEiftTmJclXf3weeLWtHA11G9utSdbb
bS7/dm854p9OqRiSrB6v4OJzpBxPZGsjNEnet2thw2etchh2f1++h+QtsY3i
wWfK0XJnarBIigXhHaHWYZfLoRcoZPxFjoX/ZFRWJtwrh/K0jq6uNguqNI3y
N47lsK896Sd9ngX3YB3n2y/KkRJ+um/uKgvrhPXHtgSUQ1NP3ybBiYWDvHfq
A0vKoRZz1VcwgYVneTavHOvL4e98vZeZzULZQwdc7CLjv3BThihj4dKoa+Kq
8XLoLriTZT3AgmO3/3uPjRUwNXLoaSDvQ5RPIcfMZSoQtNdpa4wEG/znIv4d
3VuBviVPrFx3sxFQkWj9T5scn+bKs+8YG7QX6dt6z1Yg/o3b8WX6bOxEbn+O
cQXYpq98aKZs5KSXnXGwq4DxirfSHx+xscC2Zon+0wpEDr6/d+cVGydkm4i9
HhWYzPbJOOrLhg+r/eHKjxXweBGblRbGRndY7x5ucAXUdN1a1Mj7irTJIKsq
ugICa03Ga6rZuCvC+RqdWoGKXkWBy+R9Y+791Eqzygrcth4+aruUA82Tv8vV
WyogrVR69e8msn8u5nER7yfj4/n6+PU+DjY9XT7eNVWBuz7nUr8Zkf3eUqrh
rEQl7NKzpZoSOHDW1PPGw0qE/XnFu//cEBbMxglt3FoFDy2mUf+XYWys1fiJ
PVWY1Hx/Ry5xGArfOlvNDlVBW1Pp8dOiYdw8vuTLj1NV4Dv6JnAjZxgVAde3
ajhU4a6aXOelgyN4f1jksEV5FQ4fcbjY0DCCaMEksXeNVfA9LG4uTh8Bhab9
L6W7CrRDFQ+spkcw+ca+ZG6sCtFKon4Cm7lYfnV5lOTvKswpFkcY7eVCen/Y
a22+ahgo3k2L1eTiYnf9ae8N1RA4WNCsc4cL60TzvelS1bA5cGvw8zMumee/
a7pkqyE2FyLj946L0Eu+v+YPViMr9H3YxSAusnft6tyiTvrTctm8IZYLsSfu
NzItqlHSriG4mcrFAb1N2j33q6H/ZP+b/lEuTkunbed9Vg22hPTib3NcONdQ
uSd8qiFtuWh+y4ZR0MRUHPtyquE2V87dcWYUf8abDReWVmP7tyyLYeNRCJda
qmyvJ/1rxTDiLUehfc9/gd1gNSbfvend4z6KmPyfXosEanBX8lTtgfxRFH14
Y71zXQ3mSlWOT1eNouum5LkzEjUItJQrzeoYhYDgmfUBCjXkO29l/pGpUWyl
MWbzVcn5BjyH/vKOQTXjSQ9NpwYL/o6nFawcg41J7DfZKzXQ0G6KV981htf7
1N3O3qrB0FDR9oWHxhC2uMPcwbYG9u9TI0q0x5DTZXX8y+MaPDeVYP05Pobm
H4tkKS9rIDC+IrhHdwwjz4MEGe9r4O3851z+mTHwXdo/sTSQtK/k8IecG8PB
f6YZ53/UYINcif1VgzHonqI818qqge9rj/i9RmO48UX8jGJRDYQYuvSFJmPw
VuxjibbVYOBL6/noG2PgWBuJ0P7WwGUpa9+E1Rh4CnIYzUtqMWYWZ1lsO4Z1
AqIppatqcYpiHeZnPwaN6I4TMVtrof5wZtXhR2MIGrjwxOZULWj0pRPPX44h
RS5d5/qlWhio1W2/4DGGiifCa/Wv1SL9i4/pNs8x/LehOUHxQS0Cz21sqPYe
g8CtfY92ONfid0L/kpCPY5BK/6C98XUtLJdGwObTGE6f1eufD6rFFopsonDQ
GMy+JsaNR9YibuMEkxkyhsdcQUdaUi3WPEzfnP1tDD5HrDRbcmrh2uR00TNi
DNGva4XKSmph+0u8wpq0F7TL9mbW1WJTWHA2nfTXstUrJqajFu2nNsZd9h8D
b9EJjbcjtVD7vu7d0fdj2CAUK+j8qxZTer7OWW/GIGeytNuGpw7xc6tsd7uP
wfB3+X198jKwSX+F/vqnY0jbp/V9o3Id+hbwiQ5bjsE8HPyxnnV4Zjrx3Ydc
7ycTIS1f/OqgKWD9eYnGGD6SL+m3X+swmjni8URlDJTuvEO2qXUwXMm+Y64w
BhHhw3eUuusgXtC397DUGGrcFOrKdtaj7/baerWZURxeWb3gw4F6XH3J5nya
GEV0wDVFI7V6TH7L5eMOjeLFj3ehYxfqsbb72uGAXnJ8B9tug2s9LE/9+D5R
RI7fFbzesr0e3L3HnoS9HYUG53nSYo0GZL1d/zlBZhROcnVVd441QHH/y/YG
iVEk3RdhNOg2ILxjcv2U6Cg2zyeKfLnUgC9b6vwPrxzF7Ore53vuNcAt2y2w
fJqLJGXFCwb+DbjAmAimVnDBcn1unR/cgJo3V/v4irnYXF77Wiq8AUflazdv
z+fC66xZwUhCA/Y9jv5qlcxF8afEjrOpDYiXWDfwIY6L392/JzOyGiBX9kIi
/TsXt80/bHMtboD4qqvf/gRw8TWuR51Z0YCvGTXUzb5ctI1vMz5Z14DVxoel
NMj6tOLgfYek5gaI7qcn677hQvNxgffazgbE2v4588Gdi8eUpXGP+hqglrR6
tPU5FymLLpT2DzagbXSHl6gzF+Lew7Mxow34fcegIvwhFwXXnGNSfjagkGGl
v92eC5P9ay7nzjTA5erLgXgbLoLaDmfVLGgE3/mUmXQLLjZseuMwtq4RCocF
dlQYcZE5uklmZmMjBlOl0nUNyHpLSW7lkWxEyu5D6o36XPjd6FRYvasRqpLm
l7tOcbE6dvtPBTTiND/l9Qi4SH6cF6ai2Yitz9vW2ipzoXdK75z28Ub0/Rn5
9p8SF+/HHyZfOt+Im2MiOfNkfZcrWn7N1KARchby2i/kuKj7+FXI4koj/tC0
m5bs4kJAsdz60a1GOLfdHxKS5iKO30j8xd1GKOu9cfCT4OJE12idp20jVlWF
LhDdxAUn7vkzX4dGjKg7mRzfQPaDp+vkgh83YnHFjQXlq7jYdia297tLI7af
Ph2puZyLMgnVtz9eNuJEi9KJIj4uFpXcHCHeN8JrYIVPPtmfIvxmv1T4NiLe
fObAkYkRaN56e7IxoBEVI7TOrKERPF+WHksLb8TvmUzJtN4RzOvxWSzKaoTb
quvJscUjCJby3yCY34jIz7oXtuePQHlqV8W6okaUbFKc/Z4xgsefz2/bXtOI
yR0C6t9iRjDTG8Y4MdAIe42Mhs/vR/A58aDfeUYj/CpC7deSGT7oWqVpPNSI
gtOeGz4+H8ED6cnwe1ONmDI0NX33YATCv16ed5htxEbqCT4B6xGklYssdJ4n
1/fWgejXt8l+a6l+3Zu/Cbb3l427GY3gg3LrqoAVTQiYnfq44MII5AUtCr+t
bkKKc7+iy+kR1PfP2cSub0Lpoqruv8dGYJXsLZEq1gS7imbluCMjWPFCuiFX
sgn7E35Nd+8cQbx+lnOJTBMGP4ikCoiOYHi6v69VvgnmRld3WM0MI+PW+6IT
B5sgsN7M5wBzGC7tqpHEkSZkN93+M9c8jHWZwfditJvAe8Ku1pO8f2g4GM09
MW5CmNJL2xjzYQROtYlIezShZG1cNr1lCDoTtfp2/U2Qt7hhIuHDwZprT5VY
9CZccB2283/EQV+DrJjxUBM+Bdx/JXSDA/skz0Gt/5rAX/UiiUeBg6/Wx+1E
ljejZWfEAmorG7+4Je8pB5sRNkKP/CbCRsRQbpXgu2Z82pq8sriOCavPZ7ZY
fmxGq2hlwOd8JhQ1Bx+X+jeDT4i65W48E1XBy3Y/CW/Gh99CSmvfMDGhd/k9
J6sZT+ptTG9pMZHzd4SlWdCMqBKPoSMKTLjFuqiFFjdjJDvUXmgLExv4oicu
1jXjXESDRzYPE6qZv86XDDZDyUk+eXkeA/xmb+LFOc2wt9I5MhDLQJPQ5kWP
R5sRe8O0NC2AgZuWWhl7Z5shfdq788pDBuTWdwq+nW+G8dHoG/vMGZgpvnuL
vbAF75Qo3MUXGCiy4aEcXdqCht0dD7uPMuC1yXfDV8EW2E+f9+k5yMDFqm22
v9e04MthSanhnQyIP8ytvCDSgrKno8mzmxlIaaA9EpBugSzf68Z1SxjofLG3
1+lQC8aECoTOttMRJl96oFW1BRv0PUOvVtNxt9fgnbxmC3Q/G8hbEXTwKLqA
dboFIZt+nvGMokNmqO6bvlkLru/c/r70IR32enfN97xvQdNRnxWHN9AhuClq
jE5vQcGQ0fPt5wahdvFF7yCnBYExFLqx9iDs3l+tpo22wOf21mMfDg+ijXdD
1MBMCxyYo8t/Sw0ihOlh0iPQCgmaq1/1TxoaxG/qdq9qhfA35vQ/Fg0LLqsf
7lrXCj7Tk4YKPTSYV8+u7ZBoBaNXWDy4hAa5JMvaZoVW+HdGRVv50WDK0c5t
OtSKl/4Cy8Nf0+AjtSWmUbUV1pds77U/peGXb7dbvU4rDFoP71Mzp5Hv1Uy7
ulOtUPf96mtvSIPhEl/T2nOt2HOebzr6NA1eajanay614sKSvrE0TRoKnHSV
q41bMfDTX/67Mg3jKdt3Vl1rxZOB87Z+CjRIjfBtqDRvxcpawZSXsjS4m+T/
LLNpxdFIt/3mYjScOioXV+TWimgDm4Pb5qh49mRZQOHrVihr7Xq4foqKpHSm
O+VdK+r2MjOXjFAhvP3r9QJ/Uv9y40Psbip6BIREc+JbcTn/mHJMLhWC2iNL
spNbwRu74GlAKhVqzhX/ZWa0wvtTfv7rOCoiJlwa0ymtKLDeD8svVNxtm/BI
bmmFqJS4xq7HVISsrHNI6mzFD8Gu5xvvU9GgE2uW2NcKnT++xcvvUKGQe10t
gd2KZy3LtEYMqTCfUpWL55L6Cktf9pyjwn/3RrG4yVbEJbiU1Zygosp8emns
dCsOBh5Zkq9BxdzX5unouVZUbh54fAdUyHUmMqJ429D2wfbESU0qTFd7NUcu
bkMX30KRXcepKHHTTIwQagPP8NaMIdK/l0W6eah0G+Qz74xbmFMxpJbgsXxn
G656Lz6bSsZ3bMP3WIc9bQi0+JY8Z0PFgnLfUd3DbVgq1m73ntTnJG3vMHum
DWwXjf/SvKlo+3PH3+xCGyQNey/M+5H6mm/k1Bu2wXS/Y8YxMj/jrufnv99s
Qycj4WHXd1Jv/z73c4/bkHBC5Pe/HDK+jJ3R+S5tmNySZnicQoXUO6mq7e5t
WPf3dK5PKRUuN0VHPnq2Qa+Ns7Gniope5dWC/7zb8CHR7cnWBioOCy+Tt/zU
hjwP8V6rVjJ/w7znWr+0YfZajkpWFxW/imbvq31rw2GfQ6/FaFToB074xUW2
oTDCvPTHTypSbDmZ6+LboJP5kVd9EQ0rj1M7XZPbUFNJUWleR0PVdMMmg7w2
1I+KZkwfokH9QtJ3vqY2UJXqI9VcaAiRjS63bm/DzZNztKYPNMwtDOV09bRh
4soO8ZvhNGSlvN+dzGrD9PMXn1+XkedLyDr9yt82LK9V9GgSGIRY9e7SjO3t
2HEt1MIsYBC/1OLot53bsfYfVe/iAB15EcNfHrq14+TfY1+Kpuh4zi973v11
O9z/JDDkljIg2BBfGP6xHYtmnB4t2ceAzNUfIX1R7aCPr4rIesHASNHoBW58
OxTGHo5K+5P1TGbPirnkdlzn9ip9iGdAdTTxsUheO/o4MbUWrWQ9fJpsoN/Q
Tr5j1adFtzEhRp1YeaO1HbzUKPVXR5igae4rt+1qx7H+FV4/zzARHW33zKW/
HS9677ddNSP7h0Dqgff0dqR0d0rUODKhYPNzJJjTjl+duKP0lonfzfsj4kfb
8TvX6ebpECYoivZGuT/bsVV5HOkJTLh/SVtdNdOOQ3nmomJk/9H9N1XZ8bcd
hsq9U89rmFh944Ara0EH7PLO13O6mQjZmTHGt6IDmXlqbpm/mUjPzqyBZAe2
54uOnlNi4dGmmRenZTpwVOVDRfYxFtRclY5c2dWBG/lLwiUusVCjkx3z6EAH
IvKnLo0+YIHenuOefrwDwgV1ha9TWYg98kel5HQHdqlqBY0XsWDz9ch/Tec7
oFeQ63CpiYU587wb41c64FUQvWvrBIu8n+Sr7bLrAB/x3I8ix0bX5fnpQw/J
eDBrvU2VjdB81USdJx1QIaxPvDvFhrmks/kl1w5cBlP6P2M2ZF8Sm8zdO/CM
MP5ndJeNSfa/FnvPDrxDc2fRYzaydNW8Xnh3II84nrbDk41nSS5Hffw64HDz
7m1bLzY0hQt/hwZ24OxcXF0nycsceVMSv3ZA7uOwgsZbNhq61S0KIjqwdueu
L7EkG4cXtXf/6EDNpdhbj9+xYb+vJG1dcQc0UqN5NnmT8SlIhH6o6ECWhavE
O5INDj7xFKjrgLyEodo/ko8cVri+oLMDi98ud6F+YGOBRsTK0dEOsm5Z/fv+
kY2pozx/bk91AJuOia/3ZYOhZcwcnO1AbrM4PEiuOC6c38nXCR+1xmeWfmy8
P+tmWSraCQNRhXm5z2y4nB+4oCbRiZoGgc2hJNtdUFbP3doJlVcMlVX+bJhd
8pc9uKsT8SoFV56TfPHy1Ppk+U5ITH16+pNkHSO9hbIHO+EXax1sFsDGoSvx
o5FHOlFpUNGu78HGzqv8XZLqnej77qPa7sCG2DWz0iDtTvyZNP5++SYbgjco
Set1OyGgtk2g5zwbPDfFgnzOdkL87YSdiQYbg7db7DyMO3Fum7vaDXE2Ym00
JeztOkExSuy+28lCkF3o8rGHnWiOdtIYK2fhrf3cL4unnRj672iMbQa5nxzT
aq96dGKVd4eDw0cWFF2kH58M6cTdEt7VLqdY2P7cxbwsvBMvVtU4LlBmQdSt
56x6TCdCTD71u+1kYf6V73bFtE7Uz+xMeL2EhZL3fG1SVZ2Q362v87GQiYwP
poXB9Z3Ao82Ja5PI8/oxL35DayculrPX+pPnL9Bvg//Hrk44Cqc+ESXPp+dn
+xeCA51Q/qqq3G3DxJOABqvXDFJf/JsD7mfJ8/1F1pBvuBNXs9vk9u5j4txX
uvzv/zrh0mwl+eonA5rf1MQe/CF5IEd0XwsDB8KDlozzdOErd7FwbxoDG6L0
+xjLu5Cx5Ovi/Q4M9P8o8WyU7MLUkfrhvhk6Grh8I/u2dcFBPWlsYxcdFFkt
XV9Z0q794adBLh2hsaUClxS70Hv2/J+mp3Rcjyx726PbhYJb7cvKF9DBDK54
z3rYBdeP/TsSyfrK9ar5+Le2CzaF4XkS3QPoqxaYMmnugj51fsY5cwB1y07p
Uzq6cJrX8ED/xwH88KgVfjHYBXl1oR/BugOwcavz45/tQovrrOqBJ/0wLRb8
ZTHfBUphYuZPhX6cXXDmYvXCbqTxmsuncPuwz6V+3TvBbji4NknuudoHKWLl
w7E13bhY6BHIXd+HNfNn2vVEuiHLizXxDb2YetzweY10N2Zc4vh2aPSCniM0
Y7+jG6Ojq1785O1F66yeQZtcN+Ym34QyK3qQ8bBxQ8Chbuz886S75mIPHO83
BWw+0w2v5dfOBth1449ly5cdj7rhK7tDZV9sJ/QPXvkg59yNLFCOz9qT54SX
6b7fjfR/7tJFCjph4j9tq/KuG/ucXlqfbu1AYamoztmwbrBLqd8seTog+iFc
5WJUN6Q6HX/srW6HnbHsfqP4buiMrMyd8WuH9E+VzTczuhG0WrXFfVc7nhaU
rbHM7QZla+vAqV/kveT1maXWlG7QlO5yhQvbIHehY/5+aTcEdRf+7ib7+iuJ
a1OOVd1Quxq4OPxiGwaGOZyn9d0wFhJOS9ndBqVMu/7nLd2wOrv3VtLyNgyd
cqvy6iP1Nt+pjStvxanHUaGhk6S+9oGAMLRiTRtXt0K0B8sGqvZ572nB3W8O
GrXiPZCQZDPermhByd1/ik3SPVC7vijAc7gZDgtXbemR64EOHf/co5rRKa8w
O6bRg3fstOqn4s3YN5c3OnWsB747mp49/tuEN+Va9FndHsRbju116m6Cssml
+oWXevBjZIe//ecm+O0YKOE37kHd7mMn7R40YXTqds6Kaz3IszKbtz7fhK+e
j76vv9ODtvEQszsrmzBzceEXMZseMPfmrbfgNkJPystb8kEPItW6b/C1NCKG
K+wu86gHLlcSnrEKGrEgO/jxLuce6D1yDqiKaYSRm4ytvFsPdn4+m5ZAvuPT
ziSaH3jdg/nULfXezo24yaScxcceULjlfJcuNGKX+pJ589weeLQYdFvHNyAp
Nm5bB6UHMzYNzZ5+DVAQ1jt7vKwH2it0aqKeNUCZ5R+xq7EHUtqK+f16DTj9
dufJcWYPTK13qX4dqkfTrzr7ayM94IsW3dOeV49LpvdDmiZIvQNLJVa+ryfv
gXkTaXPk+HNsXuf99aAHmW6UWdALMc/2yYxF9bBYvEjr85JedBSXDY6212HU
OsaKf0Uv4ufSW2Ri62DXecrfaXUvbA58LzV5UodfGpOFQ+t7oaMksaNSrw6P
4z8NG23qBVuNv+n9gTrwrDuytlaqFzXHxx9dFK2Dm3O/qur2Xhif69iy6V8t
+c61ZSxQ7YX3A8dyRZ9aZNv67vOy6IVLbpbgvawaqHYrGf+1Iv2XhGbuD65B
kWbvSyv7Xmyv9TD97VqDqvUynXrOvfDvM0h5dbIGPfmZzmv9epHFO3shrK8a
ptuMY9wDe6G0jDp/u7gaDG+e5umvvRBYUxm1J7oaozeOy3TFkvqkA2bzbKth
V8s9czKpFwa7XcNeXKzG9EEfp7z0XvActDh54kg1noQeDN+d24sk1bNTQhLV
4FnWXRNCIccr8nVXr6iG233nXyvLetFilH1H6V8VlvZukXCtJvW5WM1FjFdh
ddLd+zfaekGp7Nj0rLkK0hfnRbaP9ELZOMFUPqAKx8IkbyWTdUnB9SLTV7oK
Cv6CMmVifVB2N5ifWVcFiXd/6F2SfZDwNFx3ZWkVfju1XueT7YOSn4n21tFK
JJx9bXJJrQ9pMeaR6ZmVCDzmsOmuVh88ftwuEImthLvKjR6XE33wTrVsexpU
ifv79b74nemDS9bdUeq7SpjuUDGM1e8DJd9qsbZrJU6J7xQhLpNcZLM59n4l
Dq9d39Fs0oeScruDguaVkFnO95l9ow9uIn8eHb5QiTW8Exf+3u5DVlKzWaJK
JXime4VXW/VBXif+tLRMJUZGqppl7vfBv99NKUCwEmUdEWf1nvZBV/CgwIv+
CjglGZwK/9CH6Dv+qRddK9B/laJ5PKcPZjJXFsyXlKPmQsJCE6IPSfkHRuwS
ypF1MrDIroTM1wXBNpZfOXwU7dWC6vpQ84KIaTQvh9bK7cpjtD6oUSXPfucv
x75Fa/8sZJP+HX8fFp0ow+Y/vDkbyD4hLNQs/b6zDMsnRh13T/ZBNipOkK+o
DDPMbkWNaTJfqm4zjrFlYPRU/Lo414fxVmMa16cMTU3p6Xd4+6F570DN9cdl
KKgIs3dZ3I8gPsGM9htliCt4v99veT9ChSZWft9RBv+0J5MxQiS3ef1cRS+F
W6xFcsHafrCDtrc/CymFyaeje9ji/VDaYRpisKYUq6ymdx4h+1qQer2swN9i
PNx0VYpq3A8vu4Tj9xsKcV1P/mLPtX6IuZyYUPEqxOkXvG/azfuh+5blz69T
CBlO+EStTT+EoiXZwQQFLWlsSo5bP/hzd634cIUAhZU9lf66H/6tN41lWgsQ
J+q5Pfkd2VfHv8bl6hbguctu7yj/fnRsFT7BPJIPq9T54rDgftxWOx3wODUP
l5n108Fh/fAw8mAL7cqDpsi3XQFRpD6HIsXIsFzI69pd9Y3vx4z3nPsR0VyI
OR/9+D6Z9D+x7Sz/uRwsSREuf5PRD70Zicg+52z0rc+Uc6X0o2HRGj3P7kx4
Df75e6+FzIfUdDjdJw3sRy+Djs2R9tRnn+UWxmPo4q7b33gGIFRoo95tEkvG
vWaB+MIBeNddH36VE42TWxgHRPkHMD6kDartd0i9fhUstHoAplqb67YVBqNB
v+bu360D4Fk7a/Gx/w5kRy4sbz9F3jNOmCf4Pf1OZOnrEm/0SNba8mNqeRRx
NF/jvur5ASSpDfw4HxhNGL7b0/3dYAChBwyTVmXGEa/ll8bZ3xiAklBUp/ZM
EiEc8M9kuzk5/u0iQwcimQjl/bW65/YA9JabdX13TyGymmiPjloNgH+xZDff
2jRC80in3LTNADxeOBsp9KQR9eH1tNj7pB6evu4b4emEoUDZJxOHAag9Uzb+
aJlBMO3zTqx2GoDjn8Ceor2ZhF1vynzpY1KP06zx5Ewm8VcrJsXpGRkP07x0
57MswuPHV/PdrqSex7JGEbNZhPD6T6LUF2R+Vk6Ob3qQTRzNth5KfDcAeTN+
Hb4buUToX6k3pyLI+Jcf+NWgShCy5iKqvFED8A/97XkihyAy61ZOpsUMoEd0
QIgmSiHqvs5dFkscQF7i90ijTxTir3rbjuHsAZR0yjedfltIeMTW9IbkkXoj
1gQvry4khNcUfzhHDKDG6tetCv4iQpaeOJtdMgCvhXl/1d2KiCzdyIR75QOQ
rgupmC8sIo6mB12TrCLj8Xf9mPuviKjb9HFtaw0Z/3UzE0eVYsLQ/XWlR/0A
+LT4nwrYFxPMUeenyk0DUChzFM7xLSZsLznsHW8ZwIZjnLhb6cWEx/YbAZe6
yHwcr+oq+lVMZFQpW8gwSP+nvJScnEqINSvH+Ut+D8DsotAU41kp0ZT/5tXx
vwOYkh9JMgsuJXzubl1c/28Abssr7g3mlhKrqwwXdvFR4U1xZg3MkPyy9O+Y
IBXRO8e6uu3KiKb9pk8erKJCaFH1Z8MPZYQP7ffv32uoiO+P1O9MLCNWqcnP
LBKhIs3XpK5tpIxoGK1y8NxIhZ71Yc8Ly8sJ7+Cb/wltpiLr+Dqdlh3lhJ4u
j/0nCSrUpCf5zuuUE0J/Aic3bqHCMVhEaeBqOdEQc8D221bS39H26Qg7cr5B
w5jMdipqOL6ZFi/LiZUZi7h7d1Ox4aCQ4s/YckLQ1oZ1TJGKpLrFBxf/KicE
WFo9909SMfXv535Zrwqixm/AcPYUGX9k8s/xkArCS/Nx5zM9KsR0rVPTkyuI
5WFJba8vUGHmP7QP7RXEsisbG79eJf3vpe49J1VJVC3POLP1OhXy7SET6w5U
Em9y9OpizajQfWqc3H2skli6wb063YLUV9kuf/NeJVFRJnHiyF0qOqz9xne4
VBIeD3IrKFZU5K09nzTqU0noSF88pm1LBU+ekE3q90qCv3m8tPo++b3rdXsc
s8j5rp6aZx2oEIh8RjFpIefLyxS3OVKhv8bm1chkJbHknRGF+pQKNvfcWn75
KmLx8bKc6VdUKIVv2IvYKoKP+JK4JYiKJysibieEVBNdypo6/SFUeMx7FlcR
1URizshA4DcqQsfub2YPVBOGGSqrV0dRMdd4tEVqSw2RnNBvz5NCrsenQfhH
1RDuuzxW5KWR/l5VB6ZX1BDGMfKRDzOpiHBM/a+JU0Pwf3dtH80j5xu+iFsh
W0v0Se20iSX+n987i3edqiVSQ5v4zYtIVjl/TceqlvDY/PibZCkV/HJH8m6+
ryVMgrYc7i2nwo2+ccYxq5ZQEK1p8q+iYiBgOtrpVy2x1N/+jn4tuZ6nmy8/
Uqgj0j6WBlU3USGd/Sb3cVIdsdzz1r/sXipa3s4+exZdT2Q5xZV8+kmF/5fh
BRo1DcS76fNXzv2iQsrhspHGcANx48HcfytmqUjRK0/VWNZI7p9T217Ok+u1
KNzsqE4jcfP22Ov7S2nYbWNYplnSSBxmfpbaI0BD/ImKzVqDjYSQmVrukCAN
N7YefKi1oIlgUtnnI1fR8PtfeL2WZBORd/XDyDVhGh51rdqurdZE+PQeerlp
PQ0S6c4u2lebiFtGtE2dIjSkvud2aD9rIpQ732T4itEgu6A9cDqhiVh9af8Z
PXEaWPeSa7J6mwh2SzdruRQNeZ2e804rmon8c24u5dI0mGiZyx9RaSZun25N
Vt1JA11so29+UDNRoPVQePcBGtjVbkZFRi3EHYXczqUnSd5hMFTd2UpQGlrj
s07R8FSYw03gbyPW3ht3vqVHw+J/ThPvFdsI4vtWmdILNKi2fJk579dGrFnv
bediSup51r+4R6+dyJ01Wz79gAa3jsDLnZMdhNAn577vjjQskBAJXirXSdzc
F5is/5gGh1ufBw5ZdBIr79RfSnGhwfDXx1uB/Z3EjZ5DEfc8adgr/PaBUU0X
sZwQVKGH0lBxxvlD7/cewtRoh9DHcBr5HvnbsoLaQ6RPHx1Uj6QhsO/xBlWx
XuKqvNPrr3E0eN1z/Bri00ukfhtsNcwg8+Fpm3DVuY8wcsuyaqymwbcifvW7
XQNE3PHroQW/aFC6Urt04QIaoSArqYpZGuyHrEasN9GIAsGBbuIPmd+HQvU9
SjSiofnK+kKeQcj7nPfNsKYRU1cuvyteNojV5Z2bLXtphKqd3pOKzYOw4Uvn
7QgZJMr1V4oelxyEhWvaoHT6IKGnWJdZuWUQ5+dTS22rB4nrcyd/Vm0fxMGZ
lNfLZwaJV+7HLGv3DYJnJGkVztKJhkBVgybtQbg2x0tGLmQQl5/+/e/c8UFY
6sUv/CnCIGhX8z42nxyEcW0cA/IMYkr6cH2LHumvPDam05hBPF0ye/fC+UFs
04z1lLnPIBYPZS5ruzAI6cKYe/dfMwiRxAPa7YaDWJIbvXdFBoMI+zA1eOnK
IBiK0WsMaxiErH2qa8fVQYynRf0XSWMQ6RftxC9fH0TH3qj2nzMMQvXQ3vxO
s0GoVz1nqq5kEuUbxw0Nbw1iw+PXKlQxJqE3/2Omy2IQK2S9fV/sZBLXi2UV
eqwGkfU2WKNCi0kMfx9uNLYdhK9qRIDleSZh7xFr3XufzNdY7LjANSbx6tT2
uD7HQew6mxVy9gmTiG/fIkV9PogI4ebfXSlM4r9hUSEmWYt8v/CncsVZhG8w
qzwoYBBlbm11GXIsYv+ZNOfzQYMYvBcx5KzCImxTTo1Rvg1CU01NarURizyv
olEPIwZxf4egarcFi0hcyzKRiyJr2+qeyxGOLILr6FL3JX4Q0/SHHw5+YhFe
O0+5n0scxJY6rYR/ESxiV4+I6tIUcj0z11RWpLKIqrfM/4i0QbiEUukfiliE
BVITHDIHkfQ6kceokUXwTzjf3J0ziOuNjsW3O1hEVJjuJnreILp+KC5e1c8i
GIuYXmeLBlFlke55bYRFuGWmaPKXDkLtmH3d0p8sYouF81xB+SCypfevSpll
EddqNtyVrR1EbH/SpwVL2ESvz8mTSzoG8f5C/LdwSTbRKp68NJ87CCP18EzG
RTZh3/i08P44mY/N13+/vcIm1rw44bTz5yC05iRUDpqxibPMQfbnmUEoZ4YU
uduyidr4dRV2C+mQ2B1Yu82LTZQeeuK+XYSOhzVjGXwVbMJsWEe1fyMd64pW
pdDq2cTC4LW//DbTkZ25P4HSzibUeRJvLpSmYzLsYfgTFpvIL6Nq9snRccXp
3/upxRwi/fyxhb6adGjLrLSga3EIj5NZL8WO0eGZ+ddK+RSHMD66g//7cTqa
dUbsffU5xIL9y1dknKbD5E6li+YNDtG688l71bN0RM1lugdZcohoKe6q8vN0
0N5Gek3ZcojTq+vXdRjQcT3phX+EC4eQXKYWYGpER6S6XcjcKw4xxZu8kXOF
jj0Sk6fPfOAQFbOSIbamdPz2EVcsDeEQXyZ8JH5fpyNm0SnxI/EcwoqzMPz5
TdKf46MlydkcQoNqv3X5bTqkh6PGZMo5BLvh4k6xe3SENyygrKZxiNyK8vgI
azr0j8pHe4xxiHcUpT277egQyrjiPT/HIRSSRBVUH9Lx4kuW6dD6IcL1fZ+K
qSsd5uZWvEWnhgjR0+ZnI/zoUJ7r1LDNHiK4Wu3Nsv50/LVasotVNkRQVHQu
pgfSkUVVWHOlZYgw373TqOwrHQrl7wd1xoaIQ1u/9J4Oo6PtUH51wdwQIbBJ
wLQ9go7A+KFUhWXDRKrAqBk7ho5lPlpuEluHCXe+qyybeDrq+O7f/bRvmDCc
q7eY/UHHu4eh+gJqw8TuKbUR12Q61CaIks96wwTPSLLVsjRyfySu+pl7fZjQ
rX7gKFtAx5tIg3jduGFCvJj5O41Ch7FZbJdN/jAxmXPpqUoxqUdqjt+vfpgI
iD30/HQFuT+Cv97s/TlMMF//9bRpIsf7MTdbKY8Qzjovv6Yx6TjoZv/hfe0I
0WRy21ieQ0dIzMPjBv0jhPSDkyLxw3SM1j3ilZwYIaq+rfoYPk5HuoirbYow
lxD+E+zu85uO1Ylvz7YacYnohIx7NoIMCF/PFNjxi0s0rGYfkT3IwBLkb9h0
ZIyQ2lE9E6XEQHfQ08t3z4wRD/AjfcsRBn78VgnMvTFGiN6137NRjQHtjIKN
hl5jhFkpz5ZlJxh4s5uy+XPvGDHzUGQZ+woDfBceN6aqjhOSvSc6wl8ycCpQ
6u2C7nHiTdGRxAseDJxeZXEqiDFOTEbJui/xZOCSR+KKg+PjRJGdoMIdbwYM
HZTfWSyaIMz4m97v+8KA5bmL7xv2TBA13CJzejADNpVBZywPTxAHmlNVPoWS
drXBlXxaE0RIVoSwTjgDjzJ3NASfmSAWh/gNz35nwFXOxlvRcIKweuFeFBfN
QJKKzR0pswmi/fbDgCtk6+iTmvcKvjNBRO+/fKwwiYGLXJGGj48mCCGRE5vv
pzLg3hQ1Ifh8gnCaP/yfdAYDZZkH1rx5PUGcqBQL98hlQOH52Ysu/hPEsMnA
/JkyBjasf91zN2OCkHtzK6Ovm4E6tRm21uQE8cna4K13HwPLZNyXFc5OEP/0
j5tpUBlQXS4sq8w7STSI71odySTja91jvU9oklBaJMa5xGFgJCffO2H9JBE6
JEBZOsKAWOjJlO3ik4Rt+ui9exMMeFne+m+z3CTRFdivKT7FQPWZ/9YFHpgk
NFwaNjb+YoDnwAultSqTROzNwsnnswyoia4y9NacJFafTKlUmGOAYa2/caPO
JPFIPjyUOc9AYeBSFdqxSWJwre9Df14mfEoLTGJITht4sHVuMRNnN+4IUyRZ
rMx8LmEpE9LafcXz2pPEy7hLzVcFmFhg+5FRSvJFh0OuxauYSCv7u12f5Onl
f3veiDEhZteUaKM1SRxWdPMV2cfEeMXj/Jijk0TbdZGDwQpMzJ02+WFP8v13
P9olFJlY3ar2FSTHMzpEtyszcZS6yLVVY5LQWWWVF6fKhP4ttm0oyQzlhSZ7
1Jkw41Zdv0PyZt/d3w5qM+E5+16Tl+QcokgjR4eJb852B2rUJ4lLw5foKieZ
//9f3P8qsvJwqr4uTNEgkQbJEAkhU5MMZUmSShlSGkxJJRlSqJQMEaUiP2Su
NEuhVDItJEOlTCE0kHvOucO515UoxHe+P99n773etd619lr7PEfjBoOHZOno
qu0EXO+68rzOfBATLCKXbbIjYNk+0bOaRoOo47ewod6BgKovQRaX9AexIS3P
22YXAbZ7OTM5GoM4Rdj+ZOc+Ak7uaU19vGAQsxV9bDucGf87N7tLzh5EU2tR
4T43AjKcypb5ig1i4M3lqz08Cajefe+l3i8hEtvDS477ETBn16m2wiYhvs/V
qrsaScA9e4U5xXFC9Gqv8JKJJsCkOb5D7oIQxaY4SiTHEPDBTuzmGaZezfae
3555hdHTltY1PSrEgumtrbkpBKzbgdsqrISY5HnuR10uAWN7V2p5DQ+gQYJM
5LYnBLS9EH01mzuAjaX3l37KJ+CpTLPl8+8DOG1e8+H2IgLcGvzdJ+oH8HSV
Ot1fQUCt0ZMbSRkD6Lz401/RVgLSFmpOqzIfQKlFJ16UfiZgqf7GTSdWD2DV
vAUBQZ0EJFu5Ri3VHECNmfsp6iuzPyhpykXpART8Ito/UYx+D0QnkssEGNkw
8TxrgoCk+9c6KBkBrq657e8kSsIJ+HkmdJKPZIXlchkxEhQ71yrOpfloU3Q5
J2omCaUze91N6/m44Kbs9WPzSWj3WcW5ep6PDwP1/Iy1SVBa1Tm+kkvjPv9m
rV86JHx/r3OzrpPG2d6BrDx9Eu57RmxwrqXxhFuJs8oaEsxTtC9G36ZRbZ+L
XNdaEmboh2nKx9PY7ijS9p8JCS11re+enqPRdKvVtunmJLj8PSfd6UQj35I9
rcqCBK3E5kKfTTTegivVIZtIGNDWcBRdRaODif751dYkLIqcv0zXgEaxNS3G
/K0kDNdxIV6fxpf6Qb8fbCehe/abPUI9Go9qyxUesCOhemd6wE4Gf1R21fy8
i4SL363vLNSlMVxetP/aHhIOqauUndGhcdWCuzet95NgfWykrXs5jakSHNky
dxJmjtybdkubRo/fQeJ3jpFwXWqqt6Ymjb/fXe07HkFC0fpyA+OlNPbM+uw1
foGEWM/cinuqNFbbKApiLpJgEXfDZi6DEz7mjmXHkfCjM8CLq0JjsPRghPY1
Eh5Pug47MdjFznjGywQS/DRsomqUabS8Hn5tw///u243nruCwdotdfMbk0kQ
CdS4lbWYxjnzpDP2pJLwLn2engSDR3buXtKfzujtvGsiiNHjW1LWA/8sEtz2
7XyTZEFjzed+3bGbJKTssY99vovGXFmdoos5JHB2225v8aLxutNJk7n3SDDY
tX2u8CyNrl9EN2vlktBjvyVTL4fxR35LY1EeCVJ2mw9sf0Hj8v0JO83zSdiz
Y5OGTz2Nf3oWuzsVkfB364aCR3waE3+YnomuIEHW0rhGzZSPtWTQ494Wph4N
tXjybXzM0yxf4fuZiX/1skJjko//HRUr/tNBwsRK9eA9o3x05ybWSH8lIUl/
iUiKigBH+flf15MkVGoumi/jK0D9YbZ0+hhTf00BLtLTB1B27YoU9QmGP9cn
yVxmAMdPnVYsFKHAJPrI+wCFAXz3d5pWvTgFTcYuxm36A+j5b6nFsDQFQznW
C9L2DGCqmGuggxoFBkHKjaq5AzhxcOGaZg0KnnWYfVMpYva/afptq0XBShNX
weIK5v5Hbjy1XY8C/clMGYWWAUzpHV/7wYCC0gNlqot6GH7zl3+2rqLAtKZ7
1UJiAOsnNUOsjSgwuyS/e97oAOq59ZnUmVBQxTU+IiPG9JeKjLFN6ymw2rH3
tLSUEEeVdpXVAAXF2/qO1MwTonuoVOhGCwo+qdvdDlsoxNqeuvXVlhT0TpZ3
mSgIUWddxIT5ZgoGvyyfP7xYiCOjv8LMbCiYd216jI+GEJ33PTEv30GBrldQ
5TJtIVa/Piy6zp6CjRY///bpCvHa6S+RxrspODJc4bN3jRA1hiuiV7tTUOAa
7GBlKcTdwktx2oEU2OmzlFQ8hFhmt9HmUTAFnjN3OnUfEqJqwbik5hkKTv+s
TEhh+iffz/+a+nkKsm5kTp0dIETHj5q2d8MpeBEgsb4+UIglun3SSy9Q8GHb
6eALp4UYzXO8rhJLAXtyJ/tvmBA526Qcbl6m4O+XKtUXTL+2e1w3d/FVCiSL
9J2PxwjxpUREa2Y8BcrXspKXM/1d0dskSSGRgplWA7pRDI5s+OWYnkTB4Vll
GRgrRErzyYJFNxj9mmJmjkULsYhUviGbSUHcfmVWQLgQ5Td/cUrOZvRT4To8
CRVi+P1Eufm3KXAgXlZSzHywOSSeLnOfggUBOzLdgoTY38fJlCygIO1i6M7t
3kKc9+1FzpQaCnILu6s0HRk9JUNDX9VSoPSgdLmmvRAlTC33+DRQEJ+Zkbxs
hxCnpLbMbv9IQVDM/qMa1kI8X5tGXW6mgHXOtFWdeY+NDrm/gTZG7xMK69Ut
hDhoLzj96AtTfy7dc9TWMe+x8Jc7XXsoeOxQGrLUmNHraajevO8Mn3VGv6qh
EA9/tZxZ38vEt/7sDtVVQuydJdl/rp+CDRKl9iSTb2eT1ooVJAWyGoo9fmpC
7PRKTyPYFHRvCD08LC/EpreatnYCCjzOwFnxGUz8QwIt8UEKtJJviV+dYOpZ
9ZVYyRCTrwLRhPm/BxDDNpUsHaUgkHpzd2nfAD419lAfEWNDopP1xw1lA3jl
ScZYljwb6tfYLzl/fABn9Hi0Oyix4bL9s8fiRwYwSkK7cLoKG3b6zjO86jKA
Z48UHw5QZ0Pf3c9bM7cO4HBy2AYNTTbkVRp+XrphAE/UWCl2a7PBv+eG2+O1
A+i95HOzpQEbJubtCyxRG0DCNjPv70o21OiXTmxg7r/H+YMxT9ewIWmb4qUG
pj98y9P2OGjEhhapbCWxaQO4t1u4Ts6UDRK5r/0W/xKgdbLUQ+4mNmR15687
FS9A8dAIR+MANnTdjg3sEuFjkZD3F0+yodQ8fEo6m0bPw3tuWgWz4dL3Uwl7
W5h+a6vP2XmWDRpKR/I679AYpfo1zC+aDetSN/W3WzHzq97o8Z00hu99fU52
PA+nzBsQlapmsE6H4WFVLj6L2f8gqYYNUnPlChJncdFjvNZGoY4NCn/2aOEQ
B6tZWTc0P7DBpKZLQa6Og5HF23Q3trMhzPmbyLtjHBR1fbDnNIcNO0pqvml+
YqPII9f8vrkc2HHKdEfEIwpreR1+NxdwwDJhqDQrmcIrBvZ6znIcUH/0RKsk
gsKFxRuffFbiwIJuZfFfeynsGSvzSVThwPyhzhPSVhTmgKGO7VIO/JNM/LF8
JYV6dZqP6zU5wDcTK/OUoHBIIsc7ejkHapzKtSKGSSzZoaBtoceBiuPBN7L6
SAxPTGJPGHDA6MLh+KB2Eje1z35UuooDRd3ZB9e8J1FCPsbrtCEHzFZ3rP2N
JDa5iGiuMebA0yvSki+KSHRmDd5/asaBl+vDi1Znk8z3l8/hYxs4oJNSHDuU
SCLlw1LXtGTs8Qeci2JIPDnUcff2Fg48u3lAfHUAiZenluckOXKgQHTj7lWW
JL5eEpMd4s2BW2/F/6zgEHj+kIjrWl8OaC42+yD8RqDlozNKQ/6MveDgW4Wt
BDYZ+GT6BnGgchlpvaKcwJRA1n7t0xxQDVdWEhYS6FzsqkCGcCC/00lYcJ9A
1fGOrjuhHDBckfD2eAaBFNinu4cz8VyqTzNIIPDphXd7lS4w+kR/eXgyjsDA
uo2LuqI5UP/3yb3xSwSazCrvTInlwH3fyJzoWAIndxim7ozjQGLv7ptSMQTW
JOY7zbnG4F3LM29EE3i5XXNhYwIHLjRMpqpEESjrqpBilcKBw4UPE1dGENhz
O2nX1DQO2KiHxpeGEZjDmr2gMoMD5mn2VyzPE6jrK5JkfJsDahGj0bvPMvGf
Y13XyeMAaWdzJiSIQIlKV3v2Uw58qVEJnhrI6DG1c879Qg50Gf0+ceUEgfvj
3sUrv+JAikq2T7Y/gSfS86/OreaA34DArfooga/G02OqaziwPTV8pYMXgeOu
FyNO1HFAyVxGvO8wgRZVAWdV33FghLzdEXCIwJilLkEtH5h6il+ZK+pJ4Ido
a//ITxwoW/vm3HUPAudSq46ubOHAle87bZccINBpq/LBvjYODGaar77DrGfm
SbgkdjD5iX1hl+RNYK/U8G6LLg5sOantG834qxHQazfYw4Fw15uXgkMILFhT
bOnQx4FPqy9V77lM4NuKQzpzaQ6c73VerZTLxL/EXqNawIEnH5rtpJ4RaHdh
ncqJQQ70vLLynXxNYNfmefNbRjigd83gfm8DgfymyrHrU7jwzkRM7j6bQLmf
Cu9l5LigmfR4TE+LRJdN099WyXNha5iKnMoKEnMeDFYEKHHhnHfyahljEnV8
Gp41q3Kh1jzM95c1iRt+B6df1+WCgU3R8+1+JHpPbzkqs5ELbxaVDccx9yX/
aPnBqk1cSJ+nhM8bSBx6/9AlwJqxP/t8THcriWEJYfbN27lQIGIut5wiMWmR
rvH1PVy4SL4xfjeHwi9n5VZt2M8Fo161KYPyFC7+NlVX6MKF3q7od4vUKXyY
06Vif5ALjh837z9qTGH58tgZMn5cWPPi/bkZHhQati1sTDzOhfK4Qw8ijlFY
cO7B9fknuWDlMdk8Gkihlvra3SlBXCgyShs/eZ7pJ4218nKnuWAsvWoZHUOh
YvDu72khXJCN/f2mKp7C5MXEHYVQLvw3Xfm+C9OvpOqCvLLCuDAlxjr2bzqF
sf7iusqRXDg/7YR38i0KReWShbeiuNAdnWGz4j6FIZVqL1VjuGAn/lav8TGF
vjKWoHGFCyAm90vsFYUOzyPtdVO4MHNKxdnARgrf758rm5/K6B9BusxppdBS
LKfLIIMLgyIy5nmdFK7dVXVw9S0u9E0eFOv/yfg7MhlkmsuFu/9mXt05SmHK
zXiT8jwuaISu8hdMUihtrTxpls+FhHFn+zhxNk5JM4u1KOJC8Fj+gjdz2Eia
hKZvqeCCxd9d2SuXsdH9p6Tb+0oulJwOC/+ow8auuMyl298w9v489PBeycad
q3Woj2+58PxUi+U0IzZ+6CnNs6vngsTImEbOejZaRW8LaHnH8AWrzzTbyEbU
7V7j2MjUy4dX2g+t2GjU7j36+RMXXL6UfRfdzMZn50crnFq4kEZUJe1n8PJl
ly98aeNCw6/aLS8YfPfTIuv9HVygRT5MSFmz8YaKcbNrDxf2KLR7VTP4XPWp
n4cILiyz46zT2srG397TH5IUF9a5CISRDPabd8PnKJcLV72H7vcw+IDny98+
A1zgRU3MSdjG+Dvt9/TAUS48fD2XNWzDxsqnUR9+j3PhZ+3CdLvtbDR2mn/9
1CQTX5uibS6DdR6ukj8rxoOTfI3XLjvYKLP1hE6kFA8Ml5perbFl460q6Vkm
MjxojDZpUbdjo4HxE7ZwHg+uUcYLYxiMBVvrH8nyQG2bsTPF4B2a1P0Di3jQ
+cTo9hZ7Nn69GR29SJEH5+YYEbkM9lm41LN5MQ+0Tq5dLunAxrFrlRaXlvBA
fkPxuz2Mv5enuS7ZoMYD9y1toUsYfRedH5v8o8GDdPsBZsqx8eHv1G8FWjzg
7JXsf2bMxrr+1gwVfR64eFtutdRlo9ibLbIiJjzwjCuSPTKfjcy38tCrdTxI
/K+pQV+KjarPolr9gQc/Mnjn/kxno/ltTPhuyYM9eWo/L41RGBq2Zhba8sCt
MSk/r49CyZEWdrADD+58LvAI6qEw0+94vd4u5vzXDwvM2ikscXkcnb2PB958
sXOfGigcNl0icv4QD05IB1kPFlAY/bzi2xovHmQvvD5Wkkvh/OXO5bQ3D2jl
J08v3KXwbs7fjHu+PNDRbDhgk03hKvkbIS7HeeBnwJq/IJXC6uur9y44yYMS
8jfpmcDcr5ktaxuDeCDRbTaiyNzv438kf687y4OaqqYFV5l+MOmf2zoUygON
F4vUNzH94hq5+VleOA8uPvRY/e8AhXntkf6KF3mgHz/k4GtLIbvoD3ssgQf/
OcslbNdm3ie6Ta1nynhglvgg6mMyiTe5MqFTkQdJfmf2ql0l0ePRTo2rVTwY
3bpNLySKRLZax+lbtTyQ6h4pP3GSxGGFb0p1TTz4uME+bL0DiTISvCPzWTxY
Jy02pVWaxLY6XZlskgf9XvueRU8nMTXav2QZhweXqws8jCYJXCz6S9JUwOgT
5PImi0+gzp+/hQf+8iCv52WUVyOBghem+7ljPNhoOHuNwlsCn50MFQua4MFE
/EFWYxmBxgIRp9ipNDhsnGO1Ko9AK2L6+NPZNEjmHp0+wcyfmXe33DOaQ8OD
qZWvCiKZ+Xcgbkf1XBqCXWS9DjLzKkG5cWTbAhq0X/nIyTLzbOdXqdufF9Jg
ONL6z5+Zd7IZdlvd5Jn9jtkzZJl52rUn8RelSENNode8MjcC3dsWWI0vocHL
55/mjF0EqiU6CaLVaKhtqFv11JZA0jYtVXoZDVOWJZo5biXQ770iV1WHhsJe
DcdbQODZ6qUJWwxpmOZkF2akTaBZ+CHjViMaXIrkL39TI3CK2YM+Z1MaqmVY
SVHKBMa+1l5z3JwGjw9ncpvmM++nghVdKVtpSNxw57PXJAv3+p28oLKdhrZs
3x9SoyxU1Hmhk2tLg934Wm7REAvvPDAKK3ekoePlBxFRDgsLskGt35UGI53h
5WltLPwV8mv6gQM0mK7Zq77vEwsNnR5wvx5k9DUrW6zwjoWnV+3/tO8wDYc2
K8v11LCwVFr6eYcXDafsImWykIUT3OoUx2M0zIjrcb1bxkLz+uCQZl8a+t+5
y7wqZeGFu9quO47TcEuC9aahhIW14d82vD9Bg/PWo8E9r1k4wyVR3TqIBrPL
tKagmIXbjK1mvj3F2HsX0C3K4Cbhk6aKczTkbgkxX/aShd0eoW7PLjL2reMk
Tjxj4WJYsVH/Eg3PYqXLowpZ6K7A0siLo+FS/X/+NwpYSLTa8O8l0LDQOrOt
7CkLBywVQ9PSaTi6+Un29McsXLWkyV02i4ZVMSvs5XNZGPzvguV/N2kYqn0x
VfcRC8decGddvUvDDasKL4cHLJy2rDQ9/CkNPzZ9Wpl1h4Vbpvqf/1dAQ0r0
TlZ+DguvfFf1CHlOQ8DbjhvVt1n4sbR908gLpr7Enbd+vsVCmdTLWoHFTH1s
+jFO3mShY6DZbGEJDawoz/zRbBam2A0O+JbTMN+gVMwik4VfdO63cZAGA3vH
5uQkJr8z9xUfqabB9QSdxb7CQjfW7Mz+GhqO/3fRe300C3OqqsIO1NFwrUh5
7fVQFi4L0dq8/wNTn8P2TUZ+LFzJ/fN5RzsNu8++nBJry8KgurzX7ztp8My0
/dS9mYXFd9yzrLtpuFdOZeibs3C9c72nxQ8a3k3Kr+kwYKF1441fazg0WESF
HdGYy8LLj7Z1POPREHhPbnWIBAsboydL9AU0RNUWinycwkIHsyORWkM0dM3o
Twv61Y8u+YYyShNMvq9af6hp68eX+/5INYnw4YhOckXAh36UmlYieWEqH9Lf
9xYsrunHI4VnJQyn8eGet96d96X9WOm8fgZ7Bh/6Zp5NPv28H+VmTIpnzuLD
n4d1MeqP+zHgeeVUWyk+qFjPD2nJ6cd3rpGiU2T48OxunP/lhH5UlbCcLJrH
h2z2uIJhcD+GvBD/d0SWDwl6fvW9+/ux1b1uVH4RH0JOfg+8uqEfo15tHQ5f
zAfnf1WN/ZL9SHja0zZafFCViQn7785PNJszjzu5nA9au/8sh0s/8UZpG/VM
jw9TMo52cvx+ovXcPf1yq/nAUbNZYWHyE3PRtbvfjOE3kvk50NSHfvI+Decc
+WDtnmG1Y6IXa9/q1uk78cHwnuSvvz97UTlAUNO3l+HjhN6819CLpxULq5Od
+SCrL9hmn9+LTXUnKq3dGL5A9z/jSb2oeXJ1xdgBPgwVN999GNKLEYuHS596
8qFFRLy8dE8vrgw682q+Nx8sORtUlszrxZFPF+/lhfHhofKxfb5/v2N49O2I
nlw+GL00vvbmZjfOPjV964EnfBivDo1ucu3GdC/fuUQ+H1I/VZ37qtSNz7cZ
3xEU8eEHteXYSEYXEjLNNVOQD7Ff/C7nZn/BbdkiM7Ra+aBpHXBE624Hyr5y
uxY0xodw9eAly/Jb8c7Dt7tH//FB56Tsv3b/VjRIX64cJiKAOVUvOy8atOKW
0JH8WHEB5DmPxBOFLXhuY3xzhrQAnJf/Pq3U0Yx9nyrmVy8VgEqh/EGZNU3o
X6X21UpDAJUH3H58EmnC8WeX773XFICIunWpYtonXJCy2/CzrgAMqH0FsvUf
0dqZ70StFcCAb3i6hEYjPqGUMqRsBHDrzHu/wd4GjM2Kdv+2QwDu0i8/bPZt
QE8HWv2pvQBm3L2lnfWnHs2n7+KGOjLYOC528EI9KpaVFWx3EkBBYxCxWboe
/xxXC1baJ4CHHu6WWel12Kp+xZR2FkBsv8Iwz6YOn3b9Eil3Y+x/LY64IF6H
l+P3117xYOJp3zVbvqIWD1u+iXM+JIDjnwZTC4Jr0eKvtr2OlwA06+PVNuvX
4l+P0e73vgJoet1gGnjrLXoZpgklzgjgdNZ674+RNWjJFXnVdZY5n9L129O0
BpVveZ3LPc/Yjz8VMfbrDbbPNJq+NUoAdhGFqZqH3uCmr+2Kl+IF8MNTvS5y
czWqJJr17UkUQKdLtcMikWoct7r/QDNZAPW73b7lF1dhUUHQyvp0ARRbp/3u
0arChENfR25kCcBrg2HEyb5KPCa/qfzILUZvk1ZJiYxKVI2abz39PhOvzmy1
tZKVOGF0bnbHQyY/2xzdMi4hfqF/ttx/zOTP9Fpw/WgFFuVsSw1+yvj7lNII
uF6BCU7PXawKmfU3Gt6P9lagj6TCUtki5vwXzye9SyrQuiqSYr0UgDk/Z2AR
pxwntR1ORpcx+ZRTPnU5pBy7vr822oUMv55LSbVFOb5MWjKhVs3s35jxb1Si
HP0mBmJr6pj4fRdGHcsow57m+Oyprf/nk75uU1aKxRdHDrZ+ZnDn9raoqFJM
MnXTutPJ8PPjFpbblOK2e3pFFt+Y+pWbka37tQRLTjc2RLD/b0/ksdTEa0zR
XRNvz2POR5rxrWpfY0BfpuMSAbOeem5F2LXXqGnj871y6P98f14JFr9GMdG2
uwkjjP1Ow7FlZDH+eGHq7T7KrNOBZu75xVjmfUff4J8AEqY+j0g9VYw3lGf9
npxk4pMT1jRBMf4PNnGZww==
               "]]}, "Charting`Private`Tag#2"]}}, {}}, <|
         "HighlightElements" -> <|
           "Label" -> {"XYLabel"}, "Ball" -> {"InterpolatedBall"}|>, 
          "LayoutOptions" -> <|
           "PanelPlotLayout" -> <||>, 
            "PlotRange" -> {{0, 1}, {-1.1426039760181024`, 
              0.9999998782112116}}, 
            "Frame" -> {{False, False}, {False, False}}, 
            "AxesOrigin" -> {0, 0}, "ImageSize" -> {360, 360/GoldenRatio}, 
            "Axes" -> {True, True}, "LabelStyle" -> {}, "AspectRatio" -> 
            GoldenRatio^(-1), "DefaultStyle" -> {
              Directive[
               Opacity[1.], 
               RGBColor[0.95, 0.627, 0.1425], 
               AbsoluteThickness[2]], 
              Directive[
               Opacity[1.], 
               RGBColor[0.24, 0.6, 0.8], 
               AbsoluteThickness[2]]}, 
            "HighlightLabelingFunctions" -> <|"CoordinatesToolOptions" -> ({
                (Identity[#]& )[
                 Part[#, 1]], 
                (Identity[#]& )[
                 Part[#, 2]]}& ), 
              "ScalingFunctions" -> {{Identity, Identity}, {
                Identity, Identity}}|>, "Primitives" -> {}, "GCFlag" -> 
            False|>, 
          "Meta" -> <|
           "DefaultHighlight" -> {"Dynamic", None}, "Index" -> {}, "Function" -> 
            Plot, "GroupHighlight" -> False|>|>]]& )[<|
        "HighlightElements" -> <|
          "Label" -> {"XYLabel"}, "Ball" -> {"InterpolatedBall"}|>, 
         "LayoutOptions" -> <|
          "PanelPlotLayout" -> <||>, 
           "PlotRange" -> {{0, 1}, {-1.1426039760181024`, 
             0.9999998782112116}}, 
           "Frame" -> {{False, False}, {False, False}}, 
           "AxesOrigin" -> {0, 0}, "ImageSize" -> {360, 360/GoldenRatio}, 
           "Axes" -> {True, True}, "LabelStyle" -> {}, "AspectRatio" -> 
           GoldenRatio^(-1), "DefaultStyle" -> {
             Directive[
              Opacity[1.], 
              RGBColor[0.95, 0.627, 0.1425], 
              AbsoluteThickness[2]], 
             Directive[
              Opacity[1.], 
              RGBColor[0.24, 0.6, 0.8], 
              AbsoluteThickness[2]]}, 
           "HighlightLabelingFunctions" -> <|"CoordinatesToolOptions" -> ({
               (Identity[#]& )[
                Part[#, 1]], 
               (Identity[#]& )[
                Part[#, 2]]}& ), 
             "ScalingFunctions" -> {{Identity, Identity}, {
               Identity, Identity}}|>, "Primitives" -> {}, "GCFlag" -> 
           False|>, 
         "Meta" -> <|
          "DefaultHighlight" -> {"Dynamic", None}, "Index" -> {}, "Function" -> 
           Plot, "GroupHighlight" -> False|>|>]],
      Selectable->False]},
    Annotation[{{{{}, {}, 
        Annotation[{
          Directive[
           Opacity[1.], 
           RGBColor[0.24, 0.6, 0.8], 
           AbsoluteThickness[2]], 
          Line[CompressedData["
1:eJwVmXc81d8fxykaEhFCFEnRoCGK6i1kVxRakpBCISOaIkoisioZ0TLKykpy
7M29drLKusO995AtX/3O76/7eP5xPvdz3u/X6z3ulbVxOXl5CRcXVwY3F9f/
Pw0v05tLGOaHp4v5mgb3+R7m0ZZ07ZdQgZe5nRNSERdhb8LL2C8SOnAjKken
LdwFjBo7s+MkzOBBSuntpHAfOG038z1cwg42+L5pOBUeCr3Kj7VDJDxA7ehq
M/PnCfBG9MSjIAl/UEXz32+FZIDvii9bn0hEwn7RFB3p+wjOnE3MGBt/BwFF
34/yHaXCqn++lnobMiDfq1ylqKsT5E059PKnOaCQtoGiz+oDr6YD8HLyKwyN
dJ2tXDEI63KE+ri5EcguT+U2FBqBvAHtBsrBMvjrXr0vbZYOHfq+4yF6ZeB2
s0Bu31IGTKcXixmfLIPMB6ulC1YzQO3OgUs1V8qg1VplS8omBhSsVZ4uCS8D
HYbYETVjBnzVkZTJppeB7ZUkEe54BhR9GHOPjCyHE12dnmoHmVDmGLf+LKsC
PonRm17YjMIXhpOT1XQFfPt3fuNXx1F4d1X9my1XJUTaRTS2uo1CgH3nOWeR
Sig0uqkx5TcK+jZCMQ8PVoLq8aAt9KRRoJwNEE8ProRsW/mnwb9HoUf/uujS
nVUgGW12vewsCxqrNS6vUKuCD6VLalddYkGxLl/u6iNVcKznp+7xqyxI0Plo
Jm5eBR6tS5OKb7LARvN3xM57VRCW7fbeOIIFdDVz4TONVVCvI2AtVc+CqS2H
BD9fr4bH5mj6/j42HB7Qqg7yrgb3abkg94NseBSn73P1YTXc3rSr4aI2G8RE
zLDcq2pQSrQ222jKBlVuJ0pMRTWoJT0/rH6NDd7dL0MD19dAyf67jb1v2LAQ
OiloV1sDwk7q7KalHNAxmq8+0lYDF4c6s3NXciB4GdeDjf01EGSXz4oQ5ID0
vVVjPydrgHn+eZ7qeg4cdtxENZWphbM5Tz1E93DAR8ckDLxqYaDcdZeqFQeW
zKWtWS9fBw5+Dv1zGRxY36g1Acp10J8tZXs7hwMqiV3tdgfqwEut0WCigAOX
DZa/Tj9WB89iCzSaSjlQ88pGXutmHfzSk4tQaOVAqLqEukN1Haz8r1nWeZID
yQKZUs+a60A65pqZxywHSgZ0/2V310FFgWKX2wIH/gR5VCzgOgiBde1neDBY
dFOOh4nXA4TdvVOzFoPU3Ue2+Q71oJYWm75vN4Z9JtK6Pe718Kv+S1iJCobj
m3MUuO/Xw0Pu+Vzt/Rh8Gn6zDcPr4Sv1VdUewDAgdci7r7AeuIMO0b8YY0j5
PhHMy98AmCXuccQeQ9nzIJdtYg1Q69m22cQBw8/LsidPyDQAuzRv1elrGPgF
Tqx7pdIAY7zj3sfcMLhapSbuuNAAr+Syi3ruYVD9Z513Kr0Bziu7GPlHYDA+
VuJ3tKAB/hgkbV8ZjcH29cYTamUNYMDiCnj0EkOYWh9NsqMBOGsH3zjGYWC4
nJcY+K8Bph4IXv/xAQNXceFw6/JGONVnv0w2BYMYv2R2pVAjrF5xQcQmDYNW
8g/DFPlG6A7gDm7MwBD7y/yu67FGqDYM7zYowJCtlKtvc7oRlKLVV1kUYqi5
KyJqdqkRirmupp0rwjAl3vpZzbMRWsKvaBwrIfEzNelfjG0EO7XJ4M5qDNxl
hlohrEbYt3Fp5IN2DOJrUgV8phth+1X16LWdGJSsVna7cjVBfoT0koQfGM7N
V7ubiTRB5m1X0YRuDDl7jr5ff7AJShSvyej8xlD34N2N1bpN8N5Xwj5mAMOv
pqWH/51ogl1RX4QZgxhWO5V1DNg2AavYNcFlBIP9W1iR+rQJclRr7suOYrg7
Ht/2OqoJHnY9nlBnYYiAxTchCU0gNkZvMGZjKOkuOnDjSxNkawV/OosxdChK
LbP93gQy10yzzcYwsLzutJhVN4H60Pf1+uMYJETUnfZ3N0FXyAdx8QkMu2xe
qW0bboIxpZy0ScK6mbNLpXATTP73NLF2EoObcX7svyUUaJqj5lhOYwiMEXMY
56fAKsm+ZskZDAl0z32DYhQQOzFl0ky4wV+lqWobBUzbozy2zmFQF6xf8nwf
BYJ5fpu0EU5+dUntvCYFepM7VbznSX43zzrJG1HgeY2RzNq/GB6mP3uDzSmg
zBFa+57w2H759q/WFHikwL1aaQGDVfm3lf5OFMjlm1idTlj9B91N3JcC/yWb
bo74jzzfxufjwFMKHJe9f2CWsBhbtOdTNAUWvu4wN1vE4O/1aY1XIgVOx2p7
fSQ8zq199MgnCqjeTEsYJ2wV3HVrVT4F/t060bTnH7mPmGt6eykFPltJL3Ui
rJ64bDChgQKtF3kPxxBO3h63zrGTAu8Pzd8vISyWt9dYZYACMwfHK3sJ+2vW
PVhkUUB764DwH8J/6qxza2YokGpYffk/wpmpfz0MuKkweSuu+B9hGtYNTV9G
hSh+O+k5whv2haes5adCWp+UH4Ow2e3ecm8hKiyYNLCohJ8ihb5eMSpM69+6
kEG4jMdjVkuKChm7drb5E541QMLJslTon54wMSWsHMq3c/VWwgI9rSKE7dvM
9dx2UOGt67Qlhdw/TiLxUuduKnx9acF6QLjNinXnoBoVDgcK+ykSXvVOLTrx
IBV6KrQ21JL4ajH8MpdpUaHszJLSi4RvKTXVOelRIb7F2ZFN8pPpLjFMNaZC
6NFkSTfCtAK7f/tOUkHOoLmZTfK7YTFD4vVpKhjNCYRZEzbX/ruX6wIVjKcD
zeuIPoIDdY9ftqHCdzuHTdsJzwn3+ilfp4LHd+HW5lmi3zMKcZFu5P4BB/PX
EbaPc8+f86KC5t1nb82IHtu28rHK/ajgcz4w6ssUeZ+DauZnXlJhZ6LzMO8f
8j6+fi7f40h8Z2yEeIg/NlQ3Ptn0lgrW2Xf05oifgk3tilmfqYBV9FtriN+u
2j/f6ltOhSaj9W4LdKL/tJ4jIzVUkFmBZ7JpxH9jWy2NmqigdMg/yJr4WedO
cZhoFxWWmN3ofEP8vjFsdC6FQ4UTkRbr83oxFF/yScmeoALzupuyZg/R3961
Z7/NUiEu4u6dsp+kvnWoFzQsaYas5y1FGaT+iEsH3cRizXDukjLe0YwhnyO9
ZXZ9M6yxONfoTSH9oySrnUu2GbZGh48UNWKIsu1SEd7eDOwnffU76zAIpypM
qEAzjN5Qc84uw5B1pyjpkE4zeKYK7y4h9dDkmMlJXYNmaIyP2FNVjCF0zCvr
9Klm+Dl5c6KQ1FN+tWqX21eagXe8+LZeNgbeisssFNoM+fOXRdkJGN5Fzb2u
iWwG6v10Lh9S33WuhBg1v2qGBr4De1e+xuDHl5s68LYZSu3vuS4j/WHRhMeB
t6AZ6sb4L7x7SvTamzRs+KsZ4qfLnjl7Yhid6e9r39UClYH8Gke0MeRdCS0z
VG2BvPWe8pGkvz3oPPwBabRA/NFd4n0axH/5cddTdFvIPDkoeZr0R62b5xfu
WrZAj3/Wl97NGGImOyQ2B7ZAypMZpcOk3+qPN5q59bfA/ejBbLMiDqy9dG8/
bagFDmUGMILyOdBH3SFlyWyB0tP+JwqyOeCR+XTw6FQLLOOTy5hN5kCCi4Gb
xKpW+BJydEgwigPT7IrQEtVWcEi75PDKiQPvmN/qBJ61AuIduCsnzAHnFyfk
HCNaIchXf50VPwfUdAbvVL5shfyPijZhyzhQF8e38+7bVrgyWCvYM8+GcZOz
oYyCVlBU5pkVHCTzVf70qYrBVhgfmHAZzWJD18PdvbcOtEGS94zQPQM2CEh/
xENDbWAu8kve3ZoFmhYPewcZbWCZGZusROY/t9CL9QOcNrBOjTk7aMqCDm7x
j79m22Cj9KVj+7VZED8SaNXD3w5rrr35HCbPAqVMx8ZWlXbIbnk0sEAfhWPa
Smll/u3g2cnFRSXzabBDrv2bzR1Q/TjwbOM5JjA1Pweu2tYBlP7yEVlTJuiJ
v0+9qdwBp+YCuF30mLCkOpJjrN4BnX9jmH/2MuHWZo+bcyc6oKbg8o9EfibY
9+95dPJOB3gU60bGFzHgiHnme56WDvAJ1w3cuo7M35ppQ1d9OsFUbWJIOp8G
HnsqcsTKfwDX9HKKa/8Q9KdXPG2W/QkNJy8rPnT+DX8d214r3u6GM1S9yL33
u2H7keWL9t964NOIcWKNUhvoJcleyVrXByWrbim4tVWDl/TFTb8t++FPO7/9
Ilcm7GCZr+o89gv2t1htyAhOR2sFx1ZUzP8CKxGZg++9ahAPep0hF/sb3mzN
3qw73IqcVL51rTQaAOO6hBSVn90ozcDmTfH0AHy9tSu3PPo3mhqVXDMSPQgm
YW/PWH4bQrmn9JZG6gzByRChwS21NBRoVBAgpTcEDgnlhbWtNGSprbjivcEQ
MPGpz/Z9NLRk76rVeccJL4T+eDZBQ8eFKWI/zgyBZbjx4gtpOqJTLbZJXR8C
nW02Wk9d6UjyuL3pu6ghUhftOgeFGMhHPyAhZ2QIFGst/FqPMFGL1VXLXYwh
sMhbGvPNkIk2expJfBodAuM++xtxp5ioLlEo4u3YEBR291kcv8xEIn/jHoXP
D0HkaHOpXSATJX/Ou+4qMAyvj4fp2jQyEVWYrrFDdRiCLi1Qn58cRZsU62c/
7h8Gwyeiw5/PjSJPSM+V0xiGV9EHvcttRpHkNQ/l9ZrDMJfFK9LtNorsKrnk
+AyH4QNtLetb+Cia9ZLgo18YBhal0EureRTJ9hr+eBswDEZHj0hZGLBQUJlG
hnngMBR876YcNGWhPx93PFr+dBiWCwpGk8UKlbkJqDiFDYOKhZtp6VUWslvR
Errn9TA8zF+m9/kxCyXvPatXmjkM5dYRRrwVLKQUdCWvr3sYHFYEy35UZaNo
lzMhYX3D0HmlRSD4EBv9MzOw0/o9DNYKQQ1XddiIunG78IeRYTjJfJO18iQb
3cjlXL8+Pgxd1N1s+jU2yvnlKb+wbARUZZIer09kI3U1/0iJPSMwI2ecpbOU
gzpsJFTjVEbgdFHkxLcVHOT+LL1TRm0EQp7LDG0X4KBPwz8kFQ6OQGd/Xt2U
OAdtiNyZqKo7AgLPVZ7sVuKgJeMdn0+dG4HfO1d80jvNQfWpitUhfiPQnSDI
Gn7LQVc7iq8KBYyAZqZuoGsyB/EsMeOLejwCOR7taROfOOjw2fvHYoNHoHg4
yn8wl4Myl7e2pkaPgMYaIyuHag6KtLv7qzp1BHhzaiv5GRxkuYEyx906AlZJ
NhfTtmAkIOGW+619BIxqdy0L34ZR6VrRG54/RsCVtaTERQmjLSvP0+m9IxAx
qnd1jSpGeGKkg0IfAZb71LURHYz8ahe/xC2OQKSDseWQNUYqFYkup7lpoDQj
lqNhhxGtWGe7EA8NTtAuCQRdwcg4JyjJfyUNJKezqlY5YySaIPbcSYQGk0bn
dry9jVGyh5LzgW00sjcAr2w4RudcmhUndtAAvxCVoEditNrRY/iTMg3O/3dH
9sMLjNwuFlrK7KNBzJcO/uVxGGkY6hot16SBYrDDfsuPGHF0GMtKtWjw3u9k
988UjN5AcNntozQ4cqf+msknjHj2tRzgGNLAvSP+jEwWRk0brRTazWmw1z1P
81QhRg8kuYeenaHBs+BZnSdFGO0VfZegf57cj/fGnrxijF7yMcWKrGmwK/NJ
1WQZRjZTnrxvnWjgvDK4jKceo6m6kAFXXxocXj/x1KULo55V7VcXHtJAl/+1
yexPjMqMpfDjRzTQnOqWudWDUVhT6t/4pzTwMk4dsOnHaFtLtUhjFLnPe/ff
HUMYrVkr+PrMSxqML6XObhzBaOaUhexQDA1stRbEL9Ewqmgf2vk3gQbfXwW4
1TMwsuri1lNMJfFEa/00ORjpSBo05nyiwZjGq04DjNH282GnNDNoINL4bq/R
GEazPRusT+fQ4KPEicV9fzDqk7YfGcijgbeu+7WNExhVWn2+5vyVsKPCL65J
jMJ/adwKKKbBGzv7zrQpjLxlH/5bU0oDi1j/c57TGF20qQuILafBjWdWA6oz
GO0YOhP+pYYGG0wf/UucxUhY/o041NNgreetSKM5jOYu0+LrGmlgMO+2k024
iuaZ9ruFBle/dzmK/8Xok8L33dfbiV6OLAgkEY5w4CmY7aSBaG5ontwCRrdT
jQ77/6SBS577pTjC1qPhFYK9NFAdeiIo+B9Gujt+Gr7upwF055Z4E955XbZ5
ywANeNR6PX4SFkm/ejp7iAbJz2nbVRYxmudk9B6i0WDxYfFwAOFfyjO2tQwa
RLw/lkTmbVTtephpxqLBp2C/S0L/MErPCnD9xaHBqSZjOSPCkX8app3GaWCy
GEe7S/jOXpF7MxM0UM9wSP9A2Mbj/NKH0zS47ka6EWH93KQnAnM0WPdDX3uA
sPI0QzDmL9GjyzGhScJiaruj5RdpEFaZ/pvsH2jBy1sqi4sOTVccc8j+gQYL
UNLBpXSw/u3zhOwfqG5umWINLx2Ci8asRwlnqh/POLWCDtf8StTbCb+4E7Wv
n48O7MJJsXzC94t6vjmupkMtK3IqjLDdf3Ja04LkfFxqhw1hw8NONb7CdAgx
PVK4g/Bun+zjq0XpwHpq/4ZD4iFeMtf2ch0dwpsUnyQTXuQ6cn6zJB22xMR6
nCM8dCTwd4YUHdY4t9jwEK73o1zR2EgH15pfpz6Q+L/ksfI4uZk8fwntcAvJ
36Ltun3NW+jgaMMVZ0XYrpw6dUKRDh2VRccGSf53+Wl7HVOiw7/m6I/t8xhF
/15Qa9hFB929UybahBc082YN99Jh40rvYylETzX/FG7r76eDd/UDTSuiP6WL
A+rV6nQ4KW+h9pnoM7L49d+jh+hwcYDjO0n0a31P4J62Fh1WfpRee43oe2Z+
wuewMR1WZH/f9m8cI8tznzW/H6fD6bucijWEy77acx80pcNUr3eOJPHTM+8u
vwMWdEi7Exi5jvhvy3RxgIo1HTzy7l7MJf4MNvfW/WJDhyqORdoTOkZ/cnYv
33OZDrGF0cctiJ+L3d8FKjuS8/MusT+I/y3Gnzzd5kGHzwECVr6kPhSZaBun
3KQDcyjkungfRpsyF/gVbtHhqfdkx0dSTzjOLs/k79NB/c/PggxSfwJYZs9l
AumQw9hZbtuKEdNI4GRCEB2G6+fTvjdjZJJWLbwhhA73uT+MC1IxknJUj1wf
Tgf9pn1RcQ0Y5dA2vhCLpYOY1bT+hUqMJPW6TkfF0yHT027z7XJSLz+Ei4sk
0sHERNo6tJTU+8u8MUIfyPkT+vNJ30n+B5ix/Jl0kBv+UeWci9HavtykJRV0
eC4ZuvvVWxIv/nv38qvoZE7My1+RiBGfhs6Za7Uk3qBzwiUeoyUvW1Z3NNHB
h/UoV/YViZcp9k7posNeq1b39c8wolYqnDDBdNhkquRge5N8/yRW5P1DB8XG
c7Y67iT/m/J5CifpcI76846UK0bI52ih3DzJx5Orq7IdiH8P2MjP8DDg5qhx
sZslyc/n13/jJBmweim3vpEmRit6bDpOSjOg/XjLi/iDGPnzbctaLsOAqs7L
ooz9xN9XCuxvyDNgPn1ZvO1ujBxl25t1djHAZ4/MUixL/B0lkDx6lAF9rIsi
1twY8d7zNTtwgwG1jUHhX75yUM44aw65M6AwK9VXk/RzO/szCbo3GWB7nXew
MpODKk4oM0/dYUDd/Xauwo8c5L+p18c5gAGD95Rq9KLIfFCzP+3tKwa8zTB6
NO9M5ou1Y9wCZQz4+slcvlKKg7Ifn/8YWcGA/Q0bkmzWcZDNQpXx+moGlAnP
5s8KcVDZcNwLhQYGhIbvyhFYzkF+BUY7tTsYEBvvKTIwxkbcVh/PeDMZ0Fsj
n7y1nI24UqwyBoSZ0EOLkdhvw0ZVrE7nBFEmdDR9UbY7z0bBu0yVLMWZkDrW
UvfYjI3WFWh/bpdmAk/r2pe5umykVK2QVqPABOrDgqq0bWxkOfznQ/phJnjx
mB7iGWehr7KP4287MoFSIGru4cVCbjEZIcJlTDC+yN5LcRpF+Qsxj8sqmOBu
cHv3OttRtGD1yNetmgmjc7+fnSbz6mO5C54tDUxoV17iXqo/imI/8V0I72RC
2zpNeXX5UVRZfHmHMJsJMOlsVdrDROKD6+uFxEchiHp+Zr8uE33fHrhCyHkU
ym0rZG2WMpCQodsOPwEWXD7KZ9h4cQT17KS23ipiwWTRTsci2UGUGQ+bh6zY
4OhWWFn+oh9dyFAVkl5kg2y+WWF1xA/0ICDRtyeVA5y+H9Uyz6joM136tYAx
htc3LZOlY0tRYFyAdd9xDEW81krSFqXI7iRbPt0UwydGvdO6NaVIqqgo89hp
DBO8GjYLD0tQUOj5qmAbDE88KraIdhajq6qvxvluYWili92Mci9Em/xF9Jd/
wNByLX71rw9ZaHH/3dWdyRgO/Ojs7pfIQl3swZYPaRjkHra7/wzORGGnv1zQ
zcIw6Cd8znc4Hf3bdtI9oIjs2XeUxtLupqKe5tD4pa0YplOitkSkJKKCRzO2
re0Ybjq5GIuEvkGRGhcV3/7A0B2W0yDDiEdG75VytPowUPVfxU3dj0GF3o21
vgwMv3QSCrVTn6PonftCTVkY7LYYaqxhPkM3BmLNZDGGPRM2UaE+QUjB+Fp/
ySSG5nbaFa9UX8TD3fYubAbDZuH+TZU+t9GvXA1H63kMX5M8bSJSb6Aix7fK
u/7DoBZ73acg9RJ6sXHV1P9/l9u8O+T//28V/w8dyY1x
           "]]}, "Charting`Private`Tag#1"], 
        Annotation[{
          Directive[
           Opacity[1.], 
           RGBColor[0.95, 0.627, 0.1425], 
           AbsoluteThickness[2]], 
          Line[CompressedData["
1:eJwUmnk0lV8XxymVSlJpIGVImiSVosIXIZVKpRKSSorKlEQTSlJUEoWQkFnm
eXiueZ7n2b3uiGvKL5T0Pu9fd33WPmc/+7vPOXufs9aVvG597uYCHh6ewUU8
PP//PXGT3UjhXFClvFFrzzgTSfAdFbXpF1GAWsq2Yp1XkcT+r/5BqSKaoPQI
JnYVRBIna9tTgkX0wbO7131+dxRxyWw630fEDDx1Tge1BaKJ3j2vjr4VsQfP
mlS/1ooYwvfrBspWowfgORzoeosnljixMla5IMgBLjdc780qxhIZozUHxsSd
oJZ6RmtTVCzxLmH19rMyz8BzYWTK7GUcobUpIoJzyxmUZ80Dv/LiiGdlgUKF
+i6gRObUeEzFEQoHZd9e/uQKyi+PiPgb8cTKUfvqrYrP4SJh4636JZ4Y+p6/
dLL9OXh0Lj1paIonSq8s1ilwfAE1W9Xb15clEKFrz7i/EXGDWsBW/Sn1BOJx
7eeSizlucPG+bYD7CcTFlwMLthi9hJroxMmUEwnEXpUd6mN/XoIS5oStUgmE
wH+2zrlB7lCTXbDffzaeYMXn5L9SeQWX9DcyyxvjiSKzhXPn+0hWXiP6LDqe
cGzxdRwRfw3KKWles0vxxHmv3owsymvwdMRPtcnFE3KaMv+5XXsDiukB9vHF
8QQ9NdN2U7gneO5r1+9JjyPOfuyyPC3zDmqfbgf/WR1HyJ7cEiNa/g4U8Qlv
q6FYgn/hXRbz1nuoRTu5UQtjiavZ88mEvjfUct7cKbeJJdbu8JYz+PQBlL74
Qx/rYogFL9NOFTA/QO3Wgd2LI2OI8YGOu9KKPlAbz5dwehpDVPtLxo23+8CF
t37JVdkYImtKq+ri9o9Qe3PpT+PCGCJSz5KT5/gRLmsGRjW7ownf+Hf8Wyo/
gifkNi0zJZpw5U/d9lrEFzwyE60730QTO4998EixIflN/ycFk2ii6aU1p7vc
F2rP6o3+LoomHpecOrFI3A8uAXeC7A5FEdILZePkHPyglrakl3U3kqhRXyZg
UEva68I3XQn9TjxwYd91lf4EChsmTc0RRNnfCLmWpk/k+jv25x0OJ6yVX7z/
u+MzeA4JS+yzCiM2PL42LuP6GZQLSaZR374RFjObUpz2+IPyhk39wB9KCPz8
dEDcKwA8I8kVtfEBRPreB590BgPgIjl0PGuNP2Fic37a9nAgeC5JVYc9+kQk
cldml7BJLvGpfajzkTjH9lC21Aoiv8eKOFrxmvgjcyv4YxDJYZeiNnxyJyJu
as3n/SR5WUUM98YL4j8aL2VlWDB4Gs5e2fPPiQiRHJA4NEty6L7rnYH3CW3T
AtfreiHgGZCpW3zPkhgLCaJ5RpGs15iYrmNE+Pc+Opo+T7LLsQM9DzYS6mKX
I/oufAVPxIkqv+ZbGDJUXMSfQDLlfQ5rwhGbR5xuJOwOBY9GSoqQ62tYWxzc
ytNDslux3PeKAKw2S4z+rhQGF5mau9YjMTB/sfnyYbMwqN13WnL/bRxyw94u
rX9P2gtkwhzkEmBGvWM5wwyDRAJlWFUpCekm22VP+oXDRWujpPajVCx79rmn
nxIOtRHb0fITaTAJXvzWfiQcpj4Vucc3piMl74HK0g0RUFMSf109nI7FPXRu
8NEImPY9uHgqLwOGf86H7LOOwIBbzZZ6r0wkihafLg8kx+/aMqF3JQt8h/f9
Myoj7SoOEhvtsmFw+Vvi+ARpf6flR5TlYKxbf1mY6HdQtrdubeTLg7sJ/83z
R78jtMgsg6aRj9Qb1qIZvt9hOv2ifRFBQNBK5eVjxUio7aEKRBoVofR5p+Hi
p1GgfBI/M3K+HPviVy0W448Fz9zcmnWRDaiUKzWtlY9Fh1VJ+JbZBpgmO+Y+
uxwLR6rn/r26jXib0W9DjY3FQJnoed3JRrApCd2Rp+JA+aDk81y1GSGtx5P3
foyH/zZ7obG2Vhww+Lt8MDceaoFHQud2tKGmK8nclx6PDSsWyi972obZ/vVi
0wcScHvyw5mtW9qhP8Rwz+tIgEF+4jsj6w4M3w2g3uP9ASH5h5stijrwfExX
WXznDySFqf5wWNuJpKnUCdfHPyDhUVv7IbcTxx7e0t0f8QP8f3yvfBXsQt+s
aBS9hhx/z5gbf60L9k/qeD/99wMGA1ue5qR1Yfk/V+NjmxPh4bO+oG22C/4W
l0xktRMRWu/7yHtfN6RbZE1XWSWCf8VqxRN3uqEa036jOz8R3q8EkvJ7upEd
8yk9Uy4J3k94wyKIHnDPj+SdrEuCi/nwS7uXfVBY2q6iSktCQ/htDdmCPjwq
KCyQ/5UEeSpjnvGrD0t2fKas3ZyMUKOBh5dv90NyXr2k/14yDKKHFEK3DuB2
qqxWk2syxrV3rPmrPoAft9eXlfglw5dxa+KyyQCONI+Ux+Qno0eKkbDm8wCe
e7TrBDUmw75wi5dN6gAqVIoq3zGSscH0umVt/QAEf8afcJ1NRvR8qM7OkQFc
iP5cfX9FCvSD+2Ve8VMRdOW5rrkkybxZCiGSVNBW36s1OJACncAKzrkDVFg/
1ahXuZIChRrO+TxjKl6f4zYtSUgBn7zs9vdxVOTPaXR90U1F/HRSg8JxGvhS
dhu9M01FkHfhS44xDSdubehxsU+F946mwyE2NLQ3cntvBqXCxuhnxBJ/GiYi
/al7RlJhQBxw6mLSsPXsKLvYMw097jmSLm6DEHU+dvjWtzRkTVy1HAgYhFBC
qOeyzDQoLGrlDiQMYlH3bE9CTRrulv14IEEM4jf/ebmztDT4vvL4e7VhEA2U
zPt9SulQ8hoTM1lLxyN51/kZRjrS/PKNDL/SYW3SdSboTzoGLn4eDEiiw8xr
/zesyoDYBts7nYV0nGEzjrorZ+BRoPRjAzod0qEnXq/5mIHtXz0DL+5gQKQu
vCsjOgMGpjelPh1mQHBubpdhQQbcJRHbepKB2UuJdaGcDFSET2brWzEw+pJf
QvNfBvhu1qj7OjNAT71myxLOxGGZyMpmbwY6qTlFb3Zm4i7L+eyaMAbqVgoL
y6llwif6cue5VAaKVe7dbLyQiSded8a1CxnIulOWYX8nE479FXWr6hgIL3e8
nPuJtL984RnFYsDRuTdEh5sJ38YZvmZRJqTGInfcCMwCxWJweocrE+s38Txe
nJSFjDy1tqm3TAicvFwTU0raV4akEYFMTEcutx4fz8JQuoHthTQmakxs0p4e
y0Ybb92QC4uJIq/KRZJXsjGiv6vy5BQTmTlSl0rIOjYf5RG1jpeFsHWts8tC
SPupo2bxoix81pQ7+SOVtIeGajzcxoKX3augs5XZEJz6K6GhwMLz0AHuVF82
7Lq50cfUWHhYdwj+U9koeW5TUHWMBUG5dEYlfw5mVHyf1p5mIeKtvNcfsRxo
zGYqN1xgoVF3W6eJVg5arP/ltN5gYVe18P2tn3IwZ/wuc8CZhf7yscgUxVzo
KcYn/cpkwWHbnVP0k7lImqy3ni1gQeAV8+da01yMJ/yUmytl4ZB2r5qTRy7e
SB9J4G1h4WNJVRc6c1GwqipGYJyFndLarrbcXAjWcm+vnGaB8qJwWzhvHnQ9
Vm1fPc8CVyPLfvHOPAzMG0SuF2DDLWz/RiXVPGzPeXJTdA0bogsSCy3O5eHd
g1DpTaJsJF3befuLeR5y5EsGxSXZOFb4XbD2UR4M7u87fmgbG30Skunz7/Lg
KO5bvVeWDXuXICP58Dz4VP93audeNr7hY/TH6jzkbck+t/EIG3/yXTQMxfKh
0QLjv6fZSMwxcmDl52P1gVPWhQ5saIu2i4k05UOW+mMi+zEbPU7nik8w86H8
Vsg+xYWNpYeOC/0QLMATRrNj+Bs2bmQejLW/WoA+P8PnL0PY+L0uRS/yfgHZ
j/P4noWz4e2we7r9VQEkRje9cohmI/+AtOaRpAKc06Z63kphQ9/v69DdkgJY
TmoImmayMTQl+iGkowCOIRHeBnlsuOh/UmwYKUD8icVrzhaysT5tVR8vL4G0
X7f8jpexYez1R5++jsCknJPw1xo2wswY1WWyBCSc/2SYNrMhuzY729OAgL44
z9zgABsaDqZ+a5MIDF1d6j70h42DQZciffdQ0DewMXB6LweXPWqoLw9TsGxv
iHK2EgdP7NU3PdSiQN5Vov8ROCjU3eV72YgCQ8mt0vO6HOj+nXfd/IqCpmty
P/huc2DFuZ+/0oeCmeQkvTIrDj60smd4gikQW7D/56sHHKQVXlGYjKJA+Vy6
3/EnHLQlNFkPplCgH6aotPwFB7MBx+Ja8imwmczuqnnNgZh7HrO0goIgDeWn
77w5ULXbK5XZTIFUoUx7rR8H10wir0T3UZDU8/bKtgAO3E5sDAjgULBzZmrQ
JYiDyIPeLW+mKPixxtiy6ysHI4KPTt5bVoi0Ezsfvo3kwIE4dWjfwUL4Z5V5
/0zlICCuyH6LeiG2t+xefyqTg7zPiknCuoWIGPMNjszhgNdGctv0tUKEytyI
vVzIgZfEf8J5bwvh7fuvmKjj4IeApV6CfyE2J5mfEGnioHGmzzMknLRX1zbY
tXKwrrFigWs2yQuCerf2cHAoX0XVrqQQQpsXmjn3c2Ack+J0o74Qnw5ZDnXQ
OPjmGjSuxSjEMxulaU8OByX3VskqjhdindfXp4wRDpiX3W9t/1MIj6jFfBjn
YKn2nzCRxUUQLr73xv8nB7L7bPqWrSqCd1+L0OQvDk5vZojMbSyCgwTf20cz
HNguM7zAlSmCWU12yaNJDnx/1Xn37S2CrKP13CPSfwbtaE29chHmtmxVeMwk
10vHdeLtsSLYt/FZfR7g4NePgnW654rQ40GPSu3iQPHxoWsVt4pQxQ3fOELm
I2vNnl8UnyJEZ0otvELms8Pp7kbn4CLMWCxQcUrmYKY/Rk0lmoxHjObgF8eB
Ury0Z3Z+EXRdvw3VkuuVrSkqkcIugsRJiSZVDw66Yi9p2fwk9fz9t9zoOQe/
hfws5eaLIJTUr/WQ3E+He1emx64pxrjw1+xEGw4Mj57qur25GKblz35WW3Lw
KObNP5kdxShwMtnNNuMg58GiE+Gqxcjo2/RN4jLpv1vD+trxYgh9+NulfJ70
r+7iK65fjJCjvcKXT3EgGp2f3WtSjJn/8k4/OMbBEcE/fV8sijG076VrLHk+
jO2V+AztiyEQohv9+AB5froe7NjgXAy9pcL1urvI/RQ5ft/Xtxhp/WFiY+s4
6BGQCzj3tRi0E5ZHKQIczNndKRCKLcaGjL2WHxZwoAIm/1uiGN5elMz9o2wU
tHcHvxwqxvVDfeccS9kg+MvLHdRKIPVR5DWvPRsDVnxchZMl0J0fSGyyYIOn
VX31zwslcLOIbgu/yobatzxj6zsl+AVFae2TbJgu+e2626EEMnHzJ9ark/Xm
nmLUsEsJjNeV2bIPskE5lDJx61MJOkb0iTdSpP+vY+tkvpVAwECMabSB9L94
tzI9rgRqxYMCuwXZkLhreS0so4R8L2+44ryIDfWmKHfTwhLU+GVdSf7LQpFl
8MbLIyUYX6dk6tTHQirnzh2TXyUQrkPM3nayf90+nHuDpxRKL49NcupZeGne
bmglXIonPy+6GRayoHN9VeAL5VLwNTyIPhJB9iNqP8dDuxTSr55O/Awi+4/p
j0Pv9EphqvrycLwf2b9MTnb6m5UiKN63RuwVC/WXX2744VWKDa9Tx/9akP2p
4/zt1E+l0FPLPZRxnYWkS1JZWaGlMJsuem5lxILPBeJScVopkm42CffrsvCi
5W1URUEpGsS6rnzWYsH+vPF0bUUpfjVTI8+osnDx7Oynjp5S7NOYUKLsYeFY
Qzmzl1mKi7Mzro7bWVA68+ng4DipJ4mnWl6She11Zu7s36VoOZtZOS3Cgsip
/W1cvjKE8njL00heVsMr81OwDI8Sb3+uIfn3iYYHMxvKoGeiPp9Bco/OvbUL
d5dhJHey2pPk2vIjN/kVy1BjWb3PgeQC7WXpK9TL4C0SEWBK8lfNKP0NF8qg
+/DCrQMkX1ejftz9tAzR+7IW9G9g4TyROLjvVRnuUr0tKknWVH22X+lDGfS9
LRpSSd6qvLFZ43sZZriiIR4ksxUvrDaoLYNBzNND+0juzNhy/Up7GWQNLoaK
kVx1YDL5OrUMPEv2LFlCctz+92fv/VeGSLOBlu71LASlXPlm968Mz9dkHykj
2Wuv7MTDpeXQLvoQlkSy1Z5K7+ebyjEiftTmJclXf3weeLWtHA11G9utSdbb
bS7/dm854p9OqRiSrB6v4OJzpBxPZGsjNEnet2thw2etchh2f1++h+QtsY3i
wWfK0XJnarBIigXhHaHWYZfLoRcoZPxFjoX/ZFRWJtwrh/K0jq6uNguqNI3y
N47lsK896Sd9ngX3YB3n2y/KkRJ+um/uKgvrhPXHtgSUQ1NP3ybBiYWDvHfq
A0vKoRZz1VcwgYVneTavHOvL4e98vZeZzULZQwdc7CLjv3BThihj4dKoa+Kq
8XLoLriTZT3AgmO3/3uPjRUwNXLoaSDvQ5RPIcfMZSoQtNdpa4wEG/znIv4d
3VuBviVPrFx3sxFQkWj9T5scn+bKs+8YG7QX6dt6z1Yg/o3b8WX6bOxEbn+O
cQXYpq98aKZs5KSXnXGwq4DxirfSHx+xscC2Zon+0wpEDr6/d+cVGydkm4i9
HhWYzPbJOOrLhg+r/eHKjxXweBGblRbGRndY7x5ucAXUdN1a1Mj7irTJIKsq
ugICa03Ga6rZuCvC+RqdWoGKXkWBy+R9Y+791Eqzygrcth4+aruUA82Tv8vV
WyogrVR69e8msn8u5nER7yfj4/n6+PU+DjY9XT7eNVWBuz7nUr8Zkf3eUqrh
rEQl7NKzpZoSOHDW1PPGw0qE/XnFu//cEBbMxglt3FoFDy2mUf+XYWys1fiJ
PVWY1Hx/Ry5xGArfOlvNDlVBW1Pp8dOiYdw8vuTLj1NV4Dv6JnAjZxgVAde3
ajhU4a6aXOelgyN4f1jksEV5FQ4fcbjY0DCCaMEksXeNVfA9LG4uTh8Bhab9
L6W7CrRDFQ+spkcw+ca+ZG6sCtFKon4Cm7lYfnV5lOTvKswpFkcY7eVCen/Y
a22+ahgo3k2L1eTiYnf9ae8N1RA4WNCsc4cL60TzvelS1bA5cGvw8zMumee/
a7pkqyE2FyLj946L0Eu+v+YPViMr9H3YxSAusnft6tyiTvrTctm8IZYLsSfu
NzItqlHSriG4mcrFAb1N2j33q6H/ZP+b/lEuTkunbed9Vg22hPTib3NcONdQ
uSd8qiFtuWh+y4ZR0MRUHPtyquE2V87dcWYUf8abDReWVmP7tyyLYeNRCJda
qmyvJ/1rxTDiLUehfc9/gd1gNSbfvend4z6KmPyfXosEanBX8lTtgfxRFH14
Y71zXQ3mSlWOT1eNouum5LkzEjUItJQrzeoYhYDgmfUBCjXkO29l/pGpUWyl
MWbzVcn5BjyH/vKOQTXjSQ9NpwYL/o6nFawcg41J7DfZKzXQ0G6KV981htf7
1N3O3qrB0FDR9oWHxhC2uMPcwbYG9u9TI0q0x5DTZXX8y+MaPDeVYP05Pobm
H4tkKS9rIDC+IrhHdwwjz4MEGe9r4O3851z+mTHwXdo/sTSQtK/k8IecG8PB
f6YZ53/UYINcif1VgzHonqI818qqge9rj/i9RmO48UX8jGJRDYQYuvSFJmPw
VuxjibbVYOBL6/noG2PgWBuJ0P7WwGUpa9+E1Rh4CnIYzUtqMWYWZ1lsO4Z1
AqIppatqcYpiHeZnPwaN6I4TMVtrof5wZtXhR2MIGrjwxOZULWj0pRPPX44h
RS5d5/qlWhio1W2/4DGGiifCa/Wv1SL9i4/pNs8x/LehOUHxQS0Cz21sqPYe
g8CtfY92ONfid0L/kpCPY5BK/6C98XUtLJdGwObTGE6f1eufD6rFFopsonDQ
GMy+JsaNR9YibuMEkxkyhsdcQUdaUi3WPEzfnP1tDD5HrDRbcmrh2uR00TNi
DNGva4XKSmph+0u8wpq0F7TL9mbW1WJTWHA2nfTXstUrJqajFu2nNsZd9h8D
b9EJjbcjtVD7vu7d0fdj2CAUK+j8qxZTer7OWW/GIGeytNuGpw7xc6tsd7uP
wfB3+X198jKwSX+F/vqnY0jbp/V9o3Id+hbwiQ5bjsE8HPyxnnV4Zjrx3Ydc
7ycTIS1f/OqgKWD9eYnGGD6SL+m3X+swmjni8URlDJTuvEO2qXUwXMm+Y64w
BhHhw3eUuusgXtC397DUGGrcFOrKdtaj7/baerWZURxeWb3gw4F6XH3J5nya
GEV0wDVFI7V6TH7L5eMOjeLFj3ehYxfqsbb72uGAXnJ8B9tug2s9LE/9+D5R
RI7fFbzesr0e3L3HnoS9HYUG53nSYo0GZL1d/zlBZhROcnVVd441QHH/y/YG
iVEk3RdhNOg2ILxjcv2U6Cg2zyeKfLnUgC9b6vwPrxzF7Ore53vuNcAt2y2w
fJqLJGXFCwb+DbjAmAimVnDBcn1unR/cgJo3V/v4irnYXF77Wiq8AUflazdv
z+fC66xZwUhCA/Y9jv5qlcxF8afEjrOpDYiXWDfwIY6L392/JzOyGiBX9kIi
/TsXt80/bHMtboD4qqvf/gRw8TWuR51Z0YCvGTXUzb5ctI1vMz5Z14DVxoel
NMj6tOLgfYek5gaI7qcn677hQvNxgffazgbE2v4588Gdi8eUpXGP+hqglrR6
tPU5FymLLpT2DzagbXSHl6gzF+Lew7Mxow34fcegIvwhFwXXnGNSfjagkGGl
v92eC5P9ay7nzjTA5erLgXgbLoLaDmfVLGgE3/mUmXQLLjZseuMwtq4RCocF
dlQYcZE5uklmZmMjBlOl0nUNyHpLSW7lkWxEyu5D6o36XPjd6FRYvasRqpLm
l7tOcbE6dvtPBTTiND/l9Qi4SH6cF6ai2Yitz9vW2ipzoXdK75z28Ub0/Rn5
9p8SF+/HHyZfOt+Im2MiOfNkfZcrWn7N1KARchby2i/kuKj7+FXI4koj/tC0
m5bs4kJAsdz60a1GOLfdHxKS5iKO30j8xd1GKOu9cfCT4OJE12idp20jVlWF
LhDdxAUn7vkzX4dGjKg7mRzfQPaDp+vkgh83YnHFjQXlq7jYdia297tLI7af
Ph2puZyLMgnVtz9eNuJEi9KJIj4uFpXcHCHeN8JrYIVPPtmfIvxmv1T4NiLe
fObAkYkRaN56e7IxoBEVI7TOrKERPF+WHksLb8TvmUzJtN4RzOvxWSzKaoTb
quvJscUjCJby3yCY34jIz7oXtuePQHlqV8W6okaUbFKc/Z4xgsefz2/bXtOI
yR0C6t9iRjDTG8Y4MdAIe42Mhs/vR/A58aDfeUYj/CpC7deSGT7oWqVpPNSI
gtOeGz4+H8ED6cnwe1ONmDI0NX33YATCv16ed5htxEbqCT4B6xGklYssdJ4n
1/fWgejXt8l+a6l+3Zu/Cbb3l427GY3gg3LrqoAVTQiYnfq44MII5AUtCr+t
bkKKc7+iy+kR1PfP2cSub0Lpoqruv8dGYJXsLZEq1gS7imbluCMjWPFCuiFX
sgn7E35Nd+8cQbx+lnOJTBMGP4ikCoiOYHi6v69VvgnmRld3WM0MI+PW+6IT
B5sgsN7M5wBzGC7tqpHEkSZkN93+M9c8jHWZwfditJvAe8Ku1pO8f2g4GM09
MW5CmNJL2xjzYQROtYlIezShZG1cNr1lCDoTtfp2/U2Qt7hhIuHDwZprT5VY
9CZccB2283/EQV+DrJjxUBM+Bdx/JXSDA/skz0Gt/5rAX/UiiUeBg6/Wx+1E
ljejZWfEAmorG7+4Je8pB5sRNkKP/CbCRsRQbpXgu2Z82pq8sriOCavPZ7ZY
fmxGq2hlwOd8JhQ1Bx+X+jeDT4i65W48E1XBy3Y/CW/Gh99CSmvfMDGhd/k9
J6sZT+ptTG9pMZHzd4SlWdCMqBKPoSMKTLjFuqiFFjdjJDvUXmgLExv4oicu
1jXjXESDRzYPE6qZv86XDDZDyUk+eXkeA/xmb+LFOc2wt9I5MhDLQJPQ5kWP
R5sRe8O0NC2AgZuWWhl7Z5shfdq788pDBuTWdwq+nW+G8dHoG/vMGZgpvnuL
vbAF75Qo3MUXGCiy4aEcXdqCht0dD7uPMuC1yXfDV8EW2E+f9+k5yMDFqm22
v9e04MthSanhnQyIP8ytvCDSgrKno8mzmxlIaaA9EpBugSzf68Z1SxjofLG3
1+lQC8aECoTOttMRJl96oFW1BRv0PUOvVtNxt9fgnbxmC3Q/G8hbEXTwKLqA
dboFIZt+nvGMokNmqO6bvlkLru/c/r70IR32enfN97xvQdNRnxWHN9AhuClq
jE5vQcGQ0fPt5wahdvFF7yCnBYExFLqx9iDs3l+tpo22wOf21mMfDg+ijXdD
1MBMCxyYo8t/Sw0ihOlh0iPQCgmaq1/1TxoaxG/qdq9qhfA35vQ/Fg0LLqsf
7lrXCj7Tk4YKPTSYV8+u7ZBoBaNXWDy4hAa5JMvaZoVW+HdGRVv50WDK0c5t
OtSKl/4Cy8Nf0+AjtSWmUbUV1pds77U/peGXb7dbvU4rDFoP71Mzp5Hv1Uy7
ulOtUPf96mtvSIPhEl/T2nOt2HOebzr6NA1eajanay614sKSvrE0TRoKnHSV
q41bMfDTX/67Mg3jKdt3Vl1rxZOB87Z+CjRIjfBtqDRvxcpawZSXsjS4m+T/
LLNpxdFIt/3mYjScOioXV+TWimgDm4Pb5qh49mRZQOHrVihr7Xq4foqKpHSm
O+VdK+r2MjOXjFAhvP3r9QJ/Uv9y40Psbip6BIREc+JbcTn/mHJMLhWC2iNL
spNbwRu74GlAKhVqzhX/ZWa0wvtTfv7rOCoiJlwa0ymtKLDeD8svVNxtm/BI
bmmFqJS4xq7HVISsrHNI6mzFD8Gu5xvvU9GgE2uW2NcKnT++xcvvUKGQe10t
gd2KZy3LtEYMqTCfUpWL55L6Cktf9pyjwn/3RrG4yVbEJbiU1Zygosp8emns
dCsOBh5Zkq9BxdzX5unouVZUbh54fAdUyHUmMqJ429D2wfbESU0qTFd7NUcu
bkMX30KRXcepKHHTTIwQagPP8NaMIdK/l0W6eah0G+Qz74xbmFMxpJbgsXxn
G656Lz6bSsZ3bMP3WIc9bQi0+JY8Z0PFgnLfUd3DbVgq1m73ntTnJG3vMHum
DWwXjf/SvKlo+3PH3+xCGyQNey/M+5H6mm/k1Bu2wXS/Y8YxMj/jrufnv99s
Qycj4WHXd1Jv/z73c4/bkHBC5Pe/HDK+jJ3R+S5tmNySZnicQoXUO6mq7e5t
WPf3dK5PKRUuN0VHPnq2Qa+Ns7Gniope5dWC/7zb8CHR7cnWBioOCy+Tt/zU
hjwP8V6rVjJ/w7znWr+0YfZajkpWFxW/imbvq31rw2GfQ6/FaFToB074xUW2
oTDCvPTHTypSbDmZ6+LboJP5kVd9EQ0rj1M7XZPbUFNJUWleR0PVdMMmg7w2
1I+KZkwfokH9QtJ3vqY2UJXqI9VcaAiRjS63bm/DzZNztKYPNMwtDOV09bRh
4soO8ZvhNGSlvN+dzGrD9PMXn1+XkedLyDr9yt82LK9V9GgSGIRY9e7SjO3t
2HEt1MIsYBC/1OLot53bsfYfVe/iAB15EcNfHrq14+TfY1+Kpuh4zi973v11
O9z/JDDkljIg2BBfGP6xHYtmnB4t2ceAzNUfIX1R7aCPr4rIesHASNHoBW58
OxTGHo5K+5P1TGbPirnkdlzn9ip9iGdAdTTxsUheO/o4MbUWrWQ9fJpsoN/Q
Tr5j1adFtzEhRp1YeaO1HbzUKPVXR5igae4rt+1qx7H+FV4/zzARHW33zKW/
HS9677ddNSP7h0Dqgff0dqR0d0rUODKhYPNzJJjTjl+duKP0lonfzfsj4kfb
8TvX6ebpECYoivZGuT/bsVV5HOkJTLh/SVtdNdOOQ3nmomJk/9H9N1XZ8bcd
hsq9U89rmFh944Ara0EH7PLO13O6mQjZmTHGt6IDmXlqbpm/mUjPzqyBZAe2
54uOnlNi4dGmmRenZTpwVOVDRfYxFtRclY5c2dWBG/lLwiUusVCjkx3z6EAH
IvKnLo0+YIHenuOefrwDwgV1ha9TWYg98kel5HQHdqlqBY0XsWDz9ch/Tec7
oFeQ63CpiYU587wb41c64FUQvWvrBIu8n+Sr7bLrAB/x3I8ix0bX5fnpQw/J
eDBrvU2VjdB81USdJx1QIaxPvDvFhrmks/kl1w5cBlP6P2M2ZF8Sm8zdO/CM
MP5ndJeNSfa/FnvPDrxDc2fRYzaydNW8Xnh3II84nrbDk41nSS5Hffw64HDz
7m1bLzY0hQt/hwZ24OxcXF0nycsceVMSv3ZA7uOwgsZbNhq61S0KIjqwdueu
L7EkG4cXtXf/6EDNpdhbj9+xYb+vJG1dcQc0UqN5NnmT8SlIhH6o6ECWhavE
O5INDj7xFKjrgLyEodo/ko8cVri+oLMDi98ud6F+YGOBRsTK0dEOsm5Z/fv+
kY2pozx/bk91AJuOia/3ZYOhZcwcnO1AbrM4PEiuOC6c38nXCR+1xmeWfmy8
P+tmWSraCQNRhXm5z2y4nB+4oCbRiZoGgc2hJNtdUFbP3doJlVcMlVX+bJhd
8pc9uKsT8SoFV56TfPHy1Ppk+U5ITH16+pNkHSO9hbIHO+EXax1sFsDGoSvx
o5FHOlFpUNGu78HGzqv8XZLqnej77qPa7sCG2DWz0iDtTvyZNP5++SYbgjco
Set1OyGgtk2g5zwbPDfFgnzOdkL87YSdiQYbg7db7DyMO3Fum7vaDXE2Ym00
JeztOkExSuy+28lCkF3o8rGHnWiOdtIYK2fhrf3cL4unnRj672iMbQa5nxzT
aq96dGKVd4eDw0cWFF2kH58M6cTdEt7VLqdY2P7cxbwsvBMvVtU4LlBmQdSt
56x6TCdCTD71u+1kYf6V73bFtE7Uz+xMeL2EhZL3fG1SVZ2Q362v87GQiYwP
poXB9Z3Ao82Ja5PI8/oxL35DayculrPX+pPnL9Bvg//Hrk44Cqc+ESXPp+dn
+xeCA51Q/qqq3G3DxJOABqvXDFJf/JsD7mfJ8/1F1pBvuBNXs9vk9u5j4txX
uvzv/zrh0mwl+eonA5rf1MQe/CF5IEd0XwsDB8KDlozzdOErd7FwbxoDG6L0
+xjLu5Cx5Ovi/Q4M9P8o8WyU7MLUkfrhvhk6Grh8I/u2dcFBPWlsYxcdFFkt
XV9Z0q794adBLh2hsaUClxS70Hv2/J+mp3Rcjyx726PbhYJb7cvKF9DBDK54
z3rYBdeP/TsSyfrK9ar5+Le2CzaF4XkS3QPoqxaYMmnugj51fsY5cwB1y07p
Uzq6cJrX8ED/xwH88KgVfjHYBXl1oR/BugOwcavz45/tQovrrOqBJ/0wLRb8
ZTHfBUphYuZPhX6cXXDmYvXCbqTxmsuncPuwz6V+3TvBbji4NknuudoHKWLl
w7E13bhY6BHIXd+HNfNn2vVEuiHLizXxDb2YetzweY10N2Zc4vh2aPSCniM0
Y7+jG6Ojq1785O1F66yeQZtcN+Ym34QyK3qQ8bBxQ8Chbuz886S75mIPHO83
BWw+0w2v5dfOBth1449ly5cdj7rhK7tDZV9sJ/QPXvkg59yNLFCOz9qT54SX
6b7fjfR/7tJFCjph4j9tq/KuG/ucXlqfbu1AYamoztmwbrBLqd8seTog+iFc
5WJUN6Q6HX/srW6HnbHsfqP4buiMrMyd8WuH9E+VzTczuhG0WrXFfVc7nhaU
rbHM7QZla+vAqV/kveT1maXWlG7QlO5yhQvbIHehY/5+aTcEdRf+7ib7+iuJ
a1OOVd1Quxq4OPxiGwaGOZyn9d0wFhJOS9ndBqVMu/7nLd2wOrv3VtLyNgyd
cqvy6iP1Nt+pjStvxanHUaGhk6S+9oGAMLRiTRtXt0K0B8sGqvZ572nB3W8O
GrXiPZCQZDPermhByd1/ik3SPVC7vijAc7gZDgtXbemR64EOHf/co5rRKa8w
O6bRg3fstOqn4s3YN5c3OnWsB747mp49/tuEN+Va9FndHsRbju116m6Cssml
+oWXevBjZIe//ecm+O0YKOE37kHd7mMn7R40YXTqds6Kaz3IszKbtz7fhK+e
j76vv9ODtvEQszsrmzBzceEXMZseMPfmrbfgNkJPystb8kEPItW6b/C1NCKG
K+wu86gHLlcSnrEKGrEgO/jxLuce6D1yDqiKaYSRm4ytvFsPdn4+m5ZAvuPT
ziSaH3jdg/nULfXezo24yaScxcceULjlfJcuNGKX+pJ589weeLQYdFvHNyAp
Nm5bB6UHMzYNzZ5+DVAQ1jt7vKwH2it0aqKeNUCZ5R+xq7EHUtqK+f16DTj9
dufJcWYPTK13qX4dqkfTrzr7ayM94IsW3dOeV49LpvdDmiZIvQNLJVa+ryfv
gXkTaXPk+HNsXuf99aAHmW6UWdALMc/2yYxF9bBYvEjr85JedBSXDY6212HU
OsaKf0Uv4ufSW2Ri62DXecrfaXUvbA58LzV5UodfGpOFQ+t7oaMksaNSrw6P
4z8NG23qBVuNv+n9gTrwrDuytlaqFzXHxx9dFK2Dm3O/qur2Xhif69iy6V8t
+c61ZSxQ7YX3A8dyRZ9aZNv67vOy6IVLbpbgvawaqHYrGf+1Iv2XhGbuD65B
kWbvSyv7Xmyv9TD97VqDqvUynXrOvfDvM0h5dbIGPfmZzmv9epHFO3shrK8a
ptuMY9wDe6G0jDp/u7gaDG+e5umvvRBYUxm1J7oaozeOy3TFkvqkA2bzbKth
V8s9czKpFwa7XcNeXKzG9EEfp7z0XvActDh54kg1noQeDN+d24sk1bNTQhLV
4FnWXRNCIccr8nVXr6iG233nXyvLetFilH1H6V8VlvZukXCtJvW5WM1FjFdh
ddLd+zfaekGp7Nj0rLkK0hfnRbaP9ELZOMFUPqAKx8IkbyWTdUnB9SLTV7oK
Cv6CMmVifVB2N5ifWVcFiXd/6F2SfZDwNFx3ZWkVfju1XueT7YOSn4n21tFK
JJx9bXJJrQ9pMeaR6ZmVCDzmsOmuVh88ftwuEImthLvKjR6XE33wTrVsexpU
ifv79b74nemDS9bdUeq7SpjuUDGM1e8DJd9qsbZrJU6J7xQhLpNcZLM59n4l
Dq9d39Fs0oeScruDguaVkFnO95l9ow9uIn8eHb5QiTW8Exf+3u5DVlKzWaJK
JXime4VXW/VBXif+tLRMJUZGqppl7vfBv99NKUCwEmUdEWf1nvZBV/CgwIv+
CjglGZwK/9CH6Dv+qRddK9B/laJ5PKcPZjJXFsyXlKPmQsJCE6IPSfkHRuwS
ypF1MrDIroTM1wXBNpZfOXwU7dWC6vpQ84KIaTQvh9bK7cpjtD6oUSXPfucv
x75Fa/8sZJP+HX8fFp0ow+Y/vDkbyD4hLNQs/b6zDMsnRh13T/ZBNipOkK+o
DDPMbkWNaTJfqm4zjrFlYPRU/Lo414fxVmMa16cMTU3p6Xd4+6F570DN9cdl
KKgIs3dZ3I8gPsGM9htliCt4v99veT9ChSZWft9RBv+0J5MxQiS3ef1cRS+F
W6xFcsHafrCDtrc/CymFyaeje9ji/VDaYRpisKYUq6ymdx4h+1qQer2swN9i
PNx0VYpq3A8vu4Tj9xsKcV1P/mLPtX6IuZyYUPEqxOkXvG/azfuh+5blz69T
CBlO+EStTT+EoiXZwQQFLWlsSo5bP/hzd634cIUAhZU9lf66H/6tN41lWgsQ
J+q5Pfkd2VfHv8bl6hbguctu7yj/fnRsFT7BPJIPq9T54rDgftxWOx3wODUP
l5n108Fh/fAw8mAL7cqDpsi3XQFRpD6HIsXIsFzI69pd9Y3vx4z3nPsR0VyI
OR/9+D6Z9D+x7Sz/uRwsSREuf5PRD70Zicg+52z0rc+Uc6X0o2HRGj3P7kx4
Df75e6+FzIfUdDjdJw3sRy+Djs2R9tRnn+UWxmPo4q7b33gGIFRoo95tEkvG
vWaB+MIBeNddH36VE42TWxgHRPkHMD6kDartd0i9fhUstHoAplqb67YVBqNB
v+bu360D4Fk7a/Gx/w5kRy4sbz9F3jNOmCf4Pf1OZOnrEm/0SNba8mNqeRRx
NF/jvur5ASSpDfw4HxhNGL7b0/3dYAChBwyTVmXGEa/ll8bZ3xiAklBUp/ZM
EiEc8M9kuzk5/u0iQwcimQjl/bW65/YA9JabdX13TyGymmiPjloNgH+xZDff
2jRC80in3LTNADxeOBsp9KQR9eH1tNj7pB6evu4b4emEoUDZJxOHAag9Uzb+
aJlBMO3zTqx2GoDjn8Ceor2ZhF1vynzpY1KP06zx5Ewm8VcrJsXpGRkP07x0
57MswuPHV/PdrqSex7JGEbNZhPD6T6LUF2R+Vk6Ob3qQTRzNth5KfDcAeTN+
Hb4buUToX6k3pyLI+Jcf+NWgShCy5iKqvFED8A/97XkihyAy61ZOpsUMoEd0
QIgmSiHqvs5dFkscQF7i90ijTxTir3rbjuHsAZR0yjedfltIeMTW9IbkkXoj
1gQvry4khNcUfzhHDKDG6tetCv4iQpaeOJtdMgCvhXl/1d2KiCzdyIR75QOQ
rgupmC8sIo6mB12TrCLj8Xf9mPuviKjb9HFtaw0Z/3UzE0eVYsLQ/XWlR/0A
+LT4nwrYFxPMUeenyk0DUChzFM7xLSZsLznsHW8ZwIZjnLhb6cWEx/YbAZe6
yHwcr+oq+lVMZFQpW8gwSP+nvJScnEqINSvH+Ut+D8DsotAU41kp0ZT/5tXx
vwOYkh9JMgsuJXzubl1c/28Abssr7g3mlhKrqwwXdvFR4U1xZg3MkPyy9O+Y
IBXRO8e6uu3KiKb9pk8erKJCaFH1Z8MPZYQP7ffv32uoiO+P1O9MLCNWqcnP
LBKhIs3XpK5tpIxoGK1y8NxIhZ71Yc8Ly8sJ7+Cb/wltpiLr+Dqdlh3lhJ4u
j/0nCSrUpCf5zuuUE0J/Aic3bqHCMVhEaeBqOdEQc8D221bS39H26Qg7cr5B
w5jMdipqOL6ZFi/LiZUZi7h7d1Ox4aCQ4s/YckLQ1oZ1TJGKpLrFBxf/KicE
WFo9909SMfXv535Zrwqixm/AcPYUGX9k8s/xkArCS/Nx5zM9KsR0rVPTkyuI
5WFJba8vUGHmP7QP7RXEsisbG79eJf3vpe49J1VJVC3POLP1OhXy7SET6w5U
Em9y9OpizajQfWqc3H2skli6wb063YLUV9kuf/NeJVFRJnHiyF0qOqz9xne4
VBIeD3IrKFZU5K09nzTqU0noSF88pm1LBU+ekE3q90qCv3m8tPo++b3rdXsc
s8j5rp6aZx2oEIh8RjFpIefLyxS3OVKhv8bm1chkJbHknRGF+pQKNvfcWn75
KmLx8bKc6VdUKIVv2IvYKoKP+JK4JYiKJysibieEVBNdypo6/SFUeMx7FlcR
1URizshA4DcqQsfub2YPVBOGGSqrV0dRMdd4tEVqSw2RnNBvz5NCrsenQfhH
1RDuuzxW5KWR/l5VB6ZX1BDGMfKRDzOpiHBM/a+JU0Pwf3dtH80j5xu+iFsh
W0v0Se20iSX+n987i3edqiVSQ5v4zYtIVjl/TceqlvDY/PibZCkV/HJH8m6+
ryVMgrYc7i2nwo2+ccYxq5ZQEK1p8q+iYiBgOtrpVy2x1N/+jn4tuZ6nmy8/
Uqgj0j6WBlU3USGd/Sb3cVIdsdzz1r/sXipa3s4+exZdT2Q5xZV8+kmF/5fh
BRo1DcS76fNXzv2iQsrhspHGcANx48HcfytmqUjRK0/VWNZI7p9T217Ok+u1
KNzsqE4jcfP22Ov7S2nYbWNYplnSSBxmfpbaI0BD/ImKzVqDjYSQmVrukCAN
N7YefKi1oIlgUtnnI1fR8PtfeL2WZBORd/XDyDVhGh51rdqurdZE+PQeerlp
PQ0S6c4u2lebiFtGtE2dIjSkvud2aD9rIpQ732T4itEgu6A9cDqhiVh9af8Z
PXEaWPeSa7J6mwh2SzdruRQNeZ2e804rmon8c24u5dI0mGiZyx9RaSZun25N
Vt1JA11so29+UDNRoPVQePcBGtjVbkZFRi3EHYXczqUnSd5hMFTd2UpQGlrj
s07R8FSYw03gbyPW3ht3vqVHw+J/ThPvFdsI4vtWmdILNKi2fJk579dGrFnv
bediSup51r+4R6+dyJ01Wz79gAa3jsDLnZMdhNAn577vjjQskBAJXirXSdzc
F5is/5gGh1ufBw5ZdBIr79RfSnGhwfDXx1uB/Z3EjZ5DEfc8adgr/PaBUU0X
sZwQVKGH0lBxxvlD7/cewtRoh9DHcBr5HvnbsoLaQ6RPHx1Uj6QhsO/xBlWx
XuKqvNPrr3E0eN1z/Bri00ukfhtsNcwg8+Fpm3DVuY8wcsuyaqymwbcifvW7
XQNE3PHroQW/aFC6Urt04QIaoSArqYpZGuyHrEasN9GIAsGBbuIPmd+HQvU9
SjSiofnK+kKeQcj7nPfNsKYRU1cuvyteNojV5Z2bLXtphKqd3pOKzYOw4Uvn
7QgZJMr1V4oelxyEhWvaoHT6IKGnWJdZuWUQ5+dTS22rB4nrcyd/Vm0fxMGZ
lNfLZwaJV+7HLGv3DYJnJGkVztKJhkBVgybtQbg2x0tGLmQQl5/+/e/c8UFY
6sUv/CnCIGhX8z42nxyEcW0cA/IMYkr6cH2LHumvPDam05hBPF0ye/fC+UFs
04z1lLnPIBYPZS5ruzAI6cKYe/dfMwiRxAPa7YaDWJIbvXdFBoMI+zA1eOnK
IBiK0WsMaxiErH2qa8fVQYynRf0XSWMQ6RftxC9fH0TH3qj2nzMMQvXQ3vxO
s0GoVz1nqq5kEuUbxw0Nbw1iw+PXKlQxJqE3/2Omy2IQK2S9fV/sZBLXi2UV
eqwGkfU2WKNCi0kMfx9uNLYdhK9qRIDleSZh7xFr3XufzNdY7LjANSbx6tT2
uD7HQew6mxVy9gmTiG/fIkV9PogI4ebfXSlM4r9hUSEmWYt8v/CncsVZhG8w
qzwoYBBlbm11GXIsYv+ZNOfzQYMYvBcx5KzCImxTTo1Rvg1CU01NarURizyv
olEPIwZxf4egarcFi0hcyzKRiyJr2+qeyxGOLILr6FL3JX4Q0/SHHw5+YhFe
O0+5n0scxJY6rYR/ESxiV4+I6tIUcj0z11RWpLKIqrfM/4i0QbiEUukfiliE
BVITHDIHkfQ6kceokUXwTzjf3J0ziOuNjsW3O1hEVJjuJnreILp+KC5e1c8i
GIuYXmeLBlFlke55bYRFuGWmaPKXDkLtmH3d0p8sYouF81xB+SCypfevSpll
EddqNtyVrR1EbH/SpwVL2ESvz8mTSzoG8f5C/LdwSTbRKp68NJ87CCP18EzG
RTZh3/i08P44mY/N13+/vcIm1rw44bTz5yC05iRUDpqxibPMQfbnmUEoZ4YU
uduyidr4dRV2C+mQ2B1Yu82LTZQeeuK+XYSOhzVjGXwVbMJsWEe1fyMd64pW
pdDq2cTC4LW//DbTkZ25P4HSzibUeRJvLpSmYzLsYfgTFpvIL6Nq9snRccXp
3/upxRwi/fyxhb6adGjLrLSga3EIj5NZL8WO0eGZ+ddK+RSHMD66g//7cTqa
dUbsffU5xIL9y1dknKbD5E6li+YNDtG688l71bN0RM1lugdZcohoKe6q8vN0
0N5Gek3ZcojTq+vXdRjQcT3phX+EC4eQXKYWYGpER6S6XcjcKw4xxZu8kXOF
jj0Sk6fPfOAQFbOSIbamdPz2EVcsDeEQXyZ8JH5fpyNm0SnxI/EcwoqzMPz5
TdKf46MlydkcQoNqv3X5bTqkh6PGZMo5BLvh4k6xe3SENyygrKZxiNyK8vgI
azr0j8pHe4xxiHcUpT277egQyrjiPT/HIRSSRBVUH9Lx4kuW6dD6IcL1fZ+K
qSsd5uZWvEWnhgjR0+ZnI/zoUJ7r1LDNHiK4Wu3Nsv50/LVasotVNkRQVHQu
pgfSkUVVWHOlZYgw373TqOwrHQrl7wd1xoaIQ1u/9J4Oo6PtUH51wdwQIbBJ
wLQ9go7A+KFUhWXDRKrAqBk7ho5lPlpuEluHCXe+qyybeDrq+O7f/bRvmDCc
q7eY/UHHu4eh+gJqw8TuKbUR12Q61CaIks96wwTPSLLVsjRyfySu+pl7fZjQ
rX7gKFtAx5tIg3jduGFCvJj5O41Ch7FZbJdN/jAxmXPpqUoxqUdqjt+vfpgI
iD30/HQFuT+Cv97s/TlMMF//9bRpIsf7MTdbKY8Qzjovv6Yx6TjoZv/hfe0I
0WRy21ieQ0dIzMPjBv0jhPSDkyLxw3SM1j3ilZwYIaq+rfoYPk5HuoirbYow
lxD+E+zu85uO1Ylvz7YacYnohIx7NoIMCF/PFNjxi0s0rGYfkT3IwBLkb9h0
ZIyQ2lE9E6XEQHfQ08t3z4wRD/AjfcsRBn78VgnMvTFGiN6137NRjQHtjIKN
hl5jhFkpz5ZlJxh4s5uy+XPvGDHzUGQZ+woDfBceN6aqjhOSvSc6wl8ycCpQ
6u2C7nHiTdGRxAseDJxeZXEqiDFOTEbJui/xZOCSR+KKg+PjRJGdoMIdbwYM
HZTfWSyaIMz4m97v+8KA5bmL7xv2TBA13CJzejADNpVBZywPTxAHmlNVPoWS
drXBlXxaE0RIVoSwTjgDjzJ3NASfmSAWh/gNz35nwFXOxlvRcIKweuFeFBfN
QJKKzR0pswmi/fbDgCtk6+iTmvcKvjNBRO+/fKwwiYGLXJGGj48mCCGRE5vv
pzLg3hQ1Ifh8gnCaP/yfdAYDZZkH1rx5PUGcqBQL98hlQOH52Ysu/hPEsMnA
/JkyBjasf91zN2OCkHtzK6Ovm4E6tRm21uQE8cna4K13HwPLZNyXFc5OEP/0
j5tpUBlQXS4sq8w7STSI71odySTja91jvU9oklBaJMa5xGFgJCffO2H9JBE6
JEBZOsKAWOjJlO3ik4Rt+ui9exMMeFne+m+z3CTRFdivKT7FQPWZ/9YFHpgk
NFwaNjb+YoDnwAultSqTROzNwsnnswyoia4y9NacJFafTKlUmGOAYa2/caPO
JPFIPjyUOc9AYeBSFdqxSWJwre9Df14mfEoLTGJITht4sHVuMRNnN+4IUyRZ
rMx8LmEpE9LafcXz2pPEy7hLzVcFmFhg+5FRSvJFh0OuxauYSCv7u12f5Onl
f3veiDEhZteUaKM1SRxWdPMV2cfEeMXj/Jijk0TbdZGDwQpMzJ02+WFP8v13
P9olFJlY3ar2FSTHMzpEtyszcZS6yLVVY5LQWWWVF6fKhP4ttm0oyQzlhSZ7
1Jkw41Zdv0PyZt/d3w5qM+E5+16Tl+QcokgjR4eJb852B2rUJ4lLw5foKieZ
//9f3P8qsvJwqr4uTNEgkQbJEAkhU5MMZUmSShlSGkxJJRlSqJQMEaUiP2Su
NEuhVDItJEOlTCE0kHvOucO515UoxHe+P99n773etd619lr7PEfjBoOHZOno
qu0EXO+68rzOfBATLCKXbbIjYNk+0bOaRoOo47ewod6BgKovQRaX9AexIS3P
22YXAbZ7OTM5GoM4Rdj+ZOc+Ak7uaU19vGAQsxV9bDucGf87N7tLzh5EU2tR
4T43AjKcypb5ig1i4M3lqz08Cajefe+l3i8hEtvDS477ETBn16m2wiYhvs/V
qrsaScA9e4U5xXFC9Gqv8JKJJsCkOb5D7oIQxaY4SiTHEPDBTuzmGaZezfae
3555hdHTltY1PSrEgumtrbkpBKzbgdsqrISY5HnuR10uAWN7V2p5DQ+gQYJM
5LYnBLS9EH01mzuAjaX3l37KJ+CpTLPl8+8DOG1e8+H2IgLcGvzdJ+oH8HSV
Ot1fQUCt0ZMbSRkD6Lz401/RVgLSFmpOqzIfQKlFJ16UfiZgqf7GTSdWD2DV
vAUBQZ0EJFu5Ri3VHECNmfsp6iuzPyhpykXpART8Ito/UYx+D0QnkssEGNkw
8TxrgoCk+9c6KBkBrq657e8kSsIJ+HkmdJKPZIXlchkxEhQ71yrOpfloU3Q5
J2omCaUze91N6/m44Kbs9WPzSWj3WcW5ep6PDwP1/Iy1SVBa1Tm+kkvjPv9m
rV86JHx/r3OzrpPG2d6BrDx9Eu57RmxwrqXxhFuJs8oaEsxTtC9G36ZRbZ+L
XNdaEmboh2nKx9PY7ijS9p8JCS11re+enqPRdKvVtunmJLj8PSfd6UQj35I9
rcqCBK3E5kKfTTTegivVIZtIGNDWcBRdRaODif751dYkLIqcv0zXgEaxNS3G
/K0kDNdxIV6fxpf6Qb8fbCehe/abPUI9Go9qyxUesCOhemd6wE4Gf1R21fy8
i4SL363vLNSlMVxetP/aHhIOqauUndGhcdWCuzet95NgfWykrXs5jakSHNky
dxJmjtybdkubRo/fQeJ3jpFwXWqqt6Ymjb/fXe07HkFC0fpyA+OlNPbM+uw1
foGEWM/cinuqNFbbKApiLpJgEXfDZi6DEz7mjmXHkfCjM8CLq0JjsPRghPY1
Eh5Pug47MdjFznjGywQS/DRsomqUabS8Hn5tw///u243nruCwdotdfMbk0kQ
CdS4lbWYxjnzpDP2pJLwLn2engSDR3buXtKfzujtvGsiiNHjW1LWA/8sEtz2
7XyTZEFjzed+3bGbJKTssY99vovGXFmdoos5JHB2225v8aLxutNJk7n3SDDY
tX2u8CyNrl9EN2vlktBjvyVTL4fxR35LY1EeCVJ2mw9sf0Hj8v0JO83zSdiz
Y5OGTz2Nf3oWuzsVkfB364aCR3waE3+YnomuIEHW0rhGzZSPtWTQ494Wph4N
tXjybXzM0yxf4fuZiX/1skJjko//HRUr/tNBwsRK9eA9o3x05ybWSH8lIUl/
iUiKigBH+flf15MkVGoumi/jK0D9YbZ0+hhTf00BLtLTB1B27YoU9QmGP9cn
yVxmAMdPnVYsFKHAJPrI+wCFAXz3d5pWvTgFTcYuxm36A+j5b6nFsDQFQznW
C9L2DGCqmGuggxoFBkHKjaq5AzhxcOGaZg0KnnWYfVMpYva/afptq0XBShNX
weIK5v5Hbjy1XY8C/clMGYWWAUzpHV/7wYCC0gNlqot6GH7zl3+2rqLAtKZ7
1UJiAOsnNUOsjSgwuyS/e97oAOq59ZnUmVBQxTU+IiPG9JeKjLFN6ymw2rH3
tLSUEEeVdpXVAAXF2/qO1MwTonuoVOhGCwo+qdvdDlsoxNqeuvXVlhT0TpZ3
mSgIUWddxIT5ZgoGvyyfP7xYiCOjv8LMbCiYd216jI+GEJ33PTEv30GBrldQ
5TJtIVa/Piy6zp6CjRY///bpCvHa6S+RxrspODJc4bN3jRA1hiuiV7tTUOAa
7GBlKcTdwktx2oEU2OmzlFQ8hFhmt9HmUTAFnjN3OnUfEqJqwbik5hkKTv+s
TEhh+iffz/+a+nkKsm5kTp0dIETHj5q2d8MpeBEgsb4+UIglun3SSy9Q8GHb
6eALp4UYzXO8rhJLAXtyJ/tvmBA526Qcbl6m4O+XKtUXTL+2e1w3d/FVCiSL
9J2PxwjxpUREa2Y8BcrXspKXM/1d0dskSSGRgplWA7pRDI5s+OWYnkTB4Vll
GRgrRErzyYJFNxj9mmJmjkULsYhUviGbSUHcfmVWQLgQ5Td/cUrOZvRT4To8
CRVi+P1Eufm3KXAgXlZSzHywOSSeLnOfggUBOzLdgoTY38fJlCygIO1i6M7t
3kKc9+1FzpQaCnILu6s0HRk9JUNDX9VSoPSgdLmmvRAlTC33+DRQEJ+Zkbxs
hxCnpLbMbv9IQVDM/qMa1kI8X5tGXW6mgHXOtFWdeY+NDrm/gTZG7xMK69Ut
hDhoLzj96AtTfy7dc9TWMe+x8Jc7XXsoeOxQGrLUmNHraajevO8Mn3VGv6qh
EA9/tZxZ38vEt/7sDtVVQuydJdl/rp+CDRKl9iSTb2eT1ooVJAWyGoo9fmpC
7PRKTyPYFHRvCD08LC/EpreatnYCCjzOwFnxGUz8QwIt8UEKtJJviV+dYOpZ
9ZVYyRCTrwLRhPm/BxDDNpUsHaUgkHpzd2nfAD419lAfEWNDopP1xw1lA3jl
ScZYljwb6tfYLzl/fABn9Hi0Oyix4bL9s8fiRwYwSkK7cLoKG3b6zjO86jKA
Z48UHw5QZ0Pf3c9bM7cO4HBy2AYNTTbkVRp+XrphAE/UWCl2a7PBv+eG2+O1
A+i95HOzpQEbJubtCyxRG0DCNjPv70o21OiXTmxg7r/H+YMxT9ewIWmb4qUG
pj98y9P2OGjEhhapbCWxaQO4t1u4Ts6UDRK5r/0W/xKgdbLUQ+4mNmR15687
FS9A8dAIR+MANnTdjg3sEuFjkZD3F0+yodQ8fEo6m0bPw3tuWgWz4dL3Uwl7
W5h+a6vP2XmWDRpKR/I679AYpfo1zC+aDetSN/W3WzHzq97o8Z00hu99fU52
PA+nzBsQlapmsE6H4WFVLj6L2f8gqYYNUnPlChJncdFjvNZGoY4NCn/2aOEQ
B6tZWTc0P7DBpKZLQa6Og5HF23Q3trMhzPmbyLtjHBR1fbDnNIcNO0pqvml+
YqPII9f8vrkc2HHKdEfEIwpreR1+NxdwwDJhqDQrmcIrBvZ6znIcUH/0RKsk
gsKFxRuffFbiwIJuZfFfeynsGSvzSVThwPyhzhPSVhTmgKGO7VIO/JNM/LF8
JYV6dZqP6zU5wDcTK/OUoHBIIsc7ejkHapzKtSKGSSzZoaBtoceBiuPBN7L6
SAxPTGJPGHDA6MLh+KB2Eje1z35UuooDRd3ZB9e8J1FCPsbrtCEHzFZ3rP2N
JDa5iGiuMebA0yvSki+KSHRmDd5/asaBl+vDi1Znk8z3l8/hYxs4oJNSHDuU
SCLlw1LXtGTs8Qeci2JIPDnUcff2Fg48u3lAfHUAiZenluckOXKgQHTj7lWW
JL5eEpMd4s2BW2/F/6zgEHj+kIjrWl8OaC42+yD8RqDlozNKQ/6MveDgW4Wt
BDYZ+GT6BnGgchlpvaKcwJRA1n7t0xxQDVdWEhYS6FzsqkCGcCC/00lYcJ9A
1fGOrjuhHDBckfD2eAaBFNinu4cz8VyqTzNIIPDphXd7lS4w+kR/eXgyjsDA
uo2LuqI5UP/3yb3xSwSazCrvTInlwH3fyJzoWAIndxim7ozjQGLv7ptSMQTW
JOY7zbnG4F3LM29EE3i5XXNhYwIHLjRMpqpEESjrqpBilcKBw4UPE1dGENhz
O2nX1DQO2KiHxpeGEZjDmr2gMoMD5mn2VyzPE6jrK5JkfJsDahGj0bvPMvGf
Y13XyeMAaWdzJiSIQIlKV3v2Uw58qVEJnhrI6DG1c879Qg50Gf0+ceUEgfvj
3sUrv+JAikq2T7Y/gSfS86/OreaA34DArfooga/G02OqaziwPTV8pYMXgeOu
FyNO1HFAyVxGvO8wgRZVAWdV33FghLzdEXCIwJilLkEtH5h6il+ZK+pJ4Ido
a//ITxwoW/vm3HUPAudSq46ubOHAle87bZccINBpq/LBvjYODGaar77DrGfm
SbgkdjD5iX1hl+RNYK/U8G6LLg5sOantG834qxHQazfYw4Fw15uXgkMILFhT
bOnQx4FPqy9V77lM4NuKQzpzaQ6c73VerZTLxL/EXqNawIEnH5rtpJ4RaHdh
ncqJQQ70vLLynXxNYNfmefNbRjigd83gfm8DgfymyrHrU7jwzkRM7j6bQLmf
Cu9l5LigmfR4TE+LRJdN099WyXNha5iKnMoKEnMeDFYEKHHhnHfyahljEnV8
Gp41q3Kh1jzM95c1iRt+B6df1+WCgU3R8+1+JHpPbzkqs5ELbxaVDccx9yX/
aPnBqk1cSJ+nhM8bSBx6/9AlwJqxP/t8THcriWEJYfbN27lQIGIut5wiMWmR
rvH1PVy4SL4xfjeHwi9n5VZt2M8Fo161KYPyFC7+NlVX6MKF3q7od4vUKXyY
06Vif5ALjh837z9qTGH58tgZMn5cWPPi/bkZHhQati1sTDzOhfK4Qw8ijlFY
cO7B9fknuWDlMdk8Gkihlvra3SlBXCgyShs/eZ7pJ4218nKnuWAsvWoZHUOh
YvDu72khXJCN/f2mKp7C5MXEHYVQLvw3Xfm+C9OvpOqCvLLCuDAlxjr2bzqF
sf7iusqRXDg/7YR38i0KReWShbeiuNAdnWGz4j6FIZVqL1VjuGAn/lav8TGF
vjKWoHGFCyAm90vsFYUOzyPtdVO4MHNKxdnARgrf758rm5/K6B9BusxppdBS
LKfLIIMLgyIy5nmdFK7dVXVw9S0u9E0eFOv/yfg7MhlkmsuFu/9mXt05SmHK
zXiT8jwuaISu8hdMUihtrTxpls+FhHFn+zhxNk5JM4u1KOJC8Fj+gjdz2Eia
hKZvqeCCxd9d2SuXsdH9p6Tb+0oulJwOC/+ow8auuMyl298w9v489PBeycad
q3Woj2+58PxUi+U0IzZ+6CnNs6vngsTImEbOejZaRW8LaHnH8AWrzzTbyEbU
7V7j2MjUy4dX2g+t2GjU7j36+RMXXL6UfRfdzMZn50crnFq4kEZUJe1n8PJl
ly98aeNCw6/aLS8YfPfTIuv9HVygRT5MSFmz8YaKcbNrDxf2KLR7VTP4XPWp
n4cILiyz46zT2srG397TH5IUF9a5CISRDPabd8PnKJcLV72H7vcw+IDny98+
A1zgRU3MSdjG+Dvt9/TAUS48fD2XNWzDxsqnUR9+j3PhZ+3CdLvtbDR2mn/9
1CQTX5uibS6DdR6ukj8rxoOTfI3XLjvYKLP1hE6kFA8Ml5perbFl460q6Vkm
MjxojDZpUbdjo4HxE7ZwHg+uUcYLYxiMBVvrH8nyQG2bsTPF4B2a1P0Di3jQ
+cTo9hZ7Nn69GR29SJEH5+YYEbkM9lm41LN5MQ+0Tq5dLunAxrFrlRaXlvBA
fkPxuz2Mv5enuS7ZoMYD9y1toUsYfRedH5v8o8GDdPsBZsqx8eHv1G8FWjzg
7JXsf2bMxrr+1gwVfR64eFtutdRlo9ibLbIiJjzwjCuSPTKfjcy38tCrdTxI
/K+pQV+KjarPolr9gQc/Mnjn/kxno/ltTPhuyYM9eWo/L41RGBq2Zhba8sCt
MSk/r49CyZEWdrADD+58LvAI6qEw0+94vd4u5vzXDwvM2ikscXkcnb2PB958
sXOfGigcNl0icv4QD05IB1kPFlAY/bzi2xovHmQvvD5Wkkvh/OXO5bQ3D2jl
J08v3KXwbs7fjHu+PNDRbDhgk03hKvkbIS7HeeBnwJq/IJXC6uur9y44yYMS
8jfpmcDcr5ktaxuDeCDRbTaiyNzv438kf687y4OaqqYFV5l+MOmf2zoUygON
F4vUNzH94hq5+VleOA8uPvRY/e8AhXntkf6KF3mgHz/k4GtLIbvoD3ssgQf/
OcslbNdm3ie6Ta1nynhglvgg6mMyiTe5MqFTkQdJfmf2ql0l0ePRTo2rVTwY
3bpNLySKRLZax+lbtTyQ6h4pP3GSxGGFb0p1TTz4uME+bL0DiTISvCPzWTxY
Jy02pVWaxLY6XZlskgf9XvueRU8nMTXav2QZhweXqws8jCYJXCz6S9JUwOgT
5PImi0+gzp+/hQf+8iCv52WUVyOBghem+7ljPNhoOHuNwlsCn50MFQua4MFE
/EFWYxmBxgIRp9ipNDhsnGO1Ko9AK2L6+NPZNEjmHp0+wcyfmXe33DOaQ8OD
qZWvCiKZ+Xcgbkf1XBqCXWS9DjLzKkG5cWTbAhq0X/nIyTLzbOdXqdufF9Jg
ONL6z5+Zd7IZdlvd5Jn9jtkzZJl52rUn8RelSENNode8MjcC3dsWWI0vocHL
55/mjF0EqiU6CaLVaKhtqFv11JZA0jYtVXoZDVOWJZo5biXQ770iV1WHhsJe
DcdbQODZ6qUJWwxpmOZkF2akTaBZ+CHjViMaXIrkL39TI3CK2YM+Z1MaqmVY
SVHKBMa+1l5z3JwGjw9ncpvmM++nghVdKVtpSNxw57PXJAv3+p28oLKdhrZs
3x9SoyxU1Hmhk2tLg934Wm7REAvvPDAKK3ekoePlBxFRDgsLskGt35UGI53h
5WltLPwV8mv6gQM0mK7Zq77vEwsNnR5wvx5k9DUrW6zwjoWnV+3/tO8wDYc2
K8v11LCwVFr6eYcXDafsImWykIUT3OoUx2M0zIjrcb1bxkLz+uCQZl8a+t+5
y7wqZeGFu9quO47TcEuC9aahhIW14d82vD9Bg/PWo8E9r1k4wyVR3TqIBrPL
tKagmIXbjK1mvj3F2HsX0C3K4Cbhk6aKczTkbgkxX/aShd0eoW7PLjL2reMk
Tjxj4WJYsVH/Eg3PYqXLowpZ6K7A0siLo+FS/X/+NwpYSLTa8O8l0LDQOrOt
7CkLBywVQ9PSaTi6+Un29McsXLWkyV02i4ZVMSvs5XNZGPzvguV/N2kYqn0x
VfcRC8decGddvUvDDasKL4cHLJy2rDQ9/CkNPzZ9Wpl1h4Vbpvqf/1dAQ0r0
TlZ+DguvfFf1CHlOQ8DbjhvVt1n4sbR908gLpr7Enbd+vsVCmdTLWoHFTH1s
+jFO3mShY6DZbGEJDawoz/zRbBam2A0O+JbTMN+gVMwik4VfdO63cZAGA3vH
5uQkJr8z9xUfqabB9QSdxb7CQjfW7Mz+GhqO/3fRe300C3OqqsIO1NFwrUh5
7fVQFi4L0dq8/wNTn8P2TUZ+LFzJ/fN5RzsNu8++nBJry8KgurzX7ztp8My0
/dS9mYXFd9yzrLtpuFdOZeibs3C9c72nxQ8a3k3Kr+kwYKF1441fazg0WESF
HdGYy8LLj7Z1POPREHhPbnWIBAsboydL9AU0RNUWinycwkIHsyORWkM0dM3o
Twv61Y8u+YYyShNMvq9af6hp68eX+/5INYnw4YhOckXAh36UmlYieWEqH9Lf
9xYsrunHI4VnJQyn8eGet96d96X9WOm8fgZ7Bh/6Zp5NPv28H+VmTIpnzuLD
n4d1MeqP+zHgeeVUWyk+qFjPD2nJ6cd3rpGiU2T48OxunP/lhH5UlbCcLJrH
h2z2uIJhcD+GvBD/d0SWDwl6fvW9+/ux1b1uVH4RH0JOfg+8uqEfo15tHQ5f
zAfnf1WN/ZL9SHja0zZafFCViQn7785PNJszjzu5nA9au/8sh0s/8UZpG/VM
jw9TMo52cvx+ovXcPf1yq/nAUbNZYWHyE3PRtbvfjOE3kvk50NSHfvI+Decc
+WDtnmG1Y6IXa9/q1uk78cHwnuSvvz97UTlAUNO3l+HjhN6819CLpxULq5Od
+SCrL9hmn9+LTXUnKq3dGL5A9z/jSb2oeXJ1xdgBPgwVN999GNKLEYuHS596
8qFFRLy8dE8vrgw682q+Nx8sORtUlszrxZFPF+/lhfHhofKxfb5/v2N49O2I
nlw+GL00vvbmZjfOPjV964EnfBivDo1ucu3GdC/fuUQ+H1I/VZ37qtSNz7cZ
3xEU8eEHteXYSEYXEjLNNVOQD7Ff/C7nZn/BbdkiM7Ra+aBpHXBE624Hyr5y
uxY0xodw9eAly/Jb8c7Dt7tH//FB56Tsv3b/VjRIX64cJiKAOVUvOy8atOKW
0JH8WHEB5DmPxBOFLXhuY3xzhrQAnJf/Pq3U0Yx9nyrmVy8VgEqh/EGZNU3o
X6X21UpDAJUH3H58EmnC8WeX773XFICIunWpYtonXJCy2/CzrgAMqH0FsvUf
0dqZ70StFcCAb3i6hEYjPqGUMqRsBHDrzHu/wd4GjM2Kdv+2QwDu0i8/bPZt
QE8HWv2pvQBm3L2lnfWnHs2n7+KGOjLYOC528EI9KpaVFWx3EkBBYxCxWboe
/xxXC1baJ4CHHu6WWel12Kp+xZR2FkBsv8Iwz6YOn3b9Eil3Y+x/LY64IF6H
l+P3117xYOJp3zVbvqIWD1u+iXM+JIDjnwZTC4Jr0eKvtr2OlwA06+PVNuvX
4l+P0e73vgJoet1gGnjrLXoZpgklzgjgdNZ674+RNWjJFXnVdZY5n9L129O0
BpVveZ3LPc/Yjz8VMfbrDbbPNJq+NUoAdhGFqZqH3uCmr+2Kl+IF8MNTvS5y
czWqJJr17UkUQKdLtcMikWoct7r/QDNZAPW73b7lF1dhUUHQyvp0ARRbp/3u
0arChENfR25kCcBrg2HEyb5KPCa/qfzILUZvk1ZJiYxKVI2abz39PhOvzmy1
tZKVOGF0bnbHQyY/2xzdMi4hfqF/ttx/zOTP9Fpw/WgFFuVsSw1+yvj7lNII
uF6BCU7PXawKmfU3Gt6P9lagj6TCUtki5vwXzye9SyrQuiqSYr0UgDk/Z2AR
pxwntR1ORpcx+ZRTPnU5pBy7vr822oUMv55LSbVFOb5MWjKhVs3s35jxb1Si
HP0mBmJr6pj4fRdGHcsow57m+Oyprf/nk75uU1aKxRdHDrZ+ZnDn9raoqFJM
MnXTutPJ8PPjFpbblOK2e3pFFt+Y+pWbka37tQRLTjc2RLD/b0/ksdTEa0zR
XRNvz2POR5rxrWpfY0BfpuMSAbOeem5F2LXXqGnj871y6P98f14JFr9GMdG2
uwkjjP1Ow7FlZDH+eGHq7T7KrNOBZu75xVjmfUff4J8AEqY+j0g9VYw3lGf9
npxk4pMT1jRBMf4PNnGZww==
           "]]}, "Charting`Private`Tag#2"]}}, {}}, <|
     "HighlightElements" -> <|
       "Label" -> {"XYLabel"}, "Ball" -> {"InterpolatedBall"}|>, 
      "LayoutOptions" -> <|
       "PanelPlotLayout" -> <||>, 
        "PlotRange" -> {{0, 1}, {-1.1426039760181024`, 0.9999998782112116}}, 
        "Frame" -> {{False, False}, {False, False}}, "AxesOrigin" -> {0, 0}, 
        "ImageSize" -> {360, 360/GoldenRatio}, "Axes" -> {True, True}, 
        "LabelStyle" -> {}, "AspectRatio" -> GoldenRatio^(-1), "DefaultStyle" -> {
          Directive[
           Opacity[1.], 
           RGBColor[0.95, 0.627, 0.1425], 
           AbsoluteThickness[2]], 
          Directive[
           Opacity[1.], 
           RGBColor[0.24, 0.6, 0.8], 
           AbsoluteThickness[2]]}, 
        "HighlightLabelingFunctions" -> <|"CoordinatesToolOptions" -> ({
            (Identity[#]& )[
             Part[#, 1]], 
            (Identity[#]& )[
             Part[#, 2]]}& ), 
          "ScalingFunctions" -> {{Identity, Identity}, {
            Identity, Identity}}|>, "Primitives" -> {}, "GCFlag" -> False|>, 
      "Meta" -> <|
       "DefaultHighlight" -> {"Dynamic", None}, "Index" -> {}, "Function" -> 
        Plot, "GroupHighlight" -> False|>|>, "DynamicHighlight"]]},
  AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948],
  Axes->{True, True},
  AxesLabel->{None, None},
  AxesOrigin->{0, 0},
  DisplayFunction->Identity,
  Frame->{{False, False}, {False, False}},
  FrameLabel->{{None, None}, {None, None}},
  FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}},
  GridLines->{None, None},
  GridLinesStyle->Directive[
    GrayLevel[0.5, 0.4]],
  Method->{
   "AxisPadding" -> Scaled[0.02], "DefaultBoundaryStyle" -> Automatic, 
    "DefaultGraphicsInteraction" -> {
     "Version" -> 1.2, "TrackMousePosition" -> {True, False}, 
      "Effects" -> {
       "Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2}, 
        "Droplines" -> {
         "freeformCursorMode" -> True, 
          "placement" -> {"x" -> "All", "y" -> "None"}}}}, "DefaultMeshStyle" -> 
    AbsolutePointSize[6], "DefaultPlotStyle" -> {
      Directive[
       RGBColor[0.24, 0.6, 0.8], 
       AbsoluteThickness[2]], 
      Directive[
       RGBColor[0.95, 0.627, 0.1425], 
       AbsoluteThickness[2]], 
      Directive[
       RGBColor[0.455, 0.7, 0.21], 
       AbsoluteThickness[2]], 
      Directive[
       RGBColor[0.922526, 0.385626, 0.209179], 
       AbsoluteThickness[2]], 
      Directive[
       RGBColor[0.578, 0.51, 0.85], 
       AbsoluteThickness[2]], 
      Directive[
       RGBColor[0.772079, 0.431554, 0.102387], 
       AbsoluteThickness[2]], 
      Directive[
       RGBColor[0.4, 0.64, 1.], 
       AbsoluteThickness[2]], 
      Directive[
       RGBColor[1., 0.75, 0.], 
       AbsoluteThickness[2]], 
      Directive[
       RGBColor[0.8, 0.4, 0.76], 
       AbsoluteThickness[2]], 
      Directive[
       RGBColor[0.637, 0.65, 0.], 
       AbsoluteThickness[2]], 
      Directive[
       RGBColor[0.915, 0.3325, 0.2125], 
       AbsoluteThickness[2]], 
      Directive[
       RGBColor[0.40082222609352647`, 0.5220066643438841, 0.85], 
       AbsoluteThickness[2]], 
      Directive[
       RGBColor[0.9728288904374106, 0.621644452187053, 0.07336199581899142], 
       AbsoluteThickness[2]], 
      Directive[
       RGBColor[0.736782672705901, 0.358, 0.5030266573755369], 
       AbsoluteThickness[2]], 
      Directive[
       RGBColor[0.28026441037696703`, 0.715, 0.4292089322474965], 
       AbsoluteThickness[2]]}, "DomainPadding" -> Scaled[0.02], 
    "PointSizeFunction" -> "SmallPointSize", "RangePadding" -> Scaled[0.05], 
    "OptimizePlotMarkers" -> True, "IncludeHighlighting" -> "CurrentPoint", 
    "HighlightStyle" -> Automatic, "OptimizePlotMarkers" -> True, 
    "CoordinatesToolOptions" -> {"DisplayFunction" -> ({
        (Identity[#]& )[
         Part[#, 1]], 
        (Identity[#]& )[
         Part[#, 2]]}& ), "CopiedValueFunction" -> ({
        (Identity[#]& )[
         Part[#, 1]], 
        (Identity[#]& )[
         Part[#, 2]]}& )}},
  PlotRange->{{0, 1.}, {-1.3413418010049696`, 1.0887476187282612`}},
  PlotRangeClipping->True,
  PlotRangePadding->{{
     Scaled[0.02], 
     Scaled[0.02]}, {
     Scaled[0.05], 
     Scaled[0.05]}},
  Ticks->{Automatic, Automatic}]], "Output",
 CellChangeTimes->{{3.948123171401717*^9, 3.948123199718768*^9}, 
   3.9481232473881474`*^9, {3.948123396096857*^9, 3.948123411837347*^9}, {
   3.9481234767898397`*^9, 3.948123500779153*^9}, 3.9481237384346323`*^9, {
   3.9481242148953342`*^9, 3.948124253607568*^9}, {3.948124795973659*^9, 
   3.948124841391388*^9}, 3.948124885271016*^9, 3.948124995955097*^9},
 CellLabel->
  "Out[553]=",ExpressionUUID->"4984b1f7-133c-4235-869e-314fef96e28e"]
}, Open  ]],

Cell[BoxData[
 RowBox[{
  RowBox[{"testini4", "=", 
   RowBox[{"0", 
    RowBox[{"RandomVariate", "[", 
     RowBox[{
      RowBox[{"NormalDistribution", "[", "]"}], ",", "100"}], "]"}]}]}], 
  ";"}]], "Input",
 CellChangeTimes->{{3.948117958635509*^9, 3.948117961737759*^9}, 
   3.948118009196693*^9, {3.9481184224530888`*^9, 3.948118457550139*^9}, {
   3.948118865567238*^9, 3.948118865622703*^9}, {3.948120671985375*^9, 
   3.948120674553061*^9}, {3.948121770190486*^9, 3.948121770270083*^9}, {
   3.948121909348001*^9, 3.9481219370123243`*^9}, 3.9481236993410187`*^9, 
   3.948123954152379*^9, 3.948124077916299*^9},
 CellLabel->
  "In[554]:=",ExpressionUUID->"16fd2f85-0c15-4ce1-9650-d56f875e3ac0"],

Cell[CellGroupData[{

Cell[BoxData[
 RowBox[{"Norm", "[", 
  RowBox[{"Total", "[", 
   RowBox[{"Transpose", "[", 
    RowBox[{
     RowBox[{"dCost", "[", 
      RowBox[{
       RowBox[{"edgeBasis", "[", "100", "]"}], ",", "testdat"}], "]"}], "@@", 
     
     RowBox[{"(", 
      RowBox[{"testresult4", "=", 
       RowBox[{
        RowBox[{"gradientDescent2", "[", 
         RowBox[{
          RowBox[{"edgeBasis", "[", "100", "]"}], ",", "testdat", ",", 
          "300000", ",", "0.01"}], "]"}], "@@", "testini4"}]}], ")"}]}], 
    "]"}], "]"}], "]"}]], "Input",
 CellChangeTimes->{{3.948116443805812*^9, 3.948116595874456*^9}, 
   3.94811663448494*^9, {3.948116675111467*^9, 3.94811669012147*^9}, {
   3.9481170279593077`*^9, 3.948117034948435*^9}, {3.948117139185307*^9, 
   3.948117139416718*^9}, {3.948117619301654*^9, 3.948117644869664*^9}, {
   3.948117701129861*^9, 3.948117725424323*^9}, 3.9481177976042557`*^9, {
   3.948117949234351*^9, 3.948118005251853*^9}, {3.9481181222490892`*^9, 
   3.948118131658963*^9}, {3.948118183420438*^9, 3.948118183730976*^9}, {
   3.948118290031867*^9, 3.948118300008397*^9}, {3.948118391012185*^9, 
   3.9481183956216516`*^9}, {3.9481184306853952`*^9, 3.948118480496229*^9}, {
   3.9481187959571867`*^9, 3.948118869886958*^9}, {3.948118944962851*^9, 
   3.94811896683502*^9}, {3.948119010941477*^9, 3.948119011052844*^9}, {
   3.948120502251251*^9, 3.9481205305715523`*^9}, {3.9481205627655373`*^9, 
   3.948120562876808*^9}, {3.948120655117876*^9, 3.9481206875217953`*^9}, {
   3.948120734940549*^9, 3.948120735011962*^9}, {3.948121549534327*^9, 
   3.9481215880145884`*^9}, {3.948121688668117*^9, 3.948121689443036*^9}, {
   3.948121772639497*^9, 3.948121793399719*^9}, {3.948121906717914*^9, 
   3.9481219497410717`*^9}, {3.948122060586152*^9, 3.948122061514122*^9}, {
   3.948122366662612*^9, 3.9481223667420883`*^9}, {3.948122438057753*^9, 
   3.94812243882589*^9}, {3.948122591337932*^9, 3.948122648962617*^9}, {
   3.948122680659992*^9, 3.94812268076335*^9}, {3.9481235113820963`*^9, 
   3.9481235571530323`*^9}, {3.9481236002414913`*^9, 3.948123605905151*^9}, {
   3.9481236961972723`*^9, 3.948123696332697*^9}, {3.948123765032242*^9, 
   3.9481237652555923`*^9}, {3.948123889619471*^9, 3.948123907909679*^9}, {
   3.948123982992901*^9, 3.9481239962089443`*^9}, {3.948124597409724*^9, 
   3.9481246018335533`*^9}, 3.948125013642815*^9, {3.94812505862953*^9, 
   3.948125058723675*^9}, {3.948125216419588*^9, 3.948125275405216*^9}, {
   3.948125312014535*^9, 3.948125341471352*^9}, 3.948125396762092*^9},
 CellLabel->
  "In[572]:=",ExpressionUUID->"d6909a2d-ebee-4926-a02b-8ab0c90b08df"],

Cell[BoxData["$Aborted"], "Output",
 CellChangeTimes->{
  3.948116920781104*^9, {3.948117036764943*^9, 3.948117051224715*^9}, {
   3.948117143594776*^9, 3.948117150513681*^9}, 3.94811718447971*^9, 
   3.9481172182141438`*^9, {3.948117638498147*^9, 3.9481177376918983`*^9}, {
   3.948117798579523*^9, 3.948117841103928*^9}, {3.948117941742052*^9, 
   3.94811801037414*^9}, {3.9481181194825706`*^9, 3.948118132143605*^9}, 
   3.948118184196604*^9, {3.9481182858143787`*^9, 3.948118292728421*^9}, 
   3.948118322966217*^9, {3.948118392460451*^9, 3.948118404573513*^9}, {
   3.948118446107132*^9, 3.9481184873970633`*^9}, {3.948118789974741*^9, 
   3.948118876322757*^9}, {3.9481189372969913`*^9, 3.9481189777874928`*^9}, 
   3.948119026920826*^9, 3.948120164039448*^9, 3.94812041284212*^9, {
   3.9481205240286617`*^9, 3.948120540191484*^9}, 3.948120580966222*^9, 
   3.948120724047164*^9, 3.948120766860879*^9, {3.948121555151058*^9, 
   3.948121571333715*^9}, 3.9481216223770313`*^9, 3.948121726277417*^9, {
   3.948121782452505*^9, 3.948121806304799*^9}, 3.9481220635162907`*^9, 
   3.948122403912108*^9, 3.9481225250971203`*^9, {3.9481226174475193`*^9, 
   3.9481226535379543`*^9}, {3.9481226916168537`*^9, 3.948122713284994*^9}, {
   3.948123515310081*^9, 3.948123544456394*^9}, {3.948123577118528*^9, 
   3.948123614314814*^9}, 3.948123708636023*^9, 3.948123773869932*^9, {
   3.9481238937855587`*^9, 3.9481239124597692`*^9}, {3.9481239447412558`*^9, 
   3.948124001898543*^9}, 3.948124084910391*^9, 3.948124267587978*^9, 
   3.9481250129269457`*^9, {3.948125057685088*^9, 3.948125066913569*^9}, {
   3.948125228749289*^9, 3.948125258577572*^9}, 3.948125292299946*^9, 
   3.948125332188156*^9, 3.948125375805745*^9, 3.948125424904982*^9},
 CellLabel->
  "Out[572]=",ExpressionUUID->"209516ff-1879-4481-9231-611ef1c9825c"]
}, Open  ]],

Cell[CellGroupData[{

Cell[BoxData[
 RowBox[{"Show", "[", 
  RowBox[{
   RowBox[{"ListPlot", "[", "testdat", "]"}], ",", 
   RowBox[{"Plot", "[", 
    RowBox[{
     RowBox[{"{", 
      RowBox[{
       RowBox[{"Sin", "[", 
        RowBox[{"2", "\[Pi]", " ", "x"}], "]"}], ",", 
       RowBox[{
        RowBox[{"(", 
         RowBox[{
          RowBox[{"trialFunction", "[", 
           RowBox[{"edgeBasis", "[", "100", "]"}], "]"}], "@@", 
          "testresult4"}], ")"}], "[", "x", "]"}]}], "}"}], ",", 
     RowBox[{"{", 
      RowBox[{"x", ",", "0", ",", "1"}], "}"}]}], "]"}]}], "]"}]], "Input",
 CellChangeTimes->{{3.948117023108872*^9, 3.9481171310642633`*^9}, 
   3.948117218900462*^9, {3.94811769508072*^9, 3.948117695281692*^9}, {
   3.948118169788609*^9, 3.9481181746288633`*^9}, {3.948118343586754*^9, 
   3.94811835689841*^9}, {3.948118469784132*^9, 3.948118475959201*^9}, {
   3.94811887985721*^9, 3.9481188799758053`*^9}, {3.9481190649687033`*^9, 
   3.948119065175358*^9}, {3.948119114227518*^9, 3.948119115009656*^9}, {
   3.948119271665592*^9, 3.948119271792173*^9}, {3.9481193316511087`*^9, 
   3.948119359235722*^9}, {3.948119390894739*^9, 3.948119391477193*^9}, {
   3.948120045849962*^9, 3.9481200478721933`*^9}, {3.948120212047411*^9, 
   3.948120239015778*^9}, {3.94812035284509*^9, 3.9481203555162077`*^9}, {
   3.948120543757267*^9, 3.948120549148551*^9}, {3.9481207229881372`*^9, 
   3.948120728083869*^9}, {3.948121787648656*^9, 3.948121787751334*^9}, {
   3.948121995664372*^9, 3.948121995879733*^9}, {3.948122049138997*^9, 
   3.948122049377921*^9}, {3.9481224151298027`*^9, 3.9481224196570587`*^9}, 
   3.948123524175694*^9, {3.948125277204863*^9, 3.948125279356223*^9}},
 CellLabel->
  "In[571]:=",ExpressionUUID->"459c2b59-8ce1-4f14-9c91-8fdcc83acf25"],

Cell[BoxData[
 GraphicsBox[{{{}, 
    InterpretationBox[{
      TagBox[
       TagBox[
        {RGBColor[0.24, 0.6, 0.8], PointSize[0.011000000000000001`], 
         AbsoluteThickness[2], PointBox[CompressedData["
1:eJw1U3tIk1EctYWDjNLWfCToLMIegxYlYVSepEJEcuK00igrMVZi0svU0Moy
zeiPTFmZWVq0JCmW2kiMy0RmS7M5ba6sOfdyL+ecLLXCcvu+Lr/L5d7f65xz
7119Ij81h+Hn57dlYXrX/8N/mKu997CCbPfniXWmGgQZWIcb2h/Q+2f4sC74
eWRdK1FXyH8pD72GPkpNjiQZQfnbsEsQ9HfUqEOl183pwKtlcpa0xgIqnsCU
1lVuyDShem3ignWhjZcZKfJ30vnduKYRP12pHceYid1ZX9aDKO7cDJthpOt9
xOx8cqCL74A3mt3Zh8Lqq4/Lcqfo+p+xfm/x0gmFA4jxnSAgzMnt9ljpfipo
LhafiZxzwewtLxrEpZfV/XaJju4/hNJo0y3uiBV3PI2SuBg1pt1pP/gtGhrP
MLY+2uZJMBno8hq4GaLS2ywHje8brPcPxE9rzRh5m+c1hDIL9n8xKGm835HM
XHI6O24I10UC17kALdwnB1LuXuik8Y9iKFESNrNKg2AvPIEO0e9K6uVNvYRq
qIMmfyomIkFBhC2BCxDHoJ7POtifKicUPz36xMKmrJoB4kt36ZHUseRYbYqe
UHwNaJdJ55T77CTIR9CIiRlVx4o+E32/Rix+ISzkNjhIdom3gwnuHRZuXfwk
ofQw4zxvkWpNgYdIffTM+Pp+U8ZvvotQ+oxjd9Wn/GiFgQQcTZb1brAgr1G1
nOeZJpReFgg5HNHPgSnicxdawd8YWzV83EEo/WzIsepkN0Is5E2cN8OGtFKB
9s8pI6H0tINZy9Mr0m3EB5ftAGtWcjO82UYofR0Q95ZHMYvGSQYn3L4newI7
W4OlzMs6QuntROXm9FhjiJ345JM4UfTkSnriWTX9nifR0xyrHIzoItRvcGE2
lJGQGy0j/wAEu7KH
          "]]},
        Annotation[#, "Charting`Private`Tag#1"]& ],
       {"WolframDynamicHighlight", <|
        "Label" -> {"XYLabel"}, "Ball" -> {"IndicatedBall"}|>}], 
      StyleBox[
       DynamicBox[(Charting`HighlightActionBox["DynamicHighlight", {}, 
         Slot["HighlightElements"], 
         Slot["LayoutOptions"], 
         Slot["Meta"], 
         Charting`HighlightActionFunction["DynamicHighlight", {{
            Annotation[{
              Directive[
               PointSize[0.011000000000000001`], 
               RGBColor[0.24, 0.6, 0.8], 
               AbsoluteThickness[2]], 
              Point[CompressedData["
1:eJw1U3tIk1EctYWDjNLWfCToLMIegxYlYVSepEJEcuK00igrMVZi0svU0Moy
zeiPTFmZWVq0JCmW2kiMy0RmS7M5ba6sOfdyL+ecLLXCcvu+Lr/L5d7f65xz
7119Ij81h+Hn57dlYXrX/8N/mKu997CCbPfniXWmGgQZWIcb2h/Q+2f4sC74
eWRdK1FXyH8pD72GPkpNjiQZQfnbsEsQ9HfUqEOl183pwKtlcpa0xgIqnsCU
1lVuyDShem3ignWhjZcZKfJ30vnduKYRP12pHceYid1ZX9aDKO7cDJthpOt9
xOx8cqCL74A3mt3Zh8Lqq4/Lcqfo+p+xfm/x0gmFA4jxnSAgzMnt9ljpfipo
LhafiZxzwewtLxrEpZfV/XaJju4/hNJo0y3uiBV3PI2SuBg1pt1pP/gtGhrP
MLY+2uZJMBno8hq4GaLS2ywHje8brPcPxE9rzRh5m+c1hDIL9n8xKGm835HM
XHI6O24I10UC17kALdwnB1LuXuik8Y9iKFESNrNKg2AvPIEO0e9K6uVNvYRq
qIMmfyomIkFBhC2BCxDHoJ7POtifKicUPz36xMKmrJoB4kt36ZHUseRYbYqe
UHwNaJdJ55T77CTIR9CIiRlVx4o+E32/Rix+ISzkNjhIdom3gwnuHRZuXfwk
ofQw4zxvkWpNgYdIffTM+Pp+U8ZvvotQ+oxjd9Wn/GiFgQQcTZb1brAgr1G1
nOeZJpReFgg5HNHPgSnicxdawd8YWzV83EEo/WzIsepkN0Is5E2cN8OGtFKB
9s8pI6H0tINZy9Mr0m3EB5ftAGtWcjO82UYofR0Q95ZHMYvGSQYn3L4newI7
W4OlzMs6QuntROXm9FhjiJ345JM4UfTkSnriWTX9nifR0xyrHIzoItRvcGE2
lJGQGy0j/wAEu7KH
               "]]}, "Charting`Private`Tag#1"]}}, <|
          "HighlightElements" -> <|
            "Label" -> {"XYLabel"}, "Ball" -> {"IndicatedBall"}|>, 
           "LayoutOptions" -> <|
            "PanelPlotLayout" -> <||>, 
             "PlotRange" -> {{0, 1.}, {-1.3413418010049696`, 
               1.0887476187282612`}}, 
             "Frame" -> {{False, False}, {False, False}}, 
             "AxesOrigin" -> {0, 0}, "ImageSize" -> {360, 360/GoldenRatio}, 
             "Axes" -> {True, True}, "LabelStyle" -> {}, "AspectRatio" -> 
             GoldenRatio^(-1), "DefaultStyle" -> {
               Directive[
                PointSize[0.011000000000000001`], 
                RGBColor[0.24, 0.6, 0.8], 
                AbsoluteThickness[2]]}, 
             "HighlightLabelingFunctions" -> <|"CoordinatesToolOptions" -> ({
                 (Identity[#]& )[
                  Part[#, 1]], 
                 (Identity[#]& )[
                  Part[#, 2]]}& ), 
               "ScalingFunctions" -> {{Identity, Identity}, {
                 Identity, Identity}}|>, "Primitives" -> {}, "GCFlag" -> 
             False|>, 
           "Meta" -> <|
            "DefaultHighlight" -> {"Dynamic", None}, "Index" -> {}, 
             "Function" -> ListPlot, "GroupHighlight" -> False|>|>]]& )[<|
         "HighlightElements" -> <|
           "Label" -> {"XYLabel"}, "Ball" -> {"IndicatedBall"}|>, 
          "LayoutOptions" -> <|
           "PanelPlotLayout" -> <||>, 
            "PlotRange" -> {{0, 1.}, {-1.3413418010049696`, 
              1.0887476187282612`}}, 
            "Frame" -> {{False, False}, {False, False}}, 
            "AxesOrigin" -> {0, 0}, "ImageSize" -> {360, 360/GoldenRatio}, 
            "Axes" -> {True, True}, "LabelStyle" -> {}, "AspectRatio" -> 
            GoldenRatio^(-1), "DefaultStyle" -> {
              Directive[
               PointSize[0.011000000000000001`], 
               RGBColor[0.24, 0.6, 0.8], 
               AbsoluteThickness[2]]}, 
            "HighlightLabelingFunctions" -> <|"CoordinatesToolOptions" -> ({
                (Identity[#]& )[
                 Part[#, 1]], 
                (Identity[#]& )[
                 Part[#, 2]]}& ), 
              "ScalingFunctions" -> {{Identity, Identity}, {
                Identity, Identity}}|>, "Primitives" -> {}, "GCFlag" -> 
            False|>, 
          "Meta" -> <|
           "DefaultHighlight" -> {"Dynamic", None}, "Index" -> {}, "Function" -> 
            ListPlot, "GroupHighlight" -> False|>|>]],
       Selectable->False]},
     Annotation[{{
        Annotation[{
          Directive[
           PointSize[0.011000000000000001`], 
           RGBColor[0.24, 0.6, 0.8], 
           AbsoluteThickness[2]], 
          Point[CompressedData["
1:eJw1U3tIk1EctYWDjNLWfCToLMIegxYlYVSepEJEcuK00igrMVZi0svU0Moy
zeiPTFmZWVq0JCmW2kiMy0RmS7M5ba6sOfdyL+ecLLXCcvu+Lr/L5d7f65xz
7119Ij81h+Hn57dlYXrX/8N/mKu997CCbPfniXWmGgQZWIcb2h/Q+2f4sC74
eWRdK1FXyH8pD72GPkpNjiQZQfnbsEsQ9HfUqEOl183pwKtlcpa0xgIqnsCU
1lVuyDShem3ignWhjZcZKfJ30vnduKYRP12pHceYid1ZX9aDKO7cDJthpOt9
xOx8cqCL74A3mt3Zh8Lqq4/Lcqfo+p+xfm/x0gmFA4jxnSAgzMnt9ljpfipo
LhafiZxzwewtLxrEpZfV/XaJju4/hNJo0y3uiBV3PI2SuBg1pt1pP/gtGhrP
MLY+2uZJMBno8hq4GaLS2ywHje8brPcPxE9rzRh5m+c1hDIL9n8xKGm835HM
XHI6O24I10UC17kALdwnB1LuXuik8Y9iKFESNrNKg2AvPIEO0e9K6uVNvYRq
qIMmfyomIkFBhC2BCxDHoJ7POtifKicUPz36xMKmrJoB4kt36ZHUseRYbYqe
UHwNaJdJ55T77CTIR9CIiRlVx4o+E32/Rix+ISzkNjhIdom3gwnuHRZuXfwk
ofQw4zxvkWpNgYdIffTM+Pp+U8ZvvotQ+oxjd9Wn/GiFgQQcTZb1brAgr1G1
nOeZJpReFgg5HNHPgSnicxdawd8YWzV83EEo/WzIsepkN0Is5E2cN8OGtFKB
9s8pI6H0tINZy9Mr0m3EB5ftAGtWcjO82UYofR0Q95ZHMYvGSQYn3L4newI7
W4OlzMs6QuntROXm9FhjiJ345JM4UfTkSnriWTX9nifR0xyrHIzoItRvcGE2
lJGQGy0j/wAEu7KH
           "]]}, "Charting`Private`Tag#1"]}}, <|
      "HighlightElements" -> <|
        "Label" -> {"XYLabel"}, "Ball" -> {"IndicatedBall"}|>, 
       "LayoutOptions" -> <|
        "PanelPlotLayout" -> <||>, 
         "PlotRange" -> {{0, 1.}, {-1.3413418010049696`, 
           1.0887476187282612`}}, "Frame" -> {{False, False}, {False, False}},
          "AxesOrigin" -> {0, 0}, "ImageSize" -> {360, 360/GoldenRatio}, 
         "Axes" -> {True, True}, "LabelStyle" -> {}, "AspectRatio" -> 
         GoldenRatio^(-1), "DefaultStyle" -> {
           Directive[
            PointSize[0.011000000000000001`], 
            RGBColor[0.24, 0.6, 0.8], 
            AbsoluteThickness[2]]}, 
         "HighlightLabelingFunctions" -> <|"CoordinatesToolOptions" -> ({
             (Identity[#]& )[
              Part[#, 1]], 
             (Identity[#]& )[
              Part[#, 2]]}& ), 
           "ScalingFunctions" -> {{Identity, Identity}, {
             Identity, Identity}}|>, "Primitives" -> {}, "GCFlag" -> False|>, 
       "Meta" -> <|
        "DefaultHighlight" -> {"Dynamic", None}, "Index" -> {}, "Function" -> 
         ListPlot, "GroupHighlight" -> False|>|>, 
      "DynamicHighlight"]], {{}, {}}}, 
   InterpretationBox[{
     TagBox[{{{}, {}, 
        TagBox[
         {RGBColor[0.24, 0.6, 0.8], AbsoluteThickness[2], Opacity[1.], 
          LineBox[CompressedData["
1:eJwVmXc81d8fxykaEhFCFEnRoCGK6i1kVxRakpBCISOaIkoisioZ0TLKykpy
7M29drLKusO995AtX/3O76/7eP5xPvdz3u/X6z3ulbVxOXl5CRcXVwY3F9f/
Pw0v05tLGOaHp4v5mgb3+R7m0ZZ07ZdQgZe5nRNSERdhb8LL2C8SOnAjKken
LdwFjBo7s+MkzOBBSuntpHAfOG038z1cwg42+L5pOBUeCr3Kj7VDJDxA7ehq
M/PnCfBG9MSjIAl/UEXz32+FZIDvii9bn0hEwn7RFB3p+wjOnE3MGBt/BwFF
34/yHaXCqn++lnobMiDfq1ylqKsT5E059PKnOaCQtoGiz+oDr6YD8HLyKwyN
dJ2tXDEI63KE+ri5EcguT+U2FBqBvAHtBsrBMvjrXr0vbZYOHfq+4yF6ZeB2
s0Bu31IGTKcXixmfLIPMB6ulC1YzQO3OgUs1V8qg1VplS8omBhSsVZ4uCS8D
HYbYETVjBnzVkZTJppeB7ZUkEe54BhR9GHOPjCyHE12dnmoHmVDmGLf+LKsC
PonRm17YjMIXhpOT1XQFfPt3fuNXx1F4d1X9my1XJUTaRTS2uo1CgH3nOWeR
Sig0uqkx5TcK+jZCMQ8PVoLq8aAt9KRRoJwNEE8ProRsW/mnwb9HoUf/uujS
nVUgGW12vewsCxqrNS6vUKuCD6VLalddYkGxLl/u6iNVcKznp+7xqyxI0Plo
Jm5eBR6tS5OKb7LARvN3xM57VRCW7fbeOIIFdDVz4TONVVCvI2AtVc+CqS2H
BD9fr4bH5mj6/j42HB7Qqg7yrgb3abkg94NseBSn73P1YTXc3rSr4aI2G8RE
zLDcq2pQSrQ222jKBlVuJ0pMRTWoJT0/rH6NDd7dL0MD19dAyf67jb1v2LAQ
OiloV1sDwk7q7KalHNAxmq8+0lYDF4c6s3NXciB4GdeDjf01EGSXz4oQ5ID0
vVVjPydrgHn+eZ7qeg4cdtxENZWphbM5Tz1E93DAR8ckDLxqYaDcdZeqFQeW
zKWtWS9fBw5+Dv1zGRxY36g1Acp10J8tZXs7hwMqiV3tdgfqwEut0WCigAOX
DZa/Tj9WB89iCzSaSjlQ88pGXutmHfzSk4tQaOVAqLqEukN1Haz8r1nWeZID
yQKZUs+a60A65pqZxywHSgZ0/2V310FFgWKX2wIH/gR5VCzgOgiBde1neDBY
dFOOh4nXA4TdvVOzFoPU3Ue2+Q71oJYWm75vN4Z9JtK6Pe718Kv+S1iJCobj
m3MUuO/Xw0Pu+Vzt/Rh8Gn6zDcPr4Sv1VdUewDAgdci7r7AeuIMO0b8YY0j5
PhHMy98AmCXuccQeQ9nzIJdtYg1Q69m22cQBw8/LsidPyDQAuzRv1elrGPgF
Tqx7pdIAY7zj3sfcMLhapSbuuNAAr+Syi3ruYVD9Z513Kr0Bziu7GPlHYDA+
VuJ3tKAB/hgkbV8ZjcH29cYTamUNYMDiCnj0EkOYWh9NsqMBOGsH3zjGYWC4
nJcY+K8Bph4IXv/xAQNXceFw6/JGONVnv0w2BYMYv2R2pVAjrF5xQcQmDYNW
8g/DFPlG6A7gDm7MwBD7y/yu67FGqDYM7zYowJCtlKtvc7oRlKLVV1kUYqi5
KyJqdqkRirmupp0rwjAl3vpZzbMRWsKvaBwrIfEzNelfjG0EO7XJ4M5qDNxl
hlohrEbYt3Fp5IN2DOJrUgV8phth+1X16LWdGJSsVna7cjVBfoT0koQfGM7N
V7ubiTRB5m1X0YRuDDl7jr5ff7AJShSvyej8xlD34N2N1bpN8N5Xwj5mAMOv
pqWH/51ogl1RX4QZgxhWO5V1DNg2AavYNcFlBIP9W1iR+rQJclRr7suOYrg7
Ht/2OqoJHnY9nlBnYYiAxTchCU0gNkZvMGZjKOkuOnDjSxNkawV/OosxdChK
LbP93gQy10yzzcYwsLzutJhVN4H60Pf1+uMYJETUnfZ3N0FXyAdx8QkMu2xe
qW0bboIxpZy0ScK6mbNLpXATTP73NLF2EoObcX7svyUUaJqj5lhOYwiMEXMY
56fAKsm+ZskZDAl0z32DYhQQOzFl0ky4wV+lqWobBUzbozy2zmFQF6xf8nwf
BYJ5fpu0EU5+dUntvCYFepM7VbznSX43zzrJG1HgeY2RzNq/GB6mP3uDzSmg
zBFa+57w2H759q/WFHikwL1aaQGDVfm3lf5OFMjlm1idTlj9B91N3JcC/yWb
bo74jzzfxufjwFMKHJe9f2CWsBhbtOdTNAUWvu4wN1vE4O/1aY1XIgVOx2p7
fSQ8zq199MgnCqjeTEsYJ2wV3HVrVT4F/t060bTnH7mPmGt6eykFPltJL3Ui
rJ64bDChgQKtF3kPxxBO3h63zrGTAu8Pzd8vISyWt9dYZYACMwfHK3sJ+2vW
PVhkUUB764DwH8J/6qxza2YokGpYffk/wpmpfz0MuKkweSuu+B9hGtYNTV9G
hSh+O+k5whv2haes5adCWp+UH4Ow2e3ecm8hKiyYNLCohJ8ihb5eMSpM69+6
kEG4jMdjVkuKChm7drb5E541QMLJslTon54wMSWsHMq3c/VWwgI9rSKE7dvM
9dx2UOGt67Qlhdw/TiLxUuduKnx9acF6QLjNinXnoBoVDgcK+ykSXvVOLTrx
IBV6KrQ21JL4ajH8MpdpUaHszJLSi4RvKTXVOelRIb7F2ZFN8pPpLjFMNaZC
6NFkSTfCtAK7f/tOUkHOoLmZTfK7YTFD4vVpKhjNCYRZEzbX/ruX6wIVjKcD
zeuIPoIDdY9ftqHCdzuHTdsJzwn3+ilfp4LHd+HW5lmi3zMKcZFu5P4BB/PX
EbaPc8+f86KC5t1nb82IHtu28rHK/ajgcz4w6ssUeZ+DauZnXlJhZ6LzMO8f
8j6+fi7f40h8Z2yEeIg/NlQ3Ptn0lgrW2Xf05oifgk3tilmfqYBV9FtriN+u
2j/f6ltOhSaj9W4LdKL/tJ4jIzVUkFmBZ7JpxH9jWy2NmqigdMg/yJr4WedO
cZhoFxWWmN3ofEP8vjFsdC6FQ4UTkRbr83oxFF/yScmeoALzupuyZg/R3961
Z7/NUiEu4u6dsp+kvnWoFzQsaYas5y1FGaT+iEsH3cRizXDukjLe0YwhnyO9
ZXZ9M6yxONfoTSH9oySrnUu2GbZGh48UNWKIsu1SEd7eDOwnffU76zAIpypM
qEAzjN5Qc84uw5B1pyjpkE4zeKYK7y4h9dDkmMlJXYNmaIyP2FNVjCF0zCvr
9Klm+Dl5c6KQ1FN+tWqX21eagXe8+LZeNgbeisssFNoM+fOXRdkJGN5Fzb2u
iWwG6v10Lh9S33WuhBg1v2qGBr4De1e+xuDHl5s68LYZSu3vuS4j/WHRhMeB
t6AZ6sb4L7x7SvTamzRs+KsZ4qfLnjl7Yhid6e9r39UClYH8Gke0MeRdCS0z
VG2BvPWe8pGkvz3oPPwBabRA/NFd4n0axH/5cddTdFvIPDkoeZr0R62b5xfu
WrZAj3/Wl97NGGImOyQ2B7ZAypMZpcOk3+qPN5q59bfA/ejBbLMiDqy9dG8/
bagFDmUGMILyOdBH3SFlyWyB0tP+JwqyOeCR+XTw6FQLLOOTy5hN5kCCi4Gb
xKpW+BJydEgwigPT7IrQEtVWcEi75PDKiQPvmN/qBJ61AuIduCsnzAHnFyfk
HCNaIchXf50VPwfUdAbvVL5shfyPijZhyzhQF8e38+7bVrgyWCvYM8+GcZOz
oYyCVlBU5pkVHCTzVf70qYrBVhgfmHAZzWJD18PdvbcOtEGS94zQPQM2CEh/
xENDbWAu8kve3ZoFmhYPewcZbWCZGZusROY/t9CL9QOcNrBOjTk7aMqCDm7x
j79m22Cj9KVj+7VZED8SaNXD3w5rrr35HCbPAqVMx8ZWlXbIbnk0sEAfhWPa
Smll/u3g2cnFRSXzabBDrv2bzR1Q/TjwbOM5JjA1Pweu2tYBlP7yEVlTJuiJ
v0+9qdwBp+YCuF30mLCkOpJjrN4BnX9jmH/2MuHWZo+bcyc6oKbg8o9EfibY
9+95dPJOB3gU60bGFzHgiHnme56WDvAJ1w3cuo7M35ppQ1d9OsFUbWJIOp8G
HnsqcsTKfwDX9HKKa/8Q9KdXPG2W/QkNJy8rPnT+DX8d214r3u6GM1S9yL33
u2H7keWL9t964NOIcWKNUhvoJcleyVrXByWrbim4tVWDl/TFTb8t++FPO7/9
Ilcm7GCZr+o89gv2t1htyAhOR2sFx1ZUzP8CKxGZg++9ahAPep0hF/sb3mzN
3qw73IqcVL51rTQaAOO6hBSVn90ozcDmTfH0AHy9tSu3PPo3mhqVXDMSPQgm
YW/PWH4bQrmn9JZG6gzByRChwS21NBRoVBAgpTcEDgnlhbWtNGSprbjivcEQ
MPGpz/Z9NLRk76rVeccJL4T+eDZBQ8eFKWI/zgyBZbjx4gtpOqJTLbZJXR8C
nW02Wk9d6UjyuL3pu6ghUhftOgeFGMhHPyAhZ2QIFGst/FqPMFGL1VXLXYwh
sMhbGvPNkIk2expJfBodAuM++xtxp5ioLlEo4u3YEBR291kcv8xEIn/jHoXP
D0HkaHOpXSATJX/Ou+4qMAyvj4fp2jQyEVWYrrFDdRiCLi1Qn58cRZsU62c/
7h8Gwyeiw5/PjSJPSM+V0xiGV9EHvcttRpHkNQ/l9ZrDMJfFK9LtNorsKrnk
+AyH4QNtLetb+Cia9ZLgo18YBhal0EureRTJ9hr+eBswDEZHj0hZGLBQUJlG
hnngMBR876YcNGWhPx93PFr+dBiWCwpGk8UKlbkJqDiFDYOKhZtp6VUWslvR
Errn9TA8zF+m9/kxCyXvPatXmjkM5dYRRrwVLKQUdCWvr3sYHFYEy35UZaNo
lzMhYX3D0HmlRSD4EBv9MzOw0/o9DNYKQQ1XddiIunG78IeRYTjJfJO18iQb
3cjlXL8+Pgxd1N1s+jU2yvnlKb+wbARUZZIer09kI3U1/0iJPSMwI2ecpbOU
gzpsJFTjVEbgdFHkxLcVHOT+LL1TRm0EQp7LDG0X4KBPwz8kFQ6OQGd/Xt2U
OAdtiNyZqKo7AgLPVZ7sVuKgJeMdn0+dG4HfO1d80jvNQfWpitUhfiPQnSDI
Gn7LQVc7iq8KBYyAZqZuoGsyB/EsMeOLejwCOR7taROfOOjw2fvHYoNHoHg4
yn8wl4Myl7e2pkaPgMYaIyuHag6KtLv7qzp1BHhzaiv5GRxkuYEyx906AlZJ
NhfTtmAkIOGW+619BIxqdy0L34ZR6VrRG54/RsCVtaTERQmjLSvP0+m9IxAx
qnd1jSpGeGKkg0IfAZb71LURHYz8ahe/xC2OQKSDseWQNUYqFYkup7lpoDQj
lqNhhxGtWGe7EA8NTtAuCQRdwcg4JyjJfyUNJKezqlY5YySaIPbcSYQGk0bn
dry9jVGyh5LzgW00sjcAr2w4RudcmhUndtAAvxCVoEditNrRY/iTMg3O/3dH
9sMLjNwuFlrK7KNBzJcO/uVxGGkY6hot16SBYrDDfsuPGHF0GMtKtWjw3u9k
988UjN5AcNntozQ4cqf+msknjHj2tRzgGNLAvSP+jEwWRk0brRTazWmw1z1P
81QhRg8kuYeenaHBs+BZnSdFGO0VfZegf57cj/fGnrxijF7yMcWKrGmwK/NJ
1WQZRjZTnrxvnWjgvDK4jKceo6m6kAFXXxocXj/x1KULo55V7VcXHtJAl/+1
yexPjMqMpfDjRzTQnOqWudWDUVhT6t/4pzTwMk4dsOnHaFtLtUhjFLnPe/ff
HUMYrVkr+PrMSxqML6XObhzBaOaUhexQDA1stRbEL9Ewqmgf2vk3gQbfXwW4
1TMwsuri1lNMJfFEa/00ORjpSBo05nyiwZjGq04DjNH282GnNDNoINL4bq/R
GEazPRusT+fQ4KPEicV9fzDqk7YfGcijgbeu+7WNExhVWn2+5vyVsKPCL65J
jMJ/adwKKKbBGzv7zrQpjLxlH/5bU0oDi1j/c57TGF20qQuILafBjWdWA6oz
GO0YOhP+pYYGG0wf/UucxUhY/o041NNgreetSKM5jOYu0+LrGmlgMO+2k024
iuaZ9ruFBle/dzmK/8Xok8L33dfbiV6OLAgkEY5w4CmY7aSBaG5ontwCRrdT
jQ77/6SBS577pTjC1qPhFYK9NFAdeiIo+B9Gujt+Gr7upwF055Z4E955XbZ5
ywANeNR6PX4SFkm/ejp7iAbJz2nbVRYxmudk9B6i0WDxYfFwAOFfyjO2tQwa
RLw/lkTmbVTtephpxqLBp2C/S0L/MErPCnD9xaHBqSZjOSPCkX8app3GaWCy
GEe7S/jOXpF7MxM0UM9wSP9A2Mbj/NKH0zS47ka6EWH93KQnAnM0WPdDX3uA
sPI0QzDmL9GjyzGhScJiaruj5RdpEFaZ/pvsH2jBy1sqi4sOTVccc8j+gQYL
UNLBpXSw/u3zhOwfqG5umWINLx2Ci8asRwlnqh/POLWCDtf8StTbCb+4E7Wv
n48O7MJJsXzC94t6vjmupkMtK3IqjLDdf3Ja04LkfFxqhw1hw8NONb7CdAgx
PVK4g/Bun+zjq0XpwHpq/4ZD4iFeMtf2ch0dwpsUnyQTXuQ6cn6zJB22xMR6
nCM8dCTwd4YUHdY4t9jwEK73o1zR2EgH15pfpz6Q+L/ksfI4uZk8fwntcAvJ
36Ltun3NW+jgaMMVZ0XYrpw6dUKRDh2VRccGSf53+Wl7HVOiw7/m6I/t8xhF
/15Qa9hFB929UybahBc082YN99Jh40rvYylETzX/FG7r76eDd/UDTSuiP6WL
A+rV6nQ4KW+h9pnoM7L49d+jh+hwcYDjO0n0a31P4J62Fh1WfpRee43oe2Z+
wuewMR1WZH/f9m8cI8tznzW/H6fD6bucijWEy77acx80pcNUr3eOJPHTM+8u
vwMWdEi7Exi5jvhvy3RxgIo1HTzy7l7MJf4MNvfW/WJDhyqORdoTOkZ/cnYv
33OZDrGF0cctiJ+L3d8FKjuS8/MusT+I/y3Gnzzd5kGHzwECVr6kPhSZaBun
3KQDcyjkungfRpsyF/gVbtHhqfdkx0dSTzjOLs/k79NB/c/PggxSfwJYZs9l
AumQw9hZbtuKEdNI4GRCEB2G6+fTvjdjZJJWLbwhhA73uT+MC1IxknJUj1wf
Tgf9pn1RcQ0Y5dA2vhCLpYOY1bT+hUqMJPW6TkfF0yHT027z7XJSLz+Ei4sk
0sHERNo6tJTU+8u8MUIfyPkT+vNJ30n+B5ix/Jl0kBv+UeWci9HavtykJRV0
eC4ZuvvVWxIv/nv38qvoZE7My1+RiBGfhs6Za7Uk3qBzwiUeoyUvW1Z3NNHB
h/UoV/YViZcp9k7posNeq1b39c8wolYqnDDBdNhkquRge5N8/yRW5P1DB8XG
c7Y67iT/m/J5CifpcI76846UK0bI52ih3DzJx5Orq7IdiH8P2MjP8DDg5qhx
sZslyc/n13/jJBmweim3vpEmRit6bDpOSjOg/XjLi/iDGPnzbctaLsOAqs7L
ooz9xN9XCuxvyDNgPn1ZvO1ujBxl25t1djHAZ4/MUixL/B0lkDx6lAF9rIsi
1twY8d7zNTtwgwG1jUHhX75yUM44aw65M6AwK9VXk/RzO/szCbo3GWB7nXew
MpODKk4oM0/dYUDd/Xauwo8c5L+p18c5gAGD95Rq9KLIfFCzP+3tKwa8zTB6
NO9M5ou1Y9wCZQz4+slcvlKKg7Ifn/8YWcGA/Q0bkmzWcZDNQpXx+moGlAnP
5s8KcVDZcNwLhQYGhIbvyhFYzkF+BUY7tTsYEBvvKTIwxkbcVh/PeDMZ0Fsj
n7y1nI24UqwyBoSZ0EOLkdhvw0ZVrE7nBFEmdDR9UbY7z0bBu0yVLMWZkDrW
UvfYjI3WFWh/bpdmAk/r2pe5umykVK2QVqPABOrDgqq0bWxkOfznQ/phJnjx
mB7iGWehr7KP4287MoFSIGru4cVCbjEZIcJlTDC+yN5LcRpF+Qsxj8sqmOBu
cHv3OttRtGD1yNetmgmjc7+fnSbz6mO5C54tDUxoV17iXqo/imI/8V0I72RC
2zpNeXX5UVRZfHmHMJsJMOlsVdrDROKD6+uFxEchiHp+Zr8uE33fHrhCyHkU
ym0rZG2WMpCQodsOPwEWXD7KZ9h4cQT17KS23ipiwWTRTsci2UGUGQ+bh6zY
4OhWWFn+oh9dyFAVkl5kg2y+WWF1xA/0ICDRtyeVA5y+H9Uyz6joM136tYAx
htc3LZOlY0tRYFyAdd9xDEW81krSFqXI7iRbPt0UwydGvdO6NaVIqqgo89hp
DBO8GjYLD0tQUOj5qmAbDE88KraIdhajq6qvxvluYWili92Mci9Em/xF9Jd/
wNByLX71rw9ZaHH/3dWdyRgO/Ojs7pfIQl3swZYPaRjkHra7/wzORGGnv1zQ
zcIw6Cd8znc4Hf3bdtI9oIjs2XeUxtLupqKe5tD4pa0YplOitkSkJKKCRzO2
re0Ybjq5GIuEvkGRGhcV3/7A0B2W0yDDiEdG75VytPowUPVfxU3dj0GF3o21
vgwMv3QSCrVTn6PonftCTVkY7LYYaqxhPkM3BmLNZDGGPRM2UaE+QUjB+Fp/
ySSG5nbaFa9UX8TD3fYubAbDZuH+TZU+t9GvXA1H63kMX5M8bSJSb6Aix7fK
u/7DoBZ73acg9RJ6sXHV1P9/l9u8O+T//28V/w8dyY1x
           "]]},
         Annotation[#, "Charting`Private`Tag#1"]& ], 
        TagBox[
         {RGBColor[0.95, 0.627, 0.1425], AbsoluteThickness[2], Opacity[1.], 
          LineBox[CompressedData["
1:eJwUWHc8le8bpnwlSWhRkkpSSUtpyCVJdiorSkgaSpJEw0qSKAmpkJCsrOz1
2nsce6+zzUNpiPi9v7/O5/o8976f97rv52yyvH32yiIuLq4P/3Fx/f9X8wq7
qWjYQMltfep815oYgufEOrsBMXlwTTj412rGEPs/hoR+E1MFV9GhzQUuMYRW
fUdamJg+iqyKTkYwYwgjq98FAWJWcEts9LXO/EL07X52wk/MAW7KE+t+GMQR
gR9Fi7aa3gOXSFoi/XkcobkiXrEw1BFc9HtK7QVxROZE3QHORmdwef+zyNka
T7z8KiJzRtoFRU0Cca4/44mTG6Kjh6+6wi2acuTO9gTCpeK9ULG+G9wcA+ss
LyYQ8gdl/c4Hu8NtnfjkyfIEYsWEQ+1WBQ+4jQ+4K8wkECOfC5Z+7yAxEbVy
+65Eovwir3qh0xMUvb76eZ1FIhGx+rSXj5gn3Cx3KggEJRIP69+WGeZ6gku3
yKa5NJEwfDq4aIvpUxRJa/x8H5tI7D22/Thn9incFppcLvslEgI/77jmhXpB
ucuET9Y+kWAl5hY8O/YMymm019OGiUSJ1eK5c/3PwOV7c33B0UTCqTXQaWzj
c7gpucjp/pdInPPty8wueg6uNUuy14wkEHKq0j89LXzgNvXq+EBDAkH/lnVn
Q9QLcEV90rcLSSDOvOm+oSv9ElxLyh8E7EwgZLW2xK2rfImiQR0eU6EEgm/x
TRbz6isoZ7f7bSHrdylnPpXQ94fyTXZEemE8sXq7v5xx8GsoU5ZVtp+JJxY9
TdcpZL6GW1yg3seD8cTkYOdNKYUAcD3Z0H11fTxRG7IpYbIjAMryu8f/0OOI
7OmTNYYyb+AmkO1YXB1HxOjdGM53IjFTmcsniex34ku+LdVvwFVc/fzsmzjC
ne/btudigVB+d3bleqc4Ysep195pdoEo0trq+84kjmh+enu4pzIQXPIqjzIF
44iHZTqa/20MAtf5vy5s9VhCarFsgpxjENxc09zXPflC1B3nFzCuD4JyzA1P
7YIY4p4b+6a7VDDc6jc/c/n9maj4Fy3X2hyMIrE3vlSbaOK24pNX/7a/Bddx
rVerYqII0YcWk9Lub6F8bXGA2mAkcf3PhjTn3SHgyrj7Nl7/EyHwI/jARt93
cAuLVWU8CCUy9t4LVqe9A9eYqKYG5z1hZnfu950j7+F26Pnpr5ffEcnjK3LK
2O/B1Xzd5J52MHGW7a1442QouHh32v0n4U/MSl8NexNK4piDo81SfkT0lZPz
+T9IrLb21/vlPsRPKnfRisgwcDl3Lts58IQI3zQoeXiGxKtz1vyodCPUzAvd
LfXCwXVh/wlHi4cEJzyU+uILib2njXn33yNC+h6cyJgnsZtNn+xSW+K4+Pno
foOP4FKOsgjhO0GMmCj8x/eVxBHnY1mLrSEx5nz5664IcL29X8NF98Dt6we3
cvVGwI0r7OSStmCIWCXHfj4UCa6s3U986mNh/UTi/BGrSBT1H7006hyPvEi/
pY2vIqG8WP2otnQirIZsbvxhkvic+Y/lrsnIMJOR1QqKQpFjVaq66Dfwu7zt
HSiKgqRPw0bniW8wC+P1cxiLAldYq19cWTrS8u8dWyoajYiU7tmu9xng7aWP
h52IhnnZ4HX+O5kwmT0Xvu92NJQ7mB1HTmUheV2pbuX7aHCNjp202ZANniP7
FkwrSKz3iUYczIHx+U/Jk1PRKOoMf973MhecHn3+yHWfMSjjaraLkgcvM74r
5058hrnzpf2PhQvw7fLtdZmBnxEhKtknHkhA0PbY04cKMdBL1BNN0i5BuUeX
Ce/jLxAaa7IZP1OJfYnCvOJ88ZhcPbZ9IJGCarly8/o98TB+0oY/sxSYpzrl
uZyPx5/JQgNhrSb4ZQ7YDcXHI6L2tfuJ4Sawi772xOgk4Ka7QteXrS0Ib9NI
3fsmEaFjHt524W04YPxvGS0vEZ3nb4Y/H29DXXeKdSA9EdcqDdIjFdsxM7BW
/PeBr5CJlBls7W6H/gjDK7/zK8aMGhQOr+3E6M13Q7e4k3ChPEvnrHUnPDja
iht3JCFw36fLNhmdSJn+NuX+MAneyx1ehZ3rwqn7V7X3Ryeh98HFz5mRXeif
WfeFXpcEY7ZaXuNUFxweNXAH/0xCtsGeJrZyN5YtuF84JZGMkBuStR+fdiPk
upGZrFoyDpmE81UWdUOqVdZc2DYZdRriahOz3VCK67jcU5AM0e2ixYr2PciJ
C87IkkuBFWtFVpdZL8bPjeVrNaRA1GohcuWhfsgv7TimRE0B5dzjwSN3+/Gg
sLhwzy9S/sTsBsukfizZ/rZotUQq/Df/DkmRGsCm+eNlA7dS4WR3vzKGbxDX
vsmebHZPxZFrB62PSA8i6drairKgVPCZ/+RpODGIoy1jlXEFqUg8fVflp8sg
PLw71EObUnHz1L4h79BBVB0rqX7JSIUyplzFcwch+CNR032G1FdIkUjpGIRB
7Nvau8vT0Cl3u+DEz0GEXvTQtt6UBllX9R0nBYdAFblVb3wgDVbGUTbFG4cg
U2Wkq6WRBre984nH9g7h9mOVxmMX0xDDf34iR2UIz8+ONy/5mgb522U/4r2H
UDCn0v1B+xu0D32Y911FxdYzE+zSF+nwqVFfdUaWhnWup45c/ZQOgXKuPHXQ
IPQ14gV/Vjqk7P8Z2p2l4S/fObkz1HR01mZWuTrTQCnKutt/KAOHXLcnhlfS
8GCP+/wfRgYmGYJ3ey/Tcdus+3TobAaKAkZ3Wt2nw8p3/ycIZyIaVfRRHzpO
sxknvBQzSf52N5xNpUMqQvP5yjfkufb04XVcDIg1RHVnxmbCcYby/dNKBgTn
5naaFGZCPuZrwvZtDMwYJTdEDGeCi+vqhsO6DEw85ZNUXchEfuKJ9iILBujf
LO6wVmUh+rzkK/V7DHQN5Zb47MiCG++/UxRvBhpWrFolp5wF429dXMahDJQe
u3WlySALVW1GFo/jGci2qch0sMlCgIgMf0EmA1GVTufzgrOww7fKVLGRASfX
vnD18SzIuC5dOMLFxGZOzPbL77Nx6MqLk4csmVi7geshb0o2pj+ZTty3ZUJA
63xdXHk2yXc732Y9YOJ3zLLbk5PZUDGuYx98w0SdmV3641M5UNZa7nugjIkS
3+r/Nl3MAZ93n/w9ChNZuZuNyuxzUFX2tS+9l4nINW0z/OE5MFfS3S3/k4m3
qnJaSd9ysOahROddbhZ87Z+FnqnOQWfWhNu35Sx4RAyOT/fnIH2v4rPjYizc
bziMkOkcRFQGmRVJsiAol8Go5suFSJSADLGNhWi/Pb6z4rkwd3kyVSDHQpP2
ti6zk7n4K3/HM0+RhZ21q+5uDc6FYaR2fKYxCwOVnJg0hTxMPlr8K9GfBcdt
Njp0rTwoGj8gEt6yIPCM+WO1eR5C9095x4ezcFitT9nZOw+qI/3rYxNZeFNW
042uPEQb5R6PqmJhh5Sa+53xPEzs27ssspGFoifF26K486EuGNsa0c7CuEq2
A++OfPwpC7oaTmfBM3L/+kNK5HmEwN6wURbWLUouvn42H4EPn/z98J2FFIsd
1z5Y5+O74d/S9zMsnCr+LFj/gNT/6/732gIL/ZKbMuZf5kM26tymwsVsOLiF
mu6Jyoe51lb1lXxsfMKb2De1+ej8UBVUIMTGbIGbiol4ARoUV+wV2cxGcq6p
I6ugAPEuoVfzVNlQW9chLtZcgAlp25dCGmz0Op8t1WQW4GAjMq7osLH0sIZQ
kmAhEjfSFgkZsnE562C8w6VChBRtD7e6ysbfNWl6MXcLMXhttizHhg1/x12/
O54Vgke4flTQjo2CA1KqR1MK4W1hdzjHiQ39oI8jN8sK0blUxVzwMRsj0+te
h3cWQiBt5bPL7my46QcrUMYKoWzC+Jr9lI216cL93NwEPBdltS73YeOC76w+
fQ0B3/eRkxF+bERaMWorZAko7jdene7PhuzqnJwXxqS8ValZdzAbKo7mQatT
CMhUvpuSjmLjYKhRTODuIhj6qq0tymPjvHfd0NMjReDZOne0pZCNRw7HN9w/
WYTIglRzZjEbxdo7A8+bFmFiQjxeoIoN7X/z7hLPihB65ofi+VY2bIfvFqwI
KILsSKzFzQ42Xrex/3CFFYHqYebl2s1GevFF+e9fiuC1flVCQB8b7V+bb9PS
iiCZXt34eZCNmXenEloLitCp7TqdTWND3CufWV5VBE+GvFgdkw0l+72bs1qK
4BIcqCIzzIaFWczF2P4iTL69phE+woan5vp374aLoPdOUW/VGBsxB/1bfaaL
kPheyMhnnI0xwQdat/iL8Sgs28pxkg1HQufwvoPFmIjkc9P9xca7hBKHLceL
oRfd61X2m438twopq7SLkfk5xe/IDBvcdpu2/bYohkOs8QfpOTZ8JX+uyvcr
xtzX2Mx57mEkCdzQ+xpC6ic/KnBYPIymP/0vwqOKkZuiVzbCM4w1TVWL3HOK
4fTtT1P7kmEcLjimZF9WjOb0uk7tpcO4EJfmfLmxGPKZEQMl/MP45B46eZJR
DN4c9fGk5cMouyUsqzBZDMNc8WmpFcNgnve6KjNbjPy8yb/vhYaxVG02Uoy3
BOIFZdzCIsOQ3WfXzy9cArvCEL5nK4ehK8EQm1tfgqTR6U1hJL7Db2IwLl2C
XpPcvwuk/cBfDf79e0swX+3aYsk3jEzqibpGxRJIHT6ZWL5oGO3q7lN+p0rA
55CXq/KPjV9JhWu0z5agM2lvNUHWS+HhYYuqqyVIlJJg5pD1z165+1dRQAn0
hH5vTGpnI0d1nWQauwQPWLFvguPJ+sZM3g0MLEUV86NMCPl99QrIvTv7sRQT
K6iruU6xMWdvUygUXwrZw1KLrymzcQxMPj+iFF4vYvsU9rNR2NET9nSkFOp7
UgM6RNkg+CorHZXLUONcMreG5JdBW55xea0yzEXyjLj0scDVdlzkh0EZjtSp
dTBJPlL+lH/htk0ZfCRqUzOrWTBf8td9l2MZMk8t/yhRyoLbLYUvo25l+GV3
2tcrn+Szw2lTV4PLoF/aYm2YTNr/yFkj/akMD8ZW6xfGkvZ5dynSE0j91cbH
pSNZkLx5wyIyswz2F9QDE0NZON78xcu8uAy8iUlHu0h+tTzESJCoK4PX7Cra
f29Ivg/f3NTbXgYRrYc++16yUHIjbP35sTIojZzqeuHJwrdhGxuzX2Xg2WL0
bJkbyffXjuRd5ipHr6n1gRcPWXhq3WFiu6oc4fWer33sWVC3FH7/RLEcv1KK
NZ6bk/w9NDDsrUbKD1N+810g+do86fBLvXKUbR787G1E8r2ZVleIVTlsA+e5
vXVZaDz/VDTJtxyt94/mepHzo6jz3LVvweVISdG8xnuI5GejzdnZEeUIGT6/
xms/CwEGhFFpejk0TZ3sn+5g4Umr35eqwnKIBj6T/E+aBYdzF37XV5Vjvi64
wXMTC4ZnZoI7e8sRq5Sxw1OU5HdKJbOPWQ6H+2Wdi1excOh08EHaZDnsUlq8
nqxgQabByov9txziMawVK5axIKazv32cpwIS3e9vmQqwwF/HLf1DsAL7BHVr
v5Dz868m5d4f0QrsUeHePi3IQq/6rdWLd1VALf4q3VeYhfrKo1f4FCqg1L9O
pUuEhUI1/ozlxyugItLwcSvp/6PqF31RgwqcfSBvWriG7Jfy0JtdjyvwSJO7
mbOehXNEMm3fswo4uaTvVtzAgqqSy/5Dr8nztKt+3hIsbFVc36LyuQLB6xrU
N5H5shUMRIzrK5Ay8p44S9ajK3OL5cWOCmRL6G74SM7vmgPfUy2HKlB0lvvh
qAwLCftfnbn1swKZuVcPeu5kITTt4if7hQqUTawLpMiS+8Je2an7SyvRu7lh
Spyc97a7q/09NlSC7SP/NWMPC5eS3g4+20biQhb/on0s6O2y3uO3txIT399f
0yX7dTxR3i3gaCUWbdOteC/Pwr6diylvT5LYlFuKdYCFLfFNG8NOV2J+pzBf
jDILq7ZH3I48Xwk3J/aTUC0WfkofW/H1ViUeCL99+NyCBSWqSqWPUyWUD8xk
3bzFgleYuuu1J5WYNjadPu3MwppV+pwt70j9iI231rxm4SC3TeP7skoE7o41
iypiwakn5JX3+irk6+QcL9jIRlFw+Clr6So8urPeJWInG3xnoxdO7K3CoaDH
uU8USL6uSr69oFaFot7j+zVPs0F9krGt7wwpzxV9e5cpGzuQN5B7oQrqUryJ
QuR8zs2oOO1oX4VqmxqpDhc2Ft2pW6L/uAohr2Qtcsl5qinbTOz1rsLFby/D
wsh5GcDquL/iTRWUu88Uscl52RPZt3s8jMRdV04GZrIhZUZj1cSSuNO5BtVs
3BQb/hj7rQrGHX6nR3tI/no1vcKqugpGbRnnVcj5oKr1t/J4axXOtlb3j5P8
68vL5bZxoAqXWvouv5MexobHyya7p0nc9J/tpNYwlG5sppyRrMbjegOP8OBh
uKrq+eN+NaLLf8b/3TmCRTMJQuu31qDhzZ5FbmdHsb5e5Qd214A16bnv/OVR
yH/qarM6XIMlul2W+xxGcUVjyYcknRoc5vMopQeNouqd5VYVxxp8etTiqdE1
ildHxI5cr6yByxXHJSvNxxArmCL+sqkGsSU1CmN2Yyiiqi2k9dSgcOPGa+Xu
Y/ju41A2x6nBVFdl1f2oMSy7tOzLpr814FYQn9FLH4PU/sjnajy12Blot31H
+RgMexp1/UVrcUFXzKeXOYbbydZ7MzbX4l7CrdyM32PwfvJvZbdsLWAjYSDM
O44Io8Bf8wdr8XJZxRQhMo6cnTu7thyvRV3CrZe2G8ch/sjrctb1WvDvEuDe
fnYcB/Q2qPXerYVe/bewDrNx6Eqly3C71CLslukRL5txuNYNjWsG1GJfUvxd
muc4qOLHnPpza2GzW4MZljWO2ckWk8XltShpnPTQLhvHqvIbx2Qaa7HcLmTj
LGUcardCFtnTapGQwjI2HhlHXMEP3/8E6jC416tWZMMESl773N6xpg4Kzbuu
FW+fQPeVTWdPS9bhnn0bj93BCQgInl77Tr4Om79JKdWfnsBWKmOmQKkOVufq
uh9emIBS5qNeqnodkn/cvb/j+gTszOI/yV6sg7p8acozjwk833fc88zVOvi2
3tA5+GoCkbyd1o536jDtIDJC/zCB3G5bjQ8P66BqqGF2JGoCLUn/yRY9rcPK
3M+sy/ETGPMIFWS8qkPPhkV3/FInwGO0f2rp+zqku5v9zcyewMEF88xzSXXQ
1Fi7nL9yAto6RR4ns+tgIu3ruaJhApc/bDytUEKeL+aeW9U2AX+Ffta69joc
LxgZ2UibwPBtUzHqvzps3VtYdWBhAlyFuYyWJfUQFtyvfJSXgzUC69LKheux
avRLlvJyDlRiOzXjttZj0efXMVrrOQgdNHhkp1OPYdErnhYKHKTJZahbGtVj
6GfXrLUSB1WPVq3Wt6jHQLPu3ZsnOfgp2vJV4V49yn0PWd4/x4HA1X0PtrvW
o+j6165HJhxsznittv55ParUNp/xsOBA94zewHxoPSK5BJT9bnNg9TE5YTKG
xH1uWQGOHDwcF3SiptTjc+5PuZDHHAQctVVtza3H17c3YsI8OYh9Xi9UUVYP
v1UKVcQzDrl/yPZlNdTjh3/g8ORzDlq3+sbFddbDbPl3/s2+HHCXaKr4jdVj
B+9XHU9/DkSF4gVdf9XjhQf/7YwADuTMlvbYcTVgcv6qPzOQA5O/lXf1VzUg
8/fmFvV3HKTvO/l5vWID1IdDjJdHclDjFn1nuVoDvl755awUzcFgw2KlhdMN
WEQ99+F2DAfLbUraqZcb0NIt2N8Uz4F1FPjiXzTgUp3n5eBvHDyaCm/9ENSA
enWqZ2UGB28wH+H3sQF7yxHzJ4uDop78w3e+NWCq4C/bJJ+D9u3ivJcLGnD2
iDG/byEHY/cfNutXNiAjM2NnQREHYquO2BzqacDTZDvbjeUc7LF8p7CDQerv
bHilV8mBWsqfxeKcBpyJ3ZnqXs3BhXkjyvKZBsRJPW9Oq+XAXjsrdGFRI1Z9
Yv6g1XPg/X7N9SmBRhyI5vi21nHwkX3vAG1NIxaWjAtVV3GQebCNu02yEUU2
I4EFZRzUeco3VOxoxMdGlmgaGc+RFbWLXh9oBD3l5FtdMv7YdxYKpsqNkA2I
Wj1K5vck6WUEx6ARhfqXRKSSSflOtr2oeyOYXe3LgsNI+Z1ha290NEKaXj7v
/IC8r5n7teWpjbAr3/J4DXk/PJVr3ObHGlEW4z6bdoeDlPhZBw1uCtSvH/sz
eo0DFkftVRIvBT6aHxy9rTiQOBAQt1KAAsbOmWkpcw5eEDL9fWsouDmRPnXR
iIMSHoc/KuIUfGsUsft7loM/GoRI7CYKFqXaTQTrcrD7Ff+u5dso0AtouLlf
k+xnq8Epe1kKSsSYMnKqHISJfbLo2EuBkgEhM65I3j+zsYeKChQk+ofIJB4g
v69hjxReFRIv0ZLZsY0DZ7mGGptTFEiekJIZ3kjGf1eMQdGmIMTl37ZYUTLe
+WSxD0YUvPyZvE2an4MZkT6P3bcoeEBbtW3z+ARSFBUMjEMo0CT6t677NoGN
/qMzcRMUTPnvOW10fAKFFq5xaT8oOCT8sotzZAJm+1eez/tDgcnr0cve8hMI
bT+SXbeoCTWvY5xytk1AdIOPI2dNE8IDxCPXC04ga2KD9J/1TSgXeSCbvmQC
hkWpbVybmjAb0JGpzT2BoMtd8iI7m3DjTUDt4+lxiMTL/JBHEw4G8v0c6B5H
6sP8yGOqTXBYZe3q1DoOPR29s2oaTYgILF0q3DCOV5P3U43ONWEh0EVCpXgc
ciXLLMyNSf3VvbHduePkHP0odP0iaT/o8P676eMQUKi8/eBqE/qDpk9FfxlH
Ap/pxic3myC45myz4qdxaHZPNLy404RDwckX2t6PYzjBwyXQsQlKHfFLawPG
4f14jVzYwyZkXChUTvQex7bT8X2f3Uh5atN9P5dxVEgq+SU9JfO9ykiydRjH
f2VXxohXTSizF9iw13wc0UEzH6oCm6D6Z6O+iOE4VK/6aTW9a0Lp4/0vfmiN
w4M/I54aRWJvk5kMhXHM6/Fc/y+7CbXhsW1HVozjT18kQ3OwCYM1qi9VC8fw
Nvlg0DkGmZ+ecflWcj4fdK9RvTDShJE2mzne+DHck/oedWu6CT8HA25UB41h
1a+n5xxnmuBsHfMp/sUY0ivFFrvON2FyNKfzxf/n/43jlv58zfj1a1BN99YY
Xiu2Cb9b3gyPR9OPd18ewx7B68WfRJrBu4gvQ+j8GBoH5uzi1zbD5dn6sSnd
Mdim+kt+E2/G90+tLo+Oj2H5EylK3qZm/Kl4evfu3jEk6me7lkk349/owWs3
No1h9PdAf9ueZowceHfGmHsMmVdflWgebEbK8bmQX5xRuHUoxRBHm/FY59Jg
YP8o1mSF3YpTa4bIla23m/JGoeJoOvfoQjO0A1N9NR1H8X66XUzKuxnB36sr
FUdHoD5Vr28/0Iy/zcu0nmYMY6XF40MsejPYt74UloYPo58iK35hpBndfCf2
LfIehkPKC9rJn80oUXog5moyjI+3NezFlrXALZ7Nclog38fjZa+KDraA36Pc
86YGG9EjeTWCL1sw77rQH/6PCdu3p7fceNOC0E87XR+MMqGgSntYHtIC2VKj
jYZdTNSE8e96FNWCm7wpl5ZnMDGld/7VcHYLhn3NBx/eZCL33xhLtbAFd5N8
3YxMmPCMd1OOKG2BJCVbcr86E6I8sVOGDS04uVLYYmQLE0pZv86V0VpQ8a54
yLiHAT4rn8SNwy0wyht3l69moFlI4r+HEy341Su2WSiLgSs3TmbunWnBAUl7
y8oABuTWdgn6zbeg9nj4oig3Bv6U3rzKXtyK65drIl1sGSix4yo6sbQVPE9/
qZhcYMB3Q6DoR8FWNIfw6eicZsCwZtudvytb8dJv13/PTzCw8X5etYFYK7Q9
zhaUKTCQRqE+EJBqRadN6C5FSQa6nuztcz7cigqlPYI7p+iI3FN+oE2pFW77
DSqsGXTc7DN+uUe1FYdlHrhEdtHBpeAGlm4rUoTLJsRK6JAeafikb9WKGLpR
I98bOhz0blrvftWKIB9Xf6Y8HYIbvnDo9FYoXuEzUXhDg7Lhkz7acCvowrN9
hT402L+6VEudaIVr4biFmgcN7dyiXwb/tKJmbct1gzs0hDO9zXoF2qBbE+Z8
9zQNlI1XtHuE2/DT0f/fXzUaFp0/fqR7TRsitzxx91Ciwbp2ZnWnZBsYj649
f72LBrmUG/Ut8m24vXv/u+RlNJgPq+U1H27D0t6tGxQW0xCweUtck1IbEr1F
PxX+paLMdCGYcqINhgeWbVX7TsWvwB7PRvU2/Br6F1s/TCXfx1n2DTpteP9y
UtZgiAqTJYHm9WfboHyUltLbSYWvsp1unVEbOq+c4tdtpqLQWVux9kIbfI+q
XMusp2IyTWZHjUUbtIWPVUhUU7F5jEe02roNPCwFqWdlVHiZFfyosCPlA3YN
GuVRoXNCLqHEsw0+w6LGM7FUuDzif1f8vA3HiJWZFtFUpGQwvYpetoErSHBV
zUcqVsl8tCwMaSPnKA/lfTAVvQJC63IT2+DwlnNK0ZMKQbWxJTmpbdh9a+Rz
tCsVyq5VP7MyyfxUGIuXP6QiesqtKaOIlJ/oJvruUHGzfco7tbUNV05WKLhe
oiJ8RYNjSlcbJNYXB7FMqKCox1sl97dheDLvx2lDKhZ5eJ1NopH1qcg8k32G
Cvk8S+WvbFI/NDVZUocK62klucTxNmy3T1z+XJ2KkF3rxRO+t4F96ovN1Akq
aqx/L43/TepviKw+DyrmPrb8jp0j9Z1k3hQco0KuK5nxhbsdfP9+LVc/ToW5
iG9LDG87KtzLvZtVyf55qiZHC7VjxwtLF5YW2Y/rGdYRUu0YCQu9LkzGO6L8
1XvZjnZ07c8IYl+k4pTo53jH3e0oq64vJizI+CsDJ7SPtMP757yY7XUqnKUc
HGdOt0NWx6KmxomK9lmbECuDdgjTnH99ekTm13I5t9GkHX+cAjY7u5H9dT83
//lKO4qiSx9s8ybzHdjndfZhOyzntu70fEvGl7kjtsCtHToBSkamH8j+v9xc
I+PVDkUZoyf7yP65XVk39uZFO8QLbycvjaKiT1FEcMGfzFffu2cwhoojq/j3
3Agm8xmOWJIdT9ZvlPts24d2NLvm7H+VRN7Xkpm7yp/Iehjf/+uSToX++6mg
hJh2UKRWerwm71faneGsNYntqJpMWhrdSsUKjaEu99R2VOZrvs6kk/X/Tdlg
nN+OfH2PiB4eGo4bpHzmaSax51Th1pPk9ygbW3m7ox1pen5qhwxomFscMdzd
24508e0NmldoyE57tSuV1Y7UdPO+20/J70/odsbFf+0kPzTO5pTTIF67qzxT
pgMvVZMO6arR8Us5gX7NtYPknZ6BbBMG8qNHP9z37MDmPTxHbtgw4MEne87r
eQeidu8KXP+IAUFKYnHUmw6Eyrmqu4QxIH0pKbz/Swd8ZbeknhhkYKxkwmA8
sQNLZLWX/Zwk+U569/K51A647Lx3JYab5OeJ5Idi+STeUSm2lORrw8epxvqU
DlyVsfFouMKE+NDUisttHWBvC+x1dWSCqrqv8k53B6y2FRzc+4yJ2Fh7F7eB
DlClmf7Ut+R8Efh24BW9AxekV4y+iWVC3u7HWNhwB7q3Hjp5MoeJvy37oxMn
OrBz4m1IQzkTRQoOpnk/OhBeEvBbicKE14d0kZo/HZgP9jNM7mZCe2G6uvNf
ByxtvDM2MpgQuXzAnbWok9zAnqzy5zARviOTw7O8E2/ZTs12PCxk5GTVYVMn
Dhyx0t0nx8KDDX+e6Ep3IlTw0tfIQywoux86enFnJ3hp5wVWnmChTj0n7sGB
TrS9OF3zw4gFekeuV4ZGJ671HVHLcGch/ujssTJd0l/qgc9bfVmw+3j0Z/O5
Thz02sMTHMzCnHX+5cmLnVi8W7rEMYFF7i8FyjvtO5HoJqx0qI2F7vPzvw/f
74SIgUBY7AALEQVKyeqPOuG8fcmc6AgL1ptcrY3cO9H9j9v0+TQLsk+JDdZe
ndBsnsuZmWfhO3uh1eFFJ5JifoveWMpGtray7xN/0t7D7/e7V7LhkuJ2IiCo
E3KZnAPnhdhQXVX8N+J9JwJed9+bXcYGvxN3WvLHTozdLM8IW8IGpef49cLo
TpxWT/mJxWxciCrp6EnqxPKFp/c8/7LgsK8sfU1pJ3xu7r23fJiMT14y4nVV
J4K3b9Y6S2fB+OCjFwINnchlimx6S+Zz9Ii85aIu0r75dJ1kOwuLVKJXTEx0
wtwgS0q+lIXpE1yz16Y74SoS+9epkAXGyQtM2kwnohpDKAU5LFRprCro4ulC
v8aDR6dSWHh1xvNG+bouKCkdazUJY8Ht3KCBsmQXrs3uiv8YwoK9geLxvK1d
cM+WcKO/YcHKKET24M4uhN9bYbj9FQuG56fXpu7pQuE+LllbHxbUTfUWyx7s
Qg9nkvvbUxYOX0yciDnahQntdDMhJxZ2XOLr3nS8C/tlWnoP3GBB3MKqPFSt
C/6Lv5uYXmBB8HJRylrtLoz3C3W56bLAdUU8NOBMF47k7jb6//+TtGut9t4X
usC0u3VuSoq8L3aqkg72XUA/W+vZOBOh9hHLOPe7EJizpCZxgAk/h7lf1x93
YSxQWr25iQk7p/T6S95deKFlpbohk9zH3KQeaoV3oT17QPGbCxMyHm7WFVGk
v8D53E47JtZ59p45HteF97c3HJ63ZGL+WaCMQnoXFKVND2icYqLsFU/75pou
BL1p3zWwgonM1+bFYY1dYNv+TOBZRH6vb/ITRdu6sE9z1Y4d0wy8DxINedPd
hedb98eeZjLw4q3DE8HBLkTSwzPOUhh49I5i+5zRhc4mB1eubAZsP8ia8Ix2
QZzQ1Ej6yMDZj/Q9f392wendr96ltxlQ/aQsfm+2C6FedTFZhgwciApdMsnV
je67kXZXlBgQ/aLfz1jWDSVdXZ7i5QwMJJW9aNrUDa7FMTudEumgjPOM7dvW
jZXQPfs2kI4i2ZPagbLd2PDwl1PmIzoi4ssFjBRI/R9qFdPadFjGVPj1anfD
gcYyvzNOw1kG78Sxs91w3uj/zL+NhhNSp3Q/GnXDw/RQUnIBDVKRlYKWlt2I
afGeHfejgRlW9Yp1vxutpduDb8iR+1Yv36T6427QFpryn6+hoXK9hl68RzcM
uYIWxP5RkW3yPGWZdzeE3AI0NgxQyfd+tdAtv25kL7x6I1lMJd9xNa+/R3bD
af5p3i4NKsZ96978q+/G8OydZernh9BfKzBt1tKN1w9vG2gdHUIDv45+UWc3
NGZvftTdMIQk7/pVT2jdiPh7db/B0CDsPBuC+Ga6YT5z0dTy+iDMSwV/XZ/v
xnJn089XtAZxZtFpw9rFPUj/Y8y5tmsQ+9wa17wU7MHhyS+8A9QBbCZW3Oes
7IEPJ/I9I2YAK+dPd+iJ9aBhIkxu7MYAph9S3q6U6sHb8TeGM9/7Qc8V+uOw
vQdmy5dLPM7vR9uMnnG7XA8WF7dfCnzRj8z7TaLvDvdAROYGrWR7P5zuNr+T
ON0Dg1/+Ixut+zB7o/XD9gc96Avo/9PV3wP9gxdfy7n2wDxS7tzh1B4kcjO9
9nv24Geqy9eQJ6SfkN93jr3sAZUiYWkk04Pi8nXqZyJ7wBa8VNt6pxvPJC2m
nWp6kOYzENZI8sTK9nHtqnW9UBP5T7jOpx03Pzmq1G/sxR0PvlOnL5N7y80F
hWapXjh/X/a4+Wg7HBcLb+mV60Vss8hw51gbuvbIz3BUesFDdouh24Z9c/kT
06d6sWSx1O9r28i9svIkfUabtH93266xBXJPNzNqXGzUC9tzcu++p7Ti44sH
n9fa9CJhpeKdBZFW/DFc/EHcrhe0J/jiMdoCvc2+/pvu9cLfMGxHRXULFuWE
Pdzp2ovPH+W38/i24Aqz6Aze9KJz72VpN6EW7Dy+ZN46rxf2hkWSTmLkuzI+
YVtnUS9U3Kwd//1ugvwqvTMaFb2YjhOo82hvgiIrJHpnUy8c/hnf93vTBF2/
HVqTzF5oRk/VRy5vQvOvBgeLsV7wNbzdIjNGgZH53fDmqV5U/D7m/LWGAvP9
+VPpc72Q1fKRyn5GAT3UfL30oj7w3dvz4Jg1Bdd5/zv5dkkfQsPbG0tUKZi4
HWfLt7wPjlWPtqpvocC+SyfEWaQP4t83P6znppB78vfikbV9mCw7xE4qbcTD
xOBR0w196DyS3mn2vhFca46urt/ch+mU3dWCdxrh6TqgpCRDYumEnMJTjQje
eoexSKkPexZCHrpENiDnTuA+3+t9uJbssPDPqB5KPYcu/LPtg/7WSc5XuXqU
qPY9tXXog8MHm8GL/9WT7yLpLj3XPsQ+sywuSKtDb0GW6+ogEl/Se/J4eR24
+Hvqwov6EF1+yHF7cQ1ORW66mrq2H52WshuHFlVBPkRQukK8H95u/nOMrkpI
vpyld2/qR2/YdNdISiX+OrdZ8sj2I7EzP3DarBJfzzw3M1Luh76uDj9fXgXe
n3LccPNkP7JtUlkCARXwOna5102zH1LPV5cLX6+A+fZjJvH6/agr7XNdv7YC
Oht3iBHnyfOh4xclJ8pxZPXazhazfoTMfz6ytbwc0st43rIvk9/V/q4vPRHl
WMk9ZfDvWj+sGCVVF73KwfW7b5WIbT883yYOD9iUY2yspkX6LqmvEcxveaYc
FZ3RZ/Qek+dfr2tbi5fDOcVYJ+p1P3zvCVFs08owcKlIVSO3H9H/mXW49pei
zuDrYjOiH4FZp/5wl5UiW+t9iX1ZP1qv7xXzjCtFgIKDcmhDP4rqeUy9HUpx
coWMIofaj9ighH5//lLs+2/17GI2md+poAWRyRJIzHLnio6T9Z1xkQxqK8Gy
qQmnXSSvZCdcO742rwR/mD0KKr/78efiWct3ESVg9Fb9MpzrR9UKxSfrvUrQ
3JyRYcM9gMHirdFhNiUorIp0cOMdQOvdFeUbz5QgofDV/qBlA6jL2m4xv7EE
IemPvscJDcBqs4iZLasYnvHXUwtXD4Di+9ekP6kYZsEndrM3DiDFola/8Fgx
hG1/7zgqPwD1ZbfUXUyLcH/Dpc1DFwZQVGB+aW5XASz19hj2WgzAf9mi5auJ
fOg+4fbpsB6A5Pmo3F16+ZAejpqqtyPxT8bqS/Z5aE1nF+V6kv5kbeqKM3NQ
xMqZznhO+nsg8KD7VA4S1r2QSX05gIiqr9t+dGbDw22X/5eQAchYTXpIzWbB
9tt8aWQYidNe7znmm4XzzMbfYZGkfa79/QYbsqAq9mnnuy8DENVtfWGblIk9
2vaXAhMHwP5w7/AzZELc9cSbV6mk/fDLJw8GZWBJ2qpKn8wB8GmciwgbSkf/
2iw596IBTIbuM7z54Bt8abP/brUO4I/qVPHSxBSwHzwNPTVH1nt7377nEjEY
Mdx57RPXIFIe57ONsqJhPrly0cbFgxhs+hAurRcFrS2MA+v4BkFxNuEvc4/A
5ufPwoREyLn0Jrn0X3UQKPp1N/9tHQRX9JXans0nCbWJdN6HMiSWoAfW5tkQ
+c/CIv7sGIRb9/Kl71ruE19ybVt/7B5E0Qt1y9s7nhIuksKKI4cHEUFnvOxu
e0PIjhks69AZhFCA/Fb/nVFEtr424aNH+h+f/1t6M5o4UaByV+ncICTVqym/
v34mTF7u7vlsTMrPX3x0aU8s8XzP0gSHy4PYY/OsRe7AV2LVuwUzGetBXCs/
E2fpmEREcP8S6b02CFFJcdfgrGQiu5n64ITtIIxtjFcviKcSqke75H7bkf5C
jnG9K0glGqMaqfF3B6FYsXl0n1kawXTI1xRxHsShTeNF1h+/EfZ9afPlD0n/
p5sTuJTTiX8n49KcXQYh5ffyVGtKOuGd9NF6l/sg1C2eL323LoNYtTZ43dAT
Mp4DnrUXPTOIEzm3R5Jfkudet1vsdmYREf82++hED0JVRo0W7JxLyFqLKXF/
GUTZnPJnU1oukdWw4nt63CD+UI5eldTJIxo+zp0XTx6Eg/Pe0TjJfOLf8fbt
ozmkfo34j/zKAsI7vq4vPH8Q0eFrM9z3FhKrVpa+PksMgueuyH21D4WELD15
JqeMjGc932yjLUFka8d8vVU5iDrOooLAToI4kRFqsalmEIVDLoTspiKiYcOb
1W11g5jXeiS5wrCIMPF6Xu3dOIhA5b0MEe8igjnh+lixmbR3WsfwdGoRccfI
ce9k6yDkzK5XvuguIrxlLr8z6h6E4KNPcTy7ionMGsXr0oxBeGUJ2/5qKiZW
rpjkK/s7CG+577+61pcSzQU+zzT+kViSZ5+BSikRcHMrb+PCIKxF1tyiXCsl
RGpMFnfzDEHx12FaRQaJn5b/4wgOgV3g3vjtdBnRvN/80T3hIRQlv+Hf7VhG
BFD//v27cgitnz6fjA8tI4SV9/z5T2wIZk+r8yKGywjKRI3ji/VDULnf82u9
UDnhH3blp5AEia+P7317sJwQmn3/ff2WIZjMZ141cS0nKHEH7nzaOoRoueff
CsJJeWMKR1pmCGqXTBckC8uJFZn/je/dNQTNooVg1lw5IXjHjnVKYQiGHuoV
Dg8qCAHWyd67WkOw4u2WenWvkqgLGjSZ0RkCj0Ki3ffASsJX9WGXi94Q9K66
5BukVxLLIlPanxsMQb9qs774j0qC/+L6po+XhmDnY/Mkzq6KqFmWeXqr5RDG
co81CvhXET65eg3xVkPwGF2x3i65ilgq6lWbcX0ITtrpaQcnqoiqCknNozeH
8OeR1/y75dWE9728qiLbIVh/Ndb8J1tNqEsZnlK7M4S5vh3B5trVBF/LZHnt
3SH4CP4bKrWpJqrcX6iecRzCzf8yU9ihpP4e6dJ2pyG0MxdJHGypJpa8NC0a
ejyEPXGhfyioIXg1KnJ/PyOxHOUrr1gtwUN8SN4SOoTNhxRE7WvriG5FVfWB
8CF4FjyK0+atJ5JzxwbffxqC0ImSI9uO1xMmmcdERL4MoVtH52JvZj2R+nXA
gSuN3KMvX45Ui2wgvHZ6L89PH8Kq4dj9m/oaiAtxe2LuZ5Hx2U6Uza5tJPg+
u3dM5JPxOzuzUvwaif7NO+ziCVJ+odDpRVUj8S2imc+6ZAgnVBb9942bQnhL
PPy0qXwIvTyfdSQ3Ugiz0C1H+iqHsKmSqzNKiULIr6trDqkZQlncg+GoyxRi
aYiDjX79EM75Tv+N8qYQ6W/KQ2ubyfqfYW+IbqYQy15cXcjpGwJ/b+PlaOsm
Its5oSz4xxA6J8M50S+biZe/z108+4vMv0WU+/O3ZuLyvbmfy2eGIJEZIPK5
s5m8Pzrbns4P4eJDrwOfN7cQV65xnt9dSkXzf7YPP2e2ECJG+0/rbaTCINd0
8D2jlbCRz+taqkWFJffF9Wa3OogiSltitg4VbeNr1m0I6iBW35p0vapHhXQ3
RbQ3v4MgPm+VLjegoiRNdY2JQCexcq2/vZs5eW4lK2yY0EnkzVgt+32Pivvv
5735hbsJoWDX/s9OVBzbohO7S7WbuLLvfar+QyokEz9U6t3vJlbYNBqluVFR
XHCI921fN3G593D0rRdUyA3ZP9kS30MsIwSP0SOoWNjGeqx4oo8wN90u9CaK
ipGUA2GXHPuIjN8naMdjqCg87JnvEddHXNrj/PxjAhXXtTbNVq3oJ759orWZ
ZFIxaGvqZNDbT5h6Zts21VKxMmpLjK/OIJGgYRlR+IvMd5Ql7LGNSsjLblLC
DBVSHm0Ht5ygEoWCgz3ELBWPRUtNy8yoBKXl4tpiLhokT4Z/5g2mEtMXz78s
5SffmeH6h1/w0Agle71HVRI0NMvadO8gaESl/op1GptoMC22z+FupRF6Cg1Z
1Vto6Dd4ENLJphGWc1o/amRoGHd5buglQieeeZ26Ub+PBvGmL81DV+gE5b2S
cbMaDbfu0WtCBBjE+cf/fp7VoGER/1jc7U0Mgnop/02LFg2+4T+81Q4yiGmp
I42tejSEVC46NX2JQTxeMnPT4BwZ7wV+6VoHBsE7ksXfbkDDt0nh/yKfMwix
5ANqHSY0lIptKj39jUFEvp6mGV2kQTtJJlK6ikHIOnxz77xEw6TKHvd/vQwi
w9B+43lLGuw6FMxbpxiE0uG9BV1WNNALblyM42USlesnTUyu0rDSvGDslQiT
0JtP+tN9nQbNRUKPHCWYhGWprHyvLQ3pahnvTxxkEqOfR5su3KGhk71kxw4V
JuHgHX+77y4Na1+Y5AjpMolnOjIJ/U40ODYudPRdYRKJHVs2D3mQ9ow1VzsF
MYmfo+uEmME0MK4PvEqcZhKBYazK0Hc0uDW6XA/kZhH7T6e7ngulQeCAxIlH
giziTpoOp+gTDQe5Lv7SkmER405uDR8SaXAK7r4wasoifHfoeJ1NpkFkzvlg
yzUWsbNXTGlpGg3RFmJCefdYRI0f8yeRTsOOyuzhSA8WcR3fvjpm0VAha1zq
84pF8E25XtmVS8OhoN1O/71jEV8itTfQ82l46Xh837lIFsH4j+l7poQG3cNX
YibSWYRnVpoqXzkNH9fdN1csZBFbrrvOFVbSwDfnvc6nkkVY1InelK2nobww
8eXWbhbRF6CltaSThp2q044XFlhE28bUpQXjNGw8/eRUjQabcGh6XHx3kuzP
niBu0XNsYuUTTecdP2ioFP6Sd+UCmzjDpLHf/iHvS2vNbu7bbKI+cU2V/WI6
Js+LiB4KZBPlhx95yYjRkW1uIdjbyyasRtWVBtaT51aKI20MNrE4bPWvIAk6
jl5fW9E4wSaOcyVfWSxFR/yd+selXMNEQcWQar8cHZ4eh8fjpYaJjHOnFgeq
0qESLVznfHOY8NbKfip+io7AOzOUbodh4sKJ7XyfNehYUBpqO/p4mFi0f9ny
TF06PnalDPzzGybadjx6pXSGjvmYELpZ8DARu3lcuPIcHcYObsNE+DChK9K4
ptOYDt4Vej/ck4eJTfzK78xN6TDpVfhDzRomprlT1w9fJPOhaCRGlwwTVTOb
wu+Y09FGud5v1jxMfJgKkPxrScd3ynMhMeowYTu8OMrjCh1CTXEqLVPDhMqQ
w9Zl1+iQb6p28OMeIdgUwx3it+i40bS0i3vTCJFXVZkYfZsOr6bty/L3jBAv
iw7t3mVPR0yTxjFH5RFCPmWdvNJ9Onqann8auTRCuL/qP2buTsbfvPRGS/gI
sU7X+kx0EB1HWpbORouPEuMnO1pkQ+gwaNm+65LsKFF0TN0w4z0dNi0al8QU
RwnrXTtMKz7S8bXleamf6SjxTWDCih1Hh0zrUl/H96OEdu09J9lCOtonanYf
2zRGuKo//ZjOpCN5urFi/8Fxotns2oU9w3SoWsSM7Dw1Tkjd0xJLHKWjrP6R
oJTxOFHzSfhN1CQd7JjthqsejBOrZsO8Av7Sser8E8Z0wTgR+zXzlp0gAwbf
px369k0Qf0vf7RgTYqCC87yJiglCp/sR6+pKBg6OS8ixtSeI77wnLC6JMiDJ
Vmd9t54gFM0b9XU3M9DbF3qe78MEQRFhH5U9yIBFtarS/sUcYvP22j9fDjHQ
V9H1/pAQh7iHpIwtRxk4VGb7+9gGDrHupsPu9coMyBAhKeoKHOKmh9FYsAoD
ofm7luuqcggi5EicyEkGeHJLrp87wyGsyrm28Gsy8CN9bLOZDYfI7KENPNVm
4Eaau+tlJw6x9HtFKPdpBkqS1/Ree8ohLvDFn398hvT3NeGQbQCHSJLwWzNz
joHoeOWgux85BNcBuxYHQzK/1c2WD5M5xDmtc/6TxgyMyty1kynlEH/ui/Gz
LzKgqZfxwmOEQ2i+nKu4bM7AxGXDd7vnOURY9MCTAUsGWvMenpvgmyRUmj7/
a7/KgF+juMUH8UmSf/ZNld9hYPiX2aOfJyaJTX2anVFPGUg7SUuLC5gkfEqO
Jht4M1Cs1uBnGDZJfP8i67XkBQOUUznXFsdOEiX2gvI2/mQ8Gq8kLhZMElZ8
za/2fWBAWveojxB7kqgbL7GmhzGw57T0lYLvk8SBlm/HgiMY0NATVr7xb5II
z45epR7FwIUzc+vW8k0RvOFBozOfGTA/y/pZKjJF2D7xKkmIZYC/fXxPs/gU
0XHt/ruLCQxU5V3KiZeaImL3nz9VnMKAwrMTNabyU4SQmKbE3W8MfL+ZcVZe
cYpwnj/yUyqTgfiz23oEVKcIzWrxKO88BtZJLBsrODdFjJoNzp+uYIAro3m5
5N0pQs7namZ/DwN1VIsz9NQpIvi2sZ9/PwMeVS1d+TlTxIK+hpXKEANHkk5a
BhVPEZSNO0VimAxkO2+/q9Y0RRz6T3zYaJiBm5c+zEp0TRERIwJFS8cY2HRy
uefvwSniTsbErVtTDAQKTQXGTk4R3e8HVDdOM6D3y3KD+58pQsWNsr7pFwMC
va2fz3N9J+KvFH/3mGGgtFhNbh/fd0JEK61afo6BsKQTuVPLvhMP9kRFMOcZ
eFAz1lFBYtrqwPsh3EycYwb9/EDi9MF7W+d4mRCUYO9RI7F4hfXc16VMMA+/
1l1P4qcJRi2XBJgoMzhyc5L/O2HoeNi9VJgJDz/fL+9J/HvZv14fcSbG5/ZI
cJZ+J44oeAaK7WOiucd5WQgZT7ul2MEweSZKzj/hsyPx3ZdJHZIKTGR3+P6n
TuJERuc6GUUmIlo+Lvxe8p1QF7bNT1Bi4v2ZuLlGEjMUF5vtPs6EV2PazBcS
SwTu+nRQjYm7teU/jEicS5So5KozYa7ROLmbxEajRvRjWkycrewcX0Li6TXj
T4t1mPBv9Rky5/1O+Kt4bDupx8Su/I2m2gtThKzt2uqqs0zURKW3KpD1rX6X
eEPbgAmrFxq6W6amiEVT7V/PmTARbnL3+F/qFBEufvN0xwUmDqnw5TF6poij
6txTJpeYaN0eJt/UOkU4fNwpb2nFxNqZim2xFVMEU8ct186WCe+36wQN46eI
2vjtlX4eTFxrLe5OvTNFXGsvvCb8lIn/8g31w25METyL9PmDnjHxMWq03vvy
FKF03kUn1JeJbvvVxZcMpoiUJS0t8cFM6Ahf/7L88BQRaPVosDKeCaMCofvs
mUnigkTjDHcLE0v0By58uD1JCIrZZ+S1MfFz8paPovUkUbxy9Z17nUxQ/eay
+i5MEtJLTdnsPiYqKsVWSmpOEpwfzPZGNhnvUf3qaKlJwqN6/lvYPHk/Mjwa
JMo5hHzZp9tG3CzYz0rdDsjkEKxC1Z3CPCyUHK9cwRvLIbTTfSI9l7LwpmHZ
mXEfDrH645rXNqtYkGIHtuTpcYhYBznbwztYOLH+S6dx7wRhcrtp+w9ZFr5a
aDjX1U8Qy284MBJ3s8AVOyqmTEwQ9pdyL0geYKFbfo/ptsgJQsrkomi3Agu7
HzbPvn8zQbTrc7W+OcJCYrFDqODTCeKopprWEmUWzP9XcZXHU/U+YUpRWbIk
0YIiRGjXNpabJBWSJUJSSSSV8pUtpT1bokgLQiVJJRKDhIqyFSFF995z7nbu
vfai/M7vz/m8c2bmeeZ53zmzvfT70EEKKQZnapUlARXJ7pGH3Ci8B1erwzYR
sLrr7/zvthQ6rjWOXGFDQIC/1xN72pZa2WJG2RIw28u5tHIrhcXGIUO522h8
O7e9M9lG4SEDtWd77QnwtWE039tO4acFnnpfdhHwyXQZJ9qBwmh1SWacK82P
rv6QyJHC5bOy79q4E6CloSm514nCm9O5qm+8CTghJT/HwoVCn6GQKVmHCZjb
zrGR3EPh0IdrfUfPEBARfj/vjB+F3TO++I2fJeCkxBunb4corLabK7xwno5/
7quE6WEKEz49GrtzhQDHqzPcfgZSeFKh/4xBHAEWM3WnrAmicI+9mUxxAgGr
ks2fxR+lkJEYHWdxnYCVau57iGAKDVrqVBpv0Plvh0yD4xTOVFZId71JgKxm
wsuUExSO7HTWYqYRkMd9vVzyHIU9yRm5QRkEPGSat2IyhTVfmEZjdwko6qk9
FvmAwkeqhi/OZxLwosNOaUMxhYkux9cqPaD5a2l5NlZLoec3yc36jwhoru0R
hZJ0PepbGl/kE9BT6Zuw+jeFS9wTdpo/JeDXa67x8DR6fnXP93Z5QYCoYPjI
8SVCTPq57r/YCgI0UuUFgUeEWEuEPO5toft9cCPHZ1CI+XrlpoFfCCgw8alJ
mCTC64ekSkbbCXhjpKMimi5Cb15SjcJ3AkoWP35eoCFCa8NO2/QfdH2LjkyW
p/VuFKjVrNtHQL2W6c5AQxH+oZ5+30AQ0KTxqn/JBhH+NB7Z955DwDe1MMsr
m0RYd3Qj14lP6/nL/CWS20RY8Cz26E+KgNdmrlvn7BRhcn/D8GExAYZ3Eg+b
uonQeJijkDZGAGl8ip8YLELV1aYpOv8IcE0ulH10SoTjp0LnPpMgAUc5htUR
Ivzwe6p+/RQScqo8Avsv0fPz70LLYQUS/HZaUo6ZIrwp5XnCcREJPSflRMqt
Ivy3b/bKZl0SAs4rn5b7Rvu/bRraoU/CyI05U6V/iNAkxurUtqUkyL7UmfuH
K8KU3vHVDSYkXK9ZkjsgovObF4/aLidhTpvpMsGwCOsn9MJs1pCwZmCDzc9J
9Pzz6ltbt5aE+kmM1m/0PE6uSB/btIEEKyVbz1Z5Mf6Zt+tNDZBgeNxWNYee
z94R8hFWliT8Gn1Jhs0SY2133YZqBgkPIrXKdqjR7+/6M//MN5OwV+ratUUa
Yhz5MxC10Y6ETwq+yz5pitFj9xPz8u0kXLnxWSproRirSw9IrncgwUZjXfsp
XTHGhX6LMXOm+dJVCtcyFKPucEXsCm8SijZUvjuxWozO4ktXDE6QcPXwXDeN
7WJ8Y29l9/AkCdbiC0tE9mLULhyX1fuPhPGTA39r6HlPHQmK04kkISTmQ+YR
NzE6fdLbkR1NgonMqhArDzG+NupTWHiWBN61+5vVvMQYy3dK1LxIgtetUH6V
rxi5W+Ud714mQWMBsyLloBjtH9cpzb9GwrfsHYmH6fe9ePqZ1tvxJKQYlO0z
DxTjXP+1yRpJJGTOqbq/kLZj3g84pSWTcEaHUeRA+5N6T2bNSSXB17SuOoqO
94JYkKp6m4T5Wxp/de0Vo/rmby437pAw4WQ/OI2uJzonSU3lPgm93q1Sa+h6
7fZPSVPMISEr9JtOsrMYmX3c27KFJCzIYx202ypG5Z6XmZNqSFCW/sd7Q/8f
xclGRLyqpfl62vj1iakYp69juAa8J2GSa0bVnaX0PLzZIvf1EwmsvPWp0Xpi
jKy9RV5upvE7yMYE69D9H/R+C20kvP/dFeCjLcZ+B2How28kvLY9bcmg/8+O
RBfv9OwmYemArdHKOTRfBRFLlX+QkJ6urqarKsYD3xnT6ntJmM3gTpqtLMbe
GbLMcCYJTn4ci3E5Wg9rWytMCRIEz82HxqXE2OGXdovNISFhIjXv75gIm97p
7bAX0npIsVaY4IjQblCoP6WfBJ++jOqJn7SetV9JvR4kYdBoKESiQ4QYten1
wj8kGL/L6paspe+vmY/OiBQHbg5IPJKi79fVJ+ljGeoc+M++jDF9twhlun2+
Os7jgMptpdHpDiI8N93gmbQmB54Qhx7PsBHh6YMlB4J1OMCMVFOSWyXC4RtR
Frp6HIj8EPROzkiEx2qs53YZcEBNtS70/++Nv9aXZoYJB+yfhPxQUBIhe8ft
/N/LOMAfbUiaOU2EPpH7LhSs5MB5xiJrRQkR9uQb+Oxbw4FdS0iVLI4Q3brE
69XWceDPvYH5Dc1CtLkhn8fbxIFTp7Q2Hz0mxCkRZ5zMgjmwrbmDkBgS4Asx
/zce54CZ6dBIZY8AfQ+43rU+yQGdREWZM/UCrNlhzN15mgM/7W31JG8L8Jz2
96gjsRzwaSrzk7QSoFT9msdZtzhgGSNY1pzKx0nKIkn5ag5sUk73PsTgYdEF
99zkGg4480N+LTPmoc94rZ1GHQe83tkfGJ/Dw2pWRqpeAwfiT00NiBdyMaZk
q5HVVw40dQWfepnGRUnPXNdQLgcO7Lj2xWkGFyUeej7tU+KC3Re91qP0Pl/L
bz9ydxYXviVe27aH3vevmjgs9VDjwq3t/XVbukmcXWL15Ms8LpTVlb3RLiFx
aZ3e43o9Lix7vT2nLYhED1Z/TsFGLvj4jf8JGCTo/S7gwGELLmh7S2/rZxFI
BrB09BhceOWidPdUO4HHB9uz72/hgvxmPauY1wRenlyemezEhRc6TldSowks
1bpwJ8yfC+N9jzWqZQmM3C/huTqQCw87iwM3/2Mj4+F/8waDuODcUoUNQjY2
mQTcDgzhQmZV+772FjamnGC5G4TS+Er7XnrUsNGjxFODCOPCaKFAuu8lG7XH
2zuzIrhwN2/U7WAuG0lwSPOO5oLlvcn5/JtsLDj7wW3eWS7Ihl/L/ZjExhN1
VnM6Y7ng3V4/0Z3AxrUzyjtSLnLhwTIpVyqOjRPbV93ceYULE9egcOIqG2uS
nrrMjOOCLSdMRvEKGy9/1ZvdmMCFx4xib+1LbFT11EixTuGCzZih4qZYNnbf
T941+RYXMpz9DjmfZWMmS25WZToXyGdZVQfPsOn5KZFsdp8LV/zUj12OoPGH
sxIN87nQ+0W69XMIG6dXejpwCriwyNRqSe9xmo/JHTNznnEh/Grk2f5gNrpf
+RC/4BUXNK2Gls86wsZjaU+vKVVz4XhhX/LuA2x8NZ52obqGCwz3WeITvmwc
9zx/5lgdF5Sm2myL92GjZVXwae0PXGgvDHv40JuNFxbuCWlp4EKB+5MpNZ5s
bIi1CYr5TOtl6s+9PR5sVCKXH1rWwgWPZ0oVo7vZ6GK7YF9fG20PdM5jurPx
dv70PUntXEjRaoscpuP3yg87W3Zy4e2Oxh8y/mzUDe617+/mAhVRa65B11+4
soTh2MeFkM6SSeZRbHxXsd9QScAF6+sZ5y+l0/i1HHSrhVw4WZVCpGey0f7s
es1j/VwoFsbbFDxkY+dmZZWWES7o2MVMb33FRqqpcixxEg+mTjkYN7eNjWq/
ND4qqvGg/qRJylNab3s2Sb+rUufBQLb+SJUygZm5/RXB83iwtlXbtU2dQMOA
90XN2jx4bDxL/bcegRZDJ9MSjXiQudykMWkzgf7SLYcUrXjwQOmB7+kLBD49
VL6vahMP4gqunwqNJ3DwY96eYBseBNjGXA5JJTAqIcqheRsPFsd4FQblEpg8
x8gs0ZUHeeI54/vqCPx2Wm25hTsPrlyTUdj7mcD5PZONxHt44K8/ouVJ36e8
zE5Nh3080N/bttmVILB8yUUZxSM8yGqKu24nTeKqttmNSUd5YFJz27ZSnsTC
8NxEleM8KH71SHKFKon6OqudU0J4YPa4pCR3HomZjbXqaqE8qLxTG6ShQ+Lc
k84/boXxoEN1aJuJAYk35rOzNCJ4sLr10NmZhiTK14X4ZUTxID6+p0RkROLF
oClGC2J4MLF1J9VkTKKk2g3xvXM88JWpX/jMlMSwykXF2hd40FKz3i1xOYmB
igzQvUrj3aBb47CaRMfnMQ5GKTywNv59q2UjiR/dlVSf3qTx8AI/F5mTyJDK
7DRJ54FSXp/UdUsSV++q2rfiHg+4mg1BO63pekcmQtY94sExpbub2raRmHI3
fm15Pg/aPimffrGDRAWbBRMbn/LA/MrFwmQHEifd2njR8gUP5kod09i1i0Ri
bUTalgoeVA0xxF88SPT+Jev1sZIHykWlusWeJHZeub1w21se/HdkqUeKN4k7
VxiSn97xgG+QlXjSh8SG7rJ8+3oeOBOz65x9SbSO3Rrc8oHmO+vq+KoDJKJR
10qnRpq/C4l+z2h7zVf/P18+80C1PHPNmv0kFkX+qXBp4YHUwHMZ3EfiksWX
z35r48GY3ruOTXT87M9zbNzbecD0/JrXQOdP1TRr9uzmQe6HUZvOPSSGV5/6
tZ/Ng5DMDZeGXEgc8pfOI0geOHZsdwt3JvGIcmrAIR4PNsh760+m8e71LR4K
EPFAJyzm/UxHut6pQ9In/tD3waFumqEdiZUF5xqGxnnw6ELHtyJbEs1cVBJP
TfAgqZzz0GwLiYZ5y9VPS/HBV1/WdjPNv6LtMcMYeT4oSjpc9qH7da9KYcZa
RT70/2DEvaf7aWL2hCNW5kNFxZokkw00H4W29Q9V+ZCZYZiSuo7E7Xpkzt45
fDgbrpn2z4zE73djY+fM5cNOd5U7+9eQGDB7oW/zfD7or5XJbFhF4lhcpeUl
LT54zHBnLKX1dHmqp5bFIj4oBdfK+dL6mxM5NjGqy4efX03bby0hMW/oZk+h
Ph/y1mfc+7yYxDpma7qmMR+0ZU4sX6dJotTbLaoSa/mw7K6Wm5IiifQuPPhq
PR/+SF3TtpEjUbvoXGsQ8OGd/ygvYhqJ5vcx4QeDD1tXfY7kSJIYEbVyBu7g
g3tjeHZlP4HD67QkIvfzIWysXXikjcDY5xU9K/34YLfXqjS7iUCVJR7lAn8+
TKsriOlsIDA783f6g0A+vDVUt5v5nsDl6qlhe47y4XJS7CzrdwRWJ65wm3Wc
D7anLAZLKwl0nNayujGED88Ph072KCPw6Kjs0PrTfMh2YmvdKyRwIuhR62AE
HwQ280wtHxMYR2wuyo/mQ8AGJ3PmAwLzv8YEzT3PBxvdak+9dAI5L0Y5Ywl8
+DWSkV4YS2C3UVPrf2/4kL5RLr7ZmMDCO7CI6SkAlUs3EmYpsnEgbEB6714B
XCYud6yVY+Mql1ze930CmGQdrek9jY2hy90/7z4ggKPZIX6xU9hYpqDwvN1P
AOSkw4WPJNn4j1ed4nRYAO2S4x1LJlhoXn8yrDmQPt8a/IT1l4Vnsw08tx8V
APsG+8zdcRbWRvdYfDwmAOYPd2e3MRbK7EnSsQkRgIxBs4HyHxZuNbOe9u6U
AIjj1hMNoyxsEj9pqggXwKC0aZ75MAu7fCK8is4LQMNk6p/FYhbOB1Mr40sC
UA07/alXyEJvDZZu/hUBrKoRZaZTLGS32lEPEgRg6Nq1VYHPQhFjbsStNAEw
ogszhtksXK7V5K2aIQCHDzrHClksPPn3LOP6XQEEqqRb+zNZOPaSN+NatgC8
82KF33tZOHVxWVp0gQCONe22eNfNwi2TgyL/FgogSr1pVlQXC6/+0PYJey6A
cN9N3DWdLPxU9nXTyEsBpBS8rujvYKHizcv6J0oEEDdqfD2/nYVOJzbKiV8L
4Krlg4MHvrIwxb5fFFgugI6qlalyrSz8ZpjTxkUBhN57HDf+noVzp+0uOVhN
44nSOs+rZKEXS+42s0YA3/ekRnS+YmFmVVXU3joBxKyXC3lfwMLFYfqb3Rto
vn+P7su9zcJlvNEv278KIPtEk8W+UBaG1OWXfuyg8e+0NnMMYmFJlneGTZcA
/pm+MbE4wMINHvW+lj8F4CzMXbDAiYU2jakDK7kCmOYf9bfTmIWXH25tL+IL
oNJmaPC9LgsbYydeGwtp/8WH+SXzWOi48WCM/qAAkOnclTKDhXuerlKc908A
Xl5LSx0JJhbvHpVvkqCAVXzufPh3JspPfS17djIFPvJdO3NamXjw2enpq6ZS
ULbfVKvpPRMrPTbIcGQo2Fx+gfqNTFSTmZhyewYFNSo9ZQuLmRj8vHLyDnkK
ZANWXNqWz8QPnjGSkxQpYK6e0j1wi4na0xkTL5QpiFOZl1ASzcSwl1P+HlSl
QF+8ghFxkImt3nV/1OdQUNdoN2qxnYnnXtkOR8+nYPqFcO+PGkxk+zoI7PQp
uPC7y6Sn+BdunKnMm1hCgd7XAWZmxi9MLWsji5ZS8KJoxq2D536hjZIrU20F
BeOH10mKHX7hI/TsYm6kIKYnrXmyoA+PqAe8D3ei4Nxbt2P6C/uw9p1RnbEL
BbPuBetS0/pwQbCwps+NgpzwS51Fol4Mnfus+oYHBS5u9+NOtfdiU92xShsv
CkZXllqur+hFveMrKsb20vUpNQ9LPOjFM/OHywp8KSgyqz6kEtuLy0L+e6Xi
T4GvyhT2U6teHPl8/kF+FM1P5Mz2eRt/YnTs/TPdj2j+8rYfG9jfjXKnpG33
PqHPz67wp/S6Mc0vUIn9lAIZb3UfDq8Ln281yxK+oEBJje3wI7gL2YrNNZOQ
gpmw/ovP4U7cekdCRr+VgoZlv9UXeXag6iuvuJAxCi6qH8/JsWrDrLx3zn/+
UlBfYvD5n2QbmqQtWRAlIQRXl74R58pW3BIx8vTiFCGsSHbYIr2hFcOt4pvT
FYSQL7bK9t7Vgn2fK1SqFwpBRmtz+p3UJgyqWvTdWlcIHecX72Z7NeF40eUH
H/WEICuQnrNUrwlnpTiv+mIkhIvBiUangz+jjQflQq6m891PXlT6vBGfkPPS
5e1oWyJdaeWaD3gxI9a7Z7sQSoYlij6VvUdfR4FOgYMQogUHHPzgPZpL7+JF
ONHxfjWIJN/W49w3bwq3uQhBr3NZQrp1PY4eXXRy3m4hhDbdNF75oQ5bda6u
E3gIwdswtkjmvzos6ByQKPcSQp5ppWnL0jq8HO9ee9VHCH6rxgrTmbV4gPH2
isd+IRSuW2WyP60WLX8bOBj6CaHePPjpUvta/O3zp+tjoBB+2hJPqsreod+q
W+Lp/wlB06v1EZFUgwyexKvO00Kw95U3eGZTgwvu+YU/ihSC2qEtD8P+vcWv
09ZI254Tws3jmCvn/xY3ff8691I8jefC4+zlFtWombSxzzVJCORV9sK/w1U4
bp2Tq3eD9k/UyqrNr8IXhSHL6tNo/m+n3ndTq8KE/d9HUjOEILrXornwUyUe
Vt9UfvCeEGbmyN3jn61E7XMqNtI5NH5v6Q0TPYj/1oTLtecJock/Yl2SLeI3
wa+WnMdCMDkxYKZTXIEvMrfePFlAx5OesrJ7WwUmuDzfY/2M5uOx827RggoM
kNVYqPqCjmefFyXVX442VTEkq5juz+DvbLWacpwwcDwe+0YI5uszhOZ+5dj5
o3TNLhRCQi+lsmttORYna/1bVE37x5qvPSRbjkf+iS7W1NH+jb/OJRa+we7m
+DuTW2n+9hio942WYcn5kX2tX2h+J4XD8IcyTF7npZ/VQefPafSdnlGGWx8s
fWHZQ8ejjj5dZlGGr0Mb35/h0HiiXjHOXnqNKUYr4x34tL1wmn+q+2sM7rvt
pCWk+1e7O/6x0WvUswv4UTlI16fw71trcylKSbZlJ4zQ/DzfMUFkleLPl+v8
vf/Q+V3vLxoPKcU3/lnGJn+FcG+sf8tMm1JMXTBjaGKC/v4uI2iRein+D0lo
QnE=
           "]]},
         Annotation[#, "Charting`Private`Tag#2"]& ]}, {}},
      {"WolframDynamicHighlight", <|
       "Label" -> {"XYLabel"}, "Ball" -> {"InterpolatedBall"}|>}], 
     StyleBox[
      DynamicBox[(Charting`HighlightActionBox["DynamicHighlight", {}, 
        Slot["HighlightElements"], 
        Slot["LayoutOptions"], 
        Slot["Meta"], 
        Charting`HighlightActionFunction["DynamicHighlight", {{{{}, {}, 
            Annotation[{
              Directive[
               Opacity[1.], 
               RGBColor[0.24, 0.6, 0.8], 
               AbsoluteThickness[2]], 
              Line[CompressedData["
1:eJwVmXc81d8fxykaEhFCFEnRoCGK6i1kVxRakpBCISOaIkoisioZ0TLKykpy
7M29drLKusO995AtX/3O76/7eP5xPvdz3u/X6z3ulbVxOXl5CRcXVwY3F9f/
Pw0v05tLGOaHp4v5mgb3+R7m0ZZ07ZdQgZe5nRNSERdhb8LL2C8SOnAjKken
LdwFjBo7s+MkzOBBSuntpHAfOG038z1cwg42+L5pOBUeCr3Kj7VDJDxA7ehq
M/PnCfBG9MSjIAl/UEXz32+FZIDvii9bn0hEwn7RFB3p+wjOnE3MGBt/BwFF
34/yHaXCqn++lnobMiDfq1ylqKsT5E059PKnOaCQtoGiz+oDr6YD8HLyKwyN
dJ2tXDEI63KE+ri5EcguT+U2FBqBvAHtBsrBMvjrXr0vbZYOHfq+4yF6ZeB2
s0Bu31IGTKcXixmfLIPMB6ulC1YzQO3OgUs1V8qg1VplS8omBhSsVZ4uCS8D
HYbYETVjBnzVkZTJppeB7ZUkEe54BhR9GHOPjCyHE12dnmoHmVDmGLf+LKsC
PonRm17YjMIXhpOT1XQFfPt3fuNXx1F4d1X9my1XJUTaRTS2uo1CgH3nOWeR
Sig0uqkx5TcK+jZCMQ8PVoLq8aAt9KRRoJwNEE8ProRsW/mnwb9HoUf/uujS
nVUgGW12vewsCxqrNS6vUKuCD6VLalddYkGxLl/u6iNVcKznp+7xqyxI0Plo
Jm5eBR6tS5OKb7LARvN3xM57VRCW7fbeOIIFdDVz4TONVVCvI2AtVc+CqS2H
BD9fr4bH5mj6/j42HB7Qqg7yrgb3abkg94NseBSn73P1YTXc3rSr4aI2G8RE
zLDcq2pQSrQ222jKBlVuJ0pMRTWoJT0/rH6NDd7dL0MD19dAyf67jb1v2LAQ
OiloV1sDwk7q7KalHNAxmq8+0lYDF4c6s3NXciB4GdeDjf01EGSXz4oQ5ID0
vVVjPydrgHn+eZ7qeg4cdtxENZWphbM5Tz1E93DAR8ckDLxqYaDcdZeqFQeW
zKWtWS9fBw5+Dv1zGRxY36g1Acp10J8tZXs7hwMqiV3tdgfqwEut0WCigAOX
DZa/Tj9WB89iCzSaSjlQ88pGXutmHfzSk4tQaOVAqLqEukN1Haz8r1nWeZID
yQKZUs+a60A65pqZxywHSgZ0/2V310FFgWKX2wIH/gR5VCzgOgiBde1neDBY
dFOOh4nXA4TdvVOzFoPU3Ue2+Q71oJYWm75vN4Z9JtK6Pe718Kv+S1iJCobj
m3MUuO/Xw0Pu+Vzt/Rh8Gn6zDcPr4Sv1VdUewDAgdci7r7AeuIMO0b8YY0j5
PhHMy98AmCXuccQeQ9nzIJdtYg1Q69m22cQBw8/LsidPyDQAuzRv1elrGPgF
Tqx7pdIAY7zj3sfcMLhapSbuuNAAr+Syi3ruYVD9Z513Kr0Bziu7GPlHYDA+
VuJ3tKAB/hgkbV8ZjcH29cYTamUNYMDiCnj0EkOYWh9NsqMBOGsH3zjGYWC4
nJcY+K8Bph4IXv/xAQNXceFw6/JGONVnv0w2BYMYv2R2pVAjrF5xQcQmDYNW
8g/DFPlG6A7gDm7MwBD7y/yu67FGqDYM7zYowJCtlKtvc7oRlKLVV1kUYqi5
KyJqdqkRirmupp0rwjAl3vpZzbMRWsKvaBwrIfEzNelfjG0EO7XJ4M5qDNxl
hlohrEbYt3Fp5IN2DOJrUgV8phth+1X16LWdGJSsVna7cjVBfoT0koQfGM7N
V7ubiTRB5m1X0YRuDDl7jr5ff7AJShSvyej8xlD34N2N1bpN8N5Xwj5mAMOv
pqWH/51ogl1RX4QZgxhWO5V1DNg2AavYNcFlBIP9W1iR+rQJclRr7suOYrg7
Ht/2OqoJHnY9nlBnYYiAxTchCU0gNkZvMGZjKOkuOnDjSxNkawV/OosxdChK
LbP93gQy10yzzcYwsLzutJhVN4H60Pf1+uMYJETUnfZ3N0FXyAdx8QkMu2xe
qW0bboIxpZy0ScK6mbNLpXATTP73NLF2EoObcX7svyUUaJqj5lhOYwiMEXMY
56fAKsm+ZskZDAl0z32DYhQQOzFl0ky4wV+lqWobBUzbozy2zmFQF6xf8nwf
BYJ5fpu0EU5+dUntvCYFepM7VbznSX43zzrJG1HgeY2RzNq/GB6mP3uDzSmg
zBFa+57w2H759q/WFHikwL1aaQGDVfm3lf5OFMjlm1idTlj9B91N3JcC/yWb
bo74jzzfxufjwFMKHJe9f2CWsBhbtOdTNAUWvu4wN1vE4O/1aY1XIgVOx2p7
fSQ8zq199MgnCqjeTEsYJ2wV3HVrVT4F/t060bTnH7mPmGt6eykFPltJL3Ui
rJ64bDChgQKtF3kPxxBO3h63zrGTAu8Pzd8vISyWt9dYZYACMwfHK3sJ+2vW
PVhkUUB764DwH8J/6qxza2YokGpYffk/wpmpfz0MuKkweSuu+B9hGtYNTV9G
hSh+O+k5whv2haes5adCWp+UH4Ow2e3ecm8hKiyYNLCohJ8ihb5eMSpM69+6
kEG4jMdjVkuKChm7drb5E541QMLJslTon54wMSWsHMq3c/VWwgI9rSKE7dvM
9dx2UOGt67Qlhdw/TiLxUuduKnx9acF6QLjNinXnoBoVDgcK+ykSXvVOLTrx
IBV6KrQ21JL4ajH8MpdpUaHszJLSi4RvKTXVOelRIb7F2ZFN8pPpLjFMNaZC
6NFkSTfCtAK7f/tOUkHOoLmZTfK7YTFD4vVpKhjNCYRZEzbX/ruX6wIVjKcD
zeuIPoIDdY9ftqHCdzuHTdsJzwn3+ilfp4LHd+HW5lmi3zMKcZFu5P4BB/PX
EbaPc8+f86KC5t1nb82IHtu28rHK/ajgcz4w6ssUeZ+DauZnXlJhZ6LzMO8f
8j6+fi7f40h8Z2yEeIg/NlQ3Ptn0lgrW2Xf05oifgk3tilmfqYBV9FtriN+u
2j/f6ltOhSaj9W4LdKL/tJ4jIzVUkFmBZ7JpxH9jWy2NmqigdMg/yJr4WedO
cZhoFxWWmN3ofEP8vjFsdC6FQ4UTkRbr83oxFF/yScmeoALzupuyZg/R3961
Z7/NUiEu4u6dsp+kvnWoFzQsaYas5y1FGaT+iEsH3cRizXDukjLe0YwhnyO9
ZXZ9M6yxONfoTSH9oySrnUu2GbZGh48UNWKIsu1SEd7eDOwnffU76zAIpypM
qEAzjN5Qc84uw5B1pyjpkE4zeKYK7y4h9dDkmMlJXYNmaIyP2FNVjCF0zCvr
9Klm+Dl5c6KQ1FN+tWqX21eagXe8+LZeNgbeisssFNoM+fOXRdkJGN5Fzb2u
iWwG6v10Lh9S33WuhBg1v2qGBr4De1e+xuDHl5s68LYZSu3vuS4j/WHRhMeB
t6AZ6sb4L7x7SvTamzRs+KsZ4qfLnjl7Yhid6e9r39UClYH8Gke0MeRdCS0z
VG2BvPWe8pGkvz3oPPwBabRA/NFd4n0axH/5cddTdFvIPDkoeZr0R62b5xfu
WrZAj3/Wl97NGGImOyQ2B7ZAypMZpcOk3+qPN5q59bfA/ejBbLMiDqy9dG8/
bagFDmUGMILyOdBH3SFlyWyB0tP+JwqyOeCR+XTw6FQLLOOTy5hN5kCCi4Gb
xKpW+BJydEgwigPT7IrQEtVWcEi75PDKiQPvmN/qBJ61AuIduCsnzAHnFyfk
HCNaIchXf50VPwfUdAbvVL5shfyPijZhyzhQF8e38+7bVrgyWCvYM8+GcZOz
oYyCVlBU5pkVHCTzVf70qYrBVhgfmHAZzWJD18PdvbcOtEGS94zQPQM2CEh/
xENDbWAu8kve3ZoFmhYPewcZbWCZGZusROY/t9CL9QOcNrBOjTk7aMqCDm7x
j79m22Cj9KVj+7VZED8SaNXD3w5rrr35HCbPAqVMx8ZWlXbIbnk0sEAfhWPa
Smll/u3g2cnFRSXzabBDrv2bzR1Q/TjwbOM5JjA1Pweu2tYBlP7yEVlTJuiJ
v0+9qdwBp+YCuF30mLCkOpJjrN4BnX9jmH/2MuHWZo+bcyc6oKbg8o9EfibY
9+95dPJOB3gU60bGFzHgiHnme56WDvAJ1w3cuo7M35ppQ1d9OsFUbWJIOp8G
HnsqcsTKfwDX9HKKa/8Q9KdXPG2W/QkNJy8rPnT+DX8d214r3u6GM1S9yL33
u2H7keWL9t964NOIcWKNUhvoJcleyVrXByWrbim4tVWDl/TFTb8t++FPO7/9
Ilcm7GCZr+o89gv2t1htyAhOR2sFx1ZUzP8CKxGZg++9ahAPep0hF/sb3mzN
3qw73IqcVL51rTQaAOO6hBSVn90ozcDmTfH0AHy9tSu3PPo3mhqVXDMSPQgm
YW/PWH4bQrmn9JZG6gzByRChwS21NBRoVBAgpTcEDgnlhbWtNGSprbjivcEQ
MPGpz/Z9NLRk76rVeccJL4T+eDZBQ8eFKWI/zgyBZbjx4gtpOqJTLbZJXR8C
nW02Wk9d6UjyuL3pu6ghUhftOgeFGMhHPyAhZ2QIFGst/FqPMFGL1VXLXYwh
sMhbGvPNkIk2expJfBodAuM++xtxp5ioLlEo4u3YEBR291kcv8xEIn/jHoXP
D0HkaHOpXSATJX/Ou+4qMAyvj4fp2jQyEVWYrrFDdRiCLi1Qn58cRZsU62c/
7h8Gwyeiw5/PjSJPSM+V0xiGV9EHvcttRpHkNQ/l9ZrDMJfFK9LtNorsKrnk
+AyH4QNtLetb+Cia9ZLgo18YBhal0EureRTJ9hr+eBswDEZHj0hZGLBQUJlG
hnngMBR876YcNGWhPx93PFr+dBiWCwpGk8UKlbkJqDiFDYOKhZtp6VUWslvR
Errn9TA8zF+m9/kxCyXvPatXmjkM5dYRRrwVLKQUdCWvr3sYHFYEy35UZaNo
lzMhYX3D0HmlRSD4EBv9MzOw0/o9DNYKQQ1XddiIunG78IeRYTjJfJO18iQb
3cjlXL8+Pgxd1N1s+jU2yvnlKb+wbARUZZIer09kI3U1/0iJPSMwI2ecpbOU
gzpsJFTjVEbgdFHkxLcVHOT+LL1TRm0EQp7LDG0X4KBPwz8kFQ6OQGd/Xt2U
OAdtiNyZqKo7AgLPVZ7sVuKgJeMdn0+dG4HfO1d80jvNQfWpitUhfiPQnSDI
Gn7LQVc7iq8KBYyAZqZuoGsyB/EsMeOLejwCOR7taROfOOjw2fvHYoNHoHg4
yn8wl4Myl7e2pkaPgMYaIyuHag6KtLv7qzp1BHhzaiv5GRxkuYEyx906AlZJ
NhfTtmAkIOGW+619BIxqdy0L34ZR6VrRG54/RsCVtaTERQmjLSvP0+m9IxAx
qnd1jSpGeGKkg0IfAZb71LURHYz8ahe/xC2OQKSDseWQNUYqFYkup7lpoDQj
lqNhhxGtWGe7EA8NTtAuCQRdwcg4JyjJfyUNJKezqlY5YySaIPbcSYQGk0bn
dry9jVGyh5LzgW00sjcAr2w4RudcmhUndtAAvxCVoEditNrRY/iTMg3O/3dH
9sMLjNwuFlrK7KNBzJcO/uVxGGkY6hot16SBYrDDfsuPGHF0GMtKtWjw3u9k
988UjN5AcNntozQ4cqf+msknjHj2tRzgGNLAvSP+jEwWRk0brRTazWmw1z1P
81QhRg8kuYeenaHBs+BZnSdFGO0VfZegf57cj/fGnrxijF7yMcWKrGmwK/NJ
1WQZRjZTnrxvnWjgvDK4jKceo6m6kAFXXxocXj/x1KULo55V7VcXHtJAl/+1
yexPjMqMpfDjRzTQnOqWudWDUVhT6t/4pzTwMk4dsOnHaFtLtUhjFLnPe/ff
HUMYrVkr+PrMSxqML6XObhzBaOaUhexQDA1stRbEL9Ewqmgf2vk3gQbfXwW4
1TMwsuri1lNMJfFEa/00ORjpSBo05nyiwZjGq04DjNH282GnNDNoINL4bq/R
GEazPRusT+fQ4KPEicV9fzDqk7YfGcijgbeu+7WNExhVWn2+5vyVsKPCL65J
jMJ/adwKKKbBGzv7zrQpjLxlH/5bU0oDi1j/c57TGF20qQuILafBjWdWA6oz
GO0YOhP+pYYGG0wf/UucxUhY/o041NNgreetSKM5jOYu0+LrGmlgMO+2k024
iuaZ9ruFBle/dzmK/8Xok8L33dfbiV6OLAgkEY5w4CmY7aSBaG5ontwCRrdT
jQ77/6SBS577pTjC1qPhFYK9NFAdeiIo+B9Gujt+Gr7upwF055Z4E955XbZ5
ywANeNR6PX4SFkm/ejp7iAbJz2nbVRYxmudk9B6i0WDxYfFwAOFfyjO2tQwa
RLw/lkTmbVTtephpxqLBp2C/S0L/MErPCnD9xaHBqSZjOSPCkX8app3GaWCy
GEe7S/jOXpF7MxM0UM9wSP9A2Mbj/NKH0zS47ka6EWH93KQnAnM0WPdDX3uA
sPI0QzDmL9GjyzGhScJiaruj5RdpEFaZ/pvsH2jBy1sqi4sOTVccc8j+gQYL
UNLBpXSw/u3zhOwfqG5umWINLx2Ci8asRwlnqh/POLWCDtf8StTbCb+4E7Wv
n48O7MJJsXzC94t6vjmupkMtK3IqjLDdf3Ja04LkfFxqhw1hw8NONb7CdAgx
PVK4g/Bun+zjq0XpwHpq/4ZD4iFeMtf2ch0dwpsUnyQTXuQ6cn6zJB22xMR6
nCM8dCTwd4YUHdY4t9jwEK73o1zR2EgH15pfpz6Q+L/ksfI4uZk8fwntcAvJ
36Ltun3NW+jgaMMVZ0XYrpw6dUKRDh2VRccGSf53+Wl7HVOiw7/m6I/t8xhF
/15Qa9hFB929UybahBc082YN99Jh40rvYylETzX/FG7r76eDd/UDTSuiP6WL
A+rV6nQ4KW+h9pnoM7L49d+jh+hwcYDjO0n0a31P4J62Fh1WfpRee43oe2Z+
wuewMR1WZH/f9m8cI8tznzW/H6fD6bucijWEy77acx80pcNUr3eOJPHTM+8u
vwMWdEi7Exi5jvhvy3RxgIo1HTzy7l7MJf4MNvfW/WJDhyqORdoTOkZ/cnYv
33OZDrGF0cctiJ+L3d8FKjuS8/MusT+I/y3Gnzzd5kGHzwECVr6kPhSZaBun
3KQDcyjkungfRpsyF/gVbtHhqfdkx0dSTzjOLs/k79NB/c/PggxSfwJYZs9l
AumQw9hZbtuKEdNI4GRCEB2G6+fTvjdjZJJWLbwhhA73uT+MC1IxknJUj1wf
Tgf9pn1RcQ0Y5dA2vhCLpYOY1bT+hUqMJPW6TkfF0yHT027z7XJSLz+Ei4sk
0sHERNo6tJTU+8u8MUIfyPkT+vNJ30n+B5ix/Jl0kBv+UeWci9HavtykJRV0
eC4ZuvvVWxIv/nv38qvoZE7My1+RiBGfhs6Za7Uk3qBzwiUeoyUvW1Z3NNHB
h/UoV/YViZcp9k7posNeq1b39c8wolYqnDDBdNhkquRge5N8/yRW5P1DB8XG
c7Y67iT/m/J5CifpcI76846UK0bI52ih3DzJx5Orq7IdiH8P2MjP8DDg5qhx
sZslyc/n13/jJBmweim3vpEmRit6bDpOSjOg/XjLi/iDGPnzbctaLsOAqs7L
ooz9xN9XCuxvyDNgPn1ZvO1ujBxl25t1djHAZ4/MUixL/B0lkDx6lAF9rIsi
1twY8d7zNTtwgwG1jUHhX75yUM44aw65M6AwK9VXk/RzO/szCbo3GWB7nXew
MpODKk4oM0/dYUDd/Xauwo8c5L+p18c5gAGD95Rq9KLIfFCzP+3tKwa8zTB6
NO9M5ou1Y9wCZQz4+slcvlKKg7Ifn/8YWcGA/Q0bkmzWcZDNQpXx+moGlAnP
5s8KcVDZcNwLhQYGhIbvyhFYzkF+BUY7tTsYEBvvKTIwxkbcVh/PeDMZ0Fsj
n7y1nI24UqwyBoSZ0EOLkdhvw0ZVrE7nBFEmdDR9UbY7z0bBu0yVLMWZkDrW
UvfYjI3WFWh/bpdmAk/r2pe5umykVK2QVqPABOrDgqq0bWxkOfznQ/phJnjx
mB7iGWehr7KP4287MoFSIGru4cVCbjEZIcJlTDC+yN5LcRpF+Qsxj8sqmOBu
cHv3OttRtGD1yNetmgmjc7+fnSbz6mO5C54tDUxoV17iXqo/imI/8V0I72RC
2zpNeXX5UVRZfHmHMJsJMOlsVdrDROKD6+uFxEchiHp+Zr8uE33fHrhCyHkU
ym0rZG2WMpCQodsOPwEWXD7KZ9h4cQT17KS23ipiwWTRTsci2UGUGQ+bh6zY
4OhWWFn+oh9dyFAVkl5kg2y+WWF1xA/0ICDRtyeVA5y+H9Uyz6joM136tYAx
htc3LZOlY0tRYFyAdd9xDEW81krSFqXI7iRbPt0UwydGvdO6NaVIqqgo89hp
DBO8GjYLD0tQUOj5qmAbDE88KraIdhajq6qvxvluYWili92Mci9Em/xF9Jd/
wNByLX71rw9ZaHH/3dWdyRgO/Ojs7pfIQl3swZYPaRjkHra7/wzORGGnv1zQ
zcIw6Cd8znc4Hf3bdtI9oIjs2XeUxtLupqKe5tD4pa0YplOitkSkJKKCRzO2
re0Ybjq5GIuEvkGRGhcV3/7A0B2W0yDDiEdG75VytPowUPVfxU3dj0GF3o21
vgwMv3QSCrVTn6PonftCTVkY7LYYaqxhPkM3BmLNZDGGPRM2UaE+QUjB+Fp/
ySSG5nbaFa9UX8TD3fYubAbDZuH+TZU+t9GvXA1H63kMX5M8bSJSb6Aix7fK
u/7DoBZ73acg9RJ6sXHV1P9/l9u8O+T//28V/w8dyY1x
               "]]}, "Charting`Private`Tag#1"], 
            Annotation[{
              Directive[
               Opacity[1.], 
               RGBColor[0.95, 0.627, 0.1425], 
               AbsoluteThickness[2]], 
              Line[CompressedData["
1:eJwUWHc8le8bpnwlSWhRkkpSSUtpyCVJdiorSkgaSpJEw0qSKAmpkJCsrOz1
2nsce6+zzUNpiPi9v7/O5/o8976f97rv52yyvH32yiIuLq4P/3Fx/f9X8wq7
qWjYQMltfep815oYgufEOrsBMXlwTTj412rGEPs/hoR+E1MFV9GhzQUuMYRW
fUdamJg+iqyKTkYwYwgjq98FAWJWcEts9LXO/EL07X52wk/MAW7KE+t+GMQR
gR9Fi7aa3gOXSFoi/XkcobkiXrEw1BFc9HtK7QVxROZE3QHORmdwef+zyNka
T7z8KiJzRtoFRU0Cca4/44mTG6Kjh6+6wi2acuTO9gTCpeK9ULG+G9wcA+ss
LyYQ8gdl/c4Hu8NtnfjkyfIEYsWEQ+1WBQ+4jQ+4K8wkECOfC5Z+7yAxEbVy
+65Eovwir3qh0xMUvb76eZ1FIhGx+rSXj5gn3Cx3KggEJRIP69+WGeZ6gku3
yKa5NJEwfDq4aIvpUxRJa/x8H5tI7D22/Thn9incFppcLvslEgI/77jmhXpB
ucuET9Y+kWAl5hY8O/YMymm019OGiUSJ1eK5c/3PwOV7c33B0UTCqTXQaWzj
c7gpucjp/pdInPPty8wueg6uNUuy14wkEHKq0j89LXzgNvXq+EBDAkH/lnVn
Q9QLcEV90rcLSSDOvOm+oSv9ElxLyh8E7EwgZLW2xK2rfImiQR0eU6EEgm/x
TRbz6isoZ7f7bSHrdylnPpXQ94fyTXZEemE8sXq7v5xx8GsoU5ZVtp+JJxY9
TdcpZL6GW1yg3seD8cTkYOdNKYUAcD3Z0H11fTxRG7IpYbIjAMryu8f/0OOI
7OmTNYYyb+AmkO1YXB1HxOjdGM53IjFTmcsniex34ku+LdVvwFVc/fzsmzjC
ne/btudigVB+d3bleqc4Ysep195pdoEo0trq+84kjmh+enu4pzIQXPIqjzIF
44iHZTqa/20MAtf5vy5s9VhCarFsgpxjENxc09zXPflC1B3nFzCuD4JyzA1P
7YIY4p4b+6a7VDDc6jc/c/n9maj4Fy3X2hyMIrE3vlSbaOK24pNX/7a/Bddx
rVerYqII0YcWk9Lub6F8bXGA2mAkcf3PhjTn3SHgyrj7Nl7/EyHwI/jARt93
cAuLVWU8CCUy9t4LVqe9A9eYqKYG5z1hZnfu950j7+F26Pnpr5ffEcnjK3LK
2O/B1Xzd5J52MHGW7a1442QouHh32v0n4U/MSl8NexNK4piDo81SfkT0lZPz
+T9IrLb21/vlPsRPKnfRisgwcDl3Lts58IQI3zQoeXiGxKtz1vyodCPUzAvd
LfXCwXVh/wlHi4cEJzyU+uILib2njXn33yNC+h6cyJgnsZtNn+xSW+K4+Pno
foOP4FKOsgjhO0GMmCj8x/eVxBHnY1mLrSEx5nz5664IcL29X8NF98Dt6we3
cvVGwI0r7OSStmCIWCXHfj4UCa6s3U986mNh/UTi/BGrSBT1H7006hyPvEi/
pY2vIqG8WP2otnQirIZsbvxhkvic+Y/lrsnIMJOR1QqKQpFjVaq66Dfwu7zt
HSiKgqRPw0bniW8wC+P1cxiLAldYq19cWTrS8u8dWyoajYiU7tmu9xng7aWP
h52IhnnZ4HX+O5kwmT0Xvu92NJQ7mB1HTmUheV2pbuX7aHCNjp202ZANniP7
FkwrSKz3iUYczIHx+U/Jk1PRKOoMf973MhecHn3+yHWfMSjjaraLkgcvM74r
5058hrnzpf2PhQvw7fLtdZmBnxEhKtknHkhA0PbY04cKMdBL1BNN0i5BuUeX
Ce/jLxAaa7IZP1OJfYnCvOJ88ZhcPbZ9IJGCarly8/o98TB+0oY/sxSYpzrl
uZyPx5/JQgNhrSb4ZQ7YDcXHI6L2tfuJ4Sawi772xOgk4Ka7QteXrS0Ib9NI
3fsmEaFjHt524W04YPxvGS0vEZ3nb4Y/H29DXXeKdSA9EdcqDdIjFdsxM7BW
/PeBr5CJlBls7W6H/gjDK7/zK8aMGhQOr+3E6M13Q7e4k3ChPEvnrHUnPDja
iht3JCFw36fLNhmdSJn+NuX+MAneyx1ehZ3rwqn7V7X3Ryeh98HFz5mRXeif
WfeFXpcEY7ZaXuNUFxweNXAH/0xCtsGeJrZyN5YtuF84JZGMkBuStR+fdiPk
upGZrFoyDpmE81UWdUOqVdZc2DYZdRriahOz3VCK67jcU5AM0e2ixYr2PciJ
C87IkkuBFWtFVpdZL8bPjeVrNaRA1GohcuWhfsgv7TimRE0B5dzjwSN3+/Gg
sLhwzy9S/sTsBsukfizZ/rZotUQq/Df/DkmRGsCm+eNlA7dS4WR3vzKGbxDX
vsmebHZPxZFrB62PSA8i6drairKgVPCZ/+RpODGIoy1jlXEFqUg8fVflp8sg
PLw71EObUnHz1L4h79BBVB0rqX7JSIUyplzFcwch+CNR032G1FdIkUjpGIRB
7Nvau8vT0Cl3u+DEz0GEXvTQtt6UBllX9R0nBYdAFblVb3wgDVbGUTbFG4cg
U2Wkq6WRBre984nH9g7h9mOVxmMX0xDDf34iR2UIz8+ONy/5mgb522U/4r2H
UDCn0v1B+xu0D32Y911FxdYzE+zSF+nwqVFfdUaWhnWup45c/ZQOgXKuPHXQ
IPQ14gV/Vjqk7P8Z2p2l4S/fObkz1HR01mZWuTrTQCnKutt/KAOHXLcnhlfS
8GCP+/wfRgYmGYJ3ey/Tcdus+3TobAaKAkZ3Wt2nw8p3/ycIZyIaVfRRHzpO
sxknvBQzSf52N5xNpUMqQvP5yjfkufb04XVcDIg1RHVnxmbCcYby/dNKBgTn
5naaFGZCPuZrwvZtDMwYJTdEDGeCi+vqhsO6DEw85ZNUXchEfuKJ9iILBujf
LO6wVmUh+rzkK/V7DHQN5Zb47MiCG++/UxRvBhpWrFolp5wF429dXMahDJQe
u3WlySALVW1GFo/jGci2qch0sMlCgIgMf0EmA1GVTufzgrOww7fKVLGRASfX
vnD18SzIuC5dOMLFxGZOzPbL77Nx6MqLk4csmVi7geshb0o2pj+ZTty3ZUJA
63xdXHk2yXc732Y9YOJ3zLLbk5PZUDGuYx98w0SdmV3641M5UNZa7nugjIkS
3+r/Nl3MAZ93n/w9ChNZuZuNyuxzUFX2tS+9l4nINW0z/OE5MFfS3S3/k4m3
qnJaSd9ysOahROddbhZ87Z+FnqnOQWfWhNu35Sx4RAyOT/fnIH2v4rPjYizc
bziMkOkcRFQGmRVJsiAol8Go5suFSJSADLGNhWi/Pb6z4rkwd3kyVSDHQpP2
ti6zk7n4K3/HM0+RhZ21q+5uDc6FYaR2fKYxCwOVnJg0hTxMPlr8K9GfBcdt
Njp0rTwoGj8gEt6yIPCM+WO1eR5C9095x4ezcFitT9nZOw+qI/3rYxNZeFNW
042uPEQb5R6PqmJhh5Sa+53xPEzs27ssspGFoifF26K486EuGNsa0c7CuEq2
A++OfPwpC7oaTmfBM3L/+kNK5HmEwN6wURbWLUouvn42H4EPn/z98J2FFIsd
1z5Y5+O74d/S9zMsnCr+LFj/gNT/6/732gIL/ZKbMuZf5kM26tymwsVsOLiF
mu6Jyoe51lb1lXxsfMKb2De1+ej8UBVUIMTGbIGbiol4ARoUV+wV2cxGcq6p
I6ugAPEuoVfzVNlQW9chLtZcgAlp25dCGmz0Op8t1WQW4GAjMq7osLH0sIZQ
kmAhEjfSFgkZsnE562C8w6VChBRtD7e6ysbfNWl6MXcLMXhttizHhg1/x12/
O54Vgke4flTQjo2CA1KqR1MK4W1hdzjHiQ39oI8jN8sK0blUxVzwMRsj0+te
h3cWQiBt5bPL7my46QcrUMYKoWzC+Jr9lI216cL93NwEPBdltS73YeOC76w+
fQ0B3/eRkxF+bERaMWorZAko7jdene7PhuzqnJwXxqS8ValZdzAbKo7mQatT
CMhUvpuSjmLjYKhRTODuIhj6qq0tymPjvHfd0NMjReDZOne0pZCNRw7HN9w/
WYTIglRzZjEbxdo7A8+bFmFiQjxeoIoN7X/z7hLPihB65ofi+VY2bIfvFqwI
KILsSKzFzQ42Xrex/3CFFYHqYebl2s1GevFF+e9fiuC1flVCQB8b7V+bb9PS
iiCZXt34eZCNmXenEloLitCp7TqdTWND3CufWV5VBE+GvFgdkw0l+72bs1qK
4BIcqCIzzIaFWczF2P4iTL69phE+woan5vp374aLoPdOUW/VGBsxB/1bfaaL
kPheyMhnnI0xwQdat/iL8Sgs28pxkg1HQufwvoPFmIjkc9P9xca7hBKHLceL
oRfd61X2m438twopq7SLkfk5xe/IDBvcdpu2/bYohkOs8QfpOTZ8JX+uyvcr
xtzX2Mx57mEkCdzQ+xpC6ic/KnBYPIymP/0vwqOKkZuiVzbCM4w1TVWL3HOK
4fTtT1P7kmEcLjimZF9WjOb0uk7tpcO4EJfmfLmxGPKZEQMl/MP45B46eZJR
DN4c9fGk5cMouyUsqzBZDMNc8WmpFcNgnve6KjNbjPy8yb/vhYaxVG02Uoy3
BOIFZdzCIsOQ3WfXzy9cArvCEL5nK4ehK8EQm1tfgqTR6U1hJL7Db2IwLl2C
XpPcvwuk/cBfDf79e0swX+3aYsk3jEzqibpGxRJIHT6ZWL5oGO3q7lN+p0rA
55CXq/KPjV9JhWu0z5agM2lvNUHWS+HhYYuqqyVIlJJg5pD1z165+1dRQAn0
hH5vTGpnI0d1nWQauwQPWLFvguPJ+sZM3g0MLEUV86NMCPl99QrIvTv7sRQT
K6iruU6xMWdvUygUXwrZw1KLrymzcQxMPj+iFF4vYvsU9rNR2NET9nSkFOp7
UgM6RNkg+CorHZXLUONcMreG5JdBW55xea0yzEXyjLj0scDVdlzkh0EZjtSp
dTBJPlL+lH/htk0ZfCRqUzOrWTBf8td9l2MZMk8t/yhRyoLbLYUvo25l+GV3
2tcrn+Szw2lTV4PLoF/aYm2YTNr/yFkj/akMD8ZW6xfGkvZ5dynSE0j91cbH
pSNZkLx5wyIyswz2F9QDE0NZON78xcu8uAy8iUlHu0h+tTzESJCoK4PX7Cra
f29Ivg/f3NTbXgYRrYc++16yUHIjbP35sTIojZzqeuHJwrdhGxuzX2Xg2WL0
bJkbyffXjuRd5ipHr6n1gRcPWXhq3WFiu6oc4fWer33sWVC3FH7/RLEcv1KK
NZ6bk/w9NDDsrUbKD1N+810g+do86fBLvXKUbR787G1E8r2ZVleIVTlsA+e5
vXVZaDz/VDTJtxyt94/mepHzo6jz3LVvweVISdG8xnuI5GejzdnZEeUIGT6/
xms/CwEGhFFpejk0TZ3sn+5g4Umr35eqwnKIBj6T/E+aBYdzF37XV5Vjvi64
wXMTC4ZnZoI7e8sRq5Sxw1OU5HdKJbOPWQ6H+2Wdi1excOh08EHaZDnsUlq8
nqxgQabByov9txziMawVK5axIKazv32cpwIS3e9vmQqwwF/HLf1DsAL7BHVr
v5Dz868m5d4f0QrsUeHePi3IQq/6rdWLd1VALf4q3VeYhfrKo1f4FCqg1L9O
pUuEhUI1/ozlxyugItLwcSvp/6PqF31RgwqcfSBvWriG7Jfy0JtdjyvwSJO7
mbOehXNEMm3fswo4uaTvVtzAgqqSy/5Dr8nztKt+3hIsbFVc36LyuQLB6xrU
N5H5shUMRIzrK5Ay8p44S9ajK3OL5cWOCmRL6G74SM7vmgPfUy2HKlB0lvvh
qAwLCftfnbn1swKZuVcPeu5kITTt4if7hQqUTawLpMiS+8Je2an7SyvRu7lh
Spyc97a7q/09NlSC7SP/NWMPC5eS3g4+20biQhb/on0s6O2y3uO3txIT399f
0yX7dTxR3i3gaCUWbdOteC/Pwr6diylvT5LYlFuKdYCFLfFNG8NOV2J+pzBf
jDILq7ZH3I48Xwk3J/aTUC0WfkofW/H1ViUeCL99+NyCBSWqSqWPUyWUD8xk
3bzFgleYuuu1J5WYNjadPu3MwppV+pwt70j9iI231rxm4SC3TeP7skoE7o41
iypiwakn5JX3+irk6+QcL9jIRlFw+Clr6So8urPeJWInG3xnoxdO7K3CoaDH
uU8USL6uSr69oFaFot7j+zVPs0F9krGt7wwpzxV9e5cpGzuQN5B7oQrqUryJ
QuR8zs2oOO1oX4VqmxqpDhc2Ft2pW6L/uAohr2Qtcsl5qinbTOz1rsLFby/D
wsh5GcDquL/iTRWUu88Uscl52RPZt3s8jMRdV04GZrIhZUZj1cSSuNO5BtVs
3BQb/hj7rQrGHX6nR3tI/no1vcKqugpGbRnnVcj5oKr1t/J4axXOtlb3j5P8
68vL5bZxoAqXWvouv5MexobHyya7p0nc9J/tpNYwlG5sppyRrMbjegOP8OBh
uKrq+eN+NaLLf8b/3TmCRTMJQuu31qDhzZ5FbmdHsb5e5Qd214A16bnv/OVR
yH/qarM6XIMlul2W+xxGcUVjyYcknRoc5vMopQeNouqd5VYVxxp8etTiqdE1
ildHxI5cr6yByxXHJSvNxxArmCL+sqkGsSU1CmN2Yyiiqi2k9dSgcOPGa+Xu
Y/ju41A2x6nBVFdl1f2oMSy7tOzLpr814FYQn9FLH4PU/sjnajy12Blot31H
+RgMexp1/UVrcUFXzKeXOYbbydZ7MzbX4l7CrdyM32PwfvJvZbdsLWAjYSDM
O44Io8Bf8wdr8XJZxRQhMo6cnTu7thyvRV3CrZe2G8ch/sjrctb1WvDvEuDe
fnYcB/Q2qPXerYVe/bewDrNx6Eqly3C71CLslukRL5txuNYNjWsG1GJfUvxd
muc4qOLHnPpza2GzW4MZljWO2ckWk8XltShpnPTQLhvHqvIbx2Qaa7HcLmTj
LGUcardCFtnTapGQwjI2HhlHXMEP3/8E6jC416tWZMMESl773N6xpg4Kzbuu
FW+fQPeVTWdPS9bhnn0bj93BCQgInl77Tr4Om79JKdWfnsBWKmOmQKkOVufq
uh9emIBS5qNeqnodkn/cvb/j+gTszOI/yV6sg7p8acozjwk833fc88zVOvi2
3tA5+GoCkbyd1o536jDtIDJC/zCB3G5bjQ8P66BqqGF2JGoCLUn/yRY9rcPK
3M+sy/ETGPMIFWS8qkPPhkV3/FInwGO0f2rp+zqku5v9zcyewMEF88xzSXXQ
1Fi7nL9yAto6RR4ns+tgIu3ruaJhApc/bDytUEKeL+aeW9U2AX+Ffta69joc
LxgZ2UibwPBtUzHqvzps3VtYdWBhAlyFuYyWJfUQFtyvfJSXgzUC69LKheux
avRLlvJyDlRiOzXjttZj0efXMVrrOQgdNHhkp1OPYdErnhYKHKTJZahbGtVj
6GfXrLUSB1WPVq3Wt6jHQLPu3ZsnOfgp2vJV4V49yn0PWd4/x4HA1X0PtrvW
o+j6165HJhxsznittv55ParUNp/xsOBA94zewHxoPSK5BJT9bnNg9TE5YTKG
xH1uWQGOHDwcF3SiptTjc+5PuZDHHAQctVVtza3H17c3YsI8OYh9Xi9UUVYP
v1UKVcQzDrl/yPZlNdTjh3/g8ORzDlq3+sbFddbDbPl3/s2+HHCXaKr4jdVj
B+9XHU9/DkSF4gVdf9XjhQf/7YwADuTMlvbYcTVgcv6qPzOQA5O/lXf1VzUg
8/fmFvV3HKTvO/l5vWID1IdDjJdHclDjFn1nuVoDvl755awUzcFgw2KlhdMN
WEQ99+F2DAfLbUraqZcb0NIt2N8Uz4F1FPjiXzTgUp3n5eBvHDyaCm/9ENSA
enWqZ2UGB28wH+H3sQF7yxHzJ4uDop78w3e+NWCq4C/bJJ+D9u3ivJcLGnD2
iDG/byEHY/cfNutXNiAjM2NnQREHYquO2BzqacDTZDvbjeUc7LF8p7CDQerv
bHilV8mBWsqfxeKcBpyJ3ZnqXs3BhXkjyvKZBsRJPW9Oq+XAXjsrdGFRI1Z9
Yv6g1XPg/X7N9SmBRhyI5vi21nHwkX3vAG1NIxaWjAtVV3GQebCNu02yEUU2
I4EFZRzUeco3VOxoxMdGlmgaGc+RFbWLXh9oBD3l5FtdMv7YdxYKpsqNkA2I
Wj1K5vck6WUEx6ARhfqXRKSSSflOtr2oeyOYXe3LgsNI+Z1ha290NEKaXj7v
/IC8r5n7teWpjbAr3/J4DXk/PJVr3ObHGlEW4z6bdoeDlPhZBw1uCtSvH/sz
eo0DFkftVRIvBT6aHxy9rTiQOBAQt1KAAsbOmWkpcw5eEDL9fWsouDmRPnXR
iIMSHoc/KuIUfGsUsft7loM/GoRI7CYKFqXaTQTrcrD7Ff+u5dso0AtouLlf
k+xnq8Epe1kKSsSYMnKqHISJfbLo2EuBkgEhM65I3j+zsYeKChQk+ofIJB4g
v69hjxReFRIv0ZLZsY0DZ7mGGptTFEiekJIZ3kjGf1eMQdGmIMTl37ZYUTLe
+WSxD0YUvPyZvE2an4MZkT6P3bcoeEBbtW3z+ARSFBUMjEMo0CT6t677NoGN
/qMzcRMUTPnvOW10fAKFFq5xaT8oOCT8sotzZAJm+1eez/tDgcnr0cve8hMI
bT+SXbeoCTWvY5xytk1AdIOPI2dNE8IDxCPXC04ga2KD9J/1TSgXeSCbvmQC
hkWpbVybmjAb0JGpzT2BoMtd8iI7m3DjTUDt4+lxiMTL/JBHEw4G8v0c6B5H
6sP8yGOqTXBYZe3q1DoOPR29s2oaTYgILF0q3DCOV5P3U43ONWEh0EVCpXgc
ciXLLMyNSf3VvbHduePkHP0odP0iaT/o8P676eMQUKi8/eBqE/qDpk9FfxlH
Ap/pxic3myC45myz4qdxaHZPNLy404RDwckX2t6PYzjBwyXQsQlKHfFLawPG
4f14jVzYwyZkXChUTvQex7bT8X2f3Uh5atN9P5dxVEgq+SU9JfO9ykiydRjH
f2VXxohXTSizF9iw13wc0UEzH6oCm6D6Z6O+iOE4VK/6aTW9a0Lp4/0vfmiN
w4M/I54aRWJvk5kMhXHM6/Fc/y+7CbXhsW1HVozjT18kQ3OwCYM1qi9VC8fw
Nvlg0DkGmZ+ecflWcj4fdK9RvTDShJE2mzne+DHck/oedWu6CT8HA25UB41h
1a+n5xxnmuBsHfMp/sUY0ivFFrvON2FyNKfzxf/n/43jlv58zfj1a1BN99YY
Xiu2Cb9b3gyPR9OPd18ewx7B68WfRJrBu4gvQ+j8GBoH5uzi1zbD5dn6sSnd
Mdim+kt+E2/G90+tLo+Oj2H5EylK3qZm/Kl4evfu3jEk6me7lkk349/owWs3
No1h9PdAf9ueZowceHfGmHsMmVdflWgebEbK8bmQX5xRuHUoxRBHm/FY59Jg
YP8o1mSF3YpTa4bIla23m/JGoeJoOvfoQjO0A1N9NR1H8X66XUzKuxnB36sr
FUdHoD5Vr28/0Iy/zcu0nmYMY6XF40MsejPYt74UloYPo58iK35hpBndfCf2
LfIehkPKC9rJn80oUXog5moyjI+3NezFlrXALZ7Nclog38fjZa+KDraA36Pc
86YGG9EjeTWCL1sw77rQH/6PCdu3p7fceNOC0E87XR+MMqGgSntYHtIC2VKj
jYZdTNSE8e96FNWCm7wpl5ZnMDGld/7VcHYLhn3NBx/eZCL33xhLtbAFd5N8
3YxMmPCMd1OOKG2BJCVbcr86E6I8sVOGDS04uVLYYmQLE0pZv86V0VpQ8a54
yLiHAT4rn8SNwy0wyht3l69moFlI4r+HEy341Su2WSiLgSs3TmbunWnBAUl7
y8oABuTWdgn6zbeg9nj4oig3Bv6U3rzKXtyK65drIl1sGSix4yo6sbQVPE9/
qZhcYMB3Q6DoR8FWNIfw6eicZsCwZtudvytb8dJv13/PTzCw8X5etYFYK7Q9
zhaUKTCQRqE+EJBqRadN6C5FSQa6nuztcz7cigqlPYI7p+iI3FN+oE2pFW77
DSqsGXTc7DN+uUe1FYdlHrhEdtHBpeAGlm4rUoTLJsRK6JAeafikb9WKGLpR
I98bOhz0blrvftWKIB9Xf6Y8HYIbvnDo9FYoXuEzUXhDg7Lhkz7acCvowrN9
hT402L+6VEudaIVr4biFmgcN7dyiXwb/tKJmbct1gzs0hDO9zXoF2qBbE+Z8
9zQNlI1XtHuE2/DT0f/fXzUaFp0/fqR7TRsitzxx91Ciwbp2ZnWnZBsYj649
f72LBrmUG/Ut8m24vXv/u+RlNJgPq+U1H27D0t6tGxQW0xCweUtck1IbEr1F
PxX+paLMdCGYcqINhgeWbVX7TsWvwB7PRvU2/Br6F1s/TCXfx1n2DTpteP9y
UtZgiAqTJYHm9WfboHyUltLbSYWvsp1unVEbOq+c4tdtpqLQWVux9kIbfI+q
XMusp2IyTWZHjUUbtIWPVUhUU7F5jEe02roNPCwFqWdlVHiZFfyosCPlA3YN
GuVRoXNCLqHEsw0+w6LGM7FUuDzif1f8vA3HiJWZFtFUpGQwvYpetoErSHBV
zUcqVsl8tCwMaSPnKA/lfTAVvQJC63IT2+DwlnNK0ZMKQbWxJTmpbdh9a+Rz
tCsVyq5VP7MyyfxUGIuXP6QiesqtKaOIlJ/oJvruUHGzfco7tbUNV05WKLhe
oiJ8RYNjSlcbJNYXB7FMqKCox1sl97dheDLvx2lDKhZ5eJ1NopH1qcg8k32G
Cvk8S+WvbFI/NDVZUocK62klucTxNmy3T1z+XJ2KkF3rxRO+t4F96ovN1Akq
aqx/L43/TepviKw+DyrmPrb8jp0j9Z1k3hQco0KuK5nxhbsdfP9+LVc/ToW5
iG9LDG87KtzLvZtVyf55qiZHC7VjxwtLF5YW2Y/rGdYRUu0YCQu9LkzGO6L8
1XvZjnZ07c8IYl+k4pTo53jH3e0oq64vJizI+CsDJ7SPtMP757yY7XUqnKUc
HGdOt0NWx6KmxomK9lmbECuDdgjTnH99ekTm13I5t9GkHX+cAjY7u5H9dT83
//lKO4qiSx9s8ybzHdjndfZhOyzntu70fEvGl7kjtsCtHToBSkamH8j+v9xc
I+PVDkUZoyf7yP65XVk39uZFO8QLbycvjaKiT1FEcMGfzFffu2cwhoojq/j3
3Agm8xmOWJIdT9ZvlPts24d2NLvm7H+VRN7Xkpm7yp/Iehjf/+uSToX++6mg
hJh2UKRWerwm71faneGsNYntqJpMWhrdSsUKjaEu99R2VOZrvs6kk/X/Tdlg
nN+OfH2PiB4eGo4bpHzmaSax51Th1pPk9ygbW3m7ox1pen5qhwxomFscMdzd
24508e0NmldoyE57tSuV1Y7UdPO+20/J70/odsbFf+0kPzTO5pTTIF67qzxT
pgMvVZMO6arR8Us5gX7NtYPknZ6BbBMG8qNHP9z37MDmPTxHbtgw4MEne87r
eQeidu8KXP+IAUFKYnHUmw6Eyrmqu4QxIH0pKbz/Swd8ZbeknhhkYKxkwmA8
sQNLZLWX/Zwk+U569/K51A647Lx3JYab5OeJ5Idi+STeUSm2lORrw8epxvqU
DlyVsfFouMKE+NDUisttHWBvC+x1dWSCqrqv8k53B6y2FRzc+4yJ2Fh7F7eB
DlClmf7Ut+R8Efh24BW9AxekV4y+iWVC3u7HWNhwB7q3Hjp5MoeJvy37oxMn
OrBz4m1IQzkTRQoOpnk/OhBeEvBbicKE14d0kZo/HZgP9jNM7mZCe2G6uvNf
ByxtvDM2MpgQuXzAnbWok9zAnqzy5zARviOTw7O8E2/ZTs12PCxk5GTVYVMn
Dhyx0t0nx8KDDX+e6Ep3IlTw0tfIQywoux86enFnJ3hp5wVWnmChTj0n7sGB
TrS9OF3zw4gFekeuV4ZGJ671HVHLcGch/ujssTJd0l/qgc9bfVmw+3j0Z/O5
Thz02sMTHMzCnHX+5cmLnVi8W7rEMYFF7i8FyjvtO5HoJqx0qI2F7vPzvw/f
74SIgUBY7AALEQVKyeqPOuG8fcmc6AgL1ptcrY3cO9H9j9v0+TQLsk+JDdZe
ndBsnsuZmWfhO3uh1eFFJ5JifoveWMpGtray7xN/0t7D7/e7V7LhkuJ2IiCo
E3KZnAPnhdhQXVX8N+J9JwJed9+bXcYGvxN3WvLHTozdLM8IW8IGpef49cLo
TpxWT/mJxWxciCrp6EnqxPKFp/c8/7LgsK8sfU1pJ3xu7r23fJiMT14y4nVV
J4K3b9Y6S2fB+OCjFwINnchlimx6S+Zz9Ii85aIu0r75dJ1kOwuLVKJXTEx0
wtwgS0q+lIXpE1yz16Y74SoS+9epkAXGyQtM2kwnohpDKAU5LFRprCro4ulC
v8aDR6dSWHh1xvNG+bouKCkdazUJY8Ht3KCBsmQXrs3uiv8YwoK9geLxvK1d
cM+WcKO/YcHKKET24M4uhN9bYbj9FQuG56fXpu7pQuE+LllbHxbUTfUWyx7s
Qg9nkvvbUxYOX0yciDnahQntdDMhJxZ2XOLr3nS8C/tlWnoP3GBB3MKqPFSt
C/6Lv5uYXmBB8HJRylrtLoz3C3W56bLAdUU8NOBMF47k7jb6//+TtGut9t4X
usC0u3VuSoq8L3aqkg72XUA/W+vZOBOh9hHLOPe7EJizpCZxgAk/h7lf1x93
YSxQWr25iQk7p/T6S95deKFlpbohk9zH3KQeaoV3oT17QPGbCxMyHm7WFVGk
v8D53E47JtZ59p45HteF97c3HJ63ZGL+WaCMQnoXFKVND2icYqLsFU/75pou
BL1p3zWwgonM1+bFYY1dYNv+TOBZRH6vb/ITRdu6sE9z1Y4d0wy8DxINedPd
hedb98eeZjLw4q3DE8HBLkTSwzPOUhh49I5i+5zRhc4mB1eubAZsP8ia8Ix2
QZzQ1Ej6yMDZj/Q9f392wendr96ltxlQ/aQsfm+2C6FedTFZhgwciApdMsnV
je67kXZXlBgQ/aLfz1jWDSVdXZ7i5QwMJJW9aNrUDa7FMTudEumgjPOM7dvW
jZXQPfs2kI4i2ZPagbLd2PDwl1PmIzoi4ssFjBRI/R9qFdPadFjGVPj1anfD
gcYyvzNOw1kG78Sxs91w3uj/zL+NhhNSp3Q/GnXDw/RQUnIBDVKRlYKWlt2I
afGeHfejgRlW9Yp1vxutpduDb8iR+1Yv36T6427QFpryn6+hoXK9hl68RzcM
uYIWxP5RkW3yPGWZdzeE3AI0NgxQyfd+tdAtv25kL7x6I1lMJd9xNa+/R3bD
af5p3i4NKsZ96978q+/G8OydZernh9BfKzBt1tKN1w9vG2gdHUIDv45+UWc3
NGZvftTdMIQk7/pVT2jdiPh7db/B0CDsPBuC+Ga6YT5z0dTy+iDMSwV/XZ/v
xnJn089XtAZxZtFpw9rFPUj/Y8y5tmsQ+9wa17wU7MHhyS+8A9QBbCZW3Oes
7IEPJ/I9I2YAK+dPd+iJ9aBhIkxu7MYAph9S3q6U6sHb8TeGM9/7Qc8V+uOw
vQdmy5dLPM7vR9uMnnG7XA8WF7dfCnzRj8z7TaLvDvdAROYGrWR7P5zuNr+T
ON0Dg1/+Ixut+zB7o/XD9gc96Avo/9PV3wP9gxdfy7n2wDxS7tzh1B4kcjO9
9nv24Geqy9eQJ6SfkN93jr3sAZUiYWkk04Pi8nXqZyJ7wBa8VNt6pxvPJC2m
nWp6kOYzENZI8sTK9nHtqnW9UBP5T7jOpx03Pzmq1G/sxR0PvlOnL5N7y80F
hWapXjh/X/a4+Wg7HBcLb+mV60Vss8hw51gbuvbIz3BUesFDdouh24Z9c/kT
06d6sWSx1O9r28i9svIkfUabtH93266xBXJPNzNqXGzUC9tzcu++p7Ti44sH
n9fa9CJhpeKdBZFW/DFc/EHcrhe0J/jiMdoCvc2+/pvu9cLfMGxHRXULFuWE
Pdzp2ovPH+W38/i24Aqz6Aze9KJz72VpN6EW7Dy+ZN46rxf2hkWSTmLkuzI+
YVtnUS9U3Kwd//1ugvwqvTMaFb2YjhOo82hvgiIrJHpnUy8c/hnf93vTBF2/
HVqTzF5oRk/VRy5vQvOvBgeLsV7wNbzdIjNGgZH53fDmqV5U/D7m/LWGAvP9
+VPpc72Q1fKRyn5GAT3UfL30oj7w3dvz4Jg1Bdd5/zv5dkkfQsPbG0tUKZi4
HWfLt7wPjlWPtqpvocC+SyfEWaQP4t83P6znppB78vfikbV9mCw7xE4qbcTD
xOBR0w196DyS3mn2vhFca46urt/ch+mU3dWCdxrh6TqgpCRDYumEnMJTjQje
eoexSKkPexZCHrpENiDnTuA+3+t9uJbssPDPqB5KPYcu/LPtg/7WSc5XuXqU
qPY9tXXog8MHm8GL/9WT7yLpLj3XPsQ+sywuSKtDb0GW6+ogEl/Se/J4eR24
+Hvqwov6EF1+yHF7cQ1ORW66mrq2H52WshuHFlVBPkRQukK8H95u/nOMrkpI
vpyld2/qR2/YdNdISiX+OrdZ8sj2I7EzP3DarBJfzzw3M1Luh76uDj9fXgXe
n3LccPNkP7JtUlkCARXwOna5102zH1LPV5cLX6+A+fZjJvH6/agr7XNdv7YC
Oht3iBHnyfOh4xclJ8pxZPXazhazfoTMfz6ytbwc0st43rIvk9/V/q4vPRHl
WMk9ZfDvWj+sGCVVF73KwfW7b5WIbT883yYOD9iUY2yspkX6LqmvEcxveaYc
FZ3RZ/Qek+dfr2tbi5fDOcVYJ+p1P3zvCVFs08owcKlIVSO3H9H/mXW49pei
zuDrYjOiH4FZp/5wl5UiW+t9iX1ZP1qv7xXzjCtFgIKDcmhDP4rqeUy9HUpx
coWMIofaj9ighH5//lLs+2/17GI2md+poAWRyRJIzHLnio6T9Z1xkQxqK8Gy
qQmnXSSvZCdcO742rwR/mD0KKr/78efiWct3ESVg9Fb9MpzrR9UKxSfrvUrQ
3JyRYcM9gMHirdFhNiUorIp0cOMdQOvdFeUbz5QgofDV/qBlA6jL2m4xv7EE
IemPvscJDcBqs4iZLasYnvHXUwtXD4Di+9ekP6kYZsEndrM3DiDFola/8Fgx
hG1/7zgqPwD1ZbfUXUyLcH/Dpc1DFwZQVGB+aW5XASz19hj2WgzAf9mi5auJ
fOg+4fbpsB6A5Pmo3F16+ZAejpqqtyPxT8bqS/Z5aE1nF+V6kv5kbeqKM3NQ
xMqZznhO+nsg8KD7VA4S1r2QSX05gIiqr9t+dGbDw22X/5eQAchYTXpIzWbB
9tt8aWQYidNe7znmm4XzzMbfYZGkfa79/QYbsqAq9mnnuy8DENVtfWGblIk9
2vaXAhMHwP5w7/AzZELc9cSbV6mk/fDLJw8GZWBJ2qpKn8wB8GmciwgbSkf/
2iw596IBTIbuM7z54Bt8abP/brUO4I/qVPHSxBSwHzwNPTVH1nt7377nEjEY
Mdx57RPXIFIe57ONsqJhPrly0cbFgxhs+hAurRcFrS2MA+v4BkFxNuEvc4/A
5ufPwoREyLn0Jrn0X3UQKPp1N/9tHQRX9JXans0nCbWJdN6HMiSWoAfW5tkQ
+c/CIv7sGIRb9/Kl71ruE19ybVt/7B5E0Qt1y9s7nhIuksKKI4cHEUFnvOxu
e0PIjhks69AZhFCA/Fb/nVFEtr424aNH+h+f/1t6M5o4UaByV+ncICTVqym/
v34mTF7u7vlsTMrPX3x0aU8s8XzP0gSHy4PYY/OsRe7AV2LVuwUzGetBXCs/
E2fpmEREcP8S6b02CFFJcdfgrGQiu5n64ITtIIxtjFcviKcSqke75H7bkf5C
jnG9K0glGqMaqfF3B6FYsXl0n1kawXTI1xRxHsShTeNF1h+/EfZ9afPlD0n/
p5sTuJTTiX8n49KcXQYh5ffyVGtKOuGd9NF6l/sg1C2eL323LoNYtTZ43dAT
Mp4DnrUXPTOIEzm3R5Jfkudet1vsdmYREf82++hED0JVRo0W7JxLyFqLKXF/
GUTZnPJnU1oukdWw4nt63CD+UI5eldTJIxo+zp0XTx6Eg/Pe0TjJfOLf8fbt
ozmkfo34j/zKAsI7vq4vPH8Q0eFrM9z3FhKrVpa+PksMgueuyH21D4WELD15
JqeMjGc932yjLUFka8d8vVU5iDrOooLAToI4kRFqsalmEIVDLoTspiKiYcOb
1W11g5jXeiS5wrCIMPF6Xu3dOIhA5b0MEe8igjnh+lixmbR3WsfwdGoRccfI
ce9k6yDkzK5XvuguIrxlLr8z6h6E4KNPcTy7ionMGsXr0oxBeGUJ2/5qKiZW
rpjkK/s7CG+577+61pcSzQU+zzT+kViSZ5+BSikRcHMrb+PCIKxF1tyiXCsl
RGpMFnfzDEHx12FaRQaJn5b/4wgOgV3g3vjtdBnRvN/80T3hIRQlv+Hf7VhG
BFD//v27cgitnz6fjA8tI4SV9/z5T2wIZk+r8yKGywjKRI3ji/VDULnf82u9
UDnhH3blp5AEia+P7317sJwQmn3/ff2WIZjMZ141cS0nKHEH7nzaOoRoueff
CsJJeWMKR1pmCGqXTBckC8uJFZn/je/dNQTNooVg1lw5IXjHjnVKYQiGHuoV
Dg8qCAHWyd67WkOw4u2WenWvkqgLGjSZ0RkCj0Ki3ffASsJX9WGXi94Q9K66
5BukVxLLIlPanxsMQb9qs774j0qC/+L6po+XhmDnY/Mkzq6KqFmWeXqr5RDG
co81CvhXET65eg3xVkPwGF2x3i65ilgq6lWbcX0ITtrpaQcnqoiqCknNozeH
8OeR1/y75dWE9728qiLbIVh/Ndb8J1tNqEsZnlK7M4S5vh3B5trVBF/LZHnt
3SH4CP4bKrWpJqrcX6iecRzCzf8yU9ihpP4e6dJ2pyG0MxdJHGypJpa8NC0a
ejyEPXGhfyioIXg1KnJ/PyOxHOUrr1gtwUN8SN4SOoTNhxRE7WvriG5FVfWB
8CF4FjyK0+atJ5JzxwbffxqC0ImSI9uO1xMmmcdERL4MoVtH52JvZj2R+nXA
gSuN3KMvX45Ui2wgvHZ6L89PH8Kq4dj9m/oaiAtxe2LuZ5Hx2U6Uza5tJPg+
u3dM5JPxOzuzUvwaif7NO+ziCVJ+odDpRVUj8S2imc+6ZAgnVBb9942bQnhL
PPy0qXwIvTyfdSQ3Ugiz0C1H+iqHsKmSqzNKiULIr6trDqkZQlncg+GoyxRi
aYiDjX79EM75Tv+N8qYQ6W/KQ2ubyfqfYW+IbqYQy15cXcjpGwJ/b+PlaOsm
Its5oSz4xxA6J8M50S+biZe/z108+4vMv0WU+/O3ZuLyvbmfy2eGIJEZIPK5
s5m8Pzrbns4P4eJDrwOfN7cQV65xnt9dSkXzf7YPP2e2ECJG+0/rbaTCINd0
8D2jlbCRz+taqkWFJffF9Wa3OogiSltitg4VbeNr1m0I6iBW35p0vapHhXQ3
RbQ3v4MgPm+VLjegoiRNdY2JQCexcq2/vZs5eW4lK2yY0EnkzVgt+32Pivvv
5735hbsJoWDX/s9OVBzbohO7S7WbuLLvfar+QyokEz9U6t3vJlbYNBqluVFR
XHCI921fN3G593D0rRdUyA3ZP9kS30MsIwSP0SOoWNjGeqx4oo8wN90u9CaK
ipGUA2GXHPuIjN8naMdjqCg87JnvEddHXNrj/PxjAhXXtTbNVq3oJ759orWZ
ZFIxaGvqZNDbT5h6Zts21VKxMmpLjK/OIJGgYRlR+IvMd5Ql7LGNSsjLblLC
DBVSHm0Ht5ygEoWCgz3ELBWPRUtNy8yoBKXl4tpiLhokT4Z/5g2mEtMXz78s
5SffmeH6h1/w0Agle71HVRI0NMvadO8gaESl/op1GptoMC22z+FupRF6Cg1Z
1Vto6Dd4ENLJphGWc1o/amRoGHd5buglQieeeZ26Ub+PBvGmL81DV+gE5b2S
cbMaDbfu0WtCBBjE+cf/fp7VoGER/1jc7U0Mgnop/02LFg2+4T+81Q4yiGmp
I42tejSEVC46NX2JQTxeMnPT4BwZ7wV+6VoHBsE7ksXfbkDDt0nh/yKfMwix
5ANqHSY0lIptKj39jUFEvp6mGV2kQTtJJlK6ikHIOnxz77xEw6TKHvd/vQwi
w9B+43lLGuw6FMxbpxiE0uG9BV1WNNALblyM42USlesnTUyu0rDSvGDslQiT
0JtP+tN9nQbNRUKPHCWYhGWprHyvLQ3pahnvTxxkEqOfR5su3KGhk71kxw4V
JuHgHX+77y4Na1+Y5AjpMolnOjIJ/U40ODYudPRdYRKJHVs2D3mQ9ow1VzsF
MYmfo+uEmME0MK4PvEqcZhKBYazK0Hc0uDW6XA/kZhH7T6e7ngulQeCAxIlH
giziTpoOp+gTDQe5Lv7SkmER405uDR8SaXAK7r4wasoifHfoeJ1NpkFkzvlg
yzUWsbNXTGlpGg3RFmJCefdYRI0f8yeRTsOOyuzhSA8WcR3fvjpm0VAha1zq
84pF8E25XtmVS8OhoN1O/71jEV8itTfQ82l46Xh837lIFsH4j+l7poQG3cNX
YibSWYRnVpoqXzkNH9fdN1csZBFbrrvOFVbSwDfnvc6nkkVY1InelK2nobww
8eXWbhbRF6CltaSThp2q044XFlhE28bUpQXjNGw8/eRUjQabcGh6XHx3kuzP
niBu0XNsYuUTTecdP2ioFP6Sd+UCmzjDpLHf/iHvS2vNbu7bbKI+cU2V/WI6
Js+LiB4KZBPlhx95yYjRkW1uIdjbyyasRtWVBtaT51aKI20MNrE4bPWvIAk6
jl5fW9E4wSaOcyVfWSxFR/yd+selXMNEQcWQar8cHZ4eh8fjpYaJjHOnFgeq
0qESLVznfHOY8NbKfip+io7AOzOUbodh4sKJ7XyfNehYUBpqO/p4mFi0f9ny
TF06PnalDPzzGybadjx6pXSGjvmYELpZ8DARu3lcuPIcHcYObsNE+DChK9K4
ptOYDt4Vej/ck4eJTfzK78xN6TDpVfhDzRomprlT1w9fJPOhaCRGlwwTVTOb
wu+Y09FGud5v1jxMfJgKkPxrScd3ynMhMeowYTu8OMrjCh1CTXEqLVPDhMqQ
w9Zl1+iQb6p28OMeIdgUwx3it+i40bS0i3vTCJFXVZkYfZsOr6bty/L3jBAv
iw7t3mVPR0yTxjFH5RFCPmWdvNJ9Onqann8auTRCuL/qP2buTsbfvPRGS/gI
sU7X+kx0EB1HWpbORouPEuMnO1pkQ+gwaNm+65LsKFF0TN0w4z0dNi0al8QU
RwnrXTtMKz7S8bXleamf6SjxTWDCih1Hh0zrUl/H96OEdu09J9lCOtonanYf
2zRGuKo//ZjOpCN5urFi/8Fxotns2oU9w3SoWsSM7Dw1Tkjd0xJLHKWjrP6R
oJTxOFHzSfhN1CQd7JjthqsejBOrZsO8Av7Sser8E8Z0wTgR+zXzlp0gAwbf
px369k0Qf0vf7RgTYqCC87yJiglCp/sR6+pKBg6OS8ixtSeI77wnLC6JMiDJ
Vmd9t54gFM0b9XU3M9DbF3qe78MEQRFhH5U9yIBFtarS/sUcYvP22j9fDjHQ
V9H1/pAQh7iHpIwtRxk4VGb7+9gGDrHupsPu9coMyBAhKeoKHOKmh9FYsAoD
ofm7luuqcggi5EicyEkGeHJLrp87wyGsyrm28Gsy8CN9bLOZDYfI7KENPNVm
4Eaau+tlJw6x9HtFKPdpBkqS1/Ree8ohLvDFn398hvT3NeGQbQCHSJLwWzNz
joHoeOWgux85BNcBuxYHQzK/1c2WD5M5xDmtc/6TxgyMyty1kynlEH/ui/Gz
LzKgqZfxwmOEQ2i+nKu4bM7AxGXDd7vnOURY9MCTAUsGWvMenpvgmyRUmj7/
a7/KgF+juMUH8UmSf/ZNld9hYPiX2aOfJyaJTX2anVFPGUg7SUuLC5gkfEqO
Jht4M1Cs1uBnGDZJfP8i67XkBQOUUznXFsdOEiX2gvI2/mQ8Gq8kLhZMElZ8
za/2fWBAWveojxB7kqgbL7GmhzGw57T0lYLvk8SBlm/HgiMY0NATVr7xb5II
z45epR7FwIUzc+vW8k0RvOFBozOfGTA/y/pZKjJF2D7xKkmIZYC/fXxPs/gU
0XHt/ruLCQxU5V3KiZeaImL3nz9VnMKAwrMTNabyU4SQmKbE3W8MfL+ZcVZe
cYpwnj/yUyqTgfiz23oEVKcIzWrxKO88BtZJLBsrODdFjJoNzp+uYIAro3m5
5N0pQs7namZ/DwN1VIsz9NQpIvi2sZ9/PwMeVS1d+TlTxIK+hpXKEANHkk5a
BhVPEZSNO0VimAxkO2+/q9Y0RRz6T3zYaJiBm5c+zEp0TRERIwJFS8cY2HRy
uefvwSniTsbErVtTDAQKTQXGTk4R3e8HVDdOM6D3y3KD+58pQsWNsr7pFwMC
va2fz3N9J+KvFH/3mGGgtFhNbh/fd0JEK61afo6BsKQTuVPLvhMP9kRFMOcZ
eFAz1lFBYtrqwPsh3EycYwb9/EDi9MF7W+d4mRCUYO9RI7F4hfXc16VMMA+/
1l1P4qcJRi2XBJgoMzhyc5L/O2HoeNi9VJgJDz/fL+9J/HvZv14fcSbG5/ZI
cJZ+J44oeAaK7WOiucd5WQgZT7ul2MEweSZKzj/hsyPx3ZdJHZIKTGR3+P6n
TuJERuc6GUUmIlo+Lvxe8p1QF7bNT1Bi4v2ZuLlGEjMUF5vtPs6EV2PazBcS
SwTu+nRQjYm7teU/jEicS5So5KozYa7ROLmbxEajRvRjWkycrewcX0Li6TXj
T4t1mPBv9Rky5/1O+Kt4bDupx8Su/I2m2gtThKzt2uqqs0zURKW3KpD1rX6X
eEPbgAmrFxq6W6amiEVT7V/PmTARbnL3+F/qFBEufvN0xwUmDqnw5TF6poij
6txTJpeYaN0eJt/UOkU4fNwpb2nFxNqZim2xFVMEU8ct186WCe+36wQN46eI
2vjtlX4eTFxrLe5OvTNFXGsvvCb8lIn/8g31w25METyL9PmDnjHxMWq03vvy
FKF03kUn1JeJbvvVxZcMpoiUJS0t8cFM6Ahf/7L88BQRaPVosDKeCaMCofvs
mUnigkTjDHcLE0v0By58uD1JCIrZZ+S1MfFz8paPovUkUbxy9Z17nUxQ/eay
+i5MEtJLTdnsPiYqKsVWSmpOEpwfzPZGNhnvUf3qaKlJwqN6/lvYPHk/Mjwa
JMo5hHzZp9tG3CzYz0rdDsjkEKxC1Z3CPCyUHK9cwRvLIbTTfSI9l7LwpmHZ
mXEfDrH645rXNqtYkGIHtuTpcYhYBznbwztYOLH+S6dx7wRhcrtp+w9ZFr5a
aDjX1U8Qy284MBJ3s8AVOyqmTEwQ9pdyL0geYKFbfo/ptsgJQsrkomi3Agu7
HzbPvn8zQbTrc7W+OcJCYrFDqODTCeKopprWEmUWzP9XcZXHU/U+YUpRWbIk
0YIiRGjXNpabJBWSJUJSSSSV8pUtpT1bokgLQiVJJRKDhIqyFSFF995z7nbu
vfai/M7vz/m8c2bmeeZ53zmzvfT70EEKKQZnapUlARXJ7pGH3Ci8B1erwzYR
sLrr7/zvthQ6rjWOXGFDQIC/1xN72pZa2WJG2RIw28u5tHIrhcXGIUO522h8
O7e9M9lG4SEDtWd77QnwtWE039tO4acFnnpfdhHwyXQZJ9qBwmh1SWacK82P
rv6QyJHC5bOy79q4E6CloSm514nCm9O5qm+8CTghJT/HwoVCn6GQKVmHCZjb
zrGR3EPh0IdrfUfPEBARfj/vjB+F3TO++I2fJeCkxBunb4corLabK7xwno5/
7quE6WEKEz49GrtzhQDHqzPcfgZSeFKh/4xBHAEWM3WnrAmicI+9mUxxAgGr
ks2fxR+lkJEYHWdxnYCVau57iGAKDVrqVBpv0Plvh0yD4xTOVFZId71JgKxm
wsuUExSO7HTWYqYRkMd9vVzyHIU9yRm5QRkEPGSat2IyhTVfmEZjdwko6qk9
FvmAwkeqhi/OZxLwosNOaUMxhYkux9cqPaD5a2l5NlZLoec3yc36jwhoru0R
hZJ0PepbGl/kE9BT6Zuw+jeFS9wTdpo/JeDXa67x8DR6fnXP93Z5QYCoYPjI
8SVCTPq57r/YCgI0UuUFgUeEWEuEPO5toft9cCPHZ1CI+XrlpoFfCCgw8alJ
mCTC64ekSkbbCXhjpKMimi5Cb15SjcJ3AkoWP35eoCFCa8NO2/QfdH2LjkyW
p/VuFKjVrNtHQL2W6c5AQxH+oZ5+30AQ0KTxqn/JBhH+NB7Z955DwDe1MMsr
m0RYd3Qj14lP6/nL/CWS20RY8Cz26E+KgNdmrlvn7BRhcn/D8GExAYZ3Eg+b
uonQeJijkDZGAGl8ip8YLELV1aYpOv8IcE0ulH10SoTjp0LnPpMgAUc5htUR
Ivzwe6p+/RQScqo8Avsv0fPz70LLYQUS/HZaUo6ZIrwp5XnCcREJPSflRMqt
Ivy3b/bKZl0SAs4rn5b7Rvu/bRraoU/CyI05U6V/iNAkxurUtqUkyL7UmfuH
K8KU3vHVDSYkXK9ZkjsgovObF4/aLidhTpvpMsGwCOsn9MJs1pCwZmCDzc9J
9Pzz6ltbt5aE+kmM1m/0PE6uSB/btIEEKyVbz1Z5Mf6Zt+tNDZBgeNxWNYee
z94R8hFWliT8Gn1Jhs0SY2133YZqBgkPIrXKdqjR7+/6M//MN5OwV+ratUUa
Yhz5MxC10Y6ETwq+yz5pitFj9xPz8u0kXLnxWSproRirSw9IrncgwUZjXfsp
XTHGhX6LMXOm+dJVCtcyFKPucEXsCm8SijZUvjuxWozO4ktXDE6QcPXwXDeN
7WJ8Y29l9/AkCdbiC0tE9mLULhyX1fuPhPGTA39r6HlPHQmK04kkISTmQ+YR
NzE6fdLbkR1NgonMqhArDzG+NupTWHiWBN61+5vVvMQYy3dK1LxIgtetUH6V
rxi5W+Ud714mQWMBsyLloBjtH9cpzb9GwrfsHYmH6fe9ePqZ1tvxJKQYlO0z
DxTjXP+1yRpJJGTOqbq/kLZj3g84pSWTcEaHUeRA+5N6T2bNSSXB17SuOoqO
94JYkKp6m4T5Wxp/de0Vo/rmby437pAw4WQ/OI2uJzonSU3lPgm93q1Sa+h6
7fZPSVPMISEr9JtOsrMYmX3c27KFJCzIYx202ypG5Z6XmZNqSFCW/sd7Q/8f
xclGRLyqpfl62vj1iakYp69juAa8J2GSa0bVnaX0PLzZIvf1EwmsvPWp0Xpi
jKy9RV5upvE7yMYE69D9H/R+C20kvP/dFeCjLcZ+B2How28kvLY9bcmg/8+O
RBfv9OwmYemArdHKOTRfBRFLlX+QkJ6urqarKsYD3xnT6ntJmM3gTpqtLMbe
GbLMcCYJTn4ci3E5Wg9rWytMCRIEz82HxqXE2OGXdovNISFhIjXv75gIm97p
7bAX0npIsVaY4IjQblCoP6WfBJ++jOqJn7SetV9JvR4kYdBoKESiQ4QYten1
wj8kGL/L6paspe+vmY/OiBQHbg5IPJKi79fVJ+ljGeoc+M++jDF9twhlun2+
Os7jgMptpdHpDiI8N93gmbQmB54Qhx7PsBHh6YMlB4J1OMCMVFOSWyXC4RtR
Frp6HIj8EPROzkiEx2qs53YZcEBNtS70/++Nv9aXZoYJB+yfhPxQUBIhe8ft
/N/LOMAfbUiaOU2EPpH7LhSs5MB5xiJrRQkR9uQb+Oxbw4FdS0iVLI4Q3brE
69XWceDPvYH5Dc1CtLkhn8fbxIFTp7Q2Hz0mxCkRZ5zMgjmwrbmDkBgS4Asx
/zce54CZ6dBIZY8AfQ+43rU+yQGdREWZM/UCrNlhzN15mgM/7W31JG8L8Jz2
96gjsRzwaSrzk7QSoFT9msdZtzhgGSNY1pzKx0nKIkn5ag5sUk73PsTgYdEF
99zkGg4480N+LTPmoc94rZ1GHQe83tkfGJ/Dw2pWRqpeAwfiT00NiBdyMaZk
q5HVVw40dQWfepnGRUnPXNdQLgcO7Lj2xWkGFyUeej7tU+KC3Re91qP0Pl/L
bz9ydxYXviVe27aH3vevmjgs9VDjwq3t/XVbukmcXWL15Ms8LpTVlb3RLiFx
aZ3e43o9Lix7vT2nLYhED1Z/TsFGLvj4jf8JGCTo/S7gwGELLmh7S2/rZxFI
BrB09BhceOWidPdUO4HHB9uz72/hgvxmPauY1wRenlyemezEhRc6TldSowks
1bpwJ8yfC+N9jzWqZQmM3C/huTqQCw87iwM3/2Mj4+F/8waDuODcUoUNQjY2
mQTcDgzhQmZV+772FjamnGC5G4TS+Er7XnrUsNGjxFODCOPCaKFAuu8lG7XH
2zuzIrhwN2/U7WAuG0lwSPOO5oLlvcn5/JtsLDj7wW3eWS7Ihl/L/ZjExhN1
VnM6Y7ng3V4/0Z3AxrUzyjtSLnLhwTIpVyqOjRPbV93ceYULE9egcOIqG2uS
nrrMjOOCLSdMRvEKGy9/1ZvdmMCFx4xib+1LbFT11EixTuGCzZih4qZYNnbf
T941+RYXMpz9DjmfZWMmS25WZToXyGdZVQfPsOn5KZFsdp8LV/zUj12OoPGH
sxIN87nQ+0W69XMIG6dXejpwCriwyNRqSe9xmo/JHTNznnEh/Grk2f5gNrpf
+RC/4BUXNK2Gls86wsZjaU+vKVVz4XhhX/LuA2x8NZ52obqGCwz3WeITvmwc
9zx/5lgdF5Sm2myL92GjZVXwae0PXGgvDHv40JuNFxbuCWlp4EKB+5MpNZ5s
bIi1CYr5TOtl6s+9PR5sVCKXH1rWwgWPZ0oVo7vZ6GK7YF9fG20PdM5jurPx
dv70PUntXEjRaoscpuP3yg87W3Zy4e2Oxh8y/mzUDe617+/mAhVRa65B11+4
soTh2MeFkM6SSeZRbHxXsd9QScAF6+sZ5y+l0/i1HHSrhVw4WZVCpGey0f7s
es1j/VwoFsbbFDxkY+dmZZWWES7o2MVMb33FRqqpcixxEg+mTjkYN7eNjWq/
ND4qqvGg/qRJylNab3s2Sb+rUufBQLb+SJUygZm5/RXB83iwtlXbtU2dQMOA
90XN2jx4bDxL/bcegRZDJ9MSjXiQudykMWkzgf7SLYcUrXjwQOmB7+kLBD49
VL6vahMP4gqunwqNJ3DwY96eYBseBNjGXA5JJTAqIcqheRsPFsd4FQblEpg8
x8gs0ZUHeeI54/vqCPx2Wm25hTsPrlyTUdj7mcD5PZONxHt44K8/ouVJ36e8
zE5Nh3080N/bttmVILB8yUUZxSM8yGqKu24nTeKqttmNSUd5YFJz27ZSnsTC
8NxEleM8KH71SHKFKon6OqudU0J4YPa4pCR3HomZjbXqaqE8qLxTG6ShQ+Lc
k84/boXxoEN1aJuJAYk35rOzNCJ4sLr10NmZhiTK14X4ZUTxID6+p0RkROLF
oClGC2J4MLF1J9VkTKKk2g3xvXM88JWpX/jMlMSwykXF2hd40FKz3i1xOYmB
igzQvUrj3aBb47CaRMfnMQ5GKTywNv59q2UjiR/dlVSf3qTx8AI/F5mTyJDK
7DRJ54FSXp/UdUsSV++q2rfiHg+4mg1BO63pekcmQtY94sExpbub2raRmHI3
fm15Pg/aPimffrGDRAWbBRMbn/LA/MrFwmQHEifd2njR8gUP5kod09i1i0Ri
bUTalgoeVA0xxF88SPT+Jev1sZIHykWlusWeJHZeub1w21se/HdkqUeKN4k7
VxiSn97xgG+QlXjSh8SG7rJ8+3oeOBOz65x9SbSO3Rrc8oHmO+vq+KoDJKJR
10qnRpq/C4l+z2h7zVf/P18+80C1PHPNmv0kFkX+qXBp4YHUwHMZ3EfiksWX
z35r48GY3ruOTXT87M9zbNzbecD0/JrXQOdP1TRr9uzmQe6HUZvOPSSGV5/6
tZ/Ng5DMDZeGXEgc8pfOI0geOHZsdwt3JvGIcmrAIR4PNsh760+m8e71LR4K
EPFAJyzm/UxHut6pQ9In/tD3waFumqEdiZUF5xqGxnnw6ELHtyJbEs1cVBJP
TfAgqZzz0GwLiYZ5y9VPS/HBV1/WdjPNv6LtMcMYeT4oSjpc9qH7da9KYcZa
RT70/2DEvaf7aWL2hCNW5kNFxZokkw00H4W29Q9V+ZCZYZiSuo7E7Xpkzt45
fDgbrpn2z4zE73djY+fM5cNOd5U7+9eQGDB7oW/zfD7or5XJbFhF4lhcpeUl
LT54zHBnLKX1dHmqp5bFIj4oBdfK+dL6mxM5NjGqy4efX03bby0hMW/oZk+h
Ph/y1mfc+7yYxDpma7qmMR+0ZU4sX6dJotTbLaoSa/mw7K6Wm5IiifQuPPhq
PR/+SF3TtpEjUbvoXGsQ8OGd/ygvYhqJ5vcx4QeDD1tXfY7kSJIYEbVyBu7g
g3tjeHZlP4HD67QkIvfzIWysXXikjcDY5xU9K/34YLfXqjS7iUCVJR7lAn8+
TKsriOlsIDA783f6g0A+vDVUt5v5nsDl6qlhe47y4XJS7CzrdwRWJ65wm3Wc
D7anLAZLKwl0nNayujGED88Ph072KCPw6Kjs0PrTfMh2YmvdKyRwIuhR62AE
HwQ280wtHxMYR2wuyo/mQ8AGJ3PmAwLzv8YEzT3PBxvdak+9dAI5L0Y5Ywl8
+DWSkV4YS2C3UVPrf2/4kL5RLr7ZmMDCO7CI6SkAlUs3EmYpsnEgbEB6714B
XCYud6yVY+Mql1ze930CmGQdrek9jY2hy90/7z4ggKPZIX6xU9hYpqDwvN1P
AOSkw4WPJNn4j1ed4nRYAO2S4x1LJlhoXn8yrDmQPt8a/IT1l4Vnsw08tx8V
APsG+8zdcRbWRvdYfDwmAOYPd2e3MRbK7EnSsQkRgIxBs4HyHxZuNbOe9u6U
AIjj1hMNoyxsEj9pqggXwKC0aZ75MAu7fCK8is4LQMNk6p/FYhbOB1Mr40sC
UA07/alXyEJvDZZu/hUBrKoRZaZTLGS32lEPEgRg6Nq1VYHPQhFjbsStNAEw
ogszhtksXK7V5K2aIQCHDzrHClksPPn3LOP6XQEEqqRb+zNZOPaSN+NatgC8
82KF33tZOHVxWVp0gQCONe22eNfNwi2TgyL/FgogSr1pVlQXC6/+0PYJey6A
cN9N3DWdLPxU9nXTyEsBpBS8rujvYKHizcv6J0oEEDdqfD2/nYVOJzbKiV8L
4Krlg4MHvrIwxb5fFFgugI6qlalyrSz8ZpjTxkUBhN57HDf+noVzp+0uOVhN
44nSOs+rZKEXS+42s0YA3/ekRnS+YmFmVVXU3joBxKyXC3lfwMLFYfqb3Rto
vn+P7su9zcJlvNEv278KIPtEk8W+UBaG1OWXfuyg8e+0NnMMYmFJlneGTZcA
/pm+MbE4wMINHvW+lj8F4CzMXbDAiYU2jakDK7kCmOYf9bfTmIWXH25tL+IL
oNJmaPC9LgsbYydeGwtp/8WH+SXzWOi48WCM/qAAkOnclTKDhXuerlKc908A
Xl5LSx0JJhbvHpVvkqCAVXzufPh3JspPfS17djIFPvJdO3NamXjw2enpq6ZS
ULbfVKvpPRMrPTbIcGQo2Fx+gfqNTFSTmZhyewYFNSo9ZQuLmRj8vHLyDnkK
ZANWXNqWz8QPnjGSkxQpYK6e0j1wi4na0xkTL5QpiFOZl1ASzcSwl1P+HlSl
QF+8ghFxkImt3nV/1OdQUNdoN2qxnYnnXtkOR8+nYPqFcO+PGkxk+zoI7PQp
uPC7y6Sn+BdunKnMm1hCgd7XAWZmxi9MLWsji5ZS8KJoxq2D536hjZIrU20F
BeOH10mKHX7hI/TsYm6kIKYnrXmyoA+PqAe8D3ei4Nxbt2P6C/uw9p1RnbEL
BbPuBetS0/pwQbCwps+NgpzwS51Fol4Mnfus+oYHBS5u9+NOtfdiU92xShsv
CkZXllqur+hFveMrKsb20vUpNQ9LPOjFM/OHywp8KSgyqz6kEtuLy0L+e6Xi
T4GvyhT2U6teHPl8/kF+FM1P5Mz2eRt/YnTs/TPdj2j+8rYfG9jfjXKnpG33
PqHPz67wp/S6Mc0vUIn9lAIZb3UfDq8Ln281yxK+oEBJje3wI7gL2YrNNZOQ
gpmw/ovP4U7cekdCRr+VgoZlv9UXeXag6iuvuJAxCi6qH8/JsWrDrLx3zn/+
UlBfYvD5n2QbmqQtWRAlIQRXl74R58pW3BIx8vTiFCGsSHbYIr2hFcOt4pvT
FYSQL7bK9t7Vgn2fK1SqFwpBRmtz+p3UJgyqWvTdWlcIHecX72Z7NeF40eUH
H/WEICuQnrNUrwlnpTiv+mIkhIvBiUangz+jjQflQq6m891PXlT6vBGfkPPS
5e1oWyJdaeWaD3gxI9a7Z7sQSoYlij6VvUdfR4FOgYMQogUHHPzgPZpL7+JF
ONHxfjWIJN/W49w3bwq3uQhBr3NZQrp1PY4eXXRy3m4hhDbdNF75oQ5bda6u
E3gIwdswtkjmvzos6ByQKPcSQp5ppWnL0jq8HO9ee9VHCH6rxgrTmbV4gPH2
isd+IRSuW2WyP60WLX8bOBj6CaHePPjpUvta/O3zp+tjoBB+2hJPqsreod+q
W+Lp/wlB06v1EZFUgwyexKvO00Kw95U3eGZTgwvu+YU/ihSC2qEtD8P+vcWv
09ZI254Tws3jmCvn/xY3ff8691I8jefC4+zlFtWombSxzzVJCORV9sK/w1U4
bp2Tq3eD9k/UyqrNr8IXhSHL6tNo/m+n3ndTq8KE/d9HUjOEILrXornwUyUe
Vt9UfvCeEGbmyN3jn61E7XMqNtI5NH5v6Q0TPYj/1oTLtecJock/Yl2SLeI3
wa+WnMdCMDkxYKZTXIEvMrfePFlAx5OesrJ7WwUmuDzfY/2M5uOx827RggoM
kNVYqPqCjmefFyXVX442VTEkq5juz+DvbLWacpwwcDwe+0YI5uszhOZ+5dj5
o3TNLhRCQi+lsmttORYna/1bVE37x5qvPSRbjkf+iS7W1NH+jb/OJRa+we7m
+DuTW2n+9hio942WYcn5kX2tX2h+J4XD8IcyTF7npZ/VQefPafSdnlGGWx8s
fWHZQ8ejjj5dZlGGr0Mb35/h0HiiXjHOXnqNKUYr4x34tL1wmn+q+2sM7rvt
pCWk+1e7O/6x0WvUswv4UTlI16fw71trcylKSbZlJ4zQ/DzfMUFkleLPl+v8
vf/Q+V3vLxoPKcU3/lnGJn+FcG+sf8tMm1JMXTBjaGKC/v4uI2iRein+D0lo
QnE=
               "]]}, "Charting`Private`Tag#2"]}}, {}}, <|
         "HighlightElements" -> <|
           "Label" -> {"XYLabel"}, "Ball" -> {"InterpolatedBall"}|>, 
          "LayoutOptions" -> <|
           "PanelPlotLayout" -> <||>, 
            "PlotRange" -> {{0, 1}, {-1.1279160762741534`, 
              0.9999998782112116}}, 
            "Frame" -> {{False, False}, {False, False}}, 
            "AxesOrigin" -> {0, 0}, "ImageSize" -> {360, 360/GoldenRatio}, 
            "Axes" -> {True, True}, "LabelStyle" -> {}, "AspectRatio" -> 
            GoldenRatio^(-1), "DefaultStyle" -> {
              Directive[
               Opacity[1.], 
               RGBColor[0.95, 0.627, 0.1425], 
               AbsoluteThickness[2]], 
              Directive[
               Opacity[1.], 
               RGBColor[0.24, 0.6, 0.8], 
               AbsoluteThickness[2]]}, 
            "HighlightLabelingFunctions" -> <|"CoordinatesToolOptions" -> ({
                (Identity[#]& )[
                 Part[#, 1]], 
                (Identity[#]& )[
                 Part[#, 2]]}& ), 
              "ScalingFunctions" -> {{Identity, Identity}, {
                Identity, Identity}}|>, "Primitives" -> {}, "GCFlag" -> 
            False|>, 
          "Meta" -> <|
           "DefaultHighlight" -> {"Dynamic", None}, "Index" -> {}, "Function" -> 
            Plot, "GroupHighlight" -> False|>|>]]& )[<|
        "HighlightElements" -> <|
          "Label" -> {"XYLabel"}, "Ball" -> {"InterpolatedBall"}|>, 
         "LayoutOptions" -> <|
          "PanelPlotLayout" -> <||>, 
           "PlotRange" -> {{0, 1}, {-1.1279160762741534`, 
             0.9999998782112116}}, 
           "Frame" -> {{False, False}, {False, False}}, 
           "AxesOrigin" -> {0, 0}, "ImageSize" -> {360, 360/GoldenRatio}, 
           "Axes" -> {True, True}, "LabelStyle" -> {}, "AspectRatio" -> 
           GoldenRatio^(-1), "DefaultStyle" -> {
             Directive[
              Opacity[1.], 
              RGBColor[0.95, 0.627, 0.1425], 
              AbsoluteThickness[2]], 
             Directive[
              Opacity[1.], 
              RGBColor[0.24, 0.6, 0.8], 
              AbsoluteThickness[2]]}, 
           "HighlightLabelingFunctions" -> <|"CoordinatesToolOptions" -> ({
               (Identity[#]& )[
                Part[#, 1]], 
               (Identity[#]& )[
                Part[#, 2]]}& ), 
             "ScalingFunctions" -> {{Identity, Identity}, {
               Identity, Identity}}|>, "Primitives" -> {}, "GCFlag" -> 
           False|>, 
         "Meta" -> <|
          "DefaultHighlight" -> {"Dynamic", None}, "Index" -> {}, "Function" -> 
           Plot, "GroupHighlight" -> False|>|>]],
      Selectable->False]},
    Annotation[{{{{}, {}, 
        Annotation[{
          Directive[
           Opacity[1.], 
           RGBColor[0.24, 0.6, 0.8], 
           AbsoluteThickness[2]], 
          Line[CompressedData["
1:eJwVmXc81d8fxykaEhFCFEnRoCGK6i1kVxRakpBCISOaIkoisioZ0TLKykpy
7M29drLKusO995AtX/3O76/7eP5xPvdz3u/X6z3ulbVxOXl5CRcXVwY3F9f/
Pw0v05tLGOaHp4v5mgb3+R7m0ZZ07ZdQgZe5nRNSERdhb8LL2C8SOnAjKken
LdwFjBo7s+MkzOBBSuntpHAfOG038z1cwg42+L5pOBUeCr3Kj7VDJDxA7ehq
M/PnCfBG9MSjIAl/UEXz32+FZIDvii9bn0hEwn7RFB3p+wjOnE3MGBt/BwFF
34/yHaXCqn++lnobMiDfq1ylqKsT5E059PKnOaCQtoGiz+oDr6YD8HLyKwyN
dJ2tXDEI63KE+ri5EcguT+U2FBqBvAHtBsrBMvjrXr0vbZYOHfq+4yF6ZeB2
s0Bu31IGTKcXixmfLIPMB6ulC1YzQO3OgUs1V8qg1VplS8omBhSsVZ4uCS8D
HYbYETVjBnzVkZTJppeB7ZUkEe54BhR9GHOPjCyHE12dnmoHmVDmGLf+LKsC
PonRm17YjMIXhpOT1XQFfPt3fuNXx1F4d1X9my1XJUTaRTS2uo1CgH3nOWeR
Sig0uqkx5TcK+jZCMQ8PVoLq8aAt9KRRoJwNEE8ProRsW/mnwb9HoUf/uujS
nVUgGW12vewsCxqrNS6vUKuCD6VLalddYkGxLl/u6iNVcKznp+7xqyxI0Plo
Jm5eBR6tS5OKb7LARvN3xM57VRCW7fbeOIIFdDVz4TONVVCvI2AtVc+CqS2H
BD9fr4bH5mj6/j42HB7Qqg7yrgb3abkg94NseBSn73P1YTXc3rSr4aI2G8RE
zLDcq2pQSrQ222jKBlVuJ0pMRTWoJT0/rH6NDd7dL0MD19dAyf67jb1v2LAQ
OiloV1sDwk7q7KalHNAxmq8+0lYDF4c6s3NXciB4GdeDjf01EGSXz4oQ5ID0
vVVjPydrgHn+eZ7qeg4cdtxENZWphbM5Tz1E93DAR8ckDLxqYaDcdZeqFQeW
zKWtWS9fBw5+Dv1zGRxY36g1Acp10J8tZXs7hwMqiV3tdgfqwEut0WCigAOX
DZa/Tj9WB89iCzSaSjlQ88pGXutmHfzSk4tQaOVAqLqEukN1Haz8r1nWeZID
yQKZUs+a60A65pqZxywHSgZ0/2V310FFgWKX2wIH/gR5VCzgOgiBde1neDBY
dFOOh4nXA4TdvVOzFoPU3Ue2+Q71oJYWm75vN4Z9JtK6Pe718Kv+S1iJCobj
m3MUuO/Xw0Pu+Vzt/Rh8Gn6zDcPr4Sv1VdUewDAgdci7r7AeuIMO0b8YY0j5
PhHMy98AmCXuccQeQ9nzIJdtYg1Q69m22cQBw8/LsidPyDQAuzRv1elrGPgF
Tqx7pdIAY7zj3sfcMLhapSbuuNAAr+Syi3ruYVD9Z513Kr0Bziu7GPlHYDA+
VuJ3tKAB/hgkbV8ZjcH29cYTamUNYMDiCnj0EkOYWh9NsqMBOGsH3zjGYWC4
nJcY+K8Bph4IXv/xAQNXceFw6/JGONVnv0w2BYMYv2R2pVAjrF5xQcQmDYNW
8g/DFPlG6A7gDm7MwBD7y/yu67FGqDYM7zYowJCtlKtvc7oRlKLVV1kUYqi5
KyJqdqkRirmupp0rwjAl3vpZzbMRWsKvaBwrIfEzNelfjG0EO7XJ4M5qDNxl
hlohrEbYt3Fp5IN2DOJrUgV8phth+1X16LWdGJSsVna7cjVBfoT0koQfGM7N
V7ubiTRB5m1X0YRuDDl7jr5ff7AJShSvyej8xlD34N2N1bpN8N5Xwj5mAMOv
pqWH/51ogl1RX4QZgxhWO5V1DNg2AavYNcFlBIP9W1iR+rQJclRr7suOYrg7
Ht/2OqoJHnY9nlBnYYiAxTchCU0gNkZvMGZjKOkuOnDjSxNkawV/OosxdChK
LbP93gQy10yzzcYwsLzutJhVN4H60Pf1+uMYJETUnfZ3N0FXyAdx8QkMu2xe
qW0bboIxpZy0ScK6mbNLpXATTP73NLF2EoObcX7svyUUaJqj5lhOYwiMEXMY
56fAKsm+ZskZDAl0z32DYhQQOzFl0ky4wV+lqWobBUzbozy2zmFQF6xf8nwf
BYJ5fpu0EU5+dUntvCYFepM7VbznSX43zzrJG1HgeY2RzNq/GB6mP3uDzSmg
zBFa+57w2H759q/WFHikwL1aaQGDVfm3lf5OFMjlm1idTlj9B91N3JcC/yWb
bo74jzzfxufjwFMKHJe9f2CWsBhbtOdTNAUWvu4wN1vE4O/1aY1XIgVOx2p7
fSQ8zq199MgnCqjeTEsYJ2wV3HVrVT4F/t060bTnH7mPmGt6eykFPltJL3Ui
rJ64bDChgQKtF3kPxxBO3h63zrGTAu8Pzd8vISyWt9dYZYACMwfHK3sJ+2vW
PVhkUUB764DwH8J/6qxza2YokGpYffk/wpmpfz0MuKkweSuu+B9hGtYNTV9G
hSh+O+k5whv2haes5adCWp+UH4Ow2e3ecm8hKiyYNLCohJ8ihb5eMSpM69+6
kEG4jMdjVkuKChm7drb5E541QMLJslTon54wMSWsHMq3c/VWwgI9rSKE7dvM
9dx2UOGt67Qlhdw/TiLxUuduKnx9acF6QLjNinXnoBoVDgcK+ykSXvVOLTrx
IBV6KrQ21JL4ajH8MpdpUaHszJLSi4RvKTXVOelRIb7F2ZFN8pPpLjFMNaZC
6NFkSTfCtAK7f/tOUkHOoLmZTfK7YTFD4vVpKhjNCYRZEzbX/ruX6wIVjKcD
zeuIPoIDdY9ftqHCdzuHTdsJzwn3+ilfp4LHd+HW5lmi3zMKcZFu5P4BB/PX
EbaPc8+f86KC5t1nb82IHtu28rHK/ajgcz4w6ssUeZ+DauZnXlJhZ6LzMO8f
8j6+fi7f40h8Z2yEeIg/NlQ3Ptn0lgrW2Xf05oifgk3tilmfqYBV9FtriN+u
2j/f6ltOhSaj9W4LdKL/tJ4jIzVUkFmBZ7JpxH9jWy2NmqigdMg/yJr4WedO
cZhoFxWWmN3ofEP8vjFsdC6FQ4UTkRbr83oxFF/yScmeoALzupuyZg/R3961
Z7/NUiEu4u6dsp+kvnWoFzQsaYas5y1FGaT+iEsH3cRizXDukjLe0YwhnyO9
ZXZ9M6yxONfoTSH9oySrnUu2GbZGh48UNWKIsu1SEd7eDOwnffU76zAIpypM
qEAzjN5Qc84uw5B1pyjpkE4zeKYK7y4h9dDkmMlJXYNmaIyP2FNVjCF0zCvr
9Klm+Dl5c6KQ1FN+tWqX21eagXe8+LZeNgbeisssFNoM+fOXRdkJGN5Fzb2u
iWwG6v10Lh9S33WuhBg1v2qGBr4De1e+xuDHl5s68LYZSu3vuS4j/WHRhMeB
t6AZ6sb4L7x7SvTamzRs+KsZ4qfLnjl7Yhid6e9r39UClYH8Gke0MeRdCS0z
VG2BvPWe8pGkvz3oPPwBabRA/NFd4n0axH/5cddTdFvIPDkoeZr0R62b5xfu
WrZAj3/Wl97NGGImOyQ2B7ZAypMZpcOk3+qPN5q59bfA/ejBbLMiDqy9dG8/
bagFDmUGMILyOdBH3SFlyWyB0tP+JwqyOeCR+XTw6FQLLOOTy5hN5kCCi4Gb
xKpW+BJydEgwigPT7IrQEtVWcEi75PDKiQPvmN/qBJ61AuIduCsnzAHnFyfk
HCNaIchXf50VPwfUdAbvVL5shfyPijZhyzhQF8e38+7bVrgyWCvYM8+GcZOz
oYyCVlBU5pkVHCTzVf70qYrBVhgfmHAZzWJD18PdvbcOtEGS94zQPQM2CEh/
xENDbWAu8kve3ZoFmhYPewcZbWCZGZusROY/t9CL9QOcNrBOjTk7aMqCDm7x
j79m22Cj9KVj+7VZED8SaNXD3w5rrr35HCbPAqVMx8ZWlXbIbnk0sEAfhWPa
Smll/u3g2cnFRSXzabBDrv2bzR1Q/TjwbOM5JjA1Pweu2tYBlP7yEVlTJuiJ
v0+9qdwBp+YCuF30mLCkOpJjrN4BnX9jmH/2MuHWZo+bcyc6oKbg8o9EfibY
9+95dPJOB3gU60bGFzHgiHnme56WDvAJ1w3cuo7M35ppQ1d9OsFUbWJIOp8G
HnsqcsTKfwDX9HKKa/8Q9KdXPG2W/QkNJy8rPnT+DX8d214r3u6GM1S9yL33
u2H7keWL9t964NOIcWKNUhvoJcleyVrXByWrbim4tVWDl/TFTb8t++FPO7/9
Ilcm7GCZr+o89gv2t1htyAhOR2sFx1ZUzP8CKxGZg++9ahAPep0hF/sb3mzN
3qw73IqcVL51rTQaAOO6hBSVn90ozcDmTfH0AHy9tSu3PPo3mhqVXDMSPQgm
YW/PWH4bQrmn9JZG6gzByRChwS21NBRoVBAgpTcEDgnlhbWtNGSprbjivcEQ
MPGpz/Z9NLRk76rVeccJL4T+eDZBQ8eFKWI/zgyBZbjx4gtpOqJTLbZJXR8C
nW02Wk9d6UjyuL3pu6ghUhftOgeFGMhHPyAhZ2QIFGst/FqPMFGL1VXLXYwh
sMhbGvPNkIk2expJfBodAuM++xtxp5ioLlEo4u3YEBR291kcv8xEIn/jHoXP
D0HkaHOpXSATJX/Ou+4qMAyvj4fp2jQyEVWYrrFDdRiCLi1Qn58cRZsU62c/
7h8Gwyeiw5/PjSJPSM+V0xiGV9EHvcttRpHkNQ/l9ZrDMJfFK9LtNorsKrnk
+AyH4QNtLetb+Cia9ZLgo18YBhal0EureRTJ9hr+eBswDEZHj0hZGLBQUJlG
hnngMBR876YcNGWhPx93PFr+dBiWCwpGk8UKlbkJqDiFDYOKhZtp6VUWslvR
Errn9TA8zF+m9/kxCyXvPatXmjkM5dYRRrwVLKQUdCWvr3sYHFYEy35UZaNo
lzMhYX3D0HmlRSD4EBv9MzOw0/o9DNYKQQ1XddiIunG78IeRYTjJfJO18iQb
3cjlXL8+Pgxd1N1s+jU2yvnlKb+wbARUZZIer09kI3U1/0iJPSMwI2ecpbOU
gzpsJFTjVEbgdFHkxLcVHOT+LL1TRm0EQp7LDG0X4KBPwz8kFQ6OQGd/Xt2U
OAdtiNyZqKo7AgLPVZ7sVuKgJeMdn0+dG4HfO1d80jvNQfWpitUhfiPQnSDI
Gn7LQVc7iq8KBYyAZqZuoGsyB/EsMeOLejwCOR7taROfOOjw2fvHYoNHoHg4
yn8wl4Myl7e2pkaPgMYaIyuHag6KtLv7qzp1BHhzaiv5GRxkuYEyx906AlZJ
NhfTtmAkIOGW+619BIxqdy0L34ZR6VrRG54/RsCVtaTERQmjLSvP0+m9IxAx
qnd1jSpGeGKkg0IfAZb71LURHYz8ahe/xC2OQKSDseWQNUYqFYkup7lpoDQj
lqNhhxGtWGe7EA8NTtAuCQRdwcg4JyjJfyUNJKezqlY5YySaIPbcSYQGk0bn
dry9jVGyh5LzgW00sjcAr2w4RudcmhUndtAAvxCVoEditNrRY/iTMg3O/3dH
9sMLjNwuFlrK7KNBzJcO/uVxGGkY6hot16SBYrDDfsuPGHF0GMtKtWjw3u9k
988UjN5AcNntozQ4cqf+msknjHj2tRzgGNLAvSP+jEwWRk0brRTazWmw1z1P
81QhRg8kuYeenaHBs+BZnSdFGO0VfZegf57cj/fGnrxijF7yMcWKrGmwK/NJ
1WQZRjZTnrxvnWjgvDK4jKceo6m6kAFXXxocXj/x1KULo55V7VcXHtJAl/+1
yexPjMqMpfDjRzTQnOqWudWDUVhT6t/4pzTwMk4dsOnHaFtLtUhjFLnPe/ff
HUMYrVkr+PrMSxqML6XObhzBaOaUhexQDA1stRbEL9Ewqmgf2vk3gQbfXwW4
1TMwsuri1lNMJfFEa/00ORjpSBo05nyiwZjGq04DjNH282GnNDNoINL4bq/R
GEazPRusT+fQ4KPEicV9fzDqk7YfGcijgbeu+7WNExhVWn2+5vyVsKPCL65J
jMJ/adwKKKbBGzv7zrQpjLxlH/5bU0oDi1j/c57TGF20qQuILafBjWdWA6oz
GO0YOhP+pYYGG0wf/UucxUhY/o041NNgreetSKM5jOYu0+LrGmlgMO+2k024
iuaZ9ruFBle/dzmK/8Xok8L33dfbiV6OLAgkEY5w4CmY7aSBaG5ontwCRrdT
jQ77/6SBS577pTjC1qPhFYK9NFAdeiIo+B9Gujt+Gr7upwF055Z4E955XbZ5
ywANeNR6PX4SFkm/ejp7iAbJz2nbVRYxmudk9B6i0WDxYfFwAOFfyjO2tQwa
RLw/lkTmbVTtephpxqLBp2C/S0L/MErPCnD9xaHBqSZjOSPCkX8app3GaWCy
GEe7S/jOXpF7MxM0UM9wSP9A2Mbj/NKH0zS47ka6EWH93KQnAnM0WPdDX3uA
sPI0QzDmL9GjyzGhScJiaruj5RdpEFaZ/pvsH2jBy1sqi4sOTVccc8j+gQYL
UNLBpXSw/u3zhOwfqG5umWINLx2Ci8asRwlnqh/POLWCDtf8StTbCb+4E7Wv
n48O7MJJsXzC94t6vjmupkMtK3IqjLDdf3Ja04LkfFxqhw1hw8NONb7CdAgx
PVK4g/Bun+zjq0XpwHpq/4ZD4iFeMtf2ch0dwpsUnyQTXuQ6cn6zJB22xMR6
nCM8dCTwd4YUHdY4t9jwEK73o1zR2EgH15pfpz6Q+L/ksfI4uZk8fwntcAvJ
36Ltun3NW+jgaMMVZ0XYrpw6dUKRDh2VRccGSf53+Wl7HVOiw7/m6I/t8xhF
/15Qa9hFB929UybahBc082YN99Jh40rvYylETzX/FG7r76eDd/UDTSuiP6WL
A+rV6nQ4KW+h9pnoM7L49d+jh+hwcYDjO0n0a31P4J62Fh1WfpRee43oe2Z+
wuewMR1WZH/f9m8cI8tznzW/H6fD6bucijWEy77acx80pcNUr3eOJPHTM+8u
vwMWdEi7Exi5jvhvy3RxgIo1HTzy7l7MJf4MNvfW/WJDhyqORdoTOkZ/cnYv
33OZDrGF0cctiJ+L3d8FKjuS8/MusT+I/y3Gnzzd5kGHzwECVr6kPhSZaBun
3KQDcyjkungfRpsyF/gVbtHhqfdkx0dSTzjOLs/k79NB/c/PggxSfwJYZs9l
AumQw9hZbtuKEdNI4GRCEB2G6+fTvjdjZJJWLbwhhA73uT+MC1IxknJUj1wf
Tgf9pn1RcQ0Y5dA2vhCLpYOY1bT+hUqMJPW6TkfF0yHT027z7XJSLz+Ei4sk
0sHERNo6tJTU+8u8MUIfyPkT+vNJ30n+B5ix/Jl0kBv+UeWci9HavtykJRV0
eC4ZuvvVWxIv/nv38qvoZE7My1+RiBGfhs6Za7Uk3qBzwiUeoyUvW1Z3NNHB
h/UoV/YViZcp9k7posNeq1b39c8wolYqnDDBdNhkquRge5N8/yRW5P1DB8XG
c7Y67iT/m/J5CifpcI76846UK0bI52ih3DzJx5Orq7IdiH8P2MjP8DDg5qhx
sZslyc/n13/jJBmweim3vpEmRit6bDpOSjOg/XjLi/iDGPnzbctaLsOAqs7L
ooz9xN9XCuxvyDNgPn1ZvO1ujBxl25t1djHAZ4/MUixL/B0lkDx6lAF9rIsi
1twY8d7zNTtwgwG1jUHhX75yUM44aw65M6AwK9VXk/RzO/szCbo3GWB7nXew
MpODKk4oM0/dYUDd/Xauwo8c5L+p18c5gAGD95Rq9KLIfFCzP+3tKwa8zTB6
NO9M5ou1Y9wCZQz4+slcvlKKg7Ifn/8YWcGA/Q0bkmzWcZDNQpXx+moGlAnP
5s8KcVDZcNwLhQYGhIbvyhFYzkF+BUY7tTsYEBvvKTIwxkbcVh/PeDMZ0Fsj
n7y1nI24UqwyBoSZ0EOLkdhvw0ZVrE7nBFEmdDR9UbY7z0bBu0yVLMWZkDrW
UvfYjI3WFWh/bpdmAk/r2pe5umykVK2QVqPABOrDgqq0bWxkOfznQ/phJnjx
mB7iGWehr7KP4287MoFSIGru4cVCbjEZIcJlTDC+yN5LcRpF+Qsxj8sqmOBu
cHv3OttRtGD1yNetmgmjc7+fnSbz6mO5C54tDUxoV17iXqo/imI/8V0I72RC
2zpNeXX5UVRZfHmHMJsJMOlsVdrDROKD6+uFxEchiHp+Zr8uE33fHrhCyHkU
ym0rZG2WMpCQodsOPwEWXD7KZ9h4cQT17KS23ipiwWTRTsci2UGUGQ+bh6zY
4OhWWFn+oh9dyFAVkl5kg2y+WWF1xA/0ICDRtyeVA5y+H9Uyz6joM136tYAx
htc3LZOlY0tRYFyAdd9xDEW81krSFqXI7iRbPt0UwydGvdO6NaVIqqgo89hp
DBO8GjYLD0tQUOj5qmAbDE88KraIdhajq6qvxvluYWili92Mci9Em/xF9Jd/
wNByLX71rw9ZaHH/3dWdyRgO/Ojs7pfIQl3swZYPaRjkHra7/wzORGGnv1zQ
zcIw6Cd8znc4Hf3bdtI9oIjs2XeUxtLupqKe5tD4pa0YplOitkSkJKKCRzO2
re0Ybjq5GIuEvkGRGhcV3/7A0B2W0yDDiEdG75VytPowUPVfxU3dj0GF3o21
vgwMv3QSCrVTn6PonftCTVkY7LYYaqxhPkM3BmLNZDGGPRM2UaE+QUjB+Fp/
ySSG5nbaFa9UX8TD3fYubAbDZuH+TZU+t9GvXA1H63kMX5M8bSJSb6Aix7fK
u/7DoBZ73acg9RJ6sXHV1P9/l9u8O+T//28V/w8dyY1x
           "]]}, "Charting`Private`Tag#1"], 
        Annotation[{
          Directive[
           Opacity[1.], 
           RGBColor[0.95, 0.627, 0.1425], 
           AbsoluteThickness[2]], 
          Line[CompressedData["
1:eJwUWHc8le8bpnwlSWhRkkpSSUtpyCVJdiorSkgaSpJEw0qSKAmpkJCsrOz1
2nsce6+zzUNpiPi9v7/O5/o8976f97rv52yyvH32yiIuLq4P/3Fx/f9X8wq7
qWjYQMltfep815oYgufEOrsBMXlwTTj412rGEPs/hoR+E1MFV9GhzQUuMYRW
fUdamJg+iqyKTkYwYwgjq98FAWJWcEts9LXO/EL07X52wk/MAW7KE+t+GMQR
gR9Fi7aa3gOXSFoi/XkcobkiXrEw1BFc9HtK7QVxROZE3QHORmdwef+zyNka
T7z8KiJzRtoFRU0Cca4/44mTG6Kjh6+6wi2acuTO9gTCpeK9ULG+G9wcA+ss
LyYQ8gdl/c4Hu8NtnfjkyfIEYsWEQ+1WBQ+4jQ+4K8wkECOfC5Z+7yAxEbVy
+65Eovwir3qh0xMUvb76eZ1FIhGx+rSXj5gn3Cx3KggEJRIP69+WGeZ6gku3
yKa5NJEwfDq4aIvpUxRJa/x8H5tI7D22/Thn9incFppcLvslEgI/77jmhXpB
ucuET9Y+kWAl5hY8O/YMymm019OGiUSJ1eK5c/3PwOV7c33B0UTCqTXQaWzj
c7gpucjp/pdInPPty8wueg6uNUuy14wkEHKq0j89LXzgNvXq+EBDAkH/lnVn
Q9QLcEV90rcLSSDOvOm+oSv9ElxLyh8E7EwgZLW2xK2rfImiQR0eU6EEgm/x
TRbz6isoZ7f7bSHrdylnPpXQ94fyTXZEemE8sXq7v5xx8GsoU5ZVtp+JJxY9
TdcpZL6GW1yg3seD8cTkYOdNKYUAcD3Z0H11fTxRG7IpYbIjAMryu8f/0OOI
7OmTNYYyb+AmkO1YXB1HxOjdGM53IjFTmcsniex34ku+LdVvwFVc/fzsmzjC
ne/btudigVB+d3bleqc4Ysep195pdoEo0trq+84kjmh+enu4pzIQXPIqjzIF
44iHZTqa/20MAtf5vy5s9VhCarFsgpxjENxc09zXPflC1B3nFzCuD4JyzA1P
7YIY4p4b+6a7VDDc6jc/c/n9maj4Fy3X2hyMIrE3vlSbaOK24pNX/7a/Bddx
rVerYqII0YcWk9Lub6F8bXGA2mAkcf3PhjTn3SHgyrj7Nl7/EyHwI/jARt93
cAuLVWU8CCUy9t4LVqe9A9eYqKYG5z1hZnfu950j7+F26Pnpr5ffEcnjK3LK
2O/B1Xzd5J52MHGW7a1442QouHh32v0n4U/MSl8NexNK4piDo81SfkT0lZPz
+T9IrLb21/vlPsRPKnfRisgwcDl3Lts58IQI3zQoeXiGxKtz1vyodCPUzAvd
LfXCwXVh/wlHi4cEJzyU+uILib2njXn33yNC+h6cyJgnsZtNn+xSW+K4+Pno
foOP4FKOsgjhO0GMmCj8x/eVxBHnY1mLrSEx5nz5664IcL29X8NF98Dt6we3
cvVGwI0r7OSStmCIWCXHfj4UCa6s3U986mNh/UTi/BGrSBT1H7006hyPvEi/
pY2vIqG8WP2otnQirIZsbvxhkvic+Y/lrsnIMJOR1QqKQpFjVaq66Dfwu7zt
HSiKgqRPw0bniW8wC+P1cxiLAldYq19cWTrS8u8dWyoajYiU7tmu9xng7aWP
h52IhnnZ4HX+O5kwmT0Xvu92NJQ7mB1HTmUheV2pbuX7aHCNjp202ZANniP7
FkwrSKz3iUYczIHx+U/Jk1PRKOoMf973MhecHn3+yHWfMSjjaraLkgcvM74r
5058hrnzpf2PhQvw7fLtdZmBnxEhKtknHkhA0PbY04cKMdBL1BNN0i5BuUeX
Ce/jLxAaa7IZP1OJfYnCvOJ88ZhcPbZ9IJGCarly8/o98TB+0oY/sxSYpzrl
uZyPx5/JQgNhrSb4ZQ7YDcXHI6L2tfuJ4Sawi772xOgk4Ka7QteXrS0Ib9NI
3fsmEaFjHt524W04YPxvGS0vEZ3nb4Y/H29DXXeKdSA9EdcqDdIjFdsxM7BW
/PeBr5CJlBls7W6H/gjDK7/zK8aMGhQOr+3E6M13Q7e4k3ChPEvnrHUnPDja
iht3JCFw36fLNhmdSJn+NuX+MAneyx1ehZ3rwqn7V7X3Ryeh98HFz5mRXeif
WfeFXpcEY7ZaXuNUFxweNXAH/0xCtsGeJrZyN5YtuF84JZGMkBuStR+fdiPk
upGZrFoyDpmE81UWdUOqVdZc2DYZdRriahOz3VCK67jcU5AM0e2ixYr2PciJ
C87IkkuBFWtFVpdZL8bPjeVrNaRA1GohcuWhfsgv7TimRE0B5dzjwSN3+/Gg
sLhwzy9S/sTsBsukfizZ/rZotUQq/Df/DkmRGsCm+eNlA7dS4WR3vzKGbxDX
vsmebHZPxZFrB62PSA8i6drairKgVPCZ/+RpODGIoy1jlXEFqUg8fVflp8sg
PLw71EObUnHz1L4h79BBVB0rqX7JSIUyplzFcwch+CNR032G1FdIkUjpGIRB
7Nvau8vT0Cl3u+DEz0GEXvTQtt6UBllX9R0nBYdAFblVb3wgDVbGUTbFG4cg
U2Wkq6WRBre984nH9g7h9mOVxmMX0xDDf34iR2UIz8+ONy/5mgb522U/4r2H
UDCn0v1B+xu0D32Y911FxdYzE+zSF+nwqVFfdUaWhnWup45c/ZQOgXKuPHXQ
IPQ14gV/Vjqk7P8Z2p2l4S/fObkz1HR01mZWuTrTQCnKutt/KAOHXLcnhlfS
8GCP+/wfRgYmGYJ3ey/Tcdus+3TobAaKAkZ3Wt2nw8p3/ycIZyIaVfRRHzpO
sxknvBQzSf52N5xNpUMqQvP5yjfkufb04XVcDIg1RHVnxmbCcYby/dNKBgTn
5naaFGZCPuZrwvZtDMwYJTdEDGeCi+vqhsO6DEw85ZNUXchEfuKJ9iILBujf
LO6wVmUh+rzkK/V7DHQN5Zb47MiCG++/UxRvBhpWrFolp5wF429dXMahDJQe
u3WlySALVW1GFo/jGci2qch0sMlCgIgMf0EmA1GVTufzgrOww7fKVLGRASfX
vnD18SzIuC5dOMLFxGZOzPbL77Nx6MqLk4csmVi7geshb0o2pj+ZTty3ZUJA
63xdXHk2yXc732Y9YOJ3zLLbk5PZUDGuYx98w0SdmV3641M5UNZa7nugjIkS
3+r/Nl3MAZ93n/w9ChNZuZuNyuxzUFX2tS+9l4nINW0z/OE5MFfS3S3/k4m3
qnJaSd9ysOahROddbhZ87Z+FnqnOQWfWhNu35Sx4RAyOT/fnIH2v4rPjYizc
bziMkOkcRFQGmRVJsiAol8Go5suFSJSADLGNhWi/Pb6z4rkwd3kyVSDHQpP2
ti6zk7n4K3/HM0+RhZ21q+5uDc6FYaR2fKYxCwOVnJg0hTxMPlr8K9GfBcdt
Njp0rTwoGj8gEt6yIPCM+WO1eR5C9095x4ezcFitT9nZOw+qI/3rYxNZeFNW
042uPEQb5R6PqmJhh5Sa+53xPEzs27ssspGFoifF26K486EuGNsa0c7CuEq2
A++OfPwpC7oaTmfBM3L/+kNK5HmEwN6wURbWLUouvn42H4EPn/z98J2FFIsd
1z5Y5+O74d/S9zMsnCr+LFj/gNT/6/732gIL/ZKbMuZf5kM26tymwsVsOLiF
mu6Jyoe51lb1lXxsfMKb2De1+ej8UBVUIMTGbIGbiol4ARoUV+wV2cxGcq6p
I6ugAPEuoVfzVNlQW9chLtZcgAlp25dCGmz0Op8t1WQW4GAjMq7osLH0sIZQ
kmAhEjfSFgkZsnE562C8w6VChBRtD7e6ysbfNWl6MXcLMXhttizHhg1/x12/
O54Vgke4flTQjo2CA1KqR1MK4W1hdzjHiQ39oI8jN8sK0blUxVzwMRsj0+te
h3cWQiBt5bPL7my46QcrUMYKoWzC+Jr9lI216cL93NwEPBdltS73YeOC76w+
fQ0B3/eRkxF+bERaMWorZAko7jdene7PhuzqnJwXxqS8ValZdzAbKo7mQatT
CMhUvpuSjmLjYKhRTODuIhj6qq0tymPjvHfd0NMjReDZOne0pZCNRw7HN9w/
WYTIglRzZjEbxdo7A8+bFmFiQjxeoIoN7X/z7hLPihB65ofi+VY2bIfvFqwI
KILsSKzFzQ42Xrex/3CFFYHqYebl2s1GevFF+e9fiuC1flVCQB8b7V+bb9PS
iiCZXt34eZCNmXenEloLitCp7TqdTWND3CufWV5VBE+GvFgdkw0l+72bs1qK
4BIcqCIzzIaFWczF2P4iTL69phE+woan5vp374aLoPdOUW/VGBsxB/1bfaaL
kPheyMhnnI0xwQdat/iL8Sgs28pxkg1HQufwvoPFmIjkc9P9xca7hBKHLceL
oRfd61X2m438twopq7SLkfk5xe/IDBvcdpu2/bYohkOs8QfpOTZ8JX+uyvcr
xtzX2Mx57mEkCdzQ+xpC6ic/KnBYPIymP/0vwqOKkZuiVzbCM4w1TVWL3HOK
4fTtT1P7kmEcLjimZF9WjOb0uk7tpcO4EJfmfLmxGPKZEQMl/MP45B46eZJR
DN4c9fGk5cMouyUsqzBZDMNc8WmpFcNgnve6KjNbjPy8yb/vhYaxVG02Uoy3
BOIFZdzCIsOQ3WfXzy9cArvCEL5nK4ehK8EQm1tfgqTR6U1hJL7Db2IwLl2C
XpPcvwuk/cBfDf79e0swX+3aYsk3jEzqibpGxRJIHT6ZWL5oGO3q7lN+p0rA
55CXq/KPjV9JhWu0z5agM2lvNUHWS+HhYYuqqyVIlJJg5pD1z165+1dRQAn0
hH5vTGpnI0d1nWQauwQPWLFvguPJ+sZM3g0MLEUV86NMCPl99QrIvTv7sRQT
K6iruU6xMWdvUygUXwrZw1KLrymzcQxMPj+iFF4vYvsU9rNR2NET9nSkFOp7
UgM6RNkg+CorHZXLUONcMreG5JdBW55xea0yzEXyjLj0scDVdlzkh0EZjtSp
dTBJPlL+lH/htk0ZfCRqUzOrWTBf8td9l2MZMk8t/yhRyoLbLYUvo25l+GV3
2tcrn+Szw2lTV4PLoF/aYm2YTNr/yFkj/akMD8ZW6xfGkvZ5dynSE0j91cbH
pSNZkLx5wyIyswz2F9QDE0NZON78xcu8uAy8iUlHu0h+tTzESJCoK4PX7Cra
f29Ivg/f3NTbXgYRrYc++16yUHIjbP35sTIojZzqeuHJwrdhGxuzX2Xg2WL0
bJkbyffXjuRd5ipHr6n1gRcPWXhq3WFiu6oc4fWer33sWVC3FH7/RLEcv1KK
NZ6bk/w9NDDsrUbKD1N+810g+do86fBLvXKUbR787G1E8r2ZVleIVTlsA+e5
vXVZaDz/VDTJtxyt94/mepHzo6jz3LVvweVISdG8xnuI5GejzdnZEeUIGT6/
xms/CwEGhFFpejk0TZ3sn+5g4Umr35eqwnKIBj6T/E+aBYdzF37XV5Vjvi64
wXMTC4ZnZoI7e8sRq5Sxw1OU5HdKJbOPWQ6H+2Wdi1excOh08EHaZDnsUlq8
nqxgQabByov9txziMawVK5axIKazv32cpwIS3e9vmQqwwF/HLf1DsAL7BHVr
v5Dz868m5d4f0QrsUeHePi3IQq/6rdWLd1VALf4q3VeYhfrKo1f4FCqg1L9O
pUuEhUI1/ozlxyugItLwcSvp/6PqF31RgwqcfSBvWriG7Jfy0JtdjyvwSJO7
mbOehXNEMm3fswo4uaTvVtzAgqqSy/5Dr8nztKt+3hIsbFVc36LyuQLB6xrU
N5H5shUMRIzrK5Ay8p44S9ajK3OL5cWOCmRL6G74SM7vmgPfUy2HKlB0lvvh
qAwLCftfnbn1swKZuVcPeu5kITTt4if7hQqUTawLpMiS+8Je2an7SyvRu7lh
Spyc97a7q/09NlSC7SP/NWMPC5eS3g4+20biQhb/on0s6O2y3uO3txIT399f
0yX7dTxR3i3gaCUWbdOteC/Pwr6diylvT5LYlFuKdYCFLfFNG8NOV2J+pzBf
jDILq7ZH3I48Xwk3J/aTUC0WfkofW/H1ViUeCL99+NyCBSWqSqWPUyWUD8xk
3bzFgleYuuu1J5WYNjadPu3MwppV+pwt70j9iI231rxm4SC3TeP7skoE7o41
iypiwakn5JX3+irk6+QcL9jIRlFw+Clr6So8urPeJWInG3xnoxdO7K3CoaDH
uU8USL6uSr69oFaFot7j+zVPs0F9krGt7wwpzxV9e5cpGzuQN5B7oQrqUryJ
QuR8zs2oOO1oX4VqmxqpDhc2Ft2pW6L/uAohr2Qtcsl5qinbTOz1rsLFby/D
wsh5GcDquL/iTRWUu88Uscl52RPZt3s8jMRdV04GZrIhZUZj1cSSuNO5BtVs
3BQb/hj7rQrGHX6nR3tI/no1vcKqugpGbRnnVcj5oKr1t/J4axXOtlb3j5P8
68vL5bZxoAqXWvouv5MexobHyya7p0nc9J/tpNYwlG5sppyRrMbjegOP8OBh
uKrq+eN+NaLLf8b/3TmCRTMJQuu31qDhzZ5FbmdHsb5e5Qd214A16bnv/OVR
yH/qarM6XIMlul2W+xxGcUVjyYcknRoc5vMopQeNouqd5VYVxxp8etTiqdE1
ildHxI5cr6yByxXHJSvNxxArmCL+sqkGsSU1CmN2Yyiiqi2k9dSgcOPGa+Xu
Y/ju41A2x6nBVFdl1f2oMSy7tOzLpr814FYQn9FLH4PU/sjnajy12Blot31H
+RgMexp1/UVrcUFXzKeXOYbbydZ7MzbX4l7CrdyM32PwfvJvZbdsLWAjYSDM
O44Io8Bf8wdr8XJZxRQhMo6cnTu7thyvRV3CrZe2G8ch/sjrctb1WvDvEuDe
fnYcB/Q2qPXerYVe/bewDrNx6Eqly3C71CLslukRL5txuNYNjWsG1GJfUvxd
muc4qOLHnPpza2GzW4MZljWO2ckWk8XltShpnPTQLhvHqvIbx2Qaa7HcLmTj
LGUcardCFtnTapGQwjI2HhlHXMEP3/8E6jC416tWZMMESl773N6xpg4Kzbuu
FW+fQPeVTWdPS9bhnn0bj93BCQgInl77Tr4Om79JKdWfnsBWKmOmQKkOVufq
uh9emIBS5qNeqnodkn/cvb/j+gTszOI/yV6sg7p8acozjwk833fc88zVOvi2
3tA5+GoCkbyd1o536jDtIDJC/zCB3G5bjQ8P66BqqGF2JGoCLUn/yRY9rcPK
3M+sy/ETGPMIFWS8qkPPhkV3/FInwGO0f2rp+zqku5v9zcyewMEF88xzSXXQ
1Fi7nL9yAto6RR4ns+tgIu3ruaJhApc/bDytUEKeL+aeW9U2AX+Ffta69joc
LxgZ2UibwPBtUzHqvzps3VtYdWBhAlyFuYyWJfUQFtyvfJSXgzUC69LKheux
avRLlvJyDlRiOzXjttZj0efXMVrrOQgdNHhkp1OPYdErnhYKHKTJZahbGtVj
6GfXrLUSB1WPVq3Wt6jHQLPu3ZsnOfgp2vJV4V49yn0PWd4/x4HA1X0PtrvW
o+j6165HJhxsznittv55ParUNp/xsOBA94zewHxoPSK5BJT9bnNg9TE5YTKG
xH1uWQGOHDwcF3SiptTjc+5PuZDHHAQctVVtza3H17c3YsI8OYh9Xi9UUVYP
v1UKVcQzDrl/yPZlNdTjh3/g8ORzDlq3+sbFddbDbPl3/s2+HHCXaKr4jdVj
B+9XHU9/DkSF4gVdf9XjhQf/7YwADuTMlvbYcTVgcv6qPzOQA5O/lXf1VzUg
8/fmFvV3HKTvO/l5vWID1IdDjJdHclDjFn1nuVoDvl755awUzcFgw2KlhdMN
WEQ99+F2DAfLbUraqZcb0NIt2N8Uz4F1FPjiXzTgUp3n5eBvHDyaCm/9ENSA
enWqZ2UGB28wH+H3sQF7yxHzJ4uDop78w3e+NWCq4C/bJJ+D9u3ivJcLGnD2
iDG/byEHY/cfNutXNiAjM2NnQREHYquO2BzqacDTZDvbjeUc7LF8p7CDQerv
bHilV8mBWsqfxeKcBpyJ3ZnqXs3BhXkjyvKZBsRJPW9Oq+XAXjsrdGFRI1Z9
Yv6g1XPg/X7N9SmBRhyI5vi21nHwkX3vAG1NIxaWjAtVV3GQebCNu02yEUU2
I4EFZRzUeco3VOxoxMdGlmgaGc+RFbWLXh9oBD3l5FtdMv7YdxYKpsqNkA2I
Wj1K5vck6WUEx6ARhfqXRKSSSflOtr2oeyOYXe3LgsNI+Z1ha290NEKaXj7v
/IC8r5n7teWpjbAr3/J4DXk/PJVr3ObHGlEW4z6bdoeDlPhZBw1uCtSvH/sz
eo0DFkftVRIvBT6aHxy9rTiQOBAQt1KAAsbOmWkpcw5eEDL9fWsouDmRPnXR
iIMSHoc/KuIUfGsUsft7loM/GoRI7CYKFqXaTQTrcrD7Ff+u5dso0AtouLlf
k+xnq8Epe1kKSsSYMnKqHISJfbLo2EuBkgEhM65I3j+zsYeKChQk+ofIJB4g
v69hjxReFRIv0ZLZsY0DZ7mGGptTFEiekJIZ3kjGf1eMQdGmIMTl37ZYUTLe
+WSxD0YUvPyZvE2an4MZkT6P3bcoeEBbtW3z+ARSFBUMjEMo0CT6t677NoGN
/qMzcRMUTPnvOW10fAKFFq5xaT8oOCT8sotzZAJm+1eez/tDgcnr0cve8hMI
bT+SXbeoCTWvY5xytk1AdIOPI2dNE8IDxCPXC04ga2KD9J/1TSgXeSCbvmQC
hkWpbVybmjAb0JGpzT2BoMtd8iI7m3DjTUDt4+lxiMTL/JBHEw4G8v0c6B5H
6sP8yGOqTXBYZe3q1DoOPR29s2oaTYgILF0q3DCOV5P3U43ONWEh0EVCpXgc
ciXLLMyNSf3VvbHduePkHP0odP0iaT/o8P676eMQUKi8/eBqE/qDpk9FfxlH
Ap/pxic3myC45myz4qdxaHZPNLy404RDwckX2t6PYzjBwyXQsQlKHfFLawPG
4f14jVzYwyZkXChUTvQex7bT8X2f3Uh5atN9P5dxVEgq+SU9JfO9ykiydRjH
f2VXxohXTSizF9iw13wc0UEzH6oCm6D6Z6O+iOE4VK/6aTW9a0Lp4/0vfmiN
w4M/I54aRWJvk5kMhXHM6/Fc/y+7CbXhsW1HVozjT18kQ3OwCYM1qi9VC8fw
Nvlg0DkGmZ+ecflWcj4fdK9RvTDShJE2mzne+DHck/oedWu6CT8HA25UB41h
1a+n5xxnmuBsHfMp/sUY0ivFFrvON2FyNKfzxf/n/43jlv58zfj1a1BN99YY
Xiu2Cb9b3gyPR9OPd18ewx7B68WfRJrBu4gvQ+j8GBoH5uzi1zbD5dn6sSnd
Mdim+kt+E2/G90+tLo+Oj2H5EylK3qZm/Kl4evfu3jEk6me7lkk349/owWs3
No1h9PdAf9ueZowceHfGmHsMmVdflWgebEbK8bmQX5xRuHUoxRBHm/FY59Jg
YP8o1mSF3YpTa4bIla23m/JGoeJoOvfoQjO0A1N9NR1H8X66XUzKuxnB36sr
FUdHoD5Vr28/0Iy/zcu0nmYMY6XF40MsejPYt74UloYPo58iK35hpBndfCf2
LfIehkPKC9rJn80oUXog5moyjI+3NezFlrXALZ7Nclog38fjZa+KDraA36Pc
86YGG9EjeTWCL1sw77rQH/6PCdu3p7fceNOC0E87XR+MMqGgSntYHtIC2VKj
jYZdTNSE8e96FNWCm7wpl5ZnMDGld/7VcHYLhn3NBx/eZCL33xhLtbAFd5N8
3YxMmPCMd1OOKG2BJCVbcr86E6I8sVOGDS04uVLYYmQLE0pZv86V0VpQ8a54
yLiHAT4rn8SNwy0wyht3l69moFlI4r+HEy341Su2WSiLgSs3TmbunWnBAUl7
y8oABuTWdgn6zbeg9nj4oig3Bv6U3rzKXtyK65drIl1sGSix4yo6sbQVPE9/
qZhcYMB3Q6DoR8FWNIfw6eicZsCwZtudvytb8dJv13/PTzCw8X5etYFYK7Q9
zhaUKTCQRqE+EJBqRadN6C5FSQa6nuztcz7cigqlPYI7p+iI3FN+oE2pFW77
DSqsGXTc7DN+uUe1FYdlHrhEdtHBpeAGlm4rUoTLJsRK6JAeafikb9WKGLpR
I98bOhz0blrvftWKIB9Xf6Y8HYIbvnDo9FYoXuEzUXhDg7Lhkz7acCvowrN9
hT402L+6VEudaIVr4biFmgcN7dyiXwb/tKJmbct1gzs0hDO9zXoF2qBbE+Z8
9zQNlI1XtHuE2/DT0f/fXzUaFp0/fqR7TRsitzxx91Ciwbp2ZnWnZBsYj649
f72LBrmUG/Ut8m24vXv/u+RlNJgPq+U1H27D0t6tGxQW0xCweUtck1IbEr1F
PxX+paLMdCGYcqINhgeWbVX7TsWvwB7PRvU2/Br6F1s/TCXfx1n2DTpteP9y
UtZgiAqTJYHm9WfboHyUltLbSYWvsp1unVEbOq+c4tdtpqLQWVux9kIbfI+q
XMusp2IyTWZHjUUbtIWPVUhUU7F5jEe02roNPCwFqWdlVHiZFfyosCPlA3YN
GuVRoXNCLqHEsw0+w6LGM7FUuDzif1f8vA3HiJWZFtFUpGQwvYpetoErSHBV
zUcqVsl8tCwMaSPnKA/lfTAVvQJC63IT2+DwlnNK0ZMKQbWxJTmpbdh9a+Rz
tCsVyq5VP7MyyfxUGIuXP6QiesqtKaOIlJ/oJvruUHGzfco7tbUNV05WKLhe
oiJ8RYNjSlcbJNYXB7FMqKCox1sl97dheDLvx2lDKhZ5eJ1NopH1qcg8k32G
Cvk8S+WvbFI/NDVZUocK62klucTxNmy3T1z+XJ2KkF3rxRO+t4F96ovN1Akq
aqx/L43/TepviKw+DyrmPrb8jp0j9Z1k3hQco0KuK5nxhbsdfP9+LVc/ToW5
iG9LDG87KtzLvZtVyf55qiZHC7VjxwtLF5YW2Y/rGdYRUu0YCQu9LkzGO6L8
1XvZjnZ07c8IYl+k4pTo53jH3e0oq64vJizI+CsDJ7SPtMP757yY7XUqnKUc
HGdOt0NWx6KmxomK9lmbECuDdgjTnH99ekTm13I5t9GkHX+cAjY7u5H9dT83
//lKO4qiSx9s8ybzHdjndfZhOyzntu70fEvGl7kjtsCtHToBSkamH8j+v9xc
I+PVDkUZoyf7yP65XVk39uZFO8QLbycvjaKiT1FEcMGfzFffu2cwhoojq/j3
3Agm8xmOWJIdT9ZvlPts24d2NLvm7H+VRN7Xkpm7yp/Iehjf/+uSToX++6mg
hJh2UKRWerwm71faneGsNYntqJpMWhrdSsUKjaEu99R2VOZrvs6kk/X/Tdlg
nN+OfH2PiB4eGo4bpHzmaSax51Th1pPk9ygbW3m7ox1pen5qhwxomFscMdzd
24508e0NmldoyE57tSuV1Y7UdPO+20/J70/odsbFf+0kPzTO5pTTIF67qzxT
pgMvVZMO6arR8Us5gX7NtYPknZ6BbBMG8qNHP9z37MDmPTxHbtgw4MEne87r
eQeidu8KXP+IAUFKYnHUmw6Eyrmqu4QxIH0pKbz/Swd8ZbeknhhkYKxkwmA8
sQNLZLWX/Zwk+U569/K51A647Lx3JYab5OeJ5Idi+STeUSm2lORrw8epxvqU
DlyVsfFouMKE+NDUisttHWBvC+x1dWSCqrqv8k53B6y2FRzc+4yJ2Fh7F7eB
DlClmf7Ut+R8Efh24BW9AxekV4y+iWVC3u7HWNhwB7q3Hjp5MoeJvy37oxMn
OrBz4m1IQzkTRQoOpnk/OhBeEvBbicKE14d0kZo/HZgP9jNM7mZCe2G6uvNf
ByxtvDM2MpgQuXzAnbWok9zAnqzy5zARviOTw7O8E2/ZTs12PCxk5GTVYVMn
Dhyx0t0nx8KDDX+e6Ep3IlTw0tfIQywoux86enFnJ3hp5wVWnmChTj0n7sGB
TrS9OF3zw4gFekeuV4ZGJ671HVHLcGch/ujssTJd0l/qgc9bfVmw+3j0Z/O5
Thz02sMTHMzCnHX+5cmLnVi8W7rEMYFF7i8FyjvtO5HoJqx0qI2F7vPzvw/f
74SIgUBY7AALEQVKyeqPOuG8fcmc6AgL1ptcrY3cO9H9j9v0+TQLsk+JDdZe
ndBsnsuZmWfhO3uh1eFFJ5JifoveWMpGtray7xN/0t7D7/e7V7LhkuJ2IiCo
E3KZnAPnhdhQXVX8N+J9JwJed9+bXcYGvxN3WvLHTozdLM8IW8IGpef49cLo
TpxWT/mJxWxciCrp6EnqxPKFp/c8/7LgsK8sfU1pJ3xu7r23fJiMT14y4nVV
J4K3b9Y6S2fB+OCjFwINnchlimx6S+Zz9Ii85aIu0r75dJ1kOwuLVKJXTEx0
wtwgS0q+lIXpE1yz16Y74SoS+9epkAXGyQtM2kwnohpDKAU5LFRprCro4ulC
v8aDR6dSWHh1xvNG+bouKCkdazUJY8Ht3KCBsmQXrs3uiv8YwoK9geLxvK1d
cM+WcKO/YcHKKET24M4uhN9bYbj9FQuG56fXpu7pQuE+LllbHxbUTfUWyx7s
Qg9nkvvbUxYOX0yciDnahQntdDMhJxZ2XOLr3nS8C/tlWnoP3GBB3MKqPFSt
C/6Lv5uYXmBB8HJRylrtLoz3C3W56bLAdUU8NOBMF47k7jb6//+TtGut9t4X
usC0u3VuSoq8L3aqkg72XUA/W+vZOBOh9hHLOPe7EJizpCZxgAk/h7lf1x93
YSxQWr25iQk7p/T6S95deKFlpbohk9zH3KQeaoV3oT17QPGbCxMyHm7WFVGk
v8D53E47JtZ59p45HteF97c3HJ63ZGL+WaCMQnoXFKVND2icYqLsFU/75pou
BL1p3zWwgonM1+bFYY1dYNv+TOBZRH6vb/ITRdu6sE9z1Y4d0wy8DxINedPd
hedb98eeZjLw4q3DE8HBLkTSwzPOUhh49I5i+5zRhc4mB1eubAZsP8ia8Ix2
QZzQ1Ej6yMDZj/Q9f392wendr96ltxlQ/aQsfm+2C6FedTFZhgwciApdMsnV
je67kXZXlBgQ/aLfz1jWDSVdXZ7i5QwMJJW9aNrUDa7FMTudEumgjPOM7dvW
jZXQPfs2kI4i2ZPagbLd2PDwl1PmIzoi4ssFjBRI/R9qFdPadFjGVPj1anfD
gcYyvzNOw1kG78Sxs91w3uj/zL+NhhNSp3Q/GnXDw/RQUnIBDVKRlYKWlt2I
afGeHfejgRlW9Yp1vxutpduDb8iR+1Yv36T6427QFpryn6+hoXK9hl68RzcM
uYIWxP5RkW3yPGWZdzeE3AI0NgxQyfd+tdAtv25kL7x6I1lMJd9xNa+/R3bD
af5p3i4NKsZ96978q+/G8OydZernh9BfKzBt1tKN1w9vG2gdHUIDv45+UWc3
NGZvftTdMIQk7/pVT2jdiPh7db/B0CDsPBuC+Ga6YT5z0dTy+iDMSwV/XZ/v
xnJn089XtAZxZtFpw9rFPUj/Y8y5tmsQ+9wa17wU7MHhyS+8A9QBbCZW3Oes
7IEPJ/I9I2YAK+dPd+iJ9aBhIkxu7MYAph9S3q6U6sHb8TeGM9/7Qc8V+uOw
vQdmy5dLPM7vR9uMnnG7XA8WF7dfCnzRj8z7TaLvDvdAROYGrWR7P5zuNr+T
ON0Dg1/+Ixut+zB7o/XD9gc96Avo/9PV3wP9gxdfy7n2wDxS7tzh1B4kcjO9
9nv24Geqy9eQJ6SfkN93jr3sAZUiYWkk04Pi8nXqZyJ7wBa8VNt6pxvPJC2m
nWp6kOYzENZI8sTK9nHtqnW9UBP5T7jOpx03Pzmq1G/sxR0PvlOnL5N7y80F
hWapXjh/X/a4+Wg7HBcLb+mV60Vss8hw51gbuvbIz3BUesFDdouh24Z9c/kT
06d6sWSx1O9r28i9svIkfUabtH93266xBXJPNzNqXGzUC9tzcu++p7Ti44sH
n9fa9CJhpeKdBZFW/DFc/EHcrhe0J/jiMdoCvc2+/pvu9cLfMGxHRXULFuWE
Pdzp2ovPH+W38/i24Aqz6Aze9KJz72VpN6EW7Dy+ZN46rxf2hkWSTmLkuzI+
YVtnUS9U3Kwd//1ugvwqvTMaFb2YjhOo82hvgiIrJHpnUy8c/hnf93vTBF2/
HVqTzF5oRk/VRy5vQvOvBgeLsV7wNbzdIjNGgZH53fDmqV5U/D7m/LWGAvP9
+VPpc72Q1fKRyn5GAT3UfL30oj7w3dvz4Jg1Bdd5/zv5dkkfQsPbG0tUKZi4
HWfLt7wPjlWPtqpvocC+SyfEWaQP4t83P6znppB78vfikbV9mCw7xE4qbcTD
xOBR0w196DyS3mn2vhFca46urt/ch+mU3dWCdxrh6TqgpCRDYumEnMJTjQje
eoexSKkPexZCHrpENiDnTuA+3+t9uJbssPDPqB5KPYcu/LPtg/7WSc5XuXqU
qPY9tXXog8MHm8GL/9WT7yLpLj3XPsQ+sywuSKtDb0GW6+ogEl/Se/J4eR24
+Hvqwov6EF1+yHF7cQ1ORW66mrq2H52WshuHFlVBPkRQukK8H95u/nOMrkpI
vpyld2/qR2/YdNdISiX+OrdZ8sj2I7EzP3DarBJfzzw3M1Luh76uDj9fXgXe
n3LccPNkP7JtUlkCARXwOna5102zH1LPV5cLX6+A+fZjJvH6/agr7XNdv7YC
Oht3iBHnyfOh4xclJ8pxZPXazhazfoTMfz6ytbwc0st43rIvk9/V/q4vPRHl
WMk9ZfDvWj+sGCVVF73KwfW7b5WIbT883yYOD9iUY2yspkX6LqmvEcxveaYc
FZ3RZ/Qek+dfr2tbi5fDOcVYJ+p1P3zvCVFs08owcKlIVSO3H9H/mXW49pei
zuDrYjOiH4FZp/5wl5UiW+t9iX1ZP1qv7xXzjCtFgIKDcmhDP4rqeUy9HUpx
coWMIofaj9ighH5//lLs+2/17GI2md+poAWRyRJIzHLnio6T9Z1xkQxqK8Gy
qQmnXSSvZCdcO742rwR/mD0KKr/78efiWct3ESVg9Fb9MpzrR9UKxSfrvUrQ
3JyRYcM9gMHirdFhNiUorIp0cOMdQOvdFeUbz5QgofDV/qBlA6jL2m4xv7EE
IemPvscJDcBqs4iZLasYnvHXUwtXD4Di+9ekP6kYZsEndrM3DiDFola/8Fgx
hG1/7zgqPwD1ZbfUXUyLcH/Dpc1DFwZQVGB+aW5XASz19hj2WgzAf9mi5auJ
fOg+4fbpsB6A5Pmo3F16+ZAejpqqtyPxT8bqS/Z5aE1nF+V6kv5kbeqKM3NQ
xMqZznhO+nsg8KD7VA4S1r2QSX05gIiqr9t+dGbDw22X/5eQAchYTXpIzWbB
9tt8aWQYidNe7znmm4XzzMbfYZGkfa79/QYbsqAq9mnnuy8DENVtfWGblIk9
2vaXAhMHwP5w7/AzZELc9cSbV6mk/fDLJw8GZWBJ2qpKn8wB8GmciwgbSkf/
2iw596IBTIbuM7z54Bt8abP/brUO4I/qVPHSxBSwHzwNPTVH1nt7377nEjEY
Mdx57RPXIFIe57ONsqJhPrly0cbFgxhs+hAurRcFrS2MA+v4BkFxNuEvc4/A
5ufPwoREyLn0Jrn0X3UQKPp1N/9tHQRX9JXans0nCbWJdN6HMiSWoAfW5tkQ
+c/CIv7sGIRb9/Kl71ruE19ybVt/7B5E0Qt1y9s7nhIuksKKI4cHEUFnvOxu
e0PIjhks69AZhFCA/Fb/nVFEtr424aNH+h+f/1t6M5o4UaByV+ncICTVqym/
v34mTF7u7vlsTMrPX3x0aU8s8XzP0gSHy4PYY/OsRe7AV2LVuwUzGetBXCs/
E2fpmEREcP8S6b02CFFJcdfgrGQiu5n64ITtIIxtjFcviKcSqke75H7bkf5C
jnG9K0glGqMaqfF3B6FYsXl0n1kawXTI1xRxHsShTeNF1h+/EfZ9afPlD0n/
p5sTuJTTiX8n49KcXQYh5ffyVGtKOuGd9NF6l/sg1C2eL323LoNYtTZ43dAT
Mp4DnrUXPTOIEzm3R5Jfkudet1vsdmYREf82++hED0JVRo0W7JxLyFqLKXF/
GUTZnPJnU1oukdWw4nt63CD+UI5eldTJIxo+zp0XTx6Eg/Pe0TjJfOLf8fbt
ozmkfo34j/zKAsI7vq4vPH8Q0eFrM9z3FhKrVpa+PksMgueuyH21D4WELD15
JqeMjGc932yjLUFka8d8vVU5iDrOooLAToI4kRFqsalmEIVDLoTspiKiYcOb
1W11g5jXeiS5wrCIMPF6Xu3dOIhA5b0MEe8igjnh+lixmbR3WsfwdGoRccfI
ce9k6yDkzK5XvuguIrxlLr8z6h6E4KNPcTy7ionMGsXr0oxBeGUJ2/5qKiZW
rpjkK/s7CG+577+61pcSzQU+zzT+kViSZ5+BSikRcHMrb+PCIKxF1tyiXCsl
RGpMFnfzDEHx12FaRQaJn5b/4wgOgV3g3vjtdBnRvN/80T3hIRQlv+Hf7VhG
BFD//v27cgitnz6fjA8tI4SV9/z5T2wIZk+r8yKGywjKRI3ji/VDULnf82u9
UDnhH3blp5AEia+P7317sJwQmn3/ff2WIZjMZ141cS0nKHEH7nzaOoRoueff
CsJJeWMKR1pmCGqXTBckC8uJFZn/je/dNQTNooVg1lw5IXjHjnVKYQiGHuoV
Dg8qCAHWyd67WkOw4u2WenWvkqgLGjSZ0RkCj0Ki3ffASsJX9WGXi94Q9K66
5BukVxLLIlPanxsMQb9qs774j0qC/+L6po+XhmDnY/Mkzq6KqFmWeXqr5RDG
co81CvhXET65eg3xVkPwGF2x3i65ilgq6lWbcX0ITtrpaQcnqoiqCknNozeH
8OeR1/y75dWE9728qiLbIVh/Ndb8J1tNqEsZnlK7M4S5vh3B5trVBF/LZHnt
3SH4CP4bKrWpJqrcX6iecRzCzf8yU9ihpP4e6dJ2pyG0MxdJHGypJpa8NC0a
ejyEPXGhfyioIXg1KnJ/PyOxHOUrr1gtwUN8SN4SOoTNhxRE7WvriG5FVfWB
8CF4FjyK0+atJ5JzxwbffxqC0ImSI9uO1xMmmcdERL4MoVtH52JvZj2R+nXA
gSuN3KMvX45Ui2wgvHZ6L89PH8Kq4dj9m/oaiAtxe2LuZ5Hx2U6Uza5tJPg+
u3dM5JPxOzuzUvwaif7NO+ziCVJ+odDpRVUj8S2imc+6ZAgnVBb9942bQnhL
PPy0qXwIvTyfdSQ3Ugiz0C1H+iqHsKmSqzNKiULIr6trDqkZQlncg+GoyxRi
aYiDjX79EM75Tv+N8qYQ6W/KQ2ubyfqfYW+IbqYQy15cXcjpGwJ/b+PlaOsm
Its5oSz4xxA6J8M50S+biZe/z108+4vMv0WU+/O3ZuLyvbmfy2eGIJEZIPK5
s5m8Pzrbns4P4eJDrwOfN7cQV65xnt9dSkXzf7YPP2e2ECJG+0/rbaTCINd0
8D2jlbCRz+taqkWFJffF9Wa3OogiSltitg4VbeNr1m0I6iBW35p0vapHhXQ3
RbQ3v4MgPm+VLjegoiRNdY2JQCexcq2/vZs5eW4lK2yY0EnkzVgt+32Pivvv
5735hbsJoWDX/s9OVBzbohO7S7WbuLLvfar+QyokEz9U6t3vJlbYNBqluVFR
XHCI921fN3G593D0rRdUyA3ZP9kS30MsIwSP0SOoWNjGeqx4oo8wN90u9CaK
ipGUA2GXHPuIjN8naMdjqCg87JnvEddHXNrj/PxjAhXXtTbNVq3oJ759orWZ
ZFIxaGvqZNDbT5h6Zts21VKxMmpLjK/OIJGgYRlR+IvMd5Ql7LGNSsjLblLC
DBVSHm0Ht5ygEoWCgz3ELBWPRUtNy8yoBKXl4tpiLhokT4Z/5g2mEtMXz78s
5SffmeH6h1/w0Agle71HVRI0NMvadO8gaESl/op1GptoMC22z+FupRF6Cg1Z
1Vto6Dd4ENLJphGWc1o/amRoGHd5buglQieeeZ26Ub+PBvGmL81DV+gE5b2S
cbMaDbfu0WtCBBjE+cf/fp7VoGER/1jc7U0Mgnop/02LFg2+4T+81Q4yiGmp
I42tejSEVC46NX2JQTxeMnPT4BwZ7wV+6VoHBsE7ksXfbkDDt0nh/yKfMwix
5ANqHSY0lIptKj39jUFEvp6mGV2kQTtJJlK6ikHIOnxz77xEw6TKHvd/vQwi
w9B+43lLGuw6FMxbpxiE0uG9BV1WNNALblyM42USlesnTUyu0rDSvGDslQiT
0JtP+tN9nQbNRUKPHCWYhGWprHyvLQ3pahnvTxxkEqOfR5su3KGhk71kxw4V
JuHgHX+77y4Na1+Y5AjpMolnOjIJ/U40ODYudPRdYRKJHVs2D3mQ9ow1VzsF
MYmfo+uEmME0MK4PvEqcZhKBYazK0Hc0uDW6XA/kZhH7T6e7ngulQeCAxIlH
giziTpoOp+gTDQe5Lv7SkmER405uDR8SaXAK7r4wasoifHfoeJ1NpkFkzvlg
yzUWsbNXTGlpGg3RFmJCefdYRI0f8yeRTsOOyuzhSA8WcR3fvjpm0VAha1zq
84pF8E25XtmVS8OhoN1O/71jEV8itTfQ82l46Xh837lIFsH4j+l7poQG3cNX
YibSWYRnVpoqXzkNH9fdN1csZBFbrrvOFVbSwDfnvc6nkkVY1InelK2nobww
8eXWbhbRF6CltaSThp2q044XFlhE28bUpQXjNGw8/eRUjQabcGh6XHx3kuzP
niBu0XNsYuUTTecdP2ioFP6Sd+UCmzjDpLHf/iHvS2vNbu7bbKI+cU2V/WI6
Js+LiB4KZBPlhx95yYjRkW1uIdjbyyasRtWVBtaT51aKI20MNrE4bPWvIAk6
jl5fW9E4wSaOcyVfWSxFR/yd+selXMNEQcWQar8cHZ4eh8fjpYaJjHOnFgeq
0qESLVznfHOY8NbKfip+io7AOzOUbodh4sKJ7XyfNehYUBpqO/p4mFi0f9ny
TF06PnalDPzzGybadjx6pXSGjvmYELpZ8DARu3lcuPIcHcYObsNE+DChK9K4
ptOYDt4Vej/ck4eJTfzK78xN6TDpVfhDzRomprlT1w9fJPOhaCRGlwwTVTOb
wu+Y09FGud5v1jxMfJgKkPxrScd3ynMhMeowYTu8OMrjCh1CTXEqLVPDhMqQ
w9Zl1+iQb6p28OMeIdgUwx3it+i40bS0i3vTCJFXVZkYfZsOr6bty/L3jBAv
iw7t3mVPR0yTxjFH5RFCPmWdvNJ9Onqann8auTRCuL/qP2buTsbfvPRGS/gI
sU7X+kx0EB1HWpbORouPEuMnO1pkQ+gwaNm+65LsKFF0TN0w4z0dNi0al8QU
RwnrXTtMKz7S8bXleamf6SjxTWDCih1Hh0zrUl/H96OEdu09J9lCOtonanYf
2zRGuKo//ZjOpCN5urFi/8Fxotns2oU9w3SoWsSM7Dw1Tkjd0xJLHKWjrP6R
oJTxOFHzSfhN1CQd7JjthqsejBOrZsO8Av7Sser8E8Z0wTgR+zXzlp0gAwbf
px369k0Qf0vf7RgTYqCC87yJiglCp/sR6+pKBg6OS8ixtSeI77wnLC6JMiDJ
Vmd9t54gFM0b9XU3M9DbF3qe78MEQRFhH5U9yIBFtarS/sUcYvP22j9fDjHQ
V9H1/pAQh7iHpIwtRxk4VGb7+9gGDrHupsPu9coMyBAhKeoKHOKmh9FYsAoD
ofm7luuqcggi5EicyEkGeHJLrp87wyGsyrm28Gsy8CN9bLOZDYfI7KENPNVm
4Eaau+tlJw6x9HtFKPdpBkqS1/Ree8ohLvDFn398hvT3NeGQbQCHSJLwWzNz
joHoeOWgux85BNcBuxYHQzK/1c2WD5M5xDmtc/6TxgyMyty1kynlEH/ui/Gz
LzKgqZfxwmOEQ2i+nKu4bM7AxGXDd7vnOURY9MCTAUsGWvMenpvgmyRUmj7/
a7/KgF+juMUH8UmSf/ZNld9hYPiX2aOfJyaJTX2anVFPGUg7SUuLC5gkfEqO
Jht4M1Cs1uBnGDZJfP8i67XkBQOUUznXFsdOEiX2gvI2/mQ8Gq8kLhZMElZ8
za/2fWBAWveojxB7kqgbL7GmhzGw57T0lYLvk8SBlm/HgiMY0NATVr7xb5II
z45epR7FwIUzc+vW8k0RvOFBozOfGTA/y/pZKjJF2D7xKkmIZYC/fXxPs/gU
0XHt/ruLCQxU5V3KiZeaImL3nz9VnMKAwrMTNabyU4SQmKbE3W8MfL+ZcVZe
cYpwnj/yUyqTgfiz23oEVKcIzWrxKO88BtZJLBsrODdFjJoNzp+uYIAro3m5
5N0pQs7namZ/DwN1VIsz9NQpIvi2sZ9/PwMeVS1d+TlTxIK+hpXKEANHkk5a
BhVPEZSNO0VimAxkO2+/q9Y0RRz6T3zYaJiBm5c+zEp0TRERIwJFS8cY2HRy
uefvwSniTsbErVtTDAQKTQXGTk4R3e8HVDdOM6D3y3KD+58pQsWNsr7pFwMC
va2fz3N9J+KvFH/3mGGgtFhNbh/fd0JEK61afo6BsKQTuVPLvhMP9kRFMOcZ
eFAz1lFBYtrqwPsh3EycYwb9/EDi9MF7W+d4mRCUYO9RI7F4hfXc16VMMA+/
1l1P4qcJRi2XBJgoMzhyc5L/O2HoeNi9VJgJDz/fL+9J/HvZv14fcSbG5/ZI
cJZ+J44oeAaK7WOiucd5WQgZT7ul2MEweSZKzj/hsyPx3ZdJHZIKTGR3+P6n
TuJERuc6GUUmIlo+Lvxe8p1QF7bNT1Bi4v2ZuLlGEjMUF5vtPs6EV2PazBcS
SwTu+nRQjYm7teU/jEicS5So5KozYa7ROLmbxEajRvRjWkycrewcX0Li6TXj
T4t1mPBv9Rky5/1O+Kt4bDupx8Su/I2m2gtThKzt2uqqs0zURKW3KpD1rX6X
eEPbgAmrFxq6W6amiEVT7V/PmTARbnL3+F/qFBEufvN0xwUmDqnw5TF6poij
6txTJpeYaN0eJt/UOkU4fNwpb2nFxNqZim2xFVMEU8ct186WCe+36wQN46eI
2vjtlX4eTFxrLe5OvTNFXGsvvCb8lIn/8g31w25METyL9PmDnjHxMWq03vvy
FKF03kUn1JeJbvvVxZcMpoiUJS0t8cFM6Ahf/7L88BQRaPVosDKeCaMCofvs
mUnigkTjDHcLE0v0By58uD1JCIrZZ+S1MfFz8paPovUkUbxy9Z17nUxQ/eay
+i5MEtJLTdnsPiYqKsVWSmpOEpwfzPZGNhnvUf3qaKlJwqN6/lvYPHk/Mjwa
JMo5hHzZp9tG3CzYz0rdDsjkEKxC1Z3CPCyUHK9cwRvLIbTTfSI9l7LwpmHZ
mXEfDrH645rXNqtYkGIHtuTpcYhYBznbwztYOLH+S6dx7wRhcrtp+w9ZFr5a
aDjX1U8Qy284MBJ3s8AVOyqmTEwQ9pdyL0geYKFbfo/ptsgJQsrkomi3Agu7
HzbPvn8zQbTrc7W+OcJCYrFDqODTCeKopprWEmUWzP9XcZXHU/U+YUpRWbIk
0YIiRGjXNpabJBWSJUJSSSSV8pUtpT1bokgLQiVJJRKDhIqyFSFF995z7nbu
vfai/M7vz/m8c2bmeeZ53zmzvfT70EEKKQZnapUlARXJ7pGH3Ci8B1erwzYR
sLrr7/zvthQ6rjWOXGFDQIC/1xN72pZa2WJG2RIw28u5tHIrhcXGIUO522h8
O7e9M9lG4SEDtWd77QnwtWE039tO4acFnnpfdhHwyXQZJ9qBwmh1SWacK82P
rv6QyJHC5bOy79q4E6CloSm514nCm9O5qm+8CTghJT/HwoVCn6GQKVmHCZjb
zrGR3EPh0IdrfUfPEBARfj/vjB+F3TO++I2fJeCkxBunb4corLabK7xwno5/
7quE6WEKEz49GrtzhQDHqzPcfgZSeFKh/4xBHAEWM3WnrAmicI+9mUxxAgGr
ks2fxR+lkJEYHWdxnYCVau57iGAKDVrqVBpv0Plvh0yD4xTOVFZId71JgKxm
wsuUExSO7HTWYqYRkMd9vVzyHIU9yRm5QRkEPGSat2IyhTVfmEZjdwko6qk9
FvmAwkeqhi/OZxLwosNOaUMxhYkux9cqPaD5a2l5NlZLoec3yc36jwhoru0R
hZJ0PepbGl/kE9BT6Zuw+jeFS9wTdpo/JeDXa67x8DR6fnXP93Z5QYCoYPjI
8SVCTPq57r/YCgI0UuUFgUeEWEuEPO5toft9cCPHZ1CI+XrlpoFfCCgw8alJ
mCTC64ekSkbbCXhjpKMimi5Cb15SjcJ3AkoWP35eoCFCa8NO2/QfdH2LjkyW
p/VuFKjVrNtHQL2W6c5AQxH+oZ5+30AQ0KTxqn/JBhH+NB7Z955DwDe1MMsr
m0RYd3Qj14lP6/nL/CWS20RY8Cz26E+KgNdmrlvn7BRhcn/D8GExAYZ3Eg+b
uonQeJijkDZGAGl8ip8YLELV1aYpOv8IcE0ulH10SoTjp0LnPpMgAUc5htUR
Ivzwe6p+/RQScqo8Avsv0fPz70LLYQUS/HZaUo6ZIrwp5XnCcREJPSflRMqt
Ivy3b/bKZl0SAs4rn5b7Rvu/bRraoU/CyI05U6V/iNAkxurUtqUkyL7UmfuH
K8KU3vHVDSYkXK9ZkjsgovObF4/aLidhTpvpMsGwCOsn9MJs1pCwZmCDzc9J
9Pzz6ltbt5aE+kmM1m/0PE6uSB/btIEEKyVbz1Z5Mf6Zt+tNDZBgeNxWNYee
z94R8hFWliT8Gn1Jhs0SY2133YZqBgkPIrXKdqjR7+/6M//MN5OwV+ratUUa
Yhz5MxC10Y6ETwq+yz5pitFj9xPz8u0kXLnxWSproRirSw9IrncgwUZjXfsp
XTHGhX6LMXOm+dJVCtcyFKPucEXsCm8SijZUvjuxWozO4ktXDE6QcPXwXDeN
7WJ8Y29l9/AkCdbiC0tE9mLULhyX1fuPhPGTA39r6HlPHQmK04kkISTmQ+YR
NzE6fdLbkR1NgonMqhArDzG+NupTWHiWBN61+5vVvMQYy3dK1LxIgtetUH6V
rxi5W+Ud714mQWMBsyLloBjtH9cpzb9GwrfsHYmH6fe9ePqZ1tvxJKQYlO0z
DxTjXP+1yRpJJGTOqbq/kLZj3g84pSWTcEaHUeRA+5N6T2bNSSXB17SuOoqO
94JYkKp6m4T5Wxp/de0Vo/rmby437pAw4WQ/OI2uJzonSU3lPgm93q1Sa+h6
7fZPSVPMISEr9JtOsrMYmX3c27KFJCzIYx202ypG5Z6XmZNqSFCW/sd7Q/8f
xclGRLyqpfl62vj1iakYp69juAa8J2GSa0bVnaX0PLzZIvf1EwmsvPWp0Xpi
jKy9RV5upvE7yMYE69D9H/R+C20kvP/dFeCjLcZ+B2How28kvLY9bcmg/8+O
RBfv9OwmYemArdHKOTRfBRFLlX+QkJ6urqarKsYD3xnT6ntJmM3gTpqtLMbe
GbLMcCYJTn4ci3E5Wg9rWytMCRIEz82HxqXE2OGXdovNISFhIjXv75gIm97p
7bAX0npIsVaY4IjQblCoP6WfBJ++jOqJn7SetV9JvR4kYdBoKESiQ4QYten1
wj8kGL/L6paspe+vmY/OiBQHbg5IPJKi79fVJ+ljGeoc+M++jDF9twhlun2+
Os7jgMptpdHpDiI8N93gmbQmB54Qhx7PsBHh6YMlB4J1OMCMVFOSWyXC4RtR
Frp6HIj8EPROzkiEx2qs53YZcEBNtS70/++Nv9aXZoYJB+yfhPxQUBIhe8ft
/N/LOMAfbUiaOU2EPpH7LhSs5MB5xiJrRQkR9uQb+Oxbw4FdS0iVLI4Q3brE
69XWceDPvYH5Dc1CtLkhn8fbxIFTp7Q2Hz0mxCkRZ5zMgjmwrbmDkBgS4Asx
/zce54CZ6dBIZY8AfQ+43rU+yQGdREWZM/UCrNlhzN15mgM/7W31JG8L8Jz2
96gjsRzwaSrzk7QSoFT9msdZtzhgGSNY1pzKx0nKIkn5ag5sUk73PsTgYdEF
99zkGg4480N+LTPmoc94rZ1GHQe83tkfGJ/Dw2pWRqpeAwfiT00NiBdyMaZk
q5HVVw40dQWfepnGRUnPXNdQLgcO7Lj2xWkGFyUeej7tU+KC3Re91qP0Pl/L
bz9ydxYXviVe27aH3vevmjgs9VDjwq3t/XVbukmcXWL15Ms8LpTVlb3RLiFx
aZ3e43o9Lix7vT2nLYhED1Z/TsFGLvj4jf8JGCTo/S7gwGELLmh7S2/rZxFI
BrB09BhceOWidPdUO4HHB9uz72/hgvxmPauY1wRenlyemezEhRc6TldSowks
1bpwJ8yfC+N9jzWqZQmM3C/huTqQCw87iwM3/2Mj4+F/8waDuODcUoUNQjY2
mQTcDgzhQmZV+772FjamnGC5G4TS+Er7XnrUsNGjxFODCOPCaKFAuu8lG7XH
2zuzIrhwN2/U7WAuG0lwSPOO5oLlvcn5/JtsLDj7wW3eWS7Ihl/L/ZjExhN1
VnM6Y7ng3V4/0Z3AxrUzyjtSLnLhwTIpVyqOjRPbV93ceYULE9egcOIqG2uS
nrrMjOOCLSdMRvEKGy9/1ZvdmMCFx4xib+1LbFT11EixTuGCzZih4qZYNnbf
T941+RYXMpz9DjmfZWMmS25WZToXyGdZVQfPsOn5KZFsdp8LV/zUj12OoPGH
sxIN87nQ+0W69XMIG6dXejpwCriwyNRqSe9xmo/JHTNznnEh/Grk2f5gNrpf
+RC/4BUXNK2Gls86wsZjaU+vKVVz4XhhX/LuA2x8NZ52obqGCwz3WeITvmwc
9zx/5lgdF5Sm2myL92GjZVXwae0PXGgvDHv40JuNFxbuCWlp4EKB+5MpNZ5s
bIi1CYr5TOtl6s+9PR5sVCKXH1rWwgWPZ0oVo7vZ6GK7YF9fG20PdM5jurPx
dv70PUntXEjRaoscpuP3yg87W3Zy4e2Oxh8y/mzUDe617+/mAhVRa65B11+4
soTh2MeFkM6SSeZRbHxXsd9QScAF6+sZ5y+l0/i1HHSrhVw4WZVCpGey0f7s
es1j/VwoFsbbFDxkY+dmZZWWES7o2MVMb33FRqqpcixxEg+mTjkYN7eNjWq/
ND4qqvGg/qRJylNab3s2Sb+rUufBQLb+SJUygZm5/RXB83iwtlXbtU2dQMOA
90XN2jx4bDxL/bcegRZDJ9MSjXiQudykMWkzgf7SLYcUrXjwQOmB7+kLBD49
VL6vahMP4gqunwqNJ3DwY96eYBseBNjGXA5JJTAqIcqheRsPFsd4FQblEpg8
x8gs0ZUHeeI54/vqCPx2Wm25hTsPrlyTUdj7mcD5PZONxHt44K8/ouVJ36e8
zE5Nh3080N/bttmVILB8yUUZxSM8yGqKu24nTeKqttmNSUd5YFJz27ZSnsTC
8NxEleM8KH71SHKFKon6OqudU0J4YPa4pCR3HomZjbXqaqE8qLxTG6ShQ+Lc
k84/boXxoEN1aJuJAYk35rOzNCJ4sLr10NmZhiTK14X4ZUTxID6+p0RkROLF
oClGC2J4MLF1J9VkTKKk2g3xvXM88JWpX/jMlMSwykXF2hd40FKz3i1xOYmB
igzQvUrj3aBb47CaRMfnMQ5GKTywNv59q2UjiR/dlVSf3qTx8AI/F5mTyJDK
7DRJ54FSXp/UdUsSV++q2rfiHg+4mg1BO63pekcmQtY94sExpbub2raRmHI3
fm15Pg/aPimffrGDRAWbBRMbn/LA/MrFwmQHEifd2njR8gUP5kod09i1i0Ri
bUTalgoeVA0xxF88SPT+Jev1sZIHykWlusWeJHZeub1w21se/HdkqUeKN4k7
VxiSn97xgG+QlXjSh8SG7rJ8+3oeOBOz65x9SbSO3Rrc8oHmO+vq+KoDJKJR
10qnRpq/C4l+z2h7zVf/P18+80C1PHPNmv0kFkX+qXBp4YHUwHMZ3EfiksWX
z35r48GY3ruOTXT87M9zbNzbecD0/JrXQOdP1TRr9uzmQe6HUZvOPSSGV5/6
tZ/Ng5DMDZeGXEgc8pfOI0geOHZsdwt3JvGIcmrAIR4PNsh760+m8e71LR4K
EPFAJyzm/UxHut6pQ9In/tD3waFumqEdiZUF5xqGxnnw6ELHtyJbEs1cVBJP
TfAgqZzz0GwLiYZ5y9VPS/HBV1/WdjPNv6LtMcMYeT4oSjpc9qH7da9KYcZa
RT70/2DEvaf7aWL2hCNW5kNFxZokkw00H4W29Q9V+ZCZYZiSuo7E7Xpkzt45
fDgbrpn2z4zE73djY+fM5cNOd5U7+9eQGDB7oW/zfD7or5XJbFhF4lhcpeUl
LT54zHBnLKX1dHmqp5bFIj4oBdfK+dL6mxM5NjGqy4efX03bby0hMW/oZk+h
Ph/y1mfc+7yYxDpma7qmMR+0ZU4sX6dJotTbLaoSa/mw7K6Wm5IiifQuPPhq
PR/+SF3TtpEjUbvoXGsQ8OGd/ygvYhqJ5vcx4QeDD1tXfY7kSJIYEbVyBu7g
g3tjeHZlP4HD67QkIvfzIWysXXikjcDY5xU9K/34YLfXqjS7iUCVJR7lAn8+
TKsriOlsIDA783f6g0A+vDVUt5v5nsDl6qlhe47y4XJS7CzrdwRWJ65wm3Wc
D7anLAZLKwl0nNayujGED88Ph072KCPw6Kjs0PrTfMh2YmvdKyRwIuhR62AE
HwQ280wtHxMYR2wuyo/mQ8AGJ3PmAwLzv8YEzT3PBxvdak+9dAI5L0Y5Ywl8
+DWSkV4YS2C3UVPrf2/4kL5RLr7ZmMDCO7CI6SkAlUs3EmYpsnEgbEB6714B
XCYud6yVY+Mql1ze930CmGQdrek9jY2hy90/7z4ggKPZIX6xU9hYpqDwvN1P
AOSkw4WPJNn4j1ed4nRYAO2S4x1LJlhoXn8yrDmQPt8a/IT1l4Vnsw08tx8V
APsG+8zdcRbWRvdYfDwmAOYPd2e3MRbK7EnSsQkRgIxBs4HyHxZuNbOe9u6U
AIjj1hMNoyxsEj9pqggXwKC0aZ75MAu7fCK8is4LQMNk6p/FYhbOB1Mr40sC
UA07/alXyEJvDZZu/hUBrKoRZaZTLGS32lEPEgRg6Nq1VYHPQhFjbsStNAEw
ogszhtksXK7V5K2aIQCHDzrHClksPPn3LOP6XQEEqqRb+zNZOPaSN+NatgC8
82KF33tZOHVxWVp0gQCONe22eNfNwi2TgyL/FgogSr1pVlQXC6/+0PYJey6A
cN9N3DWdLPxU9nXTyEsBpBS8rujvYKHizcv6J0oEEDdqfD2/nYVOJzbKiV8L
4Krlg4MHvrIwxb5fFFgugI6qlalyrSz8ZpjTxkUBhN57HDf+noVzp+0uOVhN
44nSOs+rZKEXS+42s0YA3/ekRnS+YmFmVVXU3joBxKyXC3lfwMLFYfqb3Rto
vn+P7su9zcJlvNEv278KIPtEk8W+UBaG1OWXfuyg8e+0NnMMYmFJlneGTZcA
/pm+MbE4wMINHvW+lj8F4CzMXbDAiYU2jakDK7kCmOYf9bfTmIWXH25tL+IL
oNJmaPC9LgsbYydeGwtp/8WH+SXzWOi48WCM/qAAkOnclTKDhXuerlKc908A
Xl5LSx0JJhbvHpVvkqCAVXzufPh3JspPfS17djIFPvJdO3NamXjw2enpq6ZS
ULbfVKvpPRMrPTbIcGQo2Fx+gfqNTFSTmZhyewYFNSo9ZQuLmRj8vHLyDnkK
ZANWXNqWz8QPnjGSkxQpYK6e0j1wi4na0xkTL5QpiFOZl1ASzcSwl1P+HlSl
QF+8ghFxkImt3nV/1OdQUNdoN2qxnYnnXtkOR8+nYPqFcO+PGkxk+zoI7PQp
uPC7y6Sn+BdunKnMm1hCgd7XAWZmxi9MLWsji5ZS8KJoxq2D536hjZIrU20F
BeOH10mKHX7hI/TsYm6kIKYnrXmyoA+PqAe8D3ei4Nxbt2P6C/uw9p1RnbEL
BbPuBetS0/pwQbCwps+NgpzwS51Fol4Mnfus+oYHBS5u9+NOtfdiU92xShsv
CkZXllqur+hFveMrKsb20vUpNQ9LPOjFM/OHywp8KSgyqz6kEtuLy0L+e6Xi
T4GvyhT2U6teHPl8/kF+FM1P5Mz2eRt/YnTs/TPdj2j+8rYfG9jfjXKnpG33
PqHPz67wp/S6Mc0vUIn9lAIZb3UfDq8Ln281yxK+oEBJje3wI7gL2YrNNZOQ
gpmw/ovP4U7cekdCRr+VgoZlv9UXeXag6iuvuJAxCi6qH8/JsWrDrLx3zn/+
UlBfYvD5n2QbmqQtWRAlIQRXl74R58pW3BIx8vTiFCGsSHbYIr2hFcOt4pvT
FYSQL7bK9t7Vgn2fK1SqFwpBRmtz+p3UJgyqWvTdWlcIHecX72Z7NeF40eUH
H/WEICuQnrNUrwlnpTiv+mIkhIvBiUangz+jjQflQq6m891PXlT6vBGfkPPS
5e1oWyJdaeWaD3gxI9a7Z7sQSoYlij6VvUdfR4FOgYMQogUHHPzgPZpL7+JF
ONHxfjWIJN/W49w3bwq3uQhBr3NZQrp1PY4eXXRy3m4hhDbdNF75oQ5bda6u
E3gIwdswtkjmvzos6ByQKPcSQp5ppWnL0jq8HO9ee9VHCH6rxgrTmbV4gPH2
isd+IRSuW2WyP60WLX8bOBj6CaHePPjpUvta/O3zp+tjoBB+2hJPqsreod+q
W+Lp/wlB06v1EZFUgwyexKvO00Kw95U3eGZTgwvu+YU/ihSC2qEtD8P+vcWv
09ZI254Tws3jmCvn/xY3ff8691I8jefC4+zlFtWombSxzzVJCORV9sK/w1U4
bp2Tq3eD9k/UyqrNr8IXhSHL6tNo/m+n3ndTq8KE/d9HUjOEILrXornwUyUe
Vt9UfvCeEGbmyN3jn61E7XMqNtI5NH5v6Q0TPYj/1oTLtecJock/Yl2SLeI3
wa+WnMdCMDkxYKZTXIEvMrfePFlAx5OesrJ7WwUmuDzfY/2M5uOx827RggoM
kNVYqPqCjmefFyXVX442VTEkq5juz+DvbLWacpwwcDwe+0YI5uszhOZ+5dj5
o3TNLhRCQi+lsmttORYna/1bVE37x5qvPSRbjkf+iS7W1NH+jb/OJRa+we7m
+DuTW2n+9hio942WYcn5kX2tX2h+J4XD8IcyTF7npZ/VQefPafSdnlGGWx8s
fWHZQ8ejjj5dZlGGr0Mb35/h0HiiXjHOXnqNKUYr4x34tL1wmn+q+2sM7rvt
pCWk+1e7O/6x0WvUswv4UTlI16fw71trcylKSbZlJ4zQ/DzfMUFkleLPl+v8
vf/Q+V3vLxoPKcU3/lnGJn+FcG+sf8tMm1JMXTBjaGKC/v4uI2iRein+D0lo
QnE=
           "]]}, "Charting`Private`Tag#2"]}}, {}}, <|
     "HighlightElements" -> <|
       "Label" -> {"XYLabel"}, "Ball" -> {"InterpolatedBall"}|>, 
      "LayoutOptions" -> <|
       "PanelPlotLayout" -> <||>, 
        "PlotRange" -> {{0, 1}, {-1.1279160762741534`, 0.9999998782112116}}, 
        "Frame" -> {{False, False}, {False, False}}, "AxesOrigin" -> {0, 0}, 
        "ImageSize" -> {360, 360/GoldenRatio}, "Axes" -> {True, True}, 
        "LabelStyle" -> {}, "AspectRatio" -> GoldenRatio^(-1), "DefaultStyle" -> {
          Directive[
           Opacity[1.], 
           RGBColor[0.95, 0.627, 0.1425], 
           AbsoluteThickness[2]], 
          Directive[
           Opacity[1.], 
           RGBColor[0.24, 0.6, 0.8], 
           AbsoluteThickness[2]]}, 
        "HighlightLabelingFunctions" -> <|"CoordinatesToolOptions" -> ({
            (Identity[#]& )[
             Part[#, 1]], 
            (Identity[#]& )[
             Part[#, 2]]}& ), 
          "ScalingFunctions" -> {{Identity, Identity}, {
            Identity, Identity}}|>, "Primitives" -> {}, "GCFlag" -> False|>, 
      "Meta" -> <|
       "DefaultHighlight" -> {"Dynamic", None}, "Index" -> {}, "Function" -> 
        Plot, "GroupHighlight" -> False|>|>, "DynamicHighlight"]]},
  AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948],
  Axes->{True, True},
  AxesLabel->{None, None},
  AxesOrigin->{0, 0},
  DisplayFunction->Identity,
  Frame->{{False, False}, {False, False}},
  FrameLabel->{{None, None}, {None, None}},
  FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}},
  GridLines->{None, None},
  GridLinesStyle->Directive[
    GrayLevel[0.5, 0.4]],
  Method->{
   "AxisPadding" -> Scaled[0.02], "DefaultBoundaryStyle" -> Automatic, 
    "DefaultGraphicsInteraction" -> {
     "Version" -> 1.2, "TrackMousePosition" -> {True, False}, 
      "Effects" -> {
       "Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2}, 
        "Droplines" -> {
         "freeformCursorMode" -> True, 
          "placement" -> {"x" -> "All", "y" -> "None"}}}}, "DefaultMeshStyle" -> 
    AbsolutePointSize[6], "DefaultPlotStyle" -> {
      Directive[
       RGBColor[0.24, 0.6, 0.8], 
       AbsoluteThickness[2]], 
      Directive[
       RGBColor[0.95, 0.627, 0.1425], 
       AbsoluteThickness[2]], 
      Directive[
       RGBColor[0.455, 0.7, 0.21], 
       AbsoluteThickness[2]], 
      Directive[
       RGBColor[0.922526, 0.385626, 0.209179], 
       AbsoluteThickness[2]], 
      Directive[
       RGBColor[0.578, 0.51, 0.85], 
       AbsoluteThickness[2]], 
      Directive[
       RGBColor[0.772079, 0.431554, 0.102387], 
       AbsoluteThickness[2]], 
      Directive[
       RGBColor[0.4, 0.64, 1.], 
       AbsoluteThickness[2]], 
      Directive[
       RGBColor[1., 0.75, 0.], 
       AbsoluteThickness[2]], 
      Directive[
       RGBColor[0.8, 0.4, 0.76], 
       AbsoluteThickness[2]], 
      Directive[
       RGBColor[0.637, 0.65, 0.], 
       AbsoluteThickness[2]], 
      Directive[
       RGBColor[0.915, 0.3325, 0.2125], 
       AbsoluteThickness[2]], 
      Directive[
       RGBColor[0.40082222609352647`, 0.5220066643438841, 0.85], 
       AbsoluteThickness[2]], 
      Directive[
       RGBColor[0.9728288904374106, 0.621644452187053, 0.07336199581899142], 
       AbsoluteThickness[2]], 
      Directive[
       RGBColor[0.736782672705901, 0.358, 0.5030266573755369], 
       AbsoluteThickness[2]], 
      Directive[
       RGBColor[0.28026441037696703`, 0.715, 0.4292089322474965], 
       AbsoluteThickness[2]]}, "DomainPadding" -> Scaled[0.02], 
    "PointSizeFunction" -> "SmallPointSize", "RangePadding" -> Scaled[0.05], 
    "OptimizePlotMarkers" -> True, "IncludeHighlighting" -> "CurrentPoint", 
    "HighlightStyle" -> Automatic, "OptimizePlotMarkers" -> True, 
    "CoordinatesToolOptions" -> {"DisplayFunction" -> ({
        (Identity[#]& )[
         Part[#, 1]], 
        (Identity[#]& )[
         Part[#, 2]]}& ), "CopiedValueFunction" -> ({
        (Identity[#]& )[
         Part[#, 1]], 
        (Identity[#]& )[
         Part[#, 2]]}& )}},
  PlotRange->{{0, 1.}, {-1.3413418010049696`, 1.0887476187282612`}},
  PlotRangeClipping->True,
  PlotRangePadding->{{
     Scaled[0.02], 
     Scaled[0.02]}, {
     Scaled[0.05], 
     Scaled[0.05]}},
  Ticks->{Automatic, Automatic}]], "Output",
 CellChangeTimes->{{3.9481170957329683`*^9, 3.948117150598543*^9}, 
   3.948117184568419*^9, 3.948117219316367*^9, {3.948117691501904*^9, 
   3.948117711972096*^9}, {3.9481181709304953`*^9, 3.948118175025305*^9}, 
   3.94811829746743*^9, {3.948118331670322*^9, 3.9481184061077347`*^9}, 
   3.948118476448101*^9, {3.948118791597611*^9, 3.948118834715063*^9}, 
   3.948118880316525*^9, {3.948118924069378*^9, 3.948118979643305*^9}, 
   3.9481190290527687`*^9, {3.94811905993773*^9, 3.948119083885765*^9}, 
   3.9481191154096107`*^9, {3.948119199879396*^9, 3.948119218585884*^9}, {
   3.948119267635496*^9, 3.948119272080647*^9}, {3.948119306877935*^9, 
   3.9481193600060596`*^9}, 3.9481193919109383`*^9, {3.948119472446267*^9, 
   3.948119492978435*^9}, 3.948120049042923*^9, 3.9481201267922277`*^9, {
   3.948120167596425*^9, 3.948120183923332*^9}, {3.948120214736499*^9, 
   3.948120239570709*^9}, {3.948120350614382*^9, 3.9481203559351187`*^9}, 
   3.948120425917745*^9, 3.948120480872405*^9, 3.9481205495627117`*^9, 
   3.948120583274208*^9, {3.948120713953677*^9, 3.948120728627287*^9}, 
   3.948120768477592*^9, 3.948121389852212*^9, {3.948121556589933*^9, 
   3.948121572878214*^9}, 3.948121622747219*^9, 3.948121726679216*^9, {
   3.948121783571022*^9, 3.948121879474448*^9}, {3.948121992064193*^9, 
   3.948121996756528*^9}, {3.9481220466285057`*^9, 3.948122050486739*^9}, 
   3.948122196501998*^9, 3.9481223776650887`*^9, 3.948122421312645*^9, 
   3.948122529439842*^9, 3.948122657474799*^9, 3.948122716639678*^9, 
   3.948122748276546*^9, 3.948122898602379*^9, {3.948123519366577*^9, 
   3.948123551654709*^9}, 3.948123616114772*^9, 3.948123711113534*^9, 
   3.948123775936576*^9, {3.948123901956167*^9, 3.9481239135446*^9}, 
   3.9481239469964857`*^9, {3.948123978241097*^9, 3.948124005300193*^9}, 
   3.948124086630891*^9, 3.9481242723863077`*^9, 3.948125069088151*^9, {
   3.948125232697056*^9, 3.9481252592778387`*^9}, 3.948125293263578*^9, 
   3.9481253329434013`*^9, 3.9481253767312937`*^9},
 CellLabel->
  "Out[571]=",ExpressionUUID->"ffd6f419-7cc8-4a11-9daf-a5981d445824"]
}, Open  ]],

Cell[CellGroupData[{

Cell[BoxData[
 RowBox[{
  RowBox[{"2", 
   RowBox[{"dCost", "[", 
    RowBox[{
     RowBox[{
      RowBox[{
       RowBox[{"(", 
        RowBox[{"x", "\[Function]", 
         SuperscriptBox["x", "#"]}], ")"}], "&"}], "/@", 
      RowBox[{"Range", "[", 
       RowBox[{"0", ",", "5"}], "]"}]}], ",", "testdat"}], "]"}]}], "//", 
  "Simplify"}]], "Input",
 CellChangeTimes->{{3.9481158397245827`*^9, 3.948115841044066*^9}},
 CellLabel->"In[47]:=",ExpressionUUID->"8f94b911-4282-4699-9f4f-af2006d0f1fb"],

Cell[BoxData[
 RowBox[{"{", 
  RowBox[{
   RowBox[{
    RowBox[{"-", "29.647923774615556`"}], "+", 
    RowBox[{"80.`", " ", "#1"}], "+", 
    RowBox[{"36.595803983379156`", " ", "#2"}], "+", 
    RowBox[{"24.962535935381`", " ", "#3"}], "+", 
    RowBox[{"19.05380714012449`", " ", "#4"}], "+", 
    RowBox[{"15.5101401826051`", " ", "#5"}], "+", 
    RowBox[{"13.196827369860994`", " ", "#6"}]}], ",", 
   RowBox[{
    RowBox[{"-", "19.815396387906095`"}], "+", 
    RowBox[{"36.595803983379156`", " ", "#1"}], "+", 
    RowBox[{"24.962535935381`", " ", "#2"}], "+", 
    RowBox[{"19.05380714012449`", " ", "#3"}], "+", 
    RowBox[{"15.5101401826051`", " ", "#4"}], "+", 
    RowBox[{"13.196827369860992`", " ", "#5"}], "+", 
    RowBox[{"11.596351412551329`", " ", "#6"}]}], ",", 
   RowBox[{
    RowBox[{"-", "14.871363804529803`"}], "+", 
    RowBox[{"24.962535935381`", " ", "#1"}], "+", 
    RowBox[{"19.05380714012449`", " ", "#2"}], "+", 
    RowBox[{"15.5101401826051`", " ", "#3"}], "+", 
    RowBox[{"13.196827369860994`", " ", "#4"}], "+", 
    RowBox[{"11.596351412551329`", " ", "#5"}], "+", 
    RowBox[{"10.436693949866449`", " ", "#6"}]}], ",", 
   RowBox[{
    RowBox[{"-", "11.968768402486816`"}], "+", 
    RowBox[{"19.05380714012449`", " ", "#1"}], "+", 
    RowBox[{"15.5101401826051`", " ", "#2"}], "+", 
    RowBox[{"13.196827369860994`", " ", "#3"}], "+", 
    RowBox[{"11.596351412551329`", " ", "#4"}], "+", 
    RowBox[{"10.436693949866449`", " ", "#5"}], "+", 
    RowBox[{"9.56234675256812`", " ", "#6"}]}], ",", 
   RowBox[{
    RowBox[{"-", "10.108225506432749`"}], "+", 
    RowBox[{"15.5101401826051`", " ", "#1"}], "+", 
    RowBox[{"13.196827369860994`", " ", "#2"}], "+", 
    RowBox[{"11.596351412551329`", " ", "#3"}], "+", 
    RowBox[{"10.436693949866449`", " ", "#4"}], "+", 
    RowBox[{"9.562346752568118`", " ", "#5"}], "+", 
    RowBox[{"8.879452335050136`", " ", "#6"}]}], ",", 
   RowBox[{
    RowBox[{"-", "8.842807351152098`"}], "+", 
    RowBox[{"13.196827369860994`", " ", "#1"}], "+", 
    RowBox[{"11.596351412551329`", " ", "#2"}], "+", 
    RowBox[{"10.436693949866449`", " ", "#3"}], "+", 
    RowBox[{"9.56234675256812`", " ", "#4"}], "+", 
    RowBox[{"8.879452335050136`", " ", "#5"}], "+", 
    RowBox[{"8.329147936668374`", " ", "#6"}]}]}], "}"}]], "Output",
 CellChangeTimes->{
  3.9481157849331827`*^9, {3.9481158300446243`*^9, 3.948115841397894*^9}, 
   3.9481158738161383`*^9, 3.948116020446212*^9},
 CellLabel->"Out[47]=",ExpressionUUID->"3039fc70-f0af-4e70-bc64-e604b3f36d0d"]
}, Open  ]],

Cell[BoxData[
 RowBox[{
  RowBox[{"testas", "=", 
   RowBox[{"RandomReal", "[", 
    RowBox[{
     RowBox[{"{", 
      RowBox[{"0", ",", "1"}], "}"}], ",", "6"}], "]"}]}], ";"}]], "Input",
 CellChangeTimes->{{3.948116146875634*^9, 3.94811614943283*^9}},
 CellLabel->"In[60]:=",ExpressionUUID->"cd2f3698-aefd-466e-b7c8-2012f3538973"],

Cell[CellGroupData[{

Cell[BoxData[
 RowBox[{
  RowBox[{"cost", "[", 
   RowBox[{
    RowBox[{
     RowBox[{
      RowBox[{"(", 
       RowBox[{"x", "\[Function]", 
        SuperscriptBox["x", "#"]}], ")"}], "&"}], "/@", 
     RowBox[{"Range", "[", 
      RowBox[{"0", ",", "5"}], "]"}]}], ",", "testdat"}], "]"}], "@@", 
  "testas"}]], "Input",
 CellChangeTimes->{{3.948116322119855*^9, 3.948116325455949*^9}, {
  3.948116360905766*^9, 3.9481163632579803`*^9}},
 CellLabel->"In[91]:=",ExpressionUUID->"57aa01a8-18a7-45a2-b2b7-055f7b61faa7"],

Cell[BoxData["29.31999606683431`"], "Output",
 CellChangeTimes->{{3.9481163256732407`*^9, 3.948116395337883*^9}},
 CellLabel->"Out[91]=",ExpressionUUID->"15effdbc-9a3d-4a23-bfd0-494fb6fb5423"]
}, Open  ]],

Cell[CellGroupData[{

Cell[BoxData[
 RowBox[{
  RowBox[{
   RowBox[{"(", 
    RowBox[{
     RowBox[{
      RowBox[{"Derivative", "[", 
       RowBox[{
       "0", ",", "1", ",", "0", ",", "0", ",", "0", ",", "0", ",", "0"}], 
       "]"}], "[", 
      RowBox[{"cost", "[", 
       RowBox[{
        RowBox[{
         RowBox[{
          RowBox[{"(", 
           RowBox[{"x", "\[Function]", 
            SuperscriptBox["x", "#"]}], ")"}], "&"}], "/@", 
         RowBox[{"Range", "[", 
          RowBox[{"0", ",", "5"}], "]"}]}], ",", "testdat"}], "]"}], "]"}], "@@",
      "testas"}], ")"}], "-", 
   RowBox[{
    RowBox[{"(", 
     RowBox[{
      RowBox[{"dCost", "[", 
       RowBox[{
        RowBox[{
         RowBox[{
          RowBox[{"(", 
           RowBox[{"x", "\[Function]", 
            SuperscriptBox["x", "#"]}], ")"}], "&"}], "/@", 
         RowBox[{"Range", "[", 
          RowBox[{"0", ",", "5"}], "]"}]}], ",", "testdat"}], "]"}], "@@", 
      "testas"}], ")"}], "[", 
    RowBox[{"[", "2", "]"}], "]"}]}], "//", "Simplify"}]], "Input",
 CellChangeTimes->{{3.9481151229275208`*^9, 3.948115203569861*^9}, {
  3.948115255580563*^9, 3.9481152579486113`*^9}, {3.948115708839774*^9, 
  3.9481157637475986`*^9}, {3.94811584524576*^9, 3.9481158456045437`*^9}, {
  3.9481158815349083`*^9, 3.948115889223049*^9}, {3.948116026492364*^9, 
  3.948116059421412*^9}, {3.9481160944632874`*^9, 3.9481161551701307`*^9}, {
  3.948116191141611*^9, 3.948116197794985*^9}, {3.948116402051536*^9, 
  3.948116405819162*^9}},
 CellLabel->"In[92]:=",ExpressionUUID->"dcd9a96d-e483-4aa1-af04-d08688038cb6"],

Cell[BoxData["0.`"], "Output",
 CellChangeTimes->{{3.9481151455969553`*^9, 3.948115170220882*^9}, 
   3.9481152581964283`*^9, {3.948115752725525*^9, 3.948115764025669*^9}, {
   3.948115832602803*^9, 3.948115889658678*^9}, {3.948116023825748*^9, 
   3.948116081673368*^9}, {3.948116121851489*^9, 3.948116155422044*^9}, {
   3.9481161913600187`*^9, 3.948116250436397*^9}, 3.948116307040431*^9, {
   3.948116380525976*^9, 3.948116406091179*^9}},
 CellLabel->"Out[92]=",ExpressionUUID->"1f8c8629-c764-4604-b0fe-5c01e46e6013"]
}, Open  ]],

Cell[BoxData["d"], "Input",
 CellChangeTimes->{
  3.948116199476182*^9},ExpressionUUID->"cd3586f6-0751-4eee-baef-\
0c6737444c1d"]
},
WindowSize->{1024.5, 561},
WindowMargins->{{0, Automatic}, {Automatic, 0}},
FrontEndVersion->"14.2 for Linux x86 (64-bit) (December 26, 2024)",
StyleDefinitions->"Default.nb",
ExpressionUUID->"14a32005-7b59-4d87-b0bd-3b9bb1b1dbdc"
]
(* End of Notebook Content *)

(* Internal cache information *)
(*CellTagsOutline
CellTagsIndex->{}
*)
(*CellTagsIndex
CellTagsIndex->{}
*)
(*NotebookFileOutline
Notebook[{
Cell[554, 20, 1020, 26, 23, "Input",ExpressionUUID->"8a6144b2-4825-430e-8735-470868f9d585"],
Cell[CellGroupData[{
Cell[1599, 50, 500, 13, 23, "Input",ExpressionUUID->"bdf3d894-e06b-445f-a47d-201455db00a7"],
Cell[2102, 65, 18599, 401, 192, "Output",ExpressionUUID->"967c071c-4eae-4105-9feb-985162975a4e"]
}, Open  ]],
Cell[20716, 469, 1369, 34, 31, "Input",ExpressionUUID->"ebcff5a2-5e76-49f1-974f-f698316f393b"],
Cell[22088, 505, 1896, 45, 23, "Input",ExpressionUUID->"ea7cb2c9-e52d-4b28-a789-25e067a66acf"],
Cell[23987, 552, 226, 4, 23, "Input",ExpressionUUID->"bb0fd94f-bd94-4931-9ceb-b1c843b6ffed"],
Cell[24216, 558, 4850, 118, 267, "Input",ExpressionUUID->"50ff86b5-737b-41c1-94ff-2145f7b2e4d1"],
Cell[29069, 678, 2923, 76, 156, "Input",ExpressionUUID->"e23ecac0-2ba7-4f6f-af3e-48836159571d"],
Cell[31995, 756, 605, 17, 30, "Input",ExpressionUUID->"a4305efd-2d5e-45f6-868d-8e07fb522f0e"],
Cell[32603, 775, 1021, 25, 23, "Input",ExpressionUUID->"5af352c6-8896-4a1b-b393-d7f34eecf643"],
Cell[33627, 802, 796, 23, 23, "Input",ExpressionUUID->"8ba63f81-4994-40a7-b866-6e34144d0207"],
Cell[34426, 827, 732, 20, 23, "Input",ExpressionUUID->"81c87f69-631d-4c87-9a94-4038f7ee3d75"],
Cell[35161, 849, 892, 18, 23, "Input",ExpressionUUID->"8b2c7f0e-f6fa-4dcd-a222-e419e5bac57f"],
Cell[36056, 869, 509, 12, 23, "Input",ExpressionUUID->"234f897f-aaa8-4394-81a2-948744438d34"],
Cell[CellGroupData[{
Cell[36590, 885, 2353, 41, 23, "Input",ExpressionUUID->"56984f37-ab18-406a-b6c4-61b6a859e4b1"],
Cell[38946, 928, 2007, 29, 35, "Output",ExpressionUUID->"919b4663-4a6a-4083-b40d-cf6c6b427a33"]
}, Open  ]],
Cell[CellGroupData[{
Cell[40990, 962, 725, 20, 23, "Input",ExpressionUUID->"5945f6d0-c38c-4966-b262-8c714abbd4ad"],
Cell[41718, 984, 66163, 1193, 186, "Output",ExpressionUUID->"0de6ebc1-d180-400d-a3ab-43318b41fb18"]
}, Open  ]],
Cell[107896, 2180, 662, 14, 23, "Input",ExpressionUUID->"b30c963b-73c6-45e4-8851-ebca8a51734b"],
Cell[CellGroupData[{
Cell[108583, 2198, 2253, 41, 23, "Input",ExpressionUUID->"836b3548-7e17-45c1-b28e-0607b57c13a5"],
Cell[110839, 2241, 1461, 21, 35, "Output",ExpressionUUID->"d015d061-dada-4c76-9547-7fb223c133b4"]
}, Open  ]],
Cell[CellGroupData[{
Cell[112337, 2267, 834, 22, 23, "Input",ExpressionUUID->"a6c9f209-5969-490c-8928-610839cf2732"],
Cell[113174, 2291, 142956, 2451, 186, "Output",ExpressionUUID->"521a4e94-9194-4b92-8425-fea48cd77c67"]
}, Open  ]],
Cell[256145, 4745, 851, 17, 23, "Input",ExpressionUUID->"bed33f4f-46a0-47eb-8dc2-b968bd2f29f2"],
Cell[CellGroupData[{
Cell[257021, 4766, 2377, 41, 23, "Input",ExpressionUUID->"68019ef8-0ad0-4736-bcd3-369769400c1d"],
Cell[259401, 4809, 1687, 24, 35, "Output",ExpressionUUID->"a133428a-f962-4ad8-be5f-1a66523f0037"]
}, Open  ]],
Cell[CellGroupData[{
Cell[261125, 4838, 777, 21, 23, "Input",ExpressionUUID->"ed7e7612-8de4-4ef5-bc3b-f2cf49b64d0e"],
Cell[261905, 4861, 136118, 2340, 182, "Output",ExpressionUUID->"4984b1f7-133c-4235-869e-314fef96e28e"]
}, Open  ]],
Cell[398038, 7204, 703, 15, 23, "Input",ExpressionUUID->"16fd2f85-0c15-4ce1-9650-d56f875e3ac0"],
Cell[CellGroupData[{
Cell[398766, 7223, 2618, 45, 23, "Input",ExpressionUUID->"d6909a2d-ebee-4926-a02b-8ab0c90b08df"],
Cell[401387, 7270, 1824, 26, 35, "Output",ExpressionUUID->"209516ff-1879-4481-9231-611ef1c9825c"]
}, Open  ]],
Cell[CellGroupData[{
Cell[403248, 7301, 1762, 34, 23, "Input",ExpressionUUID->"459c2b59-8ce1-4f14-9c91-8fdcc83acf25"],
Cell[405013, 7337, 133495, 2294, 182, "Output",ExpressionUUID->"ffd6f419-7cc8-4a11-9daf-a5981d445824"]
}, Open  ]],
Cell[CellGroupData[{
Cell[538545, 9636, 500, 14, 30, "Input",ExpressionUUID->"8f94b911-4282-4699-9f4f-af2006d0f1fb"],
Cell[539048, 9652, 2546, 54, 59, "Output",ExpressionUUID->"3039fc70-f0af-4e70-bc64-e604b3f36d0d"]
}, Open  ]],
Cell[541609, 9709, 332, 8, 23, "Input",ExpressionUUID->"cd2f3698-aefd-466e-b7c8-2012f3538973"],
Cell[CellGroupData[{
Cell[541966, 9721, 519, 14, 30, "Input",ExpressionUUID->"57aa01a8-18a7-45a2-b2b7-055f7b61faa7"],
Cell[542488, 9737, 192, 2, 25, "Output",ExpressionUUID->"15effdbc-9a3d-4a23-bfd0-494fb6fb5423"]
}, Open  ]],
Cell[CellGroupData[{
Cell[542717, 9744, 1572, 41, 30, "Input",ExpressionUUID->"dcd9a96d-e483-4aa1-af04-d08688038cb6"],
Cell[544292, 9787, 521, 7, 25, "Output",ExpressionUUID->"1f8c8629-c764-4604-b0fe-5c01e46e6013"]
}, Open  ]],
Cell[544828, 9797, 129, 3, 22, "Input",ExpressionUUID->"cd3586f6-0751-4eee-baef-0c6737444c1d"]
}
]
*)