summaryrefslogtreecommitdiff
path: root/zif.tex
diff options
context:
space:
mode:
authorJaron Kent-Dobias <jaron@kent-dobias.com>2025-09-05 15:19:29 +0200
committerJaron Kent-Dobias <jaron@kent-dobias.com>2025-09-05 15:19:29 +0200
commit7cf3469d7bf2717b5c45346222391bd4ee50ce56 (patch)
treef2d769eb2b54d29663685c25f65f664ef0b1a5de /zif.tex
parentc927abe4379b796ec67cf9cc225833a256076737 (diff)
downloadzif-7cf3469d7bf2717b5c45346222391bd4ee50ce56.tar.gz
zif-7cf3469d7bf2717b5c45346222391bd4ee50ce56.tar.bz2
zif-7cf3469d7bf2717b5c45346222391bd4ee50ce56.zip
Many changes
Diffstat (limited to 'zif.tex')
-rw-r--r--zif.tex441
1 files changed, 328 insertions, 113 deletions
diff --git a/zif.tex b/zif.tex
index 396e908..ea69e4f 100644
--- a/zif.tex
+++ b/zif.tex
@@ -1,4 +1,4 @@
-\documentclass[aspectratio=169,dvipsnames]{beamer}
+\documentclass[fleqn,aspectratio=169,dvipsnames]{beamer}
\setbeamerfont{title}{family=\bf}
\setbeamerfont{frametitle}{family=\bf}
@@ -126,11 +126,11 @@
\bigskip
- High-dimensional landscapes differ from cartoons in important ways
+ \alert<2-3>{High-dimensional landscapes differ from cartoons in important ways}
\bigskip
- Generic rugged landscapes covered mostly by basins attached to marginal optima
+ \alert<4-6>{Generic rugged landscapes covered mostly by basins attached to marginal optima}
\bigskip
@@ -138,17 +138,19 @@
\end{column}
\begin{column}{0.5\textwidth}
\begin{overprint}
- \onslide<1>\includegraphics[width=\textwidth]{figs/complex_landscapes.png}\centering\\\tiny C Cammarota
- \onslide<2>\includegraphics[width=\textwidth]{figs/fake_landscape.png}\\\tiny S Martiniani, YouTube
- \onslide<3>\includegraphics[width=\textwidth]{figs/real_landscape.png}\smallskip\\\tiny\fullcite{Suryadevara_2024_The}
- \onslide<4>\includegraphics[width=\textwidth]{figs/eigenvalue_convergence.pdf}\smallskip\\\tiny\fullcite{Kent-Dobias_2024_Algorithm-independent}
+ \onslide<1>\begin{minipage}[c][0.3\height][c]{\textwidth}\includegraphics[width=\textwidth]{figs/complex_landscapes.png}\centering\\\tiny C Cammarota\end{minipage}
+ \onslide<2>\begin{minipage}[c][0.3\height][c]{\textwidth}\includegraphics[width=\textwidth]{figs/fake_landscape.png}\\\tiny S Martiniani, YouTube\end{minipage}
+ \onslide<3>\begin{minipage}[c][0.3\height][c]{\textwidth}\includegraphics[width=\textwidth]{figs/real_landscape.png}\smallskip\\\tiny\fullcite{Suryadevara_2024_The}\end{minipage}
+ \onslide<4>\begin{minipage}[c][0.3\height][c]{\textwidth}\includegraphics[width=\textwidth]{figs/basin_1.png}\end{minipage}
+ \onslide<5>\begin{minipage}[c][0.3\height][c]{\textwidth}\includegraphics[width=\textwidth]{figs/basin_2.png}\end{minipage}
+ \onslide<6>\begin{minipage}[c][0.3\height][c]{\textwidth}\includegraphics[width=\textwidth]{figs/eigenvalue_convergence.pdf}\smallskip\\\tiny\fullcite{Kent-Dobias_2024_Algorithm-independent}\end{minipage}
\end{overprint}
\end{column}
\end{columns}
\end{frame}
\begin{frame}
- \frametitle{How to count: Kac--Rice}
+ \frametitle{Typical complexity}
Number of stationary points with $\nabla H(\boldsymbol x)=0$ given by integral
over Kac--Rice measure
@@ -171,10 +173,16 @@
\end{frame}
\begin{frame}
- \frametitle{Conditioning on the type of minimum: the spherical models}
+ \frametitle{Conditioning on the type of point: spherical models}
\begin{columns}
\begin{column}{0.5\textwidth}
- In spherical spin glasses, all points have the same Hessian spectral density: semicircle with radius $\mu_\text m$, but different shifts
+ In spherical spin glasses with
+ \[
+ H(\boldsymbol x)=\sum_pa_pH_p(\boldsymbol x)
+ \qquad
+ H_p(\boldsymbol x)=\frac1{p!}\sum_{i_1\cdots i_p}J_{i_1\cdots i_p}x_{i_1}\cdots x_{i_p}
+ \]
+ all points have the same Hessian spectral density: semicircle with radius $\mu_\text m$, but different shifts
\[
\mu=\frac1N\operatorname{Tr}\operatorname{Hess} H(\boldsymbol x)
\]
@@ -200,8 +208,7 @@
\end{frame}
\begin{frame}
- \frametitle{Less simple mean-field models}
- \framesubtitle{The mixed spherical spin glasses}
+ \frametitle{Out of equilibrium dynamics and complexity: spherical models}
\begin{columns}
\begin{column}{0.41\textwidth}
@@ -372,8 +379,8 @@
{
\small
\begin{align*}
- \hspace{0em}&\delta(\lambda_\text{min}(A)) \\
- \hspace{0em}&=\lim_{\beta\to\infty}\int
+ \hspace{-3em}&\delta(\lambda_\text{min}(A)) \\
+ \hspace{-3em}&=\lim_{\beta\to\infty}\int
\frac{d\boldsymbol s\,\delta(N-\|\boldsymbol s\|^2)e^{-\beta\boldsymbol s^TA\boldsymbol s}}
{\int d\boldsymbol s'\,\delta(N-\|\boldsymbol s'\|^2)e^{-\beta\boldsymbol s'^TA\boldsymbol s'}}
\delta\left(\frac{\boldsymbol s^TA\boldsymbol s}N\right)
@@ -464,9 +471,9 @@
\end{column}
\begin{column}{0.5\textwidth}
\begin{overprint}
- \onslide<1>\includegraphics[width=\textwidth]{figs/neural_landscape_1.png}\smallskip\\\tiny\fullcite{Liu_2022_Loss}
- \onslide<2>\includegraphics[width=\textwidth]{figs/neural_landscape_2.png}\smallskip\\\tiny\fullcite{Liu_2022_Loss}
- \onslide<3>\includegraphics[width=\textwidth]{figs/draxler_2018.png}\smallskip\\\tiny\fullcite{Draxler_2018_Essentially}
+ \onslide<1>\begin{minipage}[c][0.3\height][c]{\textwidth}\includegraphics[width=\textwidth]{figs/neural_landscape_1.png}\smallskip\\\tiny\fullcite{Liu_2022_Loss}\end{minipage}
+ \onslide<2>\begin{minipage}[c][0.3\height][c]{\textwidth}\includegraphics[width=\textwidth]{figs/neural_landscape_2.png}\smallskip\\\tiny\fullcite{Liu_2022_Loss}\end{minipage}
+ \onslide<3>\begin{minipage}[c][0.3\height][c]{\textwidth}\includegraphics[width=\textwidth]{figs/draxler_2018.png}\smallskip\\\tiny\fullcite{Draxler_2018_Essentially}\end{minipage}
\end{overprint}
\end{column}
\end{columns}
@@ -600,8 +607,7 @@
\end{frame}
\begin{frame}
- \frametitle{The Euler characteristic \boldmath{$\chi$}}
- \framesubtitle{Computing the Euler characteristic}
+ \frametitle{Computing the Euler characteristic}
\begin{columns}
\begin{column}{0.5\textwidth}
Morse theory: gradient flow on an arbitrary ``height'' function $h$ makes a complex
@@ -664,8 +670,6 @@
\Omega=\{\boldsymbol x\in S^{N-1}\subset\mathbb R^N\mid f_{\boldsymbol x}(\boldsymbol a^\mu)=y^\mu,1\leq\mu\leq M\}
\]
- \bigskip
-
Lagrange multipliers replace differential geometry:
\[
L(\boldsymbol x,\boldsymbol \omega)=h(\boldsymbol x)+\omega^0(\|\boldsymbol x\|^2-N)+\sum_{\mu=1}^M\omega^\mu(f_{\boldsymbol x}(\boldsymbol a^\mu)-y^\mu)
@@ -679,6 +683,7 @@
\end{overprint}
\end{column}
\end{columns}
+ \vspace{-1em}
\[
\chi(\Omega)
=\int_{\mathbb R^{N+M+1}} d\boldsymbol x\,d\boldsymbol \omega\,\delta\big(\begin{bmatrix}\frac{\partial L}{\partial\boldsymbol x}&\frac{\partial L}{\partial\boldsymbol \omega}\end{bmatrix}\big)
@@ -687,13 +692,13 @@
\end{frame}
\begin{frame}
- \frametitle{Computing the Euler characteristic}
+ \frametitle{Computing the Euler characteristic: example}
\begin{columns}
\begin{column}{0.5\textwidth}
- $M$ data points, $N$ parameters, $\alpha=M/N$, $\boldsymbol J^\mu\in\mathbb R^{N^p}$, $\overline{J^2}=\frac{p!}{2N^p}$
+ $M$ data points, $N$ parameters, $\alpha=M/N$, $y^\mu=V_0$, $\boldsymbol a^\mu$ spherical $p$-spin coefficients,
\[
- V_0=f_{\boldsymbol x}(\boldsymbol J^\mu)
- =\frac1{p!}\sum_{i_1=1}^N\cdots\sum_{i_p=1}^NJ ^\mu_{i_1,\ldots,i_p}x_{i_1}\cdots x_{i_p}
+ f_{\boldsymbol x}(\boldsymbol a^\mu)
+ =H^{(\mu)}_p(\boldsymbol x)
\]
Average Euler characteristic reduced to integral over $m=\frac1N\boldsymbol x\cdot\boldsymbol x_0$,
\[
@@ -701,6 +706,10 @@
=\left(\frac N{2\pi}\right)^{\frac12}
\int dm\,g(m)e^{N\mathcal S_\chi(m)}
\]
+
+ \smallskip\tiny
+
+ \fullcite{Kent-Dobias_2025_On}
\end{column}
\begin{column}{0.5\textwidth}
\begin{overprint}
@@ -712,26 +721,25 @@
\end{frame}
\begin{frame}
- \frametitle{A simple model of nonlinear least squares}
- \framesubtitle{Results}
+ \frametitle{Computing the Euler characteristic: example}
\begin{columns}
\begin{column}{0.5\textwidth}
- $M$ data points, $N$ parameters, $\alpha=M/N$, $\boldsymbol J^\mu\in\mathbb R^{N^p}$, $\overline{J^2}=\frac{p!}{2N^p}$
+ $M$ data points, $N$ parameters, $\alpha=M/N$, $y^\mu=V_0$, $\boldsymbol a^\mu$ spherical $p$-spin coefficients,
\[
- V_0=f_{\boldsymbol x}(\boldsymbol J^\mu)
- =\frac1{p!}\sum_{i_1=1}^N\cdots\sum_{i_p=1}^NJ ^\mu_{i_1,\ldots,i_p}x_{i_1}\cdots x_{i_p}
+ f_{\boldsymbol x}(\boldsymbol a^\mu)
+ =H^{(\mu)}_p(\boldsymbol x)
\]
Simplest case: $p=1$, $\Omega$ is intersection of random hyperplanes with the sphere
\medskip
- Results in $\chi(\Omega)=2$ or $\chi(\Omega)=0$ depending on whether solutions exist
+ Results in $\overline{\chi(\Omega)}=0$ or $\overline{\chi(\Omega)}=2$ depending on whether solutions exist
\medskip
- \hspace{2em}\includegraphics[width=0.33\textwidth]{figs/connected.pdf}
+ \hspace{2em}\includegraphics[width=0.33\textwidth]{figs/gone.pdf}
\hfill
- \includegraphics[width=0.33\textwidth]{figs/gone.pdf}\hspace{2em}
+ \includegraphics[width=0.33\textwidth]{figs/connected.pdf}\hspace{2em}
\end{column}
\begin{column}{0.5\textwidth}
\begin{overprint}
@@ -748,8 +756,14 @@
\end{frame}
\begin{frame}
+ \frametitle{Computing the Euler characteristic: example}
\begin{columns}
\begin{column}{0.5\textwidth}
+ $M$ data points, $N$ parameters, $\alpha=M/N$, $y^\mu=V_0$, $\boldsymbol a^\mu$ spherical $p$-spin coefficients,
+ \[
+ f_{\boldsymbol x}(\boldsymbol a^\mu)
+ =H^{(\mu)}_p(\boldsymbol x)
+ \]
For $p>1$, new phases possible
\medskip
@@ -785,34 +799,39 @@
\end{frame}
\begin{frame}
- \frametitle{A simple model of nonlinear least squares}
- \framesubtitle{Results}
+ \frametitle{Computing the Euler characteristic: example}
+
\begin{columns}
- \begin{column}{0.5\textwidth}
- $M$ data points, $N$ parameters, $\alpha=M/N$
- \[
- V_0=\hat f(J\mid \pmb a)
- =\sum_{i_1=1}^N\cdots\sum_{i_p=1}^NJ_{i_1,\ldots,i_p}a_{i_1}\cdots a_{i_p}
- \]
+ \begin{column}{1.1\textwidth}
+ \hspace{1em}Phases for inhomogeneous models: $1-\lambda$ parts linear ($p=1$) plus $\lambda$ quadratic ($p=2$)
+
+ \medskip
- For $p\geq2$, different phases with $|\chi(\Omega)|\gg1$ with varying sign
+ \includegraphics[width=0.21\columnwidth]{figs/phases_12_0.pdf}
+ \nolinebreak\hspace{-2.5em}
+ \includegraphics[width=0.21\columnwidth]{figs/phases_12_1.pdf}
+ \nolinebreak\hspace{-2.5em}
+ \includegraphics[width=0.21\columnwidth]{figs/phases_12_2.pdf}
+ \nolinebreak\hspace{-2.5em}
+ \includegraphics[width=0.21\columnwidth]{figs/phases_12_3.pdf}
+ \nolinebreak\hspace{-2.5em}
+ \includegraphics[width=0.21\columnwidth]{figs/phases_12_4.pdf}
+ \nolinebreak\hspace{-2.5em}
+ \includegraphics[width=0.21\columnwidth]{figs/phases_12_5.pdf}
\medskip
- \includegraphics[width=0.23\textwidth]{figs/middle.pdf}
- \includegraphics[width=0.23\textwidth]{figs/complex.pdf}
- \includegraphics[width=0.23\textwidth]{figs/shattered.pdf}
- \includegraphics[width=0.23\textwidth]{figs/gone.pdf}
- \end{column}
- \begin{column}{0.5\textwidth}
- \begin{overprint}
- \onslide<1>\centering\includegraphics[width=0.8\textwidth]{figs/middle.pdf}\\$\chi(\Omega)\ll0$
- \onslide<2>\centering\includegraphics[width=0.8\textwidth]{figs/complex.pdf}\\$\chi(\Omega)\ll0$
- \onslide<3>\centering\includegraphics[width=0.8\textwidth]{figs/shattered.pdf}\\$\chi(\Omega)\gg0$
- \onslide<4>\includegraphics[width=\textwidth]{figs/phases_2.pdf}
- \onslide<5>\includegraphics[width=\textwidth]{figs/phases_3.pdf}
- \onslide<6>\includegraphics[width=\textwidth]{figs/phases_4.pdf}
- \end{overprint}
+ \hspace{5em}
+ \includegraphics[width=0.13\textwidth]{figs/connected.pdf}
+ \hfill
+ \includegraphics[width=0.13\textwidth]{figs/middle.pdf}
+ \hfill
+ \includegraphics[width=0.13\textwidth]{figs/complex.pdf}
+ \hfill
+ \includegraphics[width=0.13\textwidth]{figs/shattered.pdf}
+ \hfill
+ \includegraphics[width=0.13\textwidth]{figs/gone.pdf}
+ \hspace{5em}
\end{column}
\end{columns}
\end{frame}
@@ -825,50 +844,43 @@
\[
h^\mu(\boldsymbol x)\geq0 \qquad 1\leq\mu\leq M
\]
- Spherical perceptron: $M$ patterns $\boldsymbol\xi^\mu\in\mathbb R^N$,
- \[
- h^\mu(\boldsymbol x)=\boldsymbol\xi^\mu\cdot\boldsymbol x-\kappa
- \]
\end{column}
\begin{column}{0.5\textwidth}
\begin{overprint}
\onslide<1>\includegraphics[width=\textwidth]{figs/nothing_zoom.pdf}
- \onslide<2>\includegraphics[width=\textwidth]{figs/fixed_size_zoom_points.pdf}
- \onslide<3>\includegraphics[width=\textwidth]{figs/max_size_zoom.pdf}
+ \onslide<2>\includegraphics[width=\textwidth]{figs/max_size_zoom.pdf}
\end{overprint}
\end{column}
\end{columns}
\end{frame}
\begin{frame}
- \frametitle{Wedged spheres}
+ \frametitle{Non manifolds: wedged spheres}
\begin{columns}
\begin{column}{0.5\textwidth}
Sphere of radius $r$ uniquely defined by
$h^\mu(\boldsymbol x)=r$ for $D$ constraints,
- $h^\mu(\boldsymbol x)\geq r$ for other $M-D$ constraints
- \[
- \begin{aligned}
- \#_r
- =
- \int_{\mathbb R^D} d\boldsymbol x
- \sum_{\substack{\sigma\subset[M]\\|\sigma|=D}}
- \bigg(\prod_{\mu\in[M]\backslash\sigma}\theta\big(h^\mu(\boldsymbol x)-r\big)\bigg)
- \\
- \times\bigg(\prod_{\mu\in\sigma}\delta\big(h^\mu(\boldsymbol x)-r\big)\bigg)
- \\
- \times\left|
- \det\begin{bmatrix}
- \frac\partial{\partial\boldsymbol x}h^{\sigma_1}(\boldsymbol x)
- &
- \cdots
- &
- \frac\partial{\partial\boldsymbol x}h^{\sigma_D}(\boldsymbol x)
- \end{bmatrix}
- \right|
- \end{aligned}
- \]
- With margin, $\#_r(\kappa)=\#_0(r+\kappa)$
+ $h^\mu(\boldsymbol x)\geq r$ for the other $M-D$ constraints
+ \begin{align*}
+ \hspace{-2em}\#_r
+ =
+ \int_{\mathbb R^D} d\boldsymbol x
+ \sum_{\substack{\sigma\subset[M]\\|\sigma|=D}}
+ \bigg(\prod_{\mu\in[M]\backslash\sigma}\theta\big(h^\mu(\boldsymbol x)-r\big)\bigg)
+ \\
+ \times\bigg(\prod_{\mu\in\sigma}\delta\big(h^\mu(\boldsymbol x)-r\big)\bigg)
+ \\
+ \times\left|
+ \det\begin{bmatrix}
+ \frac\partial{\partial\boldsymbol x}h^{\sigma_1}(\boldsymbol x)
+ &
+ \cdots
+ &
+ \frac\partial{\partial\boldsymbol x}h^{\sigma_D}(\boldsymbol x)
+ \end{bmatrix}
+ \right|
+ \end{align*}
+ \alert<3>{With margin, $\#_r(\kappa)=\#_0(r+\kappa)$}
\end{column}
\begin{column}{0.5\textwidth}
\begin{overprint}
@@ -881,35 +893,33 @@
\end{frame}
\begin{frame}
- \frametitle{Inscribed spheres}
+ \frametitle{Non manifolds: inscribed spheres}
\begin{columns}
\begin{column}{0.5\textwidth}
Sphere of maximal radius uniquely defined by
$h^\mu(\boldsymbol x)=r$ for $D+1$ constraints,
$h^\mu(\boldsymbol x)\geq r$ for other $M-D-1$ constraints
- \[
- \begin{aligned}
- \#_\text{insc}
- =
- \int_0^\infty dr\int_{\mathbb R^D} d\boldsymbol x
- \sum_{\substack{\sigma\subset[M]\\|\sigma|=D+1}}
- \\
- \bigg(\prod_{\mu\in[M]\backslash\sigma}\theta\big(h^\mu(\boldsymbol x)-r\big)\bigg)
- \bigg(\prod_{\mu\in\sigma}\delta\big(h^\mu(\boldsymbol x)-r\big)\bigg)
- \\
- \times\left|
- \det\begin{bmatrix}
- \frac\partial{\partial\boldsymbol x}h^{\sigma_1}(\boldsymbol x)
- &
- \cdots
- &
- \frac\partial{\partial\boldsymbol x}h^{\sigma_{D+1}}(\boldsymbol x)
- \\
- -1 & \cdots & -1
- \end{bmatrix}
- \right|
- \end{aligned}
- \]
+ \begin{align*}
+ \hspace{-2em}&\#_\text{insc}
+ =
+ \int_0^\infty dr\int_{\mathbb R^D} d\boldsymbol x
+ \sum_{\substack{\sigma\subset[M]\\|\sigma|=D+1}}
+ \\
+ \hspace{-2em}&\times\bigg(\prod_{\mu\in[M]\backslash\sigma}\theta\big(h^\mu(\boldsymbol x)-r\big)\bigg)
+ \bigg(\prod_{\mu\in\sigma}\delta\big(h^\mu(\boldsymbol x)-r\big)\bigg)
+ \\
+ \hspace{-2em}&\hspace{4em}\times\left|
+ \det\begin{bmatrix}
+ \frac\partial{\partial\boldsymbol x}h^{\sigma_1}(\boldsymbol x)
+ &
+ \cdots
+ &
+ \frac\partial{\partial\boldsymbol x}h^{\sigma_{D+1}}(\boldsymbol x)
+ \\
+ -1 & \cdots & -1
+ \end{bmatrix}
+ \right|
+ \end{align*}
\end{column}
\begin{column}{0.5\textwidth}
\begin{overprint}
@@ -920,7 +930,7 @@
\end{frame}
\begin{frame}
- \frametitle{Treating the determinant}
+ \frametitle{Practical considerations: treating the determinant}
\begin{columns}
\begin{column}{0.9\textwidth}
\[
@@ -952,7 +962,7 @@
\end{frame}
\begin{frame}
- \frametitle{Treating the sum over subsets}
+ \frametitle{Practical considerations: treating the sum over subsets}
\begin{columns}
\begin{column}{0.9\textwidth}
\begin{align*}
@@ -993,7 +1003,7 @@
\end{columns}
\end{frame}
\begin{frame}
- \frametitle{Treating the sum over subsets}
+ \frametitle{Practical considerations: treating the sum over subsets}
\begin{columns}
\begin{column}{0.9\textwidth}
Why does this work? Expand the product:
@@ -1034,4 +1044,209 @@
\end{columns}
\end{frame}
+\begin{frame}
+ \frametitle{Practical considerations: treating the sum over subsets}
+ \begin{columns}
+ \begin{column}{0.9\textwidth}
+ \includegraphics[width=\textwidth]{figs/annealed_compare.pdf}
+ \end{column}
+ \end{columns}
+\end{frame}
+
+\begin{frame}
+ \frametitle{Application to the spherical perceptron}
+ \begin{columns}
+ \begin{column}{0.6\textwidth}
+ $M$ data points, $N$ parameters, $\alpha=M/N$
+ \[
+ h^\mu(\boldsymbol x)=\boldsymbol\xi^\mu\cdot\boldsymbol x-\kappa
+ \]
+ $\boldsymbol\xi^\mu$ normally distributed
+
+ \bigskip
+
+ \alert<2>{$\kappa < 0$ : spherical obstacles have positive curvature}
+
+ \medskip
+
+ \alert<3>{$\kappa = 0$ : spherical obstacles have zero curvature}
+
+ \medskip
+
+ \alert<4>{$\kappa > 0$ : spherical obstacles have negative curvature}
+
+ \bigskip
+
+ $N\to\infty$ gives asymptotically zero curvature for all $\kappa$
+ \end{column}
+ \begin{column}{0.27\textwidth}
+ \begin{overprint}
+ \onslide<1-2>\includegraphics[width=\textwidth]{figs/curvature_demo_1.pdf}
+ \onslide<3>\includegraphics[width=\textwidth]{figs/curvature_demo_2.pdf}
+ \onslide<4>\includegraphics[width=\textwidth]{figs/curvature_demo_3.pdf}
+ \end{overprint}
+ \end{column}
+ \end{columns}
+\end{frame}
+
+\begin{frame}
+ \frametitle{Application to the spherical perceptron}
+ \begin{columns}
+ \begin{column}{0.95\textwidth}
+ Typical statistics of wedged spheres given by
+ \[
+ \frac1N\overline{\log\#_0}
+ =\lim_{n\to0}\frac\partial{\partial n}\operatorname{extr}_{Q\alert<2>{,\rho}}\mathcal S_0(Q\alert<2>{,\rho})
+ \]
+ for effective action
+ \[
+ \hspace{-2em}
+ \mathcal S_0(Q\alert<2>{,\rho})=
+ \frac12\log\det Q\alert<2>{-\frac n2\log\frac{\rho^2}{2\pi}}+\alpha\log\bigg(
+ e^{\frac12\sum_{ab}
+ Q_{ab}\frac{\partial^2}{\partial y_a\partial y_b}
+ }
+ \prod_{a=1}^n
+ \big[
+ \theta(y_a)
+ \alert<2>{+
+ \rho\delta(y_a)}
+ \big]
+ \bigg|_{y_a=-\kappa}
+ \bigg)
+ \]
+ depending on
+ \[
+ Q_{ab}=\frac1N\boldsymbol x_a\cdot\boldsymbol x_b
+ \hspace{3em}
+ \rho
+ =\frac1{\sqrt N}\lim_{\omega\to\infty}\omega^{-\alpha}\sqrt{\boldsymbol s_a^T\boldsymbol s_a}
+ =\frac1{\sqrt N}\lim_{\omega\to\infty}\omega^{-\alpha}\sqrt{\boldsymbol\eta^T_a\bar{\boldsymbol\eta}_a}
+ \]
+ \end{column}
+ \end{columns}
+\end{frame}
+
+\begin{frame}
+ \frametitle{Application to the spherical perceptron}
+ \begin{columns}
+ \begin{column}{0.7\textwidth}
+ \includegraphics[width=\textwidth]{figs/phase_diagram_rs.pdf}
+ \end{column}
+ \begin{column}{0.3\textwidth}
+ \includegraphics[width=\textwidth]{figs/fixed_size_zoom_points.pdf}
+ \end{column}
+ \end{columns}
+\end{frame}
+
+\begin{frame}
+ \frametitle{Application to the spherical perceptron}
+ \begin{columns}
+ \begin{column}{0.7\textwidth}
+ \begin{overprint}
+ \onslide<1>\includegraphics[width=\textwidth]{figs/phase_diagram_inscribed.pdf}
+ \onslide<2>\includegraphics[width=\textwidth]{figs/phase_diagram_detail_1.pdf}
+ \onslide<3>\includegraphics[width=\textwidth]{figs/phase_diagram_detail_2.pdf}
+ \end{overprint}
+ \end{column}
+ \begin{column}{0.3\textwidth}
+ \vspace{-5.5em}
+
+ \[\hspace{-2em}\overline{\log\#_\text{insc}}=\max_{r\geq0}\overline{\log\#_r(\kappa)}\]
+
+ \includegraphics[width=\textwidth]{figs/max_size_zoom.pdf}
+ \end{column}
+ \end{columns}
+\end{frame}
+
+\begin{frame}
+ \frametitle{Application to the spherical perceptron}
+ \begin{columns}
+ \begin{column}{0.5\textwidth}
+ Why does the structure of the distribution of wedged points differ from that of all solutions?
+
+ \medskip
+
+ `Equilibrium' calculations averages over solutions at all larger margin with diverse, inequivalent geometries
+
+ \medskip
+
+ \alert<2>{Sphere-counting isolates properties of the solution set at each specific margin}
+
+ \medskip
+
+ \alert<3>{Relationship between $\#_r$, $\#_\text{insc}$, and solution topology}
+ \end{column}
+ \begin{column}{0.5\textwidth}
+ \begin{overprint}
+ \onslide<1>\includegraphics[width=\textwidth]{figs/margin_rainbow.pdf}
+ \onslide<2>\includegraphics[width=\textwidth]{figs/margin_rainbow_points.pdf}
+ \onslide<3>\includegraphics[width=\textwidth]{figs/margin_rainbow_points-2.pdf}
+ \end{overprint}
+ \end{column}
+ \end{columns}
+\end{frame}
+
+\begin{frame}
+ \frametitle{Understanding the flat parts of random landscapes}
+ \begin{columns}
+ \begin{column}{0.33\textwidth}
+ \textbf{Nearly flat parts}
+
+ \vspace{-0.75em}
+
+ \rule{\columnwidth}{1pt}
+
+ Conditioning stationary point complexity on marginal optima
+
+ \bigskip
+
+ \centering
+ \includegraphics[height=10pc]{figs/msg_marg_spectra.pdf}
+
+ \smallskip\raggedright\tiny
+
+ \fullcite{Kent-Dobias_2024_Conditioning}
+ \end{column}
+ \begin{column}{0.66\textwidth}
+ \textbf{Really flat parts}
+
+ \vspace{-0.75em}
+
+ \rule{\columnwidth}{1pt}
+
+ \medskip
+
+ \begin{minipage}{0.49\columnwidth}
+ \raggedright
+ Topology of solution manifolds via the average Euler characteristic
+
+ \bigskip
+
+ \centering
+ \includegraphics[height=10pc]{figs/function_2.png}
+
+ \smallskip\raggedright\tiny
+
+ \fullcite{Kent-Dobias_2025_On}
+ \end{minipage}
+ \hfill
+ \begin{minipage}{0.49\columnwidth}
+ \raggedright
+ Geometry of solution sets via the statistics of wedged and inscribed spheres
+
+ \bigskip
+
+ \centering
+ \includegraphics[height=10pc]{figs/max_size_zoom.pdf}
+
+ \smallskip\raggedright\tiny
+
+ Work in progress, expect something on the arXiv in the coming weeks!\\
+ \vspace{10pt}
+ \end{minipage}
+ \end{column}
+ \end{columns}
+\end{frame}
+
\end{document}