summaryrefslogtreecommitdiff
path: root/stokes.tex
diff options
context:
space:
mode:
authorJaron Kent-Dobias <jaron@kent-dobias.com>2021-06-07 14:41:04 +0200
committerJaron Kent-Dobias <jaron@kent-dobias.com>2021-06-07 14:41:04 +0200
commit3ad65179643c7a9df2820acd608897f0debc8421 (patch)
tree2318b14ef644097c9644a61474dbb78bc1aef656 /stokes.tex
parent49b2d884ed027103b019a5b22a2c6d851d1c34fc (diff)
downloadJPA_55_434006-3ad65179643c7a9df2820acd608897f0debc8421.tar.gz
JPA_55_434006-3ad65179643c7a9df2820acd608897f0debc8421.tar.bz2
JPA_55_434006-3ad65179643c7a9df2820acd608897f0debc8421.zip
Found better way to generically introduce dynamics.
Diffstat (limited to 'stokes.tex')
-rw-r--r--stokes.tex30
1 files changed, 19 insertions, 11 deletions
diff --git a/stokes.tex b/stokes.tex
index d833866..c64f934 100644
--- a/stokes.tex
+++ b/stokes.tex
@@ -121,13 +121,21 @@ Morse theory provides the universal correspondence between contours and thimbles
Each of these integrals is very well-behaved: convergent asymptotic series
exist for their value about the critical point $\sigma$, for example. One must know the integer weights $n_\sigma$.
-For a holomorphic Hamiltonian $H$, dynamics are defined by gradient descent on $\operatorname{Re}H$. In hermitian geometry, the gradient is given by raising an index of the conjugate differential, or $\operatorname{grad}f=(\partial^*f)^\sharp$. This implies that, in terms of coordinates $u$, gradient descent follows the dynamics
+For a holomorphic Hamiltonian $H$, dynamics are defined by gradient descent on $\operatorname{Re}H$. In hermitian geometry, the gradient is given by raising an index of the conjugate differential, or $\operatorname{grad}f=(\partial^*f)^\sharp$. This implies that, in terms of coordinates, gradient descent follows the dynamics
\begin{equation} \label{eq:flow}
- \dot u^\alpha
- =-(\partial^*_{\beta}\operatorname{Re}H)h^{\beta\alpha}
- =-\tfrac12(\partial_\beta H)^*h^{\beta\alpha}
+ \dot z^i
+ =-(\partial^*_{\beta}\operatorname{Re}H)h^{\beta\alpha}\partial_\alpha z^i
+ =-\tfrac12(\partial_\beta H)^*h^{\beta\alpha}\partial_\alpha z^i
\end{equation}
where $h$ is the Hermitian metric and we have used the fact that, for holomorphic $H$, $\partial^*H=0$.
+This can be simplied furthur by noting that $h^{\beta\alpha}=h^{-1}_{\beta\alpha}$ for $h_{\beta\alpha}=(\partial_\beta z^i)^*\partial_\alpha z^i=(J^\dagger J)_{\beta\alpha}$.
+
+\begin{equation}
+ \dot z=-\tfrac12(\partial H)^\dagger J^*[J^\dagger J]^{-1}J^T
+ =-\tfrac12(\partial H)^\dagger P
+\end{equation}
+which is nothing but the projection of $(\partial H)^*$ into the tangent space of the manifold, with $P=J^*[J^\dagger J]^{-1}J^T$. Note that $P$ is hermitian: $P^\dagger=(J^*[J^\dagger J]^{-1}J^T)^\dagger=J^*[J^\dagger J]^{-1}J^T=P$.
+
Gradient descent on $\operatorname{Re}H$ is equivalent to Hamiltonian dynamics
with the Hamiltonian $\operatorname{Im}H$. This is because $(M, h)$ is Kähler
and therefore admits a symplectic structure, but that the flow conserves
@@ -135,12 +143,12 @@ $\operatorname{Im}H$ can be shown using \eqref{eq:flow} and the holomorphic prop
\begin{equation}
\begin{aligned}
\frac d{dt}&\operatorname{Im}H
- =\dot u^\alpha\partial_\alpha\operatorname{Im}H+(\dot u^\alpha)^*\partial_\alpha^*\operatorname{Im}H \\
+ =\dot z\partial\operatorname{Im}H+\dot z^*\partial^*\operatorname{Im}H \\
&=\frac i4\left(
- (\partial_\beta H)^*h^{\beta\alpha}\partial_\alpha H-\partial_\beta H(h^{\beta\alpha})^*\partial_\alpha^*H^*
+ (\partial H)^\dagger P\partial H-(\partial H)^TP^\dagger(\partial H)^*
\right) \\
&=\frac i4\left(
- (\partial_\beta H)^*h^{\beta\alpha}\partial_\alpha H-[(\partial_\beta H)^*h^{\beta\alpha}\partial_\alpha H]^*
+ (\partial H)^\dagger P\partial H-[(\partial H)^\dagger P\partial H]^*
\right) \\
&=\frac i4\left(
\|\partial H\|-\|\partial H\|^*
@@ -160,13 +168,13 @@ single simply connected surface, locally diffeomorphic to $\mathbb R^{2N}$. Now,
point, the flow is locally
\begin{equation}
\begin{aligned}
- \dot u^\alpha
- &\simeq-\frac12\operatorname{Hess}(H)^*
+ \dot z
+ &\simeq-\frac12(\partial\partial H)^\dagger P(z-z_0)
\end{aligned}
\end{equation}
The matrix $(\partial\partial H)^\dagger P$ has a spectrum identical to that of
-$\partial\partial H$ save a single marginal direction corresponding to $z_0$,
-the normal to the constraint surface. Assuming we are working in a diagonal basis, we find
+$\partial\partial H$ save marginal directions corresponding to the normals to
+manifold. Assuming we are working in a diagonal basis, we find
\begin{equation}
\dot z_i=-\frac12\lambda_i\Delta z_i^*+O(\Delta z^2)
\end{equation}