diff options
author | Jaron Kent-Dobias <jaron@kent-dobias.com> | 2022-02-21 15:19:48 +0100 |
---|---|---|
committer | Jaron Kent-Dobias <jaron@kent-dobias.com> | 2022-02-21 15:19:48 +0100 |
commit | 0368a5d84845a2de6050d206f456c648234c5761 (patch) | |
tree | 177ecddba08772adf72fe845056d1b2b75324214 /stokes.tex | |
parent | 234aa3beb3c61d696eeefa074e9e443605068fb2 (diff) | |
download | JPA_55_434006-0368a5d84845a2de6050d206f456c648234c5761.tar.gz JPA_55_434006-0368a5d84845a2de6050d206f456c648234c5761.tar.bz2 JPA_55_434006-0368a5d84845a2de6050d206f456c648234c5761.zip |
Work on the 2-spin section.
Diffstat (limited to 'stokes.tex')
-rw-r--r-- | stokes.tex | 72 |
1 files changed, 61 insertions, 11 deletions
@@ -1052,22 +1052,72 @@ imaginary energy join. Z(\beta) &=\int_{S^{N-1}}ds\,e^{-\beta H(s)} =\sum_{\sigma\in\Sigma_0}n_\sigma\int_{\mathcal J_\sigma}ds\,e^{-\beta H_2(s)} \\ - &\simeq\sum_{k=0}^D2n_ki^k\left(\frac{2\pi}\beta\right)^{D/2}e^{-\beta H_2(s_\sigma)}\prod_{\lambda_0>0}\lambda_0^{-1/2} \\ - &=\sum_{k=0}^D2n_ki^k\left(\frac{2\pi}\beta\right)^{D/2}e^{-N\beta\epsilon_k}\prod_{\ell\neq k}\frac12|\epsilon_k-\epsilon_\ell| + &\simeq\sum_{k=0}^D2i^k\left(\frac{2\pi}\beta\right)^{D/2}e^{-\beta H_2(s_\sigma)}\prod_{\lambda_0>0}\lambda_0^{-1/2} \\ + &=2\sum_{k=0}^D\exp\left\{ + i\frac\pi2k+\frac D2\log\frac{2\pi}\beta-N\beta\epsilon_k-\frac12\sum_{\ell\neq k}\log\frac12|\epsilon_k-\epsilon_\ell| + \right\} \end{eqnarray} - \begin{eqnarray} Z(\beta) - &=\int_{S^{N-1}}ds\,e^{-\beta H(s)} - =\int_{\mathbb R^N}dx\,\delta(x^2-N)e^{-\beta H(x)} \\ - &=\frac1{2\pi}\int_{\mathbb R^N}dx\,d\lambda\,e^{-\frac12\beta x^TJx-\lambda(x^Tx-N)} \\ - &=\frac1{2\pi}\int_{\mathbb R^N}dx\,d\lambda\,e^{-\frac12x^T(\beta J+\lambda I)x+\lambda N} \\ - &=\frac1{2\pi}\int d\lambda\,\sqrt{\frac{(2\pi)^N}{\det(\beta J+\lambda I)}}e^{\lambda N} \\ - &=\frac1{2\pi}\int d\lambda\,\sqrt{\frac{(2\pi)^N}{\prod_i(\beta\lambda_i+\lambda)}}e^{\lambda N} \\ - &=(2\pi)^{N/2-1}\int d\lambda\,e^{\lambda N-\frac12\sum_i\log(\beta\lambda_i+\lambda)} \\ - &\simeq(2\pi)^{N/2-1}\int d\lambda\,e^{\lambda N-\frac N2\int d\lambda'\,\rho(\lambda')\log(\beta\lambda'+\lambda)} \\ + &=2\int d\epsilon\,\rho(\epsilon)\exp\left\{ + i\frac\pi2k_\epsilon+\frac D2\log\frac{2\pi}\beta-N\beta\epsilon-\frac D2\int d\epsilon'\,\rho(\epsilon')\log\frac12|\epsilon-\epsilon'| + \right\} \end{eqnarray} +Since the $J$ of the 2-spin model is a symmetric real matrix with variance +$1/N$, its eigenvalues are distributed by a semicircle distribution of radius 2, +and therefore the energies $\epsilon$ are distributed by a semicircle +distribution of radius $\epsilon_{\mathrm{th}}=1$, with +\begin{equation} + \rho(\epsilon\mid\epsilon_{\mathrm{th}})=\frac2{\pi\epsilon_{\mathrm{th}}^2}\sqrt{\epsilon_{\mathrm{th}}^2-\epsilon^2} +\end{equation} +The index as a function of energy level is given by the cumulative density function +\begin{equation} + k_\epsilon=N\int_{-\infty}^\epsilon d\epsilon'\,\rho(\epsilon')=\frac N\pi\left( + \frac{\epsilon}{\epsilon_{\mathrm{th}}^2}\sqrt{\epsilon_{\mathrm{th}}^2-\epsilon^2}+2\tan^{-1}\frac{\epsilon_{\mathrm{th}}+\epsilon}{\sqrt{\epsilon_{\mathrm{th}}^2-\epsilon^2}} + \right) +\end{equation} +Finally, the product over the singular values corresponding to descending directions gives +\begin{equation} + \frac12\int d\epsilon'\,\rho(\epsilon')\log\frac12|\epsilon-\epsilon'| + =\log\frac{\epsilon_{\mathrm{th}}}2-\frac14+\frac12\left(\frac{\epsilon}{\epsilon_{\mathrm{th}}}\right)^2 +\end{equation} +for $\epsilon<\epsilon_{\mathrm{th}}$. Then +\begin{equation} + \operatorname{Re}f=-\epsilon\operatorname{Re}\beta-\log\frac12+\frac14-\frac12\epsilon^2 +\end{equation} +\begin{equation} + \operatorname{Im}f=-\epsilon\operatorname{Im}\beta+\frac12\left( + \epsilon\sqrt{1-\epsilon^2}+2\tan^{-1}\frac{1+\epsilon}{\sqrt{1-\epsilon^2}} + \right) +\end{equation} +The value of the integral will be dominated by the contribution near the +maximum of the real part of $f$, which is +\begin{equation} + \epsilon_{\mathrm{max}}=\left\{\matrix{-\operatorname{Re}\beta & \operatorname{Re}\beta\leq1\cr -1 & \mathrm{otherwise}}\right. +\end{equation} +For $\operatorname{Re}\beta>1$, the maximum is concentrated in the ground state +and the real part of $f$ comes to a cusp, meaning that the oscillations do not +interfere in taking the saddle point. Once this line is crossed and the maximum +enters the bulk of the spectrum, one expects to find cancellations caused by +the incoherent contributions of thimbles with nearby energies to +$\epsilon_{\mathrm{max}}$. + +On the other hand, there is another point where the thimble sum becomes +coherent. This is when the oscillation frequency near the maximum energy goes +to zero. This happens for +\begin{equation} + 0 + =\frac{\partial}{\partial\epsilon}\operatorname{Im}f\Big|_{\epsilon=\epsilon_{\mathrm{max}}} + =-\operatorname{Im}\beta+\sqrt{1-\epsilon_{\mathrm{max}}^2} + =-\operatorname{Im}\beta+\sqrt{1-(\operatorname{Re}\beta)^2} +\end{equation} +or for $|\beta|=1$. Here the sum of contributions from thimbles near the +maximum again becomes coherent. These conditions correspond precisely to those +found for the density of zeros in the 2-spin model found previously +\cite{Obuchi_2012_Partition-function, Takahashi_2013_Zeros}. + + \subsection{Pure \textit{p}-spin: where are the saddles?} Since $H$ is holomorphic, any critical point of $\operatorname{Re}H$ is also |