summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
-rw-r--r--stokes.tex47
1 files changed, 39 insertions, 8 deletions
diff --git a/stokes.tex b/stokes.tex
index 26117d2..752ba87 100644
--- a/stokes.tex
+++ b/stokes.tex
@@ -362,28 +362,59 @@ keeping track of the resulting weights, and analytic continuation is intractable
\subsection{The structure of stationary points}
-\begin{eqnarray}
- \operatorname{Hess}\operatorname{Re}\beta\mathcal S
- &=\left[\matrix{
+The shape of each thimble in the vicinity of a stationary point can be
+described using an analysis of the hessian of the real part of the action at
+the stationary point. Here we'll review some general properties of this
+hessian, which because the action is holomorphic has rich structure.
+
+First, consider the problem as one of $2N$ real variables $x,y\in\mathbb R^N$
+with $z=x+iy$. The hessian of the real part of the action with respect to these
+real variables is
+\begin{equation} \label{eq:real.hessian}
+ \operatorname{Hess}_{x,y}\operatorname{Re}\beta\mathcal S
+ =\left[\matrix{
\partial_x\partial_x\operatorname{Re}\beta\mathcal S &
\partial_y\partial_x\operatorname{Re}\beta\mathcal S \cr
\partial_x\partial_y\operatorname{Re}\beta\mathcal S &
\partial_y\partial_y\operatorname{Re}\beta\mathcal S
- }\right] \\
- &=\left[\matrix{
+ }\right]
+\end{equation}
+This con be simplified using the fact that the action is holomorphic, which
+means that it obeys the Cauchy--Riemann equations
+\begin{equation}
+ \partial_x\operatorname{Re}\mathcal S=\partial_y\operatorname{Im}\mathcal S
+ \qquad
+ \partial_y\operatorname{Re}\mathcal S=-\partial_x\operatorname{Im}\mathcal S
+\end{equation}
+Using these relationships alongside the Wirtinger derivative
+$\partial\equiv\frac12(\partial_x-i\partial_y)$ allows the order of the
+derivatives and the real or imaginary parts to be commuted, with
+\begin{eqnarray}
+ \partial_x\operatorname{Re}\mathcal S=\operatorname{Re}\partial\mathcal S
+ \qquad
+ \partial_y\operatorname{Re}\mathcal S=-\operatorname{Im}\partial\mathcal S \\
+ \partial_x\operatorname{Im}\mathcal S=\operatorname{Im}\partial\mathcal S
+ \qquad
+ \partial_y\operatorname{Im}\mathcal S=\operatorname{Re}\partial\mathcal S
+\end{eqnarray}
+Using these relationships, the hessian \eref{eq:real.hessian} can be written in
+the more manifestly complex way
+\begin{equation}
+ \operatorname{Hess}_{x,y}\operatorname{Re}\beta\mathcal S
+ =\left[\matrix{
\hphantom{-}\operatorname{Re}\beta\partial\partial\mathcal S &
-\operatorname{Im}\beta\partial\partial\mathcal S \cr
-\operatorname{Im}\beta\partial\partial\mathcal S &
-\operatorname{Re}\beta\partial\partial\mathcal S
}\right]
-\end{eqnarray}
+\end{equation}
The eigenvalues and eigenvectors of the Hessian are important for evaluating
thimble integrals, because those associated with upward directions provide a
local basis for the surface of the thimble. Suppose that $v_x,v_y\in\mathbb
R^N$ are such that
\begin{equation}
- (\operatorname{Hess}\operatorname{Re}\beta\mathcal S)\left[\matrix{v_x \cr v_y}\right]
+ (\operatorname{Hess}_{x,y}\operatorname{Re}\beta\mathcal S)\left[\matrix{v_x \cr v_y}\right]
=\lambda\left[\matrix{v_x \cr v_y}\right]
\end{equation}
where the eigenvalue $\lambda$ must be real because the hessian is real symmetric. The problem can be put into a more obviously complex form by a change of basis. Writing $v=v_x+iv_y$, we find
@@ -391,7 +422,7 @@ where the eigenvalue $\lambda$ must be real because the hessian is real symmetri
&\left[\matrix{0&-i(\beta\partial\partial\mathcal S)^*\cr i\beta\partial\partial\mathcal S&0}\right]
\left[\matrix{v \cr iv^*}\right]\\
&\qquad=\left[\matrix{1&i\cr i&1}\right]
- (\operatorname{Hess}\operatorname{Re}\beta\mathcal S)
+ (\operatorname{Hess}_{x,y}\operatorname{Re}\beta\mathcal S)
\left[\matrix{1&i\cr i&1}\right]^{-1}
\left[\matrix{1&i\cr i&1}\right]
\left[\matrix{v_x \cr v_y}\right] \\