diff options
| author | Jaron Kent-Dobias <jaron@kent-dobias.com> | 2020-12-07 18:51:59 +0100 | 
|---|---|---|
| committer | Jaron Kent-Dobias <jaron@kent-dobias.com> | 2020-12-07 18:51:59 +0100 | 
| commit | 572e2958fde0bdda61e8bc3b422c212c5381c167 (patch) | |
| tree | 1f1006b3a8214cbca9343ee42b375bdb061b2302 | |
| parent | 24e3b47f4bf719c780c64fb6e8aaed8963693675 (diff) | |
| download | PRR_3_023064-572e2958fde0bdda61e8bc3b422c212c5381c167.tar.gz PRR_3_023064-572e2958fde0bdda61e8bc3b422c212c5381c167.tar.bz2 PRR_3_023064-572e2958fde0bdda61e8bc3b422c212c5381c167.zip | |
Tidied up notation.
| -rw-r--r-- | bezout.tex | 33 | 
1 files changed, 18 insertions, 15 deletions
| @@ -41,7 +41,7 @@ Spin-glasses have long been considered the paradigm of `complex landscapes' of m  includes Neural Networks and optimization problems, most notably  Constraint Satisfaction ones.  The most tractable family of these  are the mean-field spherical p-spin models defined by the energy:  \begin{equation} \label{eq:bare.hamiltonian} -  H_o = \sum_p \frac{c_p}{p!}\sum_{i_1\cdots i_p}^NJ_{i_1\cdots i_p}z_{i_1}\cdots z_{i_p}, +  H_0 = \sum_p \frac{c_p}{p!}\sum_{i_1\cdots i_p}^NJ_{i_1\cdots i_p}z_{i_1}\cdots z_{i_p},  \end{equation}  where the $J_{i_1\cdots i_p}$ are real Gaussian variables and the $z_i$ are real and constrained  to a sphere $\sum_i z_i^2=N$. If there is a single  term of a given $p$, this is known as the `pure $p$-spin' model, the case we shall study here. @@ -51,8 +51,8 @@ a Kac-Rice \cite{Kac,Fyodorov} procedure (similar to the Fadeev-Popov integral)  Thanks to the relative simplicity of the energy, all these approaches are possible analytically in the large $N$ limit.  In this paper we shall extend the study to the case  where $z\in\mathbb C^N$ are  and $J$ is a symmetric tensor -whose elements are complex normal with $\langle|J|^2\rangle=p!/2N^{p-1}$ and -$\langle J^2\rangle=\kappa\langle|J|^2\rangle$ for complex parameter $|\kappa|<1$. The constraint becomes $z^2=N$. +whose elements are complex normal with $\overline{|J|^2}=p!/2N^{p-1}$ and +$\overline{J^2}=\kappa\overline{|J|^2}$ for complex parameter $|\kappa|<1$. The constraint becomes $z^2=N$.  The motivations for this paper are of two types. On the practical side, there are situations in which  complex variables  have in a disorder problem appear naturally: such is the case in which they are {\em phases}, as in random laser problems \cite{Leuzzi-Crisanti, etc}. Another problem where a Hamiltonian very close to ours has been proposed is the Quiver Hamiltonians \cite{Anninos-Anous-Denef} modeling Black Hole horizons in the zero-temperature limit.   @@ -84,12 +84,14 @@ $\mathop{\mathrm{Re}}H$. Writing $z=x+iy$, $\mathop{\mathrm{Re}}H$ can be  interpreted as a real function of $2N$ real variables. The number of critical  points it has is given by the usual Kac--Rice formula:  \begin{equation} \label{eq:real.kac-rice} -  \mathcal N_J(\kappa,\epsilon) -    = \int dx\,dy\,\delta(\partial_x\mathop{\mathrm{Re}}H)\delta(\partial_y\mathop{\mathrm{Re}}H) -      \left|\det\begin{bmatrix} -        \partial_x\partial_x\mathop{\mathrm{Re}}H & \partial_x\partial_y\mathop{\mathrm{Re}}H \\ -        \partial_y\partial_x\mathop{\mathrm{Re}}H & \partial_y\partial_y\mathop{\mathrm{Re}}H -      \end{bmatrix}\right|. +  \begin{aligned} +    \mathcal N_J(\kappa,\epsilon) +      &= \int dx\,dy\,\delta(\partial_x\mathop{\mathrm{Re}}H)\delta(\partial_y\mathop{\mathrm{Re}}H) \\ +      &\qquad\times\left|\det\begin{bmatrix} +          \partial_x\partial_x\mathop{\mathrm{Re}}H & \partial_x\partial_y\mathop{\mathrm{Re}}H \\ +          \partial_y\partial_x\mathop{\mathrm{Re}}H & \partial_y\partial_y\mathop{\mathrm{Re}}H +        \end{bmatrix}\right|. +  \end{aligned}  \end{equation}  {\color{red} {\bf perhaps not here} This expression is to be averaged over the $J$'s as   $N \Sigma=  @@ -107,7 +109,8 @@ The Cauchy--Riemann relations imply that the matrix is of the form:          \bar A & \bar B \\          \bar B & -\bar A        \end{bmatrix} -\end{equation}with $\bar A$ and $\bar B$  Gaussian real symmetric matrices, {\em correlated}, as we shall see.. +\end{equation} +with $\bar A=-\mathop{\mathrm{Re}}\partial\partial H$ and $\bar B=-\mathop{\mathrm{Im}}\partial\partial H$ Gaussian real symmetric matrices, \emph{correlated}, as we shall see..  Using the Wirtinger  derivative $\partial=\partial_x-i\partial_y$, one can write  $\partial_x\mathop{\mathrm{Re}}H=\mathop{\mathrm{Re}}\partial H$ and @@ -119,13 +122,13 @@ determinant that appears above is equivalent to $|\det\partial\partial H|^2$.  This allows us to write \eqref{eq:real.kac-rice} in the manifestly complex  form  \begin{equation} \label{eq:complex.kac-rice} -  \mathcal N(\kappa,\epsilon) +  \mathcal N_J(\kappa,\epsilon)      = \int dx\,dy\,\delta(\mathop{\mathrm{Re}}\partial H)\delta(\mathop{\mathrm{Im}}\partial H)        |\det\partial\partial H|^2.  \end{equation} -The Hessian of \eqref{eq:constrained.hamiltonian} is $\partial_i\partial_j -H=\partial_i\partial_j H_0-p\epsilon\delta_{ij}$, or the Hessian of +The Hessian of \eqref{eq:constrained.hamiltonian} is $\partial\partial +H=\partial\partial H_0-p\epsilon I$, or the Hessian of  \eqref{eq:bare.hamiltonian} with a constant added to its diagonal. The  eigenvalue distribution $\rho$ of the constrained Hessian is therefore related  to the eigenvalue distribution $\rho_0$ of the unconstrained one by a similar @@ -136,8 +139,8 @@ shift, or $\rho(\lambda)=\rho_0(\lambda+p\epsilon)$. The Hessian of    =\frac{p(p-1)}{p!}\sum_{k_1\cdots k_{p-2}}^NJ_{ijk_1\cdots k_{p-2}}z_{k_1}\cdots z_{k_{p-2}},  \end{equation}  which makes its ensemble that of Gaussian complex symmetric matrices. Given its variances -$\langle|\partial_i\partial_j H_0|^2\rangle=p(p-1)a^{p-2}/2N$ and -$\langle(\partial_i\partial_j H_0)^2\rangle=p(p-1)\kappa/2N$, $\rho_0(\lambda)$ is constant inside the ellipse +$\overline{|\partial_i\partial_j H_0|^2}=p(p-1)a^{p-2}/2N$ and +$\overline{(\partial_i\partial_j H_0)^2}=p(p-1)\kappa/2N$, $\rho_0(\lambda)$ is constant inside the ellipse  \begin{equation} \label{eq:ellipse}    \left(\frac{\mathop{\mathrm{Re}}(\lambda e^{i\theta})}{a^{p-2}+|\kappa|}\right)^2+    \left(\frac{\mathop{\mathrm{Im}}(\lambda e^{i\theta})}{a^{p-2}-|\kappa|}\right)^2 | 
