diff options
author | kurchan.jorge <kurchan.jorge@gmail.com> | 2020-12-09 13:06:34 +0000 |
---|---|---|
committer | overleaf <overleaf@localhost> | 2020-12-09 13:06:52 +0000 |
commit | 3b1b4f32a709b87769436c5e0922f3ebf22fe9fd (patch) | |
tree | 688db1687c0337f1b4e9104408e5b7d3c0033c3a | |
parent | c46a125a792dd46393d88a069708a828a47747f6 (diff) | |
download | PRR_3_023064-3b1b4f32a709b87769436c5e0922f3ebf22fe9fd.tar.gz PRR_3_023064-3b1b4f32a709b87769436c5e0922f3ebf22fe9fd.tar.bz2 PRR_3_023064-3b1b4f32a709b87769436c5e0922f3ebf22fe9fd.zip |
Update on Overleaf.
-rw-r--r-- | bezout.tex | 7 |
1 files changed, 6 insertions, 1 deletions
@@ -328,7 +328,12 @@ Consider for example the ground-state energy for given $a$, that is, the energy } \end{figure} -\begin{figure}[htpb]\label{deser +{\color{teal} {\bf somewhere} In Figure \ref{desert} we show that for $\kappa<1$ there is always a range of values of $a$ close to one for which there are no solutions: this is natural, given that the $y$ contribution to the volume shrinks to zero as that of an $N$-dimensional sphere $\sim(a-1)^N$. +For the case $K=1$ -- i.e. the analytic continuation of the usual real computation -- the situation +is more interesting. In the range of values of $$ + + +\begin{figure}[htpb]\label{desert} \centering \includegraphics{fig/desert.pdf} \caption{ |