diff options
author | kurchan.jorge <kurchan.jorge@gmail.com> | 2020-12-10 12:52:43 +0000 |
---|---|---|
committer | overleaf <overleaf@localhost> | 2020-12-10 12:52:51 +0000 |
commit | 357ceadde37599ec164d135913f57517d5427ba0 (patch) | |
tree | d5eefef8f9c17d754138ad8b269a74bd141796a8 | |
parent | 8bfb345a7ac58198d2da15053af87881775c6f18 (diff) | |
download | PRR_3_023064-357ceadde37599ec164d135913f57517d5427ba0.tar.gz PRR_3_023064-357ceadde37599ec164d135913f57517d5427ba0.tar.bz2 PRR_3_023064-357ceadde37599ec164d135913f57517d5427ba0.zip |
Update on Overleaf.
-rw-r--r-- | bezout.tex | 3 |
1 files changed, 2 insertions, 1 deletions
@@ -113,7 +113,8 @@ Critical points are given by the set of equations: \begin{equation} \frac{c_p}{(p-1)!}\sum_{ i, i_2\cdots i_p}^NJ_{i, i_2\cdots i_p}z_{i_2}\cdots z_{i_p} = \epsilon z_i \end{equation} -which for given $\epsilon$ are a set pf $N$ equations (plus the constraint) of degree $p- $ +which for given $\epsilon$ are a set pf $N$ equations (plus the constraint) of degree $p-1$. +$ Since $H$ is holomorphic, a point is a critical point of its real part if and only if it is also a critical point of its imaginary part. The number of critical points of $H$ is therefore the number of critical points of |