summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorkurchan.jorge <kurchan.jorge@gmail.com>2020-12-08 12:01:14 +0000
committeroverleaf <overleaf@localhost>2020-12-08 12:07:12 +0000
commit2f6c586f02f36f1fdb23a476aa9ebbce0bd318eb (patch)
tree40a16d43ed0d137185bbecd2caf462ee611e00de
parenteb4ff41a5611b61caaffbb5c055df17791642ee7 (diff)
downloadPRR_3_023064-2f6c586f02f36f1fdb23a476aa9ebbce0bd318eb.tar.gz
PRR_3_023064-2f6c586f02f36f1fdb23a476aa9ebbce0bd318eb.tar.bz2
PRR_3_023064-2f6c586f02f36f1fdb23a476aa9ebbce0bd318eb.zip
Update on Overleaf.
-rw-r--r--bezout.tex4
1 files changed, 2 insertions, 2 deletions
diff --git a/bezout.tex b/bezout.tex
index 62a773a..da55794 100644
--- a/bezout.tex
+++ b/bezout.tex
@@ -220,10 +220,10 @@ Another instrument we have to study this problem is to compute the following par
The energy $\Re H_0, \Im H_0$ are in a one-to one relation with the temperatures $\beta_R,\beta_I$. The entropy $S(a,H_0) = \ln Z+ +\beta_{R} \langle \Re H_0 \rangle +\beta_I \langle \Im H_0\rangle$
is the logarithm of the number of configurations of a given $(a,H_0)$.
This problem may be solved exactly with replicas, {\em but it may also be simulated}
-Consider for example the ground-state energy for given $a$, that is, the energy in the limit $\beta_R \rightarrow \infty$ taken after $\beta_I \rightarrow \infty$. For $a=1$ this coincides with the ground-state of the real problem.
+Consider for example the ground-state energy for given $a$, that is, the energy in the limit $\beta_R \rightarrow \infty$ taken adjusting $\beta_I$ so that $\Im H_0=0$ . For $a=1$ this coincides with the ground-state of the real problem.
\begin{center}
- \includegraphics[width=4cm]{phase.pdf}
+ \includegraphics[width=6cm]{phase.pdf}
\end{center}
}