summaryrefslogtreecommitdiff
path: root/stokes.tex
diff options
context:
space:
mode:
authorJaron Kent-Dobias <jaron@kent-dobias.com>2022-02-03 10:41:10 +0100
committerJaron Kent-Dobias <jaron@kent-dobias.com>2022-02-03 10:41:10 +0100
commitb07d73fdcc4d1e4c38b473ac10779480a4d678ac (patch)
treee82be980793ca0f08e11504e06f182c17ce14d59 /stokes.tex
parentb4d68122a5f96d02f94043656a1bd8115b529300 (diff)
downloadJPA_55_434006-b07d73fdcc4d1e4c38b473ac10779480a4d678ac.tar.gz
JPA_55_434006-b07d73fdcc4d1e4c38b473ac10779480a4d678ac.tar.bz2
JPA_55_434006-b07d73fdcc4d1e4c38b473ac10779480a4d678ac.zip
Added new figure highlighting our example function.
Diffstat (limited to 'stokes.tex')
-rw-r--r--stokes.tex18
1 files changed, 18 insertions, 0 deletions
diff --git a/stokes.tex b/stokes.tex
index 37dacbf..8b89104 100644
--- a/stokes.tex
+++ b/stokes.tex
@@ -147,6 +147,24 @@ action potentially has more stationary points. We'll call $\Sigma$ the set of
\emph{all} stationary points of the action, which naturally contains the set of
\emph{real} stationary points $\Sigma_0$.
+\begin{figure}
+ \includegraphics{figs/action.pdf}\hfill
+ \includegraphics{figs/stationaryPoints.pdf}
+
+ \caption{
+ An example of a simple action and its critical points. \textbf{Left:} An
+ action $\mathcal S$ for the $N=2$ spherical (or circular) $3$-spin model,
+ defined for $s_1,s_2\in\mathbb R$ on the circle $s_1^2+s_2^2=2$ by
+ $\mathcal S(s_1,s_2)=1.051s_1^3+1.180s_1^2s_2+0.823s_1s_2^2+1.045s_2^3$. In
+ the example figures in this section, we will mostly use the single angular
+ variable $\theta=\arctan(s_1,s_2)$, which parameterizes the unit circle and
+ its complex extension. \textbf{Right:} The stationary points of $\mathcal
+ S$ in the complex-$\theta$ plane. In this example,
+ $\Sigma=\{\blacklozenge,\bigstar,\blacktriangle,\blacktriangledown,\bullet,\blacksquare\}$
+ and $\Sigma_0=\{\blacklozenge,\blacktriangledown\}$.
+ }
+\end{figure}
+
Assuming $\mathcal S$ is holomorphic (and that the phase space $\Omega$ is
orientable, which is usually true) the integral in \eref{eq:partition.function}
can be considered an integral over a contour in the complex phase space $\tilde\Omega$,