summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorJaron Kent-Dobias <jaron@kent-dobias.com>2020-12-07 16:15:17 +0100
committerJaron Kent-Dobias <jaron@kent-dobias.com>2020-12-07 16:15:17 +0100
commit2bbb3199a4774f2880954ad66faa187dbb020339 (patch)
treeca851c5fbbcd1db301baa4ec196a72b0eafdb05f
parent471e49b1a172752c58439733e9f81f9255b539f3 (diff)
downloadPRR_3_023064-2bbb3199a4774f2880954ad66faa187dbb020339.tar.gz
PRR_3_023064-2bbb3199a4774f2880954ad66faa187dbb020339.tar.bz2
PRR_3_023064-2bbb3199a4774f2880954ad66faa187dbb020339.zip
More matrix talk.
-rw-r--r--bezout.tex13
1 files changed, 12 insertions, 1 deletions
diff --git a/bezout.tex b/bezout.tex
index 783d547..6873e58 100644
--- a/bezout.tex
+++ b/bezout.tex
@@ -116,7 +116,18 @@ $\langle(\partial_i\partial_j H_0)^2\rangle=p(p-1)\kappa/2N$, $\rho_0(\lambda)$
\left(\frac{\mathop{\mathrm{Im}}(\lambda e^{i\theta})}{a^{p-2}-|\kappa|}\right)^2
<\frac{p(p-1)}{2a^{p-2}}
\end{equation}
-where $\theta=\frac12\arg\kappa$ \cite{Nguyen_2014_The}.
+where $\theta=\frac12\arg\kappa$ \cite{Nguyen_2014_The}. The eigenvalue
+spectrum of $\partial\partial H$ therefore is than of an ellipse whose center
+is shifted by $p\epsilon$.
+
+The eigenvalue spectrum of the Hessian of the real part, or equivalently the
+eigenvalue spectrum of $(\partial\partial H)^\dagger\partial\partial H$, is the
+singular value spectrum of $\partial\partial H$. This is a more difficult
+problem and to our knowledge a closed form for arbitrary $\kappa$ is not known.
+We have worked out an implicit form for this spectrum using the saddle point of
+a replica calculation for the Green function. blah blah blah\dots
+
+The transition from a one-cut to two-cut singular value spectrum naturally corresponds to the origin leaving the support of the eigenvalue spectrum. Weyl's theorem requires that the product over the norm of all eigenvalues must not be greater than the product over all singular values. Therefore, the absence of zero eigenvalues implies the absence of zero singular values.
\bibliographystyle{apsrev4-2}
\bibliography{bezout}