diff options
author | Jaron Kent-Dobias <jaron@kent-dobias.com> | 2022-01-07 16:53:23 +0100 |
---|---|---|
committer | Jaron Kent-Dobias <jaron@kent-dobias.com> | 2022-01-07 16:53:23 +0100 |
commit | 66bd034adc5bbb782e06780b8f1625ec0a53332e (patch) | |
tree | 6265069249f20be4a2053691eb6b3fb7cd4506de | |
parent | 6539131ba2e5652f6cb70f83a9144eb0b99254a6 (diff) | |
download | JPA_55_434006-66bd034adc5bbb782e06780b8f1625ec0a53332e.tar.gz JPA_55_434006-66bd034adc5bbb782e06780b8f1625ec0a53332e.tar.bz2 JPA_55_434006-66bd034adc5bbb782e06780b8f1625ec0a53332e.zip |
Started some notes about the 2-spin partition function.overleaf
-rw-r--r-- | stokes.tex | 14 |
1 files changed, 14 insertions, 0 deletions
@@ -392,6 +392,20 @@ separatrix of a third. This means that when the imaginary energies of two critical points are brought to the same value, their surfaces of constant imaginary energy join. +\begin{equation} + \begin{aligned} + Z(\beta) + &=\int_{S^{N-1}}dx\,e^{-\beta H(x)} + =\int_{\mathbb R^N}dx\,\delta(x^2-N)e^{-\beta H(x)} \\ + &=\frac1{2\pi}\int_{\mathbb R^N}dx\,d\lambda\,e^{-\frac12\beta x^TJx-\lambda(x^Tx-N)} \\ + &=\frac1{2\pi}\int_{\mathbb R^N}dx\,d\lambda\,e^{-\frac12x^T(\beta J+\lambda I)x+\lambda N} \\ + &=\frac1{2\pi}\int d\lambda\,\sqrt{\frac{(2\pi)^N}{\det(\beta J+\lambda I)}}e^{\lambda N} \\ + &=\frac1{2\pi}\int d\lambda\,\sqrt{\frac{(2\pi)^N}{\prod_i(\beta\lambda_i+\lambda)}}e^{\lambda N} \\ + &=(2\pi)^{N/2-1}\int d\lambda\,e^{\lambda N-\frac12\sum_i\log(\beta\lambda_i+\lambda)} \\ + &\simeq(2\pi)^{N/2-1}\int d\lambda\,e^{\lambda N-\frac N2\int d\lambda'\,\rho(\lambda')\log(\beta\lambda'+\lambda)} \\ + \end{aligned} +\end{equation} + \subsection{Pure \textit{p}-spin} \begin{equation} |