summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorJaron Kent-Dobias <jaron@kent-dobias.com>2020-12-07 13:49:15 +0100
committerJaron Kent-Dobias <jaron@kent-dobias.com>2020-12-07 13:49:15 +0100
commit4b623a36321f1f8225434be55d89fb5ac94b5946 (patch)
tree9343507e55e8dd9db06b68d278e1a79635fea8b9
parent2a7f289f573e50ac92e1f549fb450dcb0751b313 (diff)
downloadPRR_3_023064-4b623a36321f1f8225434be55d89fb5ac94b5946.tar.gz
PRR_3_023064-4b623a36321f1f8225434be55d89fb5ac94b5946.tar.bz2
PRR_3_023064-4b623a36321f1f8225434be55d89fb5ac94b5946.zip
Added introduction to complex Kac-Rice.
-rw-r--r--bezout.tex30
1 files changed, 30 insertions, 0 deletions
diff --git a/bezout.tex b/bezout.tex
index 53cc5e9..f877d05 100644
--- a/bezout.tex
+++ b/bezout.tex
@@ -41,6 +41,36 @@ multipliers: introducing the $\epsilon\in\mathbb C$, this gives
\end{equation}
At any critical point $\epsilon=H/N$, the average energy.
+Since $H$ is holomorphic, a point is a critical point of its real part if and
+only if it is also a critical point of its imaginary part. The number of
+critical points of $H$ is therefore the number of critical points of
+$\mathop{\mathrm{Re}}H$. Writing $z=x+iy$, $\mathop{\mathrm{Re}}H$ can be
+interpreted as a real function of $2N$ real variables. The number of critical
+points it has is given by the usual Kac--Rice formula:
+\begin{equation} \label{eq:real.kac-rice}
+ \mathcal N(\epsilon)
+ = \int dx\,dy\,\delta(\partial_x\mathop{\mathrm{Re}}H)\delta(\partial_y\mathop{\mathrm{Re}}H)
+ \left|\det\begin{bmatrix}
+ \partial_x\partial_x\mathop{\mathrm{Re}}H & \partial_x\partial_y\mathop{\mathrm{Re}}H \\
+ \partial_y\partial_x\mathop{\mathrm{Re}}H & \partial_y\partial_y\mathop{\mathrm{Re}}H
+ \end{bmatrix}\right|.
+\end{equation}
+The Cauchy--Riemann relations can be used to simplify this. Using the Wirtinger
+derivative $\partial=\partial_x-i\partial_y$, one can write
+$\partial_x\mathop{\mathrm{Re}}H=\mathop{\mathrm{Re}}\partial H$ and
+$\partial_y\mathop{\mathrm{Re}}H=-\mathop{\mathrm{Im}}\partial H$. With similar
+transformations, the eigenvalue spectrum of the Hessian of
+$\mathop{\mathrm{Re}}H$ can be shown to be equivalent to the singular value
+spectrum of the Hessian $\partial\partial H$ of $H$, and as a result the
+determinant that appears above is equivalent to $|\det\partial\partial H|^2$.
+This allows us to write the \eqref{eq:real.kac-rice} in the manifestly complex
+form
+\begin{equation} \label{eq:complex.kac-rice}
+ \mathcal N(\epsilon)
+ = \int dx\,dy\,\delta(\mathop{\mathrm{Re}}\partial H)\delta(\mathop{\mathrm{Im}}\partial H)
+ |\det\partial\partial H|^2.
+\end{equation}
+
\bibliographystyle{apsrev4-2}
\bibliography{bezout}