diff options
author | kurchan.jorge <kurchan.jorge@gmail.com> | 2020-12-08 12:01:14 +0000 |
---|---|---|
committer | overleaf <overleaf@localhost> | 2020-12-08 12:07:12 +0000 |
commit | 2f6c586f02f36f1fdb23a476aa9ebbce0bd318eb (patch) | |
tree | 40a16d43ed0d137185bbecd2caf462ee611e00de | |
parent | eb4ff41a5611b61caaffbb5c055df17791642ee7 (diff) | |
download | PRR_3_023064-2f6c586f02f36f1fdb23a476aa9ebbce0bd318eb.tar.gz PRR_3_023064-2f6c586f02f36f1fdb23a476aa9ebbce0bd318eb.tar.bz2 PRR_3_023064-2f6c586f02f36f1fdb23a476aa9ebbce0bd318eb.zip |
Update on Overleaf.
-rw-r--r-- | bezout.tex | 4 |
1 files changed, 2 insertions, 2 deletions
@@ -220,10 +220,10 @@ Another instrument we have to study this problem is to compute the following par The energy $\Re H_0, \Im H_0$ are in a one-to one relation with the temperatures $\beta_R,\beta_I$. The entropy $S(a,H_0) = \ln Z+ +\beta_{R} \langle \Re H_0 \rangle +\beta_I \langle \Im H_0\rangle$ is the logarithm of the number of configurations of a given $(a,H_0)$. This problem may be solved exactly with replicas, {\em but it may also be simulated} -Consider for example the ground-state energy for given $a$, that is, the energy in the limit $\beta_R \rightarrow \infty$ taken after $\beta_I \rightarrow \infty$. For $a=1$ this coincides with the ground-state of the real problem. +Consider for example the ground-state energy for given $a$, that is, the energy in the limit $\beta_R \rightarrow \infty$ taken adjusting $\beta_I$ so that $\Im H_0=0$ . For $a=1$ this coincides with the ground-state of the real problem. \begin{center} - \includegraphics[width=4cm]{phase.pdf} + \includegraphics[width=6cm]{phase.pdf} \end{center} } |