summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorJaron Kent-Dobias <jaron@kent-dobias.com>2022-02-11 18:19:54 +0100
committerJaron Kent-Dobias <jaron@kent-dobias.com>2022-02-11 18:19:54 +0100
commited7025ba62d7e80e859434768b8a256f2320bbeb (patch)
tree830c9078f4693a644c7ec58d1a18af54815f24b6
parent4812679a26026036d16a408a5b63f4e33d070759 (diff)
downloadJPA_55_434006-ed7025ba62d7e80e859434768b8a256f2320bbeb.tar.gz
JPA_55_434006-ed7025ba62d7e80e859434768b8a256f2320bbeb.tar.bz2
JPA_55_434006-ed7025ba62d7e80e859434768b8a256f2320bbeb.zip
Added discussion of bound on overlap, and a figure illustrating the bound.
-rw-r--r--figs/bound.pdfbin0 -> 30251 bytes
-rw-r--r--stokes.tex28
2 files changed, 27 insertions, 1 deletions
diff --git a/figs/bound.pdf b/figs/bound.pdf
new file mode 100644
index 0000000..0e6814f
--- /dev/null
+++ b/figs/bound.pdf
Binary files differ
diff --git a/stokes.tex b/stokes.tex
index f2ce388..fa65c10 100644
--- a/stokes.tex
+++ b/stokes.tex
@@ -1455,7 +1455,33 @@ variable $\delta$.
Though the value of $\delta$ is bounded by $\Delta$ by $|\delta|\leq\Delta$, in
reality this bound is not the relevant one, because we are confined on the
-manifold $N=z^2$.
+manifold $N=z^2$. This bound is most easily established by returning to a
+$2N$-dimensional real problem, with $x=x_1$ and $z=x_2+iy_2$. The constraint gives $x_2^Ty_2=0$, $x_1^Tx_1=1$, and $x_2^Tx_2=1+y_2^Ty_2$. Then
+\begin{equation}
+ \Delta=1+x_2^Tx_2+y_2^Ty_2-2x_1^Tx_2=2(1+y_2^Ty_2-x_1^Tx_2)
+\end{equation}
+\begin{equation}
+ \Delta=2(1+|y_2|^2-\sqrt{1-|y_2|^2}\cos\theta_{xx})
+\end{equation}
+\begin{eqnarray}
+ \delta&=2-2x_1^Tx_2-2ix_1^Ty_2=2(1-|x_2|\cos\theta_{xx}-i|y_2|\cos\theta_{xy}) \\
+ &=2(1-\sqrt{1-|y_2|^2}\cos\theta_{xx}-i|y_2|\cos\theta_{xy})
+\end{eqnarray}
+$\cos^2\theta_{xy}\leq1-\cos^2\theta_{xx}$
+These equations along with the inequality produce the required bound on $|\delta|$ as a function of $\Delta$ and $\arg\delta$.
+
+\begin{figure}
+ \includegraphics{figs/bound.pdf}
+
+ \caption{
+ The line bounding $\delta$ in the complex plane as a function of
+ $\Delta=1,2,\ldots,6$ (inner to outer). Notice that for $\Delta\leq4$,
+ $|\delta|=\Delta$ is saturated for positive real $\delta$, but is not for
+ $\Delta>4$, and $\Delta=4$ has a cusp in the boundary. This is due to
+ $\Delta=4$ corresponding to the maximum distance between any two points on
+ the real sphere.
+ }
+\end{figure}
\section{The $p$-spin spherical models: numerics}