diff options
author | kurchan.jorge <kurchan.jorge@gmail.com> | 2020-12-09 15:57:23 +0000 |
---|---|---|
committer | overleaf <overleaf@localhost> | 2020-12-09 15:58:10 +0000 |
commit | 4c7e7edb6c7b74ded74a4437d7b15f32c1e6f378 (patch) | |
tree | 74c4a93871f64fba9812384655d34df39f134d71 | |
parent | 2ceb3f6738b7027625f9fc25c07a57a20569b17b (diff) | |
download | PRR_3_023064-4c7e7edb6c7b74ded74a4437d7b15f32c1e6f378.tar.gz PRR_3_023064-4c7e7edb6c7b74ded74a4437d7b15f32c1e6f378.tar.bz2 PRR_3_023064-4c7e7edb6c7b74ded74a4437d7b15f32c1e6f378.zip |
Update on Overleaf.
-rw-r--r-- | bezout.bib | 11 | ||||
-rw-r--r-- | bezout.tex | 2 |
2 files changed, 12 insertions, 1 deletions
@@ -11,7 +11,16 @@ url = {https://doi.org/10.1007%2Fjhep12%282016%29071}, doi = {10.1007/jhep12(2016)071} } - +@article{bogomolny1992distribution, + title={Distribution of roots of random polynomials}, + author={Bogomolny, Eugene and Bohigas, Oriol and Leboeuf, Patricio}, + journal={Physical Review Letters}, + volume={68}, + number={18}, + pages={2726}, + year={1992}, + publisher={APS} +} @article{Antenucci_2015_Complex, author = {Antenucci, F. and Crisanti, A. and Leuzzi, L.}, title = {Complex spherical {$2+4$} spin glass: A model for nonlinear optics in random media}, @@ -69,6 +69,8 @@ complex variables, and the roots are simple all the way (we shall confirm this), variables minima of functions appear and disappear, and this procedure is not possible. The same idea may be implemented by performing diffusion in the $J$'s, and following the roots, in complete analogy with Dyson's stochastic dynamics. +This study also provides a complement to the work on the distribution of zeroes of random polynomials \cite{bogomolny1992distribution}. + Let us go back to our model. For the constraint we choose here $z^2=N$, rather than $|z|^2=N$, in order to preserve the holomorphic nature |