summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
-rw-r--r--stokes.tex91
1 files changed, 50 insertions, 41 deletions
diff --git a/stokes.tex b/stokes.tex
index 2a5724f..b2176ce 100644
--- a/stokes.tex
+++ b/stokes.tex
@@ -911,7 +911,7 @@ complex matrix $B$.
Introducing replicas to bring the partition function into the numerator of the
Green function \cite{Livan_2018_Introduction} gives
-\begin{equation} \label{eq:green.replicas}
+\begin{equation} \label{eq:green.replicas} \fl\quad
G(\sigma)=\lim_{n\to0}\int dz\,dz^*\,(z^{(0)})^\dagger z^{(0)}
\exp\left\{
-\sum_\alpha^n\left[(z^{(\alpha)})^\dagger z^{(\alpha)}\sigma
@@ -927,11 +927,13 @@ replica vectors. The replica-symmetric ansatz leaves all replica vectors
zero, and $\alpha_{\alpha\beta}=\alpha_0\delta_{\alpha\beta}$,
$\chi_{\alpha\beta}=\chi_0\delta_{\alpha\beta}$. The result is
\begin{equation}\label{eq:green.saddle}
- \overline G(\sigma)=N\lim_{n\to0}\int d\alpha_0\,d\chi_0\,d\chi_0^*\,\alpha_0
- \exp\left\{nN\left[
- 1+\frac18A_0\alpha_0^2-\frac{\alpha_0\sigma}2+\frac12\log(\alpha_0^2-|\chi_0|^2)
- +\frac14\operatorname{Re}\left(\frac14C_0^*\chi_0^2+\lambda_0^*\chi_0\right)
- \right]\right\}.
+ \eqalign{
+ \overline G(\sigma)=N\lim_{n\to0}\int &d\alpha_0\,d\chi_0\,d\chi_0^*\,\alpha_0
+ \exp\left\{nN\left[
+ 1+\frac18A_0\alpha_0^2-\frac{\alpha_0\sigma}2\right.\right.\cr
+ &\left.\left.+\frac12\log(\alpha_0^2-|\chi_0|^2)+\frac14\operatorname{Re}\left(\frac14C_0^*\chi_0^2+\lambda_0^*\chi_0\right)
+ \right]\right\}.
+ }
\end{equation}
\begin{figure}
@@ -1256,16 +1258,18 @@ the result can be written, neglecting constant factors,
\overline\mathcal N\simeq\int dQ\,e^{NS_\mathrm{eff}(Q)}
\end{equation}
for an effective action functional of the supermatrix $Q$
-\begin{equation}
- S_{\mathrm{eff}}=
- \int d1\,d2\,\operatorname{Tr}\left(
- \frac14\left[
- \matrix{\frac14&\frac14\cr\frac14&\frac14}
- \right]Q^{(p)}(1,2)-\frac p2\left[
- \matrix{\frac\epsilon2&0\cr0&\frac{\epsilon^*}2}
- \right](Q(1,1)-I)\delta(1,2)
- \right)
- +\frac12\log\det Q
+\begin{equation} \fl
+ \eqalign{
+ S_{\mathrm{eff}}&=
+ \int d1\,d2\,\operatorname{Tr}\left(
+ \frac14\left[
+ \matrix{\frac14&\frac14\cr\frac14&\frac14}
+ \right]Q^{(p)}(1,2)-\frac p2\left[
+ \matrix{\frac\epsilon2&0\cr0&\frac{\epsilon^*}2}
+ \right](Q(1,1)-I)\delta(1,2)
+ \right) \\
+ &\hspace{28em}+\frac12\log\det Q
+ }
\end{equation}
where the exponent in parentheses denotes element-wise exponentiation, and
\begin{equation}
@@ -1382,23 +1386,28 @@ stationary points with given energies $\epsilon_1$ and $\epsilon_2$ are
\right]
\end{equation}
\begin{equation}
- S_\mathrm{eff}
- =\int d1\,d2\,\operatorname{Tr}\left\{
- \frac14\left[\matrix{1&\frac12&\frac12\cr\frac12&\frac14&\frac14\cr\frac12&\frac14&\frac14}\right]Q^{(p)}(1,2)
- -\frac p2\left[
- \matrix{\epsilon_1&0&0\cr0&\frac12\epsilon_2&0\cr0&0&\frac12\epsilon_2^*}
- \right]\left(
- Q(1,1)-I
- \right)\delta(1,2)
- \right\}+\frac12\det Q
+ \eqalign{
+ S_\mathrm{eff}
+ &=\int d1\,d2\,\operatorname{Tr}\left\{
+ \frac14\left[\matrix{1&\frac12&\frac12\cr\frac12&\frac14&\frac14\cr\frac12&\frac14&\frac14}\right]Q^{(p)}(1,2)
+ \right. \\
+ &\qquad\qquad\left.-\frac p2\left[
+ \matrix{\epsilon_1&0&0\cr0&\frac12\epsilon_2&0\cr0&0&\frac12\epsilon_2^*}
+ \right]\left(
+ Q(1,1)-I
+ \right)\delta(1,2)
+ \right\}+\frac12\det Q
+ }
\end{equation}
\begin{equation}
- 0=\frac{\partial S_\mathrm{eff}}{\partial Q(1,2)}
- =
- \frac p4\left[\matrix{1&\frac12&\frac12\cr\frac12&\frac14&\frac14\cr\frac12&\frac14&\frac14}\right]\odot Q^{(p-1)}(1,2)
- -\frac p2\left[
- \matrix{\epsilon_1&0&0\cr0&\frac12\epsilon_2&0\cr0&0&\frac12\epsilon_2^*}\right]\delta(1,2)
- +\frac12Q^{-1}(1,2)
+ \eqalign{
+ 0=\frac{\partial S_\mathrm{eff}}{\partial Q(1,2)}
+ &=
+ \frac p4\left[\matrix{1&\frac12&\frac12\cr\frac12&\frac14&\frac14\cr\frac12&\frac14&\frac14}\right]\odot Q^{(p-1)}(1,2) \\
+ &\qquad\qquad-\frac p2\left[
+ \matrix{\epsilon_1&0&0\cr0&\frac12\epsilon_2&0\cr0&0&\frac12\epsilon_2^*}\right]\delta(1,2)
+ +\frac12Q^{-1}(1,2)
+ }
\end{equation}
where $\odot$ denotes element-wise multiplication.
\begin{equation}
@@ -1406,8 +1415,8 @@ where $\odot$ denotes element-wise multiplication.
0
&=\int d3\,\frac{\partial S_\mathrm{eff}}{\partial Q(1,3)}Q(3,2) \\
&=\frac p4\int d3\,
- \left\{\left[\matrix{1&\frac12&\frac12\cr\frac12&\frac14&\frac14\cr\frac12&\frac14&\frac14}\right]\odot Q^{(p-1)}(1,3)\right\}Q(3,2)
- -\frac p2 \left[
+ \left\{\left[\matrix{1&\frac12&\frac12\cr\frac12&\frac14&\frac14\cr\frac12&\frac14&\frac14}\right]\odot Q^{(p-1)}(1,3)\right\}Q(3,2) \\
+ &\qquad\qquad\qquad\qquad -\frac p2 \left[
\matrix{\epsilon_1&0&0\cr0&\frac12\epsilon_2&0\cr0&0&\frac12\epsilon_2^*}\right]Q(1,2)
+\frac12I\delta(1,2)
}
@@ -1478,7 +1487,7 @@ function of $\Delta$ and $\arg\delta$.
}
\end{figure}
-\subsection{Pure $p$-spin: is analytic continuation possible?}
+\subsection{Pure {\it p}-spin: is analytic continuation possible?}
\begin{equation}
\eqalign{
@@ -1489,7 +1498,7 @@ function of $\Delta$ and $\arg\delta$.
e^{-\beta\mathcal S(s_\sigma)} \\
&\simeq\sum_{k=0}^D\int d\epsilon\,\mathcal N_\mathrm{typ}(\epsilon,k)
\left(\frac{2\pi}\beta\right)^{D/2}i^k
- \left(|\det\operatorname{Hess}\mathcal S(s_\sigma)|^{-\frac12}\bigm|\mathcal S(s_\sigma)=N\epsilon,k_\sigma=k\right) e^{-\beta N\epsilon}
+ |\det\operatorname{Hess}\mathcal S(s_\sigma)|^{-\frac12} e^{-\beta N\epsilon}
}
\end{equation}
Following Derrida \cite{Derrida_1991_The},
@@ -1503,17 +1512,17 @@ governs things at large $|\beta|$, not its total. This gives two terms to the ty
\begin{equation}
Z_\mathrm{typ}=Z_A+Z_B
\end{equation}
-\begin{eqnarray}
+\begin{eqnarray} \fl
Z_A
- &\simeq\sum_{k=0}^D\int d\epsilon\,\overline\mathcal N(\epsilon,k)
+ \simeq\sum_{k=0}^D\int d\epsilon\,\overline\mathcal N(\epsilon,k)
\left(\frac{2\pi}\beta\right)^{D/2}i^k
|\det\operatorname{Hess}\mathcal S|^{-\frac12} e^{-\beta N\epsilon}
=\int d\epsilon\,e^{Nf_A(\epsilon)}
- \\
+ \\ \fl
Z_B
- &\simeq\sum_{k=0}^D\int d\epsilon\,\eta(\epsilon,k)\overline\mathcal N(\epsilon,k)^{1/2}
+ \simeq\sum_{k=0}^D\int d\epsilon\,\eta(\epsilon,k)\overline\mathcal N(\epsilon,k)^{1/2}
\left(\frac{2\pi}\beta\right)^{D/2}i^k
- |\det\operatorname{Hess}\mathcal S(s_\sigma)|^{-\frac12}e^{-\beta N\epsilon}
+ |\det\operatorname{Hess}\mathcal S(s_\sigma)|^{-\frac12}e^{-\beta N\epsilon} \\
=\int d\epsilon\,\tilde\eta(\epsilon)e^{Nf_B(\epsilon)}
\end{eqnarray}
for
@@ -1577,7 +1586,7 @@ large-$|\beta|$ saddle-point used to evaluate the thimble integrals. Taking the
thimbles to the next order in $\beta$ may reveal more explicitly where Stokes
points become important.
-\section{The $p$-spin spherical models: numerics}
+\section{The {\it p}-spin spherical models: numerics}
To study Stokes lines numerically, we approximated them by parametric curves.
If $z_0$ and $z_1$ are two stationary points of the action with