summaryrefslogtreecommitdiff
path: root/langevin.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'langevin.cpp')
-rw-r--r--langevin.cpp49
1 files changed, 36 insertions, 13 deletions
diff --git a/langevin.cpp b/langevin.cpp
index cf61b85..acac6c7 100644
--- a/langevin.cpp
+++ b/langevin.cpp
@@ -1,6 +1,7 @@
#include <getopt.h>
#include <eigen3/Eigen/LU>
+#include <utility>
#include "complex_normal.hpp"
#include "p-spin.hpp"
@@ -8,6 +9,7 @@
#include "pcg-cpp/include/pcg_random.hpp"
#include "randutils/randutils.hpp"
+#include "unsupported/Eigen/CXX11/src/Tensor/TensorFFT.h"
using Rng = randutils::random_generator<pcg32>;
@@ -129,7 +131,9 @@ int main(int argc, char* argv[]) {
// simulation parameters
double ε = 1e-4;
+ double εJ = 5e-2;
double δ = 1e-2; // threshold for determining saddle
+ double Δ = 1e-3;
double γ = 1e-2; // step size
unsigned t = 1000; // number of Langevin steps
unsigned M = 100;
@@ -182,24 +186,43 @@ int main(int argc, char* argv[]) {
Vector z0 = normalize(randomVector(N, complex_normal_distribution<>(0, 1, 0), r.engine()));
Vector zSaddle = findSaddle(J, z0, ε);
-
- double W;
+ Vector zSaddlePrev = Vector::Zero(N);
Vector z = zSaddle;
- for (unsigned i = 0; i < n; i++) {
- std::tie(W, z) = langevin(J, z, T, γ, M, r);
+
+ while (δ < (zSaddle - zSaddlePrev).norm()) { // Until we find two saddles sufficiently close...
+ std::tie(std::ignore, z) = langevin(J, z, T, γ, M, r);
try {
- Vector zNewSaddle = findSaddle(J, z, ε);
- Scalar H;
- Matrix ddH;
- std::tie(H, std::ignore, ddH) = hamGradHess(J, zNewSaddle);
- Eigen::SelfAdjointEigenSolver<Matrix> es(ddH.adjoint() * ddH);
- std::cout << N << "\t" << M * (i+1) << "\t" << H << "\t"
- << zNewSaddle.transpose() << "\t" << es.eigenvalues().transpose()
- << std::endl;
- std::cerr << M * (i+1) << " steps taken to move " << (zNewSaddle - zSaddle).norm() << ", saddle information saved." << std::endl;
+ Vector zSaddleNext = findSaddle(J, z, ε);
+ if (Δ < (zSaddleNext - zSaddle).norm()) { // Ensure we are finding distinct saddles.
+ zSaddlePrev = zSaddle;
+ zSaddle = zSaddleNext;
+ }
} catch (std::exception& e) {
std::cerr << "Could not find a saddle: " << e.what() << std::endl;
}
+
+ std::cerr << "Current saddles are " << (zSaddle - zSaddlePrev).norm() << " apart." << std::endl;
+ }
+
+ std::cerr << "Found sufficiently nearby saddles, perturbing J." << std::endl;
+
+ complex_normal_distribution<> dJ(0, εJ * σ, 0);
+
+ std::function<void(Tensor&, std::array<unsigned, p>)> perturbJ =
+ [&dJ, &r] (Tensor& JJ, std::array<unsigned, p> ind) {
+ Scalar Ji = getJ<Scalar, p>(JJ, ind);
+ setJ<Scalar, p>(JJ, ind, Ji + dJ(r.engine()));
+ };
+
+ for (unsigned i = 0; i < n; i++) {
+ Tensor Jp = J;
+
+ iterateOver<Scalar, p>(Jp, perturbJ);
+
+ Vector zSaddleNew = findSaddle(Jp, zSaddle, ε);
+ Vector zSaddlePrevNew = findSaddle(Jp, zSaddlePrev, ε);
+
+ std::cout << (zSaddleNew - zSaddlePrevNew).norm() << std::endl;
}
return 0;