blob: 087bdbebe3f11c3eea8226008a4b77e02cd4c042 (
plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
|
#include <getopt.h>
#include <iomanip>
#include "fits.hpp"
int main(int argc, char* argv[]) {
unsigned Nend = 1;
unsigned nBatches = 5;
Real σ = 0.2;
Real iniVar = 0.0;
long unsigned maxSteps = 1e12;
int opt;
while ((opt = getopt(argc, argv, "s:S:B:i:N:")) != -1) {
switch (opt) {
case 'N':
Nend = (unsigned)atof(optarg);
break;
case 's':
σ = atof(optarg);
break;
case 'S':
maxSteps = (long unsigned)atof(optarg);
break;
case 'B':
nBatches = (unsigned)atof(optarg);
break;
case 'i':
iniVar = atof(optarg);
break;
default:
exit(1);
}
}
std::string firstline;
std::getline(std::cin, firstline);
std::stringstream ss;
ss << firstline;
Data data;
while (!ss.eof()) {
Real x, y;
ss >> x;
ss >> y;
data.push_back({x,y});
}
unsigned M = data.size();
Rng r;
std::cout << std::setprecision(15);
for (unsigned N = 1; N <= M; N++) {
Vector a = underSolve(data, N);
for (Real ai : a) {
std::cout << ai << " ";
}
std::cout << std::endl;
}
for (unsigned N = Nend; N > M; N--) {
Vector a₀ = Vector::Zero(N);
for (Real& aa : a₀) {
aa = r.variate<Real, std::normal_distribution>(0, iniVar);
}
Vector a = stochasticGradientDescent(data, a₀, nBatches, maxSteps);
for (Real ai : a) {
std::cout << ai << " ";
}
std::cout << std::endl;
}
return 0;
}
|